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We consider the estimation of noise parameters in a quantum channel, assuming the most general

strategy allowed by quantum mechanics. This is based on the exploitation of unlimited entanglement and

arbitrary quantum operations, so that the channel inputs may be interactively updated. In this general

scenario, we draw a novel connection between quantum metrology and teleportation. In fact, for any

teleportation-covariant channel (e.g., Pauli, erasure, or Gaussian channel), we find that adaptive noise

estimation cannot beat the standard quantum limit, with the quantum Fisher information being determined

by the channel’s Choi matrix. As an example, we establish the ultimate precision for estimating excess

noise in a thermal-loss channel, which is crucial for quantum cryptography. Because our general

methodology applies to any functional that is monotonic under trace-preserving maps, it can be applied

to simplify other adaptive protocols, including those for quantum channel discrimination. Setting the

ultimate limits for noise estimation and discrimination paves the way for exploring the boundaries of

quantum sensing, imaging, and tomography.

DOI: 10.1103/PhysRevLett.118.100502

Quantum metrology [1–5] deals with the optimal esti-

mation of classical parameters encoded in quantum trans-

formations. Its applications are many, from enhancing

gravitational wave detectors [6,7], to improving frequency

standards [8], clock synchronization [9], and optical

resolution [10–12], just to name a few. Understanding its

ultimate limits is therefore of paramount importance.

However, it is also challenging, because the most general

strategies for quantum parameter estimation exploit adap-

tive, i.e., feedback-assisted, quantum operations (QOs)

involving an arbitrary number of ancillas.

Adaptive protocols are difficult to study [13–18] but a

powerful tool can now be borrowed from the field of

quantum communication. In this context, Ref. [19] has

recently designed a general and dimension-independent

technique which reduces adaptive protocols into a block

form. This technique of “teleportation stretching” is par-

ticularly powerful when the protocols are implemented

over suitable teleportation-covariant channels [19], which

are those channels commuting with the random unitaries

induced by teleportation. This is a broad class, including

Pauli, erasure [20], and bosonic Gaussian channels [21].

In this work, we exploit the tool of teleportation

stretching to simplify adaptive protocols of quantum

metrology. We discover that the adaptive estimation of

noise in a teleportation-covariant channel cannot beat the

standard quantum limit (SQL). Our no-go theorem also

establishes that this limit is achievable by using entangle-

ment without adaptiveness, so that the quantum Fisher

information (QFI) [1] assumes a remarkably simple expres-

sion in terms of the channel’s Choi matrix. As an

application, we set the ultimate adaptive limit for estimating

thermal noise in Gaussian channels, which has implications

for continuous-variable quantum key distribution (QKD)

and, more generally, for measurements of temperature in

quasimonochromatic bosonic baths.

Because our methodology applies to any functional of

quantum states which is monotonic under completely

positive trace-preserving (CPTP) maps, we may simplify

other types of adaptive protocols, including those for

quantum hypothesis testing [22–26]. Here, we find that

the ultimate error probability for discriminating two tele-

portation-covariant channels is reached without adaptive-

ness and determined by their Choi matrices. Applications

are for protocols of quantum sensing, such as quantum

reading [27–34] and illumination [35–38], and for the

resolution of extremely close temperatures [39,40].

Adaptive protocols for quantum parameter estimation.—

The most general adaptive protocol for quantum parameter

estimation can be formulated as follows. Let us consider a

box containing a quantum channel Eθ characterized by an

unknown classical parameter θ. We then pass this box to

Alice andBob,whose task is to retrieve the best estimate of θ.

Alice prepares the input to probe the box, while Bob gets the

corresponding output. The parties may exploit unlimited

entanglement and apply joint QOs before and after each

probing. These QOs may distribute entanglement and

contain measurements that can always be postponed at the

end of the protocol (thanks to the principle of deferred

measurement [20]).

In our formulation, we assume that Alice has a local

register with an ensemble of systems a ¼ fa1; a2;…g.
Similarly, Bob has another local register b ¼ fb1; b2;…g.
These registers are intended to be dynamic, so that they can

be depleted or augmented with quantum systems. Thus,

when Alice picks an input system a ∈ a, we update her
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register as a → aa. Then, suppose that system a is trans-

mitted to Bob, who receives the output system b. The latter
is stored in his register, updated as bb → b.

The first part of the protocol is the preparation of the

initial register state ρ0
ab

by applying the first QO Λ0 to some

fundamental state. After this preparation, the parties start

the adaptive probings. Alice picks a system a1 ∈ a and

send it through the box fEθg. At the output, Bob receives a
system b1, which is stored in his register b. At the end of the
first probing, the two parties applies a joint QO Λ1, which

updates and optimizes their registers for the next uses. In

the second probing, Alice picks another system a2 ∈ a,

sends it through the box, with Bob receiving b2 and so on.

After n probings, we have a sequence of QOs P ¼
fΛ0;…;Λng generating an output state ρn

ab
ðθÞ for Alice

and Bob [41]. See Fig. 1.

The final step consists of measuring the output state. The

outcome is processed into an unbiased estimator of θ, with

an associated protocol-dependent QFI

InθðPÞ ¼
8f1 − F½ρn

ab
ðθÞ; ρn

ab
ðθ þ dθÞ�g

dθ2
; ð1Þ

with Fðρ; σÞ ≔ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffi

σ
p

ρ
ffiffiffi

σ
pp

being the fidelity [42]. By

optimizing over all adaptive protocols, we define the

adaptive QFI Īnθ ≔ supPI
n
θðPÞ, so that the minimum error

variance in the estimation of θ satisfies the quantum

Cramer-Rao bound (QCRB) [1,2] VarðθÞ ≥ 1=Īnθ .

Teleportation stretching for quantum metrology.—We

now compute the adaptive QFI. Consider the class of

teleportation-covariant channels in arbitrary dimension as

generally defined in Ref. [19]. They correspond to those

quantum channels commuting with the random unitaries

induced by teleportation, which are Pauli operators at finite

dimension and displacement operators at infinite dimension

[45–47]. By definition, a quantum channel E is called

“teleportation covariant” if, for any teleportation unitary U,
we may write [19]

EðUρU†Þ ¼ VEðρÞV†; ð2Þ

for some other unitary V. This is a common property,

owned by Pauli, erasure, and bosonic Gaussian channels.

Because of Eq. (2), we can simulate the channel E via

local operations and classical communication (LOCC)

applied to a suitable resource state. In fact, as explained

in Figs. 2(a)–2(b), channel E can be simulated by a

teleportation LOCC T performed over the channel’s

Choi matrix ρE ; i.e., we may write [19]

EðρÞ ¼ T ðρ ⊗ ρEÞ: ð3Þ

This simulation is intended to be asymptotic for bosonic

channels [19]. We consider EðρÞ ¼ limμT μðρ ⊗ ρ
μ

E
Þ, where

T μ is a sequence of teleportation LOCCs and ρ
μ

E
≔ I ⊗

EðΦμÞ is a sequence computed on two-mode squeezed

vacuum (TMSV) states Φ
μ [21], so that Φ ≔ limμΦ

μ

defines the asymptotic Einstein-Podolsky-Rosen (EPR)

FIG. 1. Arbitrary adaptive protocol for quantum parameter

estimation. After preparation of the register state ρ0
ab

by means

of an initial QO Λ0, Alice starts probing the box fEθg by sending
a system a1 from her register, with Bob getting the output b1. This
is repeated n times with each transmission ai → bi interleaved by
two QOs Λi−1 and Λi. The output state ρ

n
ab
ðθÞ is finally subject to

an optimal measurement.

(a) (b) (c)

FIG. 2. Teleportation covariance and channel simulation. In panel (a), we consider a teleportation-covariant channel E (red curvy line)

from Alice’s system a to Bob’s system b. This can be simulated by teleporting system a to systemC, by means of a maximally entangled

stateΦAC and a Bell detection (BD) on systems a and A, with outcome k. System C is projected onto a state ρC which is equal to ρa up to

a teleportation unitary Uk. Because of Eq. (2), we now have ρB ¼ EðρCÞ ¼ EðUkρaU
†

kÞ ¼ VkEðρaÞV†

k for some other unitary Vk. Upon

receiving k from Alice, Bob may undo Vk on system B by applying a unitary correction (UC) V−1
k . Thus, he retrieves the output state

ρb ¼ EðρaÞ. Overall, Alice’s BD and Bob’s UC represent a teleportation LOCC T . As shown in panel (b), this is equivalent to simulate

the channel by teleporting the state over the channel’s Choi matrix ρE ≔ I ⊗ EðΦÞ, so that we may write Eq. (3). The teleportation

simulation ðT ; ρEÞ becomes asymptotic ðT μ; ρ
μ

E
Þ for bosonic channels. By comparing with panel (c), we see that we have provided a

computable design for the tool of quantum simulation [48–50], reducing the quantum operation U to a teleportation LOCC T , and the

(difficult-to-find) program state σE to the channel’s Choi matrix ρE .
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state and ρE ≔ limμρ
μ

E
defines the asymptotic Choi matrix

[19]. In the following, for any pair of asymptotic states

ρ0;1 ≔ limμρ
μ
0;1, we correspondingly extend a functional f

to the limit as fðρ0; ρ1Þ ≔ limμfðρμ0; ρ
μ
1
Þ.

The teleportation-based simulation provides a powerful

design to the generic tool of quantum simulation [48–50]

which is described by

EðρÞ ¼ Uðρ ⊗ σEÞ; ð4Þ

where U is a trace-preserving QO [51] and σE is some

program state, as in Fig. 2(c). First of all, we establish a

simple criterion (teleportation covariance) that allows us to

identify channels E that are simulable as in Eq. (3) and,

therefore, programmable as in Eq. (4). Then, we give an

explicit solution to Eq. (4), so that U reduces to telepor-

tation and the program state σE is found to be the channel’s

Choi matrix (see Fig. 2). As we will see below, this insight

drastically simplifies computations.

For a channel which is “Choi stretchable” as in Eq. (3),

we may apply teleportation stretching [19,52]. After

stretching, the output ρn
ab

of an adaptive protocol for

quantum or private communication takes the form

ρn
ab

¼ Λ̄ðρ⊗n
E

Þ; ð5Þ

where Λ̄ is trace-preserving LOCC [53]. Here, to simplify

quantum metrology, we do not need to enforce the LOCC

structure, so that Λ̄ may be an arbitrary CPTP map. In this

sense, the following lemma provides a full adaptation of the

tool for the task of parameter estimation [55].

Lemma 1 (stretching of adaptivemetrology) Consider

the adaptive estimation of the parameter θ of a teleportation-

covariant channel Eθ. After n probings, the output of the

adaptive protocol can be written as

ρn
ab
ðθÞ ¼ Λ̄ðρ⊗n

Eθ
Þ ¼ lim

μ
Λ̄μðρμ⊗n

Eθ
Þ; ð6Þ

where Λ̄ is a θ-independent CPTP map and ρEθ is the

channel’s Choi matrix. If channel Eθ is bosonic, then the

decomposition is asymptotic ðΛ̄μ; ρ
μ

Eθ
Þ with a sequence of

CPTP maps Λ̄μ and Choi-approximating states ρ
μ

Eθ
.

By exploiting Lemma 1, we now show that the adaptive

estimation of noise in teleportation-covariant channels

cannot exceed the SQL and can always be reduced to

nonadaptive strategies. In fact, we have the following no-go

theorem from teleportation [55].

Theorem 2 No-go: telecovariance implies SQL The

adaptive estimation of the noise parameter θ of a telepor-

tation-covariant channel Eθ satisfies the QCRB

VarðθÞ ≥ 1=Īnθ , where the adaptive QFI takes the form

Īnθ ¼ nBðρEθÞ; BðρEθÞ ≔
8½1 − FðρEθ

; ρEθþdθ
Þ�

dθ2
: ð7Þ

For large n, the QCRB is achievable by entanglement-

based nonadaptive protocols. For bosonic channels, we

implicitly assume FðρEθ ; ρEθþdθ
Þ ≔ limμFðρμEθ ; ρ

μ

Eθþdθ
Þ.

There are two important aspects in this theorem. The first

is the achievability of the bound [62]. The second is the

extreme simplification of the adaptive QFI, which becomes

a functional of the channel’s Choi matrix, computable

almost instantaneously for many channels. Because the QFI

takes such a simple form, our results are easily extended to

bosonic channels [63] and can also be generalized to

multiparameter estimation [55]. The teleportation-based

approach is so powerful that it is an open problem to find

other channels (e.g., programmable) for which we may

compute the adaptive QFI beyond the class of teleportation-

covariant channels.

Analytical formulas.—Let us use Theorem 2 to study the

adaptive estimation of error probabilities in qubit channels

[20]. For a depolarizing channel with probability p, we find
the asymptotically achievable bound [55]

VarðpÞ ≥ pð1 − pÞ=n: ð8Þ

This result is also valid for the adaptive estimation of the

probability p of a dephasing channel or an erasure channel

[55]. Thus, we show that the bounds of Refs. [50,64] are

adaptive in a straightforward way.

Now consider a bosonic Gaussian channel which trans-

forms input quadratures [21] x̂ ¼ ðq̂; p̂ÞT as x̂ → ηx̂þ
j1 − ηjx̂T þ ξ, where η is a real gain parameter, x̂T are

the quadratures of a thermal environment with n̄T mean

number of photons, and ξ is an additive Gaussian noise

variable with variance w. A specific case is the thermal-loss

channel for which 0 ≤ η < 1 and ξ ¼ 0. It is immediate to

compute the ultimate (adaptive) limit for estimating thermal

noise n̄T > 0 in such a channel. By using our Theorem 2

and the formula for the fidelity between multimode

Gaussian states [65], we easily derive [55]

Varðn̄TÞ ≥ n̄Tðn̄T þ 1Þ=n; ð9Þ

which is achievable for large n.
The latter result sets the ultimate precision for estimating

the excess (thermal) noise in a tapped communication line

[66] or the temperature of a quasimonochromatic bosonic

bath. Equation (9) is also valid for estimating thermal noise

in an amplifier, defined by η > 1 and ξ ¼ 0. Finally, for

η ¼ 1 and ξ ≠ 0, we have an additive-noise Gaussian

channel. The adaptive estimation of its variance w > 0 is

limited by [55]

VarðwÞ ≥ w2=n: ð10Þ

Adaptive quantum channel discrimination.—We can

simplify other types of adaptive protocols whose perfor-

mance is quantified by functionals which are monotonic
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under CPTP maps [67]. Thus, consider a box with two

equiprobable channels fEkg ¼ fE0; E1g. An adaptive dis-

crimination protocol P consists of local registers prepared

in a state ρ0
ab
, which are then used to probe the box n times

while being assisted by a sequence of QOs P, similar to

Fig. 1. The output state ρn
ab
ðkÞ is optimally measured [68]

so that we may write the protocol-dependent error prob-

ability in terms of the trace distance D

pðk0 ≠ kjPÞ ¼ 1 −D½ρn
ab
ð0Þ; ρn

ab
ð1Þ�

2
: ð11Þ

The ultimate error probability is given by optimizing over

all adaptive protocols, i.e., perr ≔ infPpðk0 ≠ kjPÞ.
For the discrimination of teleportation-covariant chan-

nels, we may write the output state ρn
ab
ðkÞ using the same

Choi decomposition of Eq. (6), proviso that we replace ρEθ

with its discrete version ρEk , i.e.,

ρn
ab
ðkÞ ¼ Λ̄ðρ⊗n

Ek
Þ; ð12Þ

understood to be asymptotic for bosonic channels. We then

prove [55] the following result which expresses perr in

terms of the trace distance between Choi matrices.

Theorem 3 Consider an adaptive protocol for dis-

criminating two teleportation-covariant channels fE0; E1g.
After n probings, the minimum error probability is

perr ¼
1 −Dðρ⊗n

E0
; ρ⊗n

E1
Þ

2
; ð13Þ

where D ¼ limμD½ρμ⊗n
E0

; ρ
μ⊗n
E1

� for bosonic channels.

For programmable channels fEkg with states fσEkg, we
may only write the bound perr ≥ ½1 −Dðσ⊗n

E0
; σ⊗n

E1
Þ�=2.

In general, this is not achievable because we do not know

if σEk can be generated by transmission through Ek. By

contrast, for teleportation-covariant channels, the bound is

always achievable and the optimal strategy is nonadaptive,

based on sending parts of maximally entangled states and

then measuring the output Choi matrices. Because of the

equality in Eq. (13), we may write both lower and upper

(single-letter) bounds. Using the Fuchs-van der Graaf

relations [69], the quantum Pinsker’s inequality [70,71],

and the quantum Chernoff bound (QCB) [72–74], we find

that the adaptive discrimination of teleportation-covariant

channels must satisfy [55]

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

min f1 − F2n; nSg
p

2
≤ perr ≤

Qn

2
≤
Fn

2
; ð14Þ

where F ≔ FðρE0 ; ρE1Þ, Q ≔ infsTrðρsE0 ; ρ
1−s
E1

Þ, and

S ≔ ðln
ffiffiffi

2
p

ÞminfSðρE0 jjρE1
Þ; SðρE1 jjρE0Þg, with SðρjjσÞ

being the relative entropy [75]. Here, recall that the

QCB is tight for large n [72], so that perr ≃Qn=2. All
these functionals are asymptotic for bosonic channels.

In particular, for two thermal-loss channels with identical

transmissivity but different thermal noise, n̄0 and n̄1, we
may take the limit and compute [55]

Q ¼ inf
s
½ðn̄0 þ 1Þsðn̄1 þ 1Þ1−s − n̄s

0
n̄1−s
1

�−1: ð15Þ

For these channels, it is interesting to study the infinitesi-

mal discrimination n̄0 ¼ n̄T and n̄1 ¼ n̄T þ dn̄T . As we

show in a lemma [55], when we consider the discrimination

of two infinitesimally close states, ρθ and ρθþdθ, the n-copy
minimum error probability can be connected with the

QCRB for estimating parameter θ. Applying this result

to the asymptotic Choi matrices of the thermal-loss

channels and taking the limit of large n, we get [55]

perr ≃ e−nΣ=2, where Σ ¼ ½8n̄Tðn̄T þ 1Þ�−1dn̄2T for n̄T > 0.

For the specific case of n̄T ¼ 0 (infinitesimal discrimina-

tion from vacuum noise), we have a discontinuity, and we

may write Σ ¼ dn̄T [55]. These results represent the

ultimate adaptive limits for resolving two temperatures,

e.g., for testing the Unruh effect [39] or the Hawking

radiation in analogue systems [40].

Conclusions.—In this Letter, we have established the

ultimate limits of adaptive noise estimation and discrimi-

nation for the wide class of teleportation-covariant chan-

nels, which includes fundamental transformations for

qubits, qudits, and bosonic systems. We have reduced

the most general adaptive protocols for parameter estima-

tion and channel discrimination into much simpler block

versions, where the output states are simply expressed in

terms of Choi matrices of the encoding channels. This

allowed us to prove that the optimal noise estimation of

teleportation-covariant channels scales as the SQL and is

fully determined by their Choi matrices. Our work not only

shows that teleportation is a primitive for quantum metrol-

ogy but also provides remarkably simple and practical

results, such as the precision limit for estimating the excess

noise of a thermal-loss channel, which is a basic channel in

continuous variable QKD. Setting the ultimate precision

limits of noise estimation and discrimination has broad

implications, e.g., in quantum tomography, imaging, sens-

ing, and even for testing quantum field theories in non-

inertial frames.
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