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In this work, we introduce a combined experimental and computational approach to describe the con-

ductivity of metallic nanowire networks. Due to their highly disordered nature, these materials are typically

described by simplified models in which network junctions control the overall conductivity. Here, we

introduce a combined experimental and simulation approach that involves a wire-by-wire junction-by-

junction simulation of an actual network. Rather than dealing with computer-generated networks, we use

a computational approach that captures the precise spatial distribution of wires from an SEM analysis of a

real network. In this way, we fully account for all geometric aspects of the network, i.e. for the properties

of the junctions and wire segments. Our model predicts characteristic junction resistances that are

smaller than those found by earlier simplified models. The model outputs characteristic values that

depend on the detailed connectivity of the network, which can be used to compare the performance of

different networks and to predict the optimum performance of any network and its scope for

improvement.

Introduction

The unique behaviour displayed by nanoscale-sized materials

is responsible for numerous scientific and technological

breakthroughs. In comparison to their bulk counterparts,

nanomaterials often reveal superior physical properties. None-

theless, despite the unprecedented level of control that is

currently possible over their structure, the manipulation of

individual nanoscale components is still extremely laborious.

For this reason, industry and academia have sought to exploit

these functionalities without the need for precise nano-

material placement. Candidates of particular interest are films

comprised of randomly dispersed nanowires, commonly

known as nanowire networks (NWNs).

NWNs are promising alternatives for a wide range of appli-

cations including flexible transparent conductors,1–3 thin-film

solar cells,4 field-effect phototransistor5 and sensor6 devices,

to name but a few. Formed by randomly dispersed conducting

wires, NWNs may function as conducting materials depending

on the degree of connectivity of the network as well as on the

quality of the junctions formed between neighbouring wires.

Effective signal transmission through the wires depends on

the nature of coating layers or surface functionalization on

these wires. Because these coatings are typically dielectric in

nature, NWNs can be thought of as an array of randomly dis-

persed conducting wires connected by capacitive junctions

which will only conduct current if the voltage drop across a

junction exceeds its characteristic threshold voltage.7 Once

this occurs, charge flows across the network through percola-

tive paths formed by wires connected by resistive junctions.

The conduction properties of NWNs is dictated by a multi-

tude of parameters such as the wire length and diameter distri-

bution,8 interwire contact resistance, inner-wire resistance,

wire density as well as their connectivity profile. With so many

possible variables, such a study is best carried out through

computer simulations. One way of simulating this percolative

transport problem9,10 is to map the network into a node

voltage problem: each wire is represented by a circuit node at a

common voltage connected to other wires by a certain number

of junction resistances that depends on its connectivity within

the network. Within this representation, it is then straight-

forward to obtain the overall conductance of a network by

merely applying Ohm’s and Kirchhoff’s current laws.11,12

However, this approach involves an implicit assumption,

hereafter referred to as the junction-dominated assumption

(JDA), that the most significant contribution to the overall
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conductivity comes exclusively from the interwire junction

resistances. This assumption is the basis for most earlier

descriptions of NWNs, including a recent theoretical calcu-

lation to describe the sheet resistance and the optical trans-

mittance of Ag NWNs13 where the characteristic junction

resistance was then adjusted to match available experimental

data.11

The JDA is perfectly safe when the junction resistance is sig-

nificantly larger than any other characteristic resistances

within the network. This indeed is the case of NWNs com-

prised of carbon nanotubes.14,15 However, the demands for

increasingly conductive films, driven by efforts to reduce the

junction resistances, will ultimately undermine the validity of

the JDA due to its neglect of the inner resistances of the

wires.16 By relaxing the JDA, we can account not only for the

geometric aspects of the network but also for the material pro-

perties of its components. Furthermore, by extending this

picture to the limit of vanishingly small junction resistances

we can provide an upper bound for the conductivity of the

NWNs and reveal how much room there is to improve the con-

ductivity of a film. Rather than working with computer-gener-

ated random networks, it is desirable to establish the upper

bound for the conductivity of real networks. When conduc-

tivity measurements of such networks are compared with their

respective upper bounds, one has a clear indication of how

close to the optimum value they are. This calls for a compu-

tational tool capable of capturing the geometry of real networks

combined with the ability to calculate the sheet resistance of

the corresponding array of inter- and inner-wire resistors.

In this manuscript, in addition to relaxing the JDA as

described above, we present for the first time a set of simu-

lations that obtain the sheet resistance of networks with

defined geometries through SEM image analysis of real

samples (cf. Fig. 1). In this way, we have a one-to-one corres-

pondence between simulation and experiment and can simu-

late both the actual and ultimate network conductivity, the

latter assuming the junction can be further optimized. Net-

works to be simulated were built from real experimental

images of sparse and dense samples with wire densities (n)
ranging from 0.15–0.6 wires per μm2. This approach avoids the

need for spatial configurational averaging highlighted in a

recent paper in reference 12. Instead, our simulated network

captures exactly the same spatial arrangement of the network

displayed on the SEM images. The inner-wire resistance was

included using a novel node-voltage approach capable of

describing the transport properties of NWNs that also accounts

for the wires resistivity. The model uses a new mapping scheme

in which the wires of the network are described by a multi-

nodal representation (MNR); the network topology is mapped

as a graph carrying information about the wire junction connec-

tions and their respective separations. Critically, the model

outputs for each network a set of characteristic values that are

determined by the network connectivity and that allow a direct

comparison between distinct networks. Such explicit examin-

ation of NWNs would not be possible throughout traditional

configurational averaging approaches.

Experimental and computational
methods
Experimental procedure

Ag nanowires (NWs) were purchased from Seashell Technology,

LLC with an average length (diameter) of 6.7 μm (50 nm) (cf.
ESI†). Suitable single NWs were selected for contacting by elec-

tron beam lithography (EBL) after drop casting of NW/iso-

propanol dispersion (12.5 µg ml−1) on clean Si substrates (1 µm

thermal oxide) with pre-defined Ti/Au contact pads (5/25 nm).

Isolated nanowire networks were formed by spray deposition

Fig. 1 (Color online) (Left panels) Scanning electron micrograph (SEM)

of silver nanowire networks containing densities of approximately (a)

0.28 and (c and e) 0.16 wires per μm2. These networks are referred to in

the text as #1, #2, and #3, respectively. Top scale bars represent 2 µm.

(Right panels) Computational transcription of the networks shown on

the left panels. Black dots mark the connections between wires rep-

resented by red sticks. Electrodes are represented by vertical blue sticks

located on the extreme left and right of the figure. Isolated wires are

represented by green sticks. Segments linking neighbouring connection

points are highlighted in orange. Transparent grey arrows on panel (d)

point at two critical junctions of the network.
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of NW/isopropanol dispersion into EBL defined openings

(120 μm × 20 μm) in bi-layer MMA (methyl methacrylate) and

PMMA (poly methyl methacrylate) e-beam resists. Post-spray-

ing, wires on the resist were removed by acetone lift off; wires

gathered into the openings formed the isolated nanowire net-

works. EBL was used to define contacts to single Ag NWs and

isolated networks such that each item could be interrogated by

four co-linear electrodes (cf. ESI†). All contacts were metalized

with Ag (120 nm).

Each section of the network bounded by adjacent electrodes

was electrically stressed. Devices underwent electroforming by

applying multiple 0–5 V dual sweeps stressing the network at

increasing current compliance from the nA to mA range. The

high current chosen ensures that the network conductivity is

maximized with the vast majority of junction resistances opti-

mized. This procedure has previously been shown to produce

low resistance networks while avoiding potentially damaging

high-temperature annealing steps.7,17 Following this optimiz-

ation step, a Kelvin (4-wire) resistance measurement was

recorded. Current is sourced across the outer two electrodes

and the drop in voltage is measured across the two innermost

electrodes. This removes the contact resistance from the

measurement and provides a true sheet resistance of the

network. The resistivity for 15 single wire samples was also

extracted using 4-probe resistance measurements. Wire dia-

meters and channel lengths, including the electrodes’ width18

were measured using SEM (cf. ESI†). All electrical measure-

ments were carried out at ambient conditions using Keithley

4200 SCS. Imaging of nanowire networks was performed on a

Zeiss Supra 40 SEM.

Simulations

Initially, we processed SEM images of 30 Ag NWN samples

with distinct wire densities.19 This was done by opening the

image files on an interactive canvas widget that allowed us to

characterize each NWN on a wire-by-wire basis. The data is

converted into Cartesian coordinates that are subsequently

used as inputs for solving the resistor network problem.

Examples are depicted on Fig. 1: micrograph images of real

networks (left panels) are converted into mathematical objects

(sticks) illustrated on the right panels. In instances of curved

wires, we break the wire into smaller segments that approxi-

mately outline the wire curvature.

The standard way (JDA) of obtaining the transport charac-

teristics of a given network containing N wires is to represent

each wire by a node. The whole network is hence mapped into

a voltage grid system of N nodes. Intersecting wires are rep-

resented by nearest-node neighbours connected by resistors

that emulate active junctions (cf. Fig. 2). Note that the spatial

location of these nodes is irrelevant within JDA. From the con-

nectivity profile of the network, one can build the resistance

matrix (M̂R) of the system as described in ref. 12 and solve

Kirchhoff’s circuit equation written in matrix form, M̂RÛ = Î,
where the vectors Û and Î are the potential at each wire and

the current injected/drained out of the circuit, respectively.20

The sheet resistance (Rs) is then obtained by evaluating

Rs = I/(UL − UR) where UL(R) is the potential on the left (right)

electrode. The matrix M̂R carries the resistance values assigned

to each interwire junction (Rj), which is assumed to be homo-

geneous throughout the network. It is worth pointing out that

our main findings are not changed when we relax this assump-

tion and allow Rj to follow a normal distribution. The role

played by a normal dispersion on the junction resistance dis-

tributions can be found in the ESI.† 19

The JDA scheme described above is attractive due to the

ease of computational implementation. While it can provide

an adequate qualitative interpretation about the conducting

properties of networks, it lacks critical ingredients that must

be taken into account. JDA description assumes that charge

carriers hop ballistically from junction to junction without

scattering by the wire material. As mentioned previously,

this method fails whenever Rj ≈ Rin, where Rin is the typical

value for inner-wire resistance. Previous Monte Carlo

simulations21–24 on homogeneous networks above their perco-

lation threshold have demonstrated that their transport

properties are highly dependent on the ratio Rj/Rin. To move

beyond JDA, we must introduce a new voltage-node mapping

that is capable of including the inner-wire resistance.

The resistance of an isolated wire is given by Rin = ρL/Ac
where ρ is the wire resistivity, L its length and Ac the cross

section area. In networks however, the wire resistance must be

partitioned according to its number of intersections; a wire

making k connections is partitioned into k + 1 segments of

length l, each one of them carrying an inner resistance of Riin =

ρℓi/Ac where i = 1,…, k + 1. Therefore, the novel voltage grid

scheme must map the interwire connection points and not the

wires, as done within JDA. This is illustrated in Fig. 2; one can

see that nodes are attributed to all connection points in all

wires. This gives a total number of nodes of 2Nc where Nc is

the number of interwire connections of the network. This new

mapping scheme generates a network that is topologically

different from JDA and will be referred to as multi-nodal rep-

resentation (MNR) since the wires can be described by mul-

tiple nodes. Note that in this scheme, the position of the

Fig. 2 Nodal mapping schemes according to (a) JDA and (b) MNR

models. JDA follows a wire-to-node criteria and the connection

between nearest neighbor nodes are described by the junction resist-

ance Rj. MNR accounts for Rj and inner wire resistances (Rin). This is

done by mapping the connection points into nodes. Nearest neighbor

nodes located in distinct wires are linked by junction resistances Rj

whereas nearest neighbor nodes located on the same wire are linked by

inner resistances Rin.
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nodes matters. If two nodes share the same set of (x,y) coordi-
nates, they characterize an interwire connection with junction

resistance Rj. If two nodes belong to the same wire and are

nearest neighbours, they feature an inner-wire segment which

consequently has a resistance associated to it. Note also that

the computational implementation of our approach does not

require the use of 3D objects (e.g. cylinders)25 in order to

account for the wire thickness. The networks can be still

described by sticks dispersed on a plane since the diameter of

wires is incorporated in the inner-wire resistances.

The determination of nearest nodes is done by viewing the

whole network as a graph composed of vertices ( junction

points) and edges (wire segments). An adapted breadth-first

search26 algorithm was implemented to inspect the whole

network – represented as a graph – and to determine its com-

plete chart of neighbouring node pairs. In this way, one can

construct a new resistance matrix M̂R
20 which is plugged into

Kirchhoff’s circuit law to obtain the sheet resistance of the

samples. Results obtained via both models (JDA and MNR) are

compared in the following section.

Discussion and results

To implement MNR, we used a resistivity value of ρ = 22.6 ±

2.3 nΩm determined from room temperature resistance

measurements of a distribution of 15 Ag nanowires with diam-

eters of D = 50 ± 13 nm based on a SEM analysis of 101 Ag

NWs.19 It is important to note that surface scattering effects

will depend on wire diameter and temperature27 so that wire

resistance measurements must be performed on representative

wires and under the appropriate temperature conditions

before this model can be applied more generally. These values

were employed in all 30 NWN samples mapped from micro-

graph images. Fig. 3 shows the results obtained when JDA and

MNR methods are applied on network #1 shown in Fig. 1a and

b. This sample exhibits wire density of n = 0.28 μm−2 and a

measured sheet resistance of Rexps = 84.42 Ω. The sheet resist-

ance calculated as a function of the junction resistance Rj is
plotted for JDA (black dashed line) and MNR (blue solid line).

The horizontal dotted line corresponds to Rexps . As expected,

the sheet resistance grows linearly with Rj for both descrip-

tions (JDA and MNR). The models however differ in specific

ways: JDA predicts that Rs = a0Rj, whereas MNR finds Rs = a0Rj
+ R0, where a0 is the slope and R0 is the resistance that the

network would have if all interwire contacts were perfect. Thus

the R0 shift between JDA and MNR models accounts for the

influence of the inner-wire resistance on the overall sheet

resistance and it is purely determined by the network geometry

and its detailed connectivity. One immediate consequence of

this shift is that the JDA tends to overestimate the junction

resistances. The diamond and the circle on Fig. 3 identify the

value of Rexpj in the JDA and MNR respectively that corresponds

to the measured sheet resistance Rexps . The JDA-estimate for

Rexpj is found to be approximately 40 Ω higher than for the

MNR for this particular sample, and R0 = 46.43 Ω. With such a

large contribution from the resistance of the network skeleton,

it is not surprising that Rj is overestimated by the same order

of magnitude. In fact, recent attempts to obtain the junction

resistances of NWNs within JDA have reported values of the

order of 2 kΩ, which is substantially larger than the values

measured across individual junctions.11 The risk of an overesti-

mation in Rj is that it might raise false hopes that the junc-

tions of a network can be further optimized. Once again, it is

worth reiterating that the JDA model is only valid when the

transport is dominated by junction resistances, i.e. when

Rexps ≫ R0 and so the inclusion of the inner-wire resistance contri-

butions will cause minor changes to the estimated values of Rj.

Another interesting consequence of relaxing the JDA is that

by defining a quantity Δ = Rexps − R0, we can estimate how close

(or far) a particular sample is from operating at its minimum

resistance state R0. For this particular sample Δ = 37.99 Ω,

which means that the sheet resistance is about 38 Ω above its

minimum resistance state. A more descriptive quantity that

establishes how much room for improvement a network has is

given by γ = 1 − R0/R
exp
s . This dimensionless quantity, named

optimization-capacity coefficient, ranges from 0 to 1. Values of

γ close to 1 represent networks whose conductivities can be

considerably improved since their sheet resistances are far

from the optimal value R0. When γ approaches 0, on the other

hand, the network is close to its optimum conductivity and is

unlikely that it can be further optimized. The ability to estab-

lish how much potential for optimization a network has serves

as a useful guide in the search for networks with continuously

larger conductivity values.

The characteristic values outputted by the model allow us

to compare different networks. Table 1 shows the γ values for

the three networks that are discussed in detail here, together

with the corresponding values of n, R0, R
exp
s , Δ, and Δ/a0 (R

exp
j )

obtained within MNR. We note Δ/a0 = Rexpj since Rexps = a0R
exp
j +

R0. The complete table containing the characteristic values for

Fig. 3 (Color online) Sheet resistance (Rs) versus junction resistance (Rj)

analysis performed on sample #1 using JDA (black dashed line) and

MNR (blue solid line) models. Horizontal dotted line (red) marks the

measured sheet resistance value (Rexp
s = 84.42 Ω). Circle and diamond

dots indicate the estimated junction resistance within MNR and JDA,

respectively. Fitting line expressions used to obtain a0 and R0 values are

added on top of each numerical curve.
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all 30 samples can be found in the ESI.† No obvious corre-

lation is seen between the optimization-capacity coefficient

and either of these quantities, suggesting that γ may contain a

rather non-trivial dependence. However, when γ is compared

against the ratio Δ/a0 for all 30 networks, a clear trend is

observed. As shown in Fig. 4, a plot of γ as a function of Δ/a0
displays a monotonic behaviour that spans the entire range of

possible values for the optimization-capacity coefficient which

is not very surprising given Δ/a0 can be thought of as the esti-

mated characteristic junction resistance. In spite of that, the

fact that the diverse range of networks in Table S1† 19 falls

onto such a smooth curve suggests a very robust, if not univer-

sal, trend that is likely to be followed by all networks.

Besides determining the optimization-capacity coefficient

for different networks, this quantity can also be used to assess

how one specific network evolves as it is electrically stressed.

Consecutive voltage sweeps are known to increase the conduc-

tivity of the network from completely inactive all the way to its

fully optimized state. The quantity R0 is determined by the geo-

metry of the network (and will not change with the consecutive

voltage sweeps) but the measured values of Rexps change as the

network is stressed. The inset of Fig. 4 shows γ after a

sequence of voltage sweeps. Note that it starts with a relatively

large value of γ but it decays continuously indicating that the

network is evolving towards its optimum value. Once again, γ

appears as a useful quantity that can be employed to assess

how much room there is to increase the conductivity of the

NWNs.

Comparisons between networks

To highlight the advantage of using image processing tech-

niques to reproduce the exact spatial distribution of real net-

works, we have selected to discuss the peculiar case of two

samples shown in Fig. 1c–f that exhibit very distinct character-

istic values (Δ/a0, R0, and γ) but rather similar sheet resistances

and same wire density (0.16 wires per μm2). In this example,

the simple intuitive relationship between density and sheet

resistance fails to account for the critical role of connectivity in

the performance of sparse films. The characteristic values

within our model capture differences in connectivity for net-

works of similar densities. To demonstrate this, we present the

image analysis of two samples labelled here as #2 and #3 (cf.
Fig. 1c–f ) and their characteristic values can be found on

Table 1. Although both samples have the same wire density,

their connectivity profiles differ remarkably. Sample #2 has

fewer paths connecting one electrode to another compared

with sample #3. Therefore, the distinct characteristic Δ/a0, R0,

and γ values of each sample carry information about the

inherent features of the networks that are hidden when analyz-

ing global quantities such as sheet resistance versus density

trends. An analysis of Fig. 1d reveals that the performance of

network #2 relies basically on 2 junctions identified by the

gray arrows. Those junctions are the main bridges connecting

the electrodes. Since all the networks are mapped as a graph,

we can quantify their importance by calculating their between-

ness centrality28 degree. This critical property quantifies the

number of times a node must be visited to connect the short-

est path between two other nodes. Those two junctions are the

ones with the highest betweenness levels and they play a

major impact on the current propagation across the network.

Critically, this kind of information can only be accessed via
our approach where the network is mapped wire-by-wire, junc-

tion-by-junction. This method turns out to be extremely impor-

tant for sparse networks such as samples #2 and #3 where

each wire and each junction makes an important contribution

to the conductivity.

Conclusions

We have introduced a novel computational method that exactly

reproduces the spatial arrangement of experimentally gener-

ated NWNs through image analysis, so as to include the contri-

bution of the inner-wire resistance in the calculation of the

conductivity of these materials. Often neglected when the con-

ductivity is dominated by junction resistances, the inner-wire

resistances may play a significant role in the overall conduc-

tivity of NWNs. When the inner-wire resistances are neglected,

results for the junction resistance tend to be overestimated.

Regarding the prospects for optimization of the network

Table 1 Wire densities (n), and characteristic junction resistances (Δ/a0)

of all Ag NWN samples obtained by fitting the measured sheet resistance

(Rexp
s ) with the calculated curves Rs vs. Rj derived within MNR. Values of

Δ, R0 as well as γ are also depicted

Network n (NW μm−2) γ Δ (Ω) Δ/a0 (Ω) R0 (Ω) Rexps (Ω)

#1 0.28 0.45 37.99 27.73 46.43 84.42
#2 0.16 0.42 67.43 27.52 92.05 159.95
#3 0.16 0.65 116.15 60.07 60.99 177.14

Fig. 4 Optimization-capacity coefficient (γ) versus estimated character-

istic junction resistance (Δ/a0) for all 30 networks studied in this work.

Inset: γ values obtained at four voltage sweep steps applied on sample

#30 (cf. Table S1† 19). The triangle corresponds to its saturation state

with a measured sheet resistance of Rexp
s = 76.68 Ω.
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conductivity, it is important to have a realistic estimate of the

quality of the junctions. If junction resistances are small

(large), it is unlikely (likely) that they can be further improved.

It is thus essential to be able to estimate them accurately. Fur-

thermore, by including the inner-wire resistance contribution

in our calculations we can establish an upper bound for the

conductivity of NWNs by simply imposing ideal lossless junc-

tions. A simple comparison of measured values of sheet resist-

ances with the corresponding optimum values can tell how

realistic the chances of further improving the network conduc-

tivity are. Rather than providing a qualitative assessment of

the chances for improvement, we quantify the ease of improve-

ment by introducing the optimization-capacity coefficient γ.

This allows us to compare different networks, identifying

those which can be further improved. Similar analysis can be

used to study the evolution of one specific network as it is elec-

trically stressed. Our model explicitly avoids the use of config-

urational averaging over the spatial distribution of wires in

computer-generated networks, which is known to cause signifi-

cant fluctuations in the calculated values of sheet resistance

especially in the case of sparse samples. It also provides

unique insights about the networkś connectivity. Networks

with similar wire densities and sheet resistances may have

rather distinct connectivity profiles which are imprinted on

the characteristic values determined within our model, provid-

ing insights that are simply not accessible using conventional

configurational averaging approaches.
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