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 

Abstract—This paper presents novel ultra-compact waveguide 

bandpass filters that exhibit pseudo-elliptic responses with ability 

to place transmission zeros on both sides of the passband to form 

sharp roll-offs. The filters contain E-plane extracted pole sections 

cascaded with cross-coupled filtering blocks. Compactness is 

achieved by the use of evanescent mode sections and closer 

arranged resonators modified to shrink in size. The filters 

containing non-resonating nodes are designed by means of the 

generalized coupling coefficients (GCC) extraction procedure for 

the cross-coupled filtering blocks and extracted pole sections. We 

illustrate the performance of the proposed structures through the 

design examples of a third and a fourth order filters with center 

frequencies of 9.2 GHz and 10 GHz respectively. The sizes of the 

proposed structures suitable for fabricating using the low-cost 

E-plane waveguide technology are 38% smaller than ones of the 

E-plane extracted pole filter of the same order. 

 
Index Terms—Inline filters, E-plane filters, extracted pole 

filters, waveguide filters, generalized coupling coefficients.  

I. INTRODUCTION 

s the electromagnetic spectrum is continually populated, 

it is becoming increasingly important that microwave 

filters provide efficient frequency selectivity. Waveguide 

filters are widely used in fixed wireless communication, as 

well as for radar and satellite applications, due to their low 

loss and high power handling capabilities. Furthermore, the 

developments in such communication systems have placed 

stringent requirements in terms of the compactness of filtering 

structures. An efficient approach to achieve size reduction of 

waveguide filters came with successful implementations of 

dual-mode filters [1], which reduce the number of required 

resonators by half. Recent examples of these filters include 

[2] - [3] exploiting the use of TM modes instead of TE modes 

to reduce cavity lengths, and [4] introducing steps to suppress 

spurious modes in wider frequency ranges. Nevertheless, 

currently available dual mode filters have disadvantages in 

terms of high design complexity, as well as having time 

consuming and costly production. 

Inserting high permittivity dielectric resonators (pucks 

manufactured out of currently available high performance 

dielectric materials) into waveguide cavities is another 
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actively used approach to achieve size reduction; the most 

notable advantage of this method is the realization of 

extremely high quality factors. Examples of new 

developments in advanced filtering structures using this 

approach can be found in [5] - [6]. The drawbacks of using 

such filters include the increased design complexity, the 

availability of pucks with required dimensions and, 

furthermore, they are limited to narrow band applications. It 

should also be noted that the attempts to reduce losses by 

increasing dielectric permittivity, and by reducing resonator 

volume where the losses are concentrated, are limited by the 

increase of dielectric’s tanδ. 

Konishi and Uenakada first introduced the planar circuit 

mounted E-plane strip in [7] in order to address the high costs 

and design complexities that pertain to waveguide filters, in 

turn boosting the mass producible characteristics of the filters. 

However, conventional filters formed out of the planar 

mounted half-wavelength resonators again pose a 

disadvantage in terms of size, mainly lengthwise due to the 

cascading of the resonators. Therefore, one of the approaches 

that could lead to size reduction is the miniaturization of the 

resonators. Several such attempts at achieving compactness 

for this type of structures, at the same time enhancing the filter 

performance in terms of selectivity and attenuation at 

stopbands, include the use of the cross-coupled E-plane 

resonators [8], embedded S-shape resonators [9], and E-plane 

extracted pole sections (EPS) [10]. However, the septa widths 

required for realizing low coupling coefficients between 

adjacent resonators is another factor that leads to the increase 

in size. This paper therefore addresses this issue by expanding 

on the work we briefly demonstrated in [11], in return 

proposing a class of ultra-compact pseudo-elliptic E-plane 

waveguide filters for applications where space is at a 

premium. 

II. ULTRA COMPACT E-PLANE FILTERING MODULES 

In this section, we present two basic low-order E-plane 

waveguide filter structures which will be further used as 

building blocks for more advanced higher-order filters (see 

section IV). 

A. E-plane Waveguide Singlets 

Configuration of a novel compact E-plane waveguide 

singlet is shown in Fig. 1. The structure is composed of two 

metallic inserts inside a waveguide section centred 

longitudinally and positioned parallel with the central E-plane, 

also with equal offsets from it.  One of the inserts (see Fig. 1b) 
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Fig. 1. Arrangement of E-plane inserts within a waveguide housing for the 

proposed E-plane singlet: (a) configuration of the assembled module; (b) 
configurations of the inserts. 

consists of a single wide septum, whereas the other consists of 

a single fin short-circuited onto either top or bottom broad 

wall of the waveguide. 

Essentially, the structure shown in Fig. 1, is an 

evanescent-mode filter configuration, since the filter operates 

below the cut-off frequency of the middle section as it has 

been narrowed by the wide septum. Moreover, though it has 

not been implemented here for the sake of ease of fabrication, 

the path behind the wide septum can be entirely eliminated, 

leading to characteristic evanescent mode filter cross-sectional 

size reduction. On the front side of the wide septum, there 

exist two signal paths. The main one passes through the 

resonators formed between the fin and the wide septum, and is 

active at the filter’s operating frequencies. It also has 

fundamentally strong coupling with input and output 

waveguide sections due to it being centrally positioned. The 

other one is mainly between the fins and the adjacent sidewall, 

which creates spurious resonance at significantly higher 

frequencies. 

The behaviour of the proposed structure, in its current 

configuration, can be represented through a schematic circuit 

model with three nodes, introduced by Amari and Bornemann 

in [12]. It consists of a positive source-load coupling due to 

the wide inductive septum and also has an inductive coupling 

for both source-resonator and  resonator-load  couplings due to 

 

(a) 

 

 (b) 

Fig. 2. S-parameters of the proposed singlet modules: (a) w/o a gap in wide 
septum (Gap = 0); (b) with a gap in wide septum (Gap ≠ 0). 

the H-plane step discontinuity that connects the input/output 

terminating waveguide sections into the central evanescent 

mode waveguide section. Thus, the destructive interference 

leading towards the formation of the transmission zero occurs 

above the passband, as shown in Fig. 2a. In order to locate the 

transmission zero below the passband, it is convenient to 

change the bypass coupling to capacitive. This can be 

achieved by changing the wide septum to a wide fin by 

introducing a gap. As an example, the effect of this simple 

geometric change in the structure, without altering any other 

dimensions, is demonstrated by the S-parameter response in 

Fig. 2b. 

B. E-plane Waveguide Doublet 

In filter applications it is also required to develop filtering 

modules with improved selectivity and stopband attenuation 

on the both sides of the passband. The singlet presented in the 

previous subsection can be easily modified into a 2nd-order 

block satisfying the requirement. A configuration of the E-

plane doublet structure is shown Fig. 3a. Here, one of the 

inserts shown in Fig. 3b consists of two fins separated by a 

narrow septum, whereas the other consists of a wide fin to 

form a capacitive bypass coupling between the source and the 

load. The effect this creates can be modelled by a doublet – a 
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filtering module capable of generating two poles and two 

transmission zeros in both upper and lower stopbands [13]. 

However, unlike the coupling schematic of the classical 

doublet, the two bypassed resonators are coupled inductively 

to each other. This is due to the narrow septum placed 

between the two fins to reduce the coupling between them; the 

approach allows us to place the two fins closer to one another 

thus saving space in comparison with the configuration 

without the narrow septum. 

Frequency response of a typical E-plane waveguide doublet 

is demonstrated in Fig. 4. 
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Fig. 3. Configuration of an E-plane doublet: (a) arrangement of the E-plane 
inserts within the waveguide housing; (b) configuration of the insert with the 

narrow septum. 

 

 

Fig. 4. Frequency response of the E-plane waveguide doublet. 

III. EXTRACTION OF GENERALIZED COUPLING COEFFICIENTS 

OF THE FILTERING BLOCKS 

In this section, we will address the problem of the 

generalized coupling coefficients (GCCs) extraction from the 

EM-simulated responses for symmetric singlet and doublet 

filtering blocks connected in series with extracted poles 

sections (EPS). For this purpose, we extract the GCCs of the 

individual blocks (singlets, doublets and EPS), separately. 

A. GCC Extraction for Singlets 

Consider a symmetric singlet, illustrated by a coupling 

scheme in Fig. 5, which contains a resonator and two non-

resonating nodes connected through admittance inverters. 

Taking advantage of the symmetry of the scheme, the circuit 

can be analysed by the even-odd mode technique. The short 

and open schematic circuits of the singlet, corresponding to 

the even and odd modes respectively, are shown in Fig. 6. 

Therefore, the input admittances for the both cases can be 

calculated as: 

,
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Here ω is a lowpass prototype frequency variable obtained 

from the real frequency f by the standard bandpass to lowpass 

transformation, and the other entries are expressed through the 

circuit element values: 
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It can be shown by expressing S21 through the even-mode 

and odd-mode admittances that the doubly-loaded singlet has 

a finite transmission zero at ΩTZ: 
2

1
1

N
TZ

N

J
B

J
              (7) 

Combining eq. (3)-(7), we obtain the ratios which 

completely determine the circuit of interest with respect to a 

scaling factor: 
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Fig. 5. Coupling scheme of a symmetric singlets. Solid nodes represent the 
resonators; patterned nodes are the non-resonating nodes; black lines represent 

admittance inverters (with values denoted as J). The corresponding GCC are 

denoted as k and Qext. 
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Fig. 6. Analysis of the symmetric singlet using the even-odd mode technique: 

short and open schematic circuits. 

 

(a) 

 

(b)

Fig. 7. Extracted generalized coupling coefficients of the E-plane waveguide singlet: (a) KN
2; (b) KN1

2. 

The GCC KN, KN1 and Qext are straightforwardly calculated 

from the above equations. 

As an example, the extracted GCCs KN and KN1 for a singlet 

designed at 9.2 GHz with 0.2 GHz bandwidth are presented in 

Fig. 7. 

C. GCC Extraction for Symmetric Doublets 

Let us consider a symmetric doublet comprised of two 

resonating and two non-resonating nodes connected through 

admittance inverters, as illustrated by a coupling scheme 

presented in Fig. 8. The symmetric circuit is also analysed by 

the even-odd mode technique; the corresponding short and 

open circuits are shown in Fig. 9. 

The even-mode input admittance Yin,e is expressed as 

follows: 
2
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where s = jω. 

The above admittance Yin,e is purely imaginary, it has a pole 

and a transmission zero denoted as ΩPe and ΩZe respectively: 
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Once the pole and zero values are known, the external 

quality factor for the even-mode case Qe can be calculated at 

any frequency except of ΩPe and ΩZe. For simplicity, we take 

ω = 0 leading to: 
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Similarly, the following set of equations can be obtained for 

the odd-mode input admittance: 
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The odd-mode external Q-factor is extracted as: 
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The unknown ratios between the circuit model parameters, 

which completely characterize the schematic circuit model of 

the doublet structure, are obtained by combining the equations 

(15)-(17) and (20)-(22): 
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Fig. 8. Coupling scheme of a symmetric doublet. 
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Fig. 9. Analysis of the symmetric doublet using the even-odd mode technique: 

short and open schematic circuits.
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(d)

Fig. 10. Extracted generalized coupling coefficients of the E-plane waveguide doublet: (a) B1 vs. Lfin; (b) K2 vs. Wsep2; (c) K12 vs. Gap; (d) KN2 vs. Wsep1. 
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The GCCs K1 = J1, KN = JN /BN, KN1 = JN1/
NB  are 

calculated from (24)-(29) by setting an arbitrary value of Jin, 

for example, unity. The plots in Fig. 10 has been obtained 

taking into consideration of the configuration of filter inserts 

shown in section II.B. The procedure for determination of the 

initial dimensions of the two inserts that form the doublet 

section is processed as follows. First the length of the metallic 

fin in varied while all other dimensions are kept constant until 

the required susceptance value B2 is extracted. In order to 

extract the coupling coefficient KN2, the width of septa (Wsep1) 

is adjusted while all other dimensions are kept constant. 

Coupling coefficient K2 is extracted next by varying Wsep2. 

Following this the gap in the wide metallic fin in the second 

insert is adjusted until the required value for K12 is extracted. It 

should be mentioned at this point that this method of obtaining 

physical dimensions does not provide the final solution. 

However, it endows the initial point at which further fine 

tuning, either manually or through an optimizer, will be 

required to achieve the final result. If an optimizer is to be 
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used, it provides the optimization process with certainty of 

finding acceptable results. 

IV. PROPOSED FILTERS 

In order to illustrate the application of the proposed 

resonators for compact filters, three different filter structures 

are presented. The first example is a 3rd-order filter which 

consists of two EPS cascaded with a singlet, whereas the 

second example is a 4th-order filter consisting of two EPS 

cascaded with a doublet section. The third filter consists of 

three directly coupled resonators bypassed between source and 

load. The following subsections will detail the design of these 

filters. 

A. Filter I: Compact 3rd-order Filter 

The design of the proposed third order filter includes a 

single E-plane EPS cascaded onto either side of a singlet. The 

E-plane EPS are created by modifying the existing 

conventional E-plane resonators via the inclusion of a single 

metallic fin, located between the two septa and grounded on 

one side through the top wall of the waveguide housing.  

The schematic representation of an EPS contains a 

resonator connected through an inverter with a frequency 

invariant reactance (FIR) element, as shown in Fig. 11a. The 

shunt FIR element is referred to as a non-resonating 

node (NRN). In the examples to follow, the NRN is a node 

that resonates at frequencies much higher than the operating 

frequency of the filter. It is implemented physically in the 

following examples as a strongly detuned conventional 

E-plane resonator. A similar representation of an EPS is 

shown Fig. 11b, which is given as a coupling scheme 

composed of two nodes: resonating and non-resonating. The 

lines connecting nodes represent inverters. Detail analysis and 

design of filters based on cascaded E-plane EPS can be found 

in [10]. The arrangement of the two inserts to form the 

complete filter structure is shown in Fig. 12. 

A single extracted pole section has the capability to produce 

a single pole (ΩP).and a transmission zero at (ΩZ), locations of 

which are described by equations (30) and (31). 
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The set of equations above also shows that, in order to place 

the transmission zero below the passband the susceptance of 

the non-resonating node must be of positive sign. The 

coupling schematic of a third order filter with mixed topology 

is shown in Fig. 13. 
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Fig. 11. E-plane extracted pole section: (a) schematic representation; (b) 

coupling scheme representation. 
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Fig. 12. Arrangement of E-plane inserts for the compact 3rd order cross 

coupled filter. 
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Fig. 13. Schematic representation of the compact 3rd order filter with mixed 

coupling topologies. 

In order to demonstrate the performance of the proposed 

structure, the third order filter in Fig. 9 has been designed to 

satisfy the following specifications. 

 Center frequency: 9.2 GHz; 

 Ripple bandwidth: 0.2 GHz; 

 Return loss: 20 dB; 

 Transmission zeros (GHz):8.9, 9.9, 9.9. 

First, the characteristic filter polynomials E(s), F(s) and 

P(s) which correspond to the S21 and S11 rational functions 

have been derived using the recursive technique in [14]. 

Subsequently, the direct synthesis technique for inline filters 

with non-resonating nodes [15] has been applied in order to 

calculate the element values of the extracted pole sections. 
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At the end of the synthesis process, we are left with the 

following values for the elements in the coupling schematic as 

shown in Fig. 13: Jin = 1, J12 = –0.3954, JN1 = 4.8983, 

JN2 = 0.885, BN1 = –4.5810, B1 = –5.4020, B2 = 0.50901. 

B. Filter II: Compact 4th-order Filter 

This subsection presents development of a 4th-order ultra-

compact cross-coupled filter utilizing two extracted pole 

sections together with the proposed doublet in section II.B. 

The configuration of the filter inside waveguide housing is 

shown in Fig. 14. The lowpass prototype network that 

represents the proposed structure is given in Fig. 15. 
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Doublet Section Copper Inserts

Extracted Pole Sections
  

Fig. 14. Arrangement of E-plane inserts for the compact 4th-order cross-
coupled filter. 

J12

jBN1

Jin

s+jB1

JN1

jBN1

Jin

s+jB1

JN1

s+jB2 s+jB2

J2

JN2 JN2

 Source  Load 

 
Fig. 15. Schematic representation of the 4th-order compact cross-coupled 

filter. 

As an example to demonstrate the performance of the 4th-

order cross-coupled filter, the structure in Fig. 14 was 

designed and simulated for the following specifications: 

 Center frequency: 10 GHz; 

 Ripple bandwidth: 0.25 GHz; 

 Return loss: 20 dB; 

 Transmission zeros (GHz): 9.5, 10.5, 10.5, 10.5. 

The characteristic filter polynomials E(s), F(s) and P(s) 

which corresponds to the S21 and S11 rational functions are 

given in equation (36)-(38). 

   41.24424.12835.261.7 234  sjssjssP  (36) 

   115.0201.0981.0267.0 234  sjssjssF  (37) 

  

)731.0115.1()997.0752.2()656.0263.3(

)267.0137.2(

2

34

jsjsj

sjssE




 

(38) 

 184.0341   

 The following values for the elements of the schematic in 

Fig. 15 were obtained at the end of the synthesis 

process: Jin = 1, JN1 = 4.0301, JN2 = 0.8719, J12 = –0.0364, 

J2 = 0.7179, BN1 = –3.8665, B1 = –4.2848, B2 = 0.0442. 
 

 

Fig. 16. Tolerance analysis (±50 µm) on insert dimensions (lengths and widths 

of metallic fins) of the proposed 4th-order cross-coupled filter. 

 

Fig. 17. Tolerance analysis (±100 µm) with respect to the alignment between 

the two inserts as well as the inserts and the housing of the proposed 4th-order 
cross-coupled filter. 

 A sensitivity analysis with a tolerance limit of ±50 µm with 

respect to the insert dimensions (lengths and widths of fins) 

and ±100 µm with respect to the alignment between the two 

inserts, as well as the inserts and the side walls, has been 

performed. The results obtained are provided in Fig. 16 and 

Fig. 17. It can be observed that the proposed structure is quite 

sensitive to variation in the insert dimension, especially the 

length of the metallic fins which forms the resonators. 

C. Filter III: 3rd Order Filter Using Source-Load Coupling 

This subsection presents a third order filter with source-load 

coupling. The filter is formed by simply extending the singlet 

section described previously, where one of the inserts consists 

of a single wide septum, and the other consists of three 

parallel fins short-circuited on alternating sides, like in an 

interdigital array. Furthermore, narrow septa are placed 

coplanar between the fins, helping to reduce unwanted cross 

couplings between adjacent resonators. Consequently, the fins 

can be shifted much closer to each other and in return 

contributing towards reduction of the overall length of the 

structure. 

In terms of equivalent circuit, as stated previously, the wide 

septum forms bifurcated waveguide section with couplings to 

the source and load being effectively inductive waveguide 

discontinuities in the form of H-plane steps [16]. Likewise, 

septa between resonators can be viewed as inductive 

discontinuities, forming inverters when absorbing additional  

(a)

Copper Inserts

Fins

Septum

(b)

S+jB4 

C24 

Source Load 

J12 

J15 J56 

J23 J34 

S+jB1 S+jB2 S+jB3 

Spurious Resonance  

C13 C36 

J46 

 

Fig. 18. A 3rd-order compact filter: (a) arrangement of E-plane inserts within a 
waveguide housing; (b) coupling schematic taking into account spurious 

resonance. 

waveguide sections around them. Resonators themselves can 

be locally modelled as stripline quarter-wavelength resonators. 

Finally, the wide septum determines the bypass path to behave 

as inductive coupling. 
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The configuration and the coupling scheme of the proposed 

structure, taking into consideration the spurious resonance, is 

shown in Fig. 18a and Fig. 18b. However, this additional 

spurious resonant node could be ignored if only the response 

surrounding the pass band is of interest [17]. Symbols C13, 

C24, and C36 represent additional parasitic couplings that may 

exist within the structure.  

The coupling matrix for a third order filter that was 

designed at the centre frequency of 9.4 GHz with 0.5 GHz 

bandwidth and a transmission zero at 10.4 GHz has been 

obtained through an optimization routine and is given as: 































0145.0888.0024.000

145.04.14000145.0

888.000672.0042.00

024.00672.00672.0024.0

00042.0672.00888.0

0145.00024.0888.00

M

   (39) 

V. RESULTS 

Three ultra-compact waveguide filters (centre frequencies: 

9.2 GHz, 10 GHz, and 9.4 GHz) with cross coupling have 

been designed in CST Microwave Studio™ and fabricated 

using the E-plane technology, which utilizes a pair of copper 

inserts within a standard WR-90 (22.86x10.16 mm2) 

rectangular waveguide housing.  

The inserts in Fig. 19-22, with the dimensions given in 

Tables I-III have been plotted on a copper foil with 0.1 mm 

thickness. S-parameters have been measured using the Agilent 

E8361A vector network analyzer. Comparison of the results 

obtained from schematic, simulation and measurements for the 

three structures are given in Fig. 23-25. 
 

Wsept  

GAP 

Lwg  

H
w

g
 

 
Fig. 19. Layout of the E-plane insert for cross-coupling in all three proposed 

filters. 
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Fig. 20. Layout of the second E-plane insert for the proposed Filter I 

(section IV.A). 
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Fig. 21. Layout of the second E-plane insert for the proposed Filter II 

(section IV.B). 
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Fig. 22. Layout of the second E-plane insert for the proposed Filter III 

(section IV.C). 

 

TABLE I 
DIMENSIONS (IN MM) OF THE INSERTS (FIG. 19 AND FIG. 20) FOR FILTER I  

Parameters Optimised 

values 

Parameters Optimised 

Values 

Lfin1 6.99 Wfin3 1.7 
Lfin2 6.97 Wsept 6.0 

Lfin3 6.99 Wsep1 1.0 

Lseg1 = Lseg3 4.21 Wsep2 2.3 
Lseg2 6.80 Wsep3 2.3 

Wfin1 1.7 Wsep4 1.0 

Wfin2 1.7 GAP 1.0 

 

 
TABLE II 

DIMENSIONS (IN MM) OF THE INSERTS (FIG. 19 AND FIG. 21) FOR FILTER II  
Parameters Optimised 

values 
Parameters Optimised 

Values 

Lfin1= Lfin4 6.41 Wsept 8.2 

Lfin2 = Lfin3 6.60 Wsep1 1.0 
Lseg1 = Lseg4 4.45 Wsep2 1.8 

Lseg2 = Lseg3 4.55 Wsep3 2.0 

Wfin1 1.0 Wsep4 1.8 
Wfin2 1.2 Wsep5 1.0 

Wfin3 1.2 GAP 0.7 

Wfin4 1.0 - - 

 

 
TABLE III 

DIMENSIONS (IN MM) OF THE INSERTS (FIG. 19 AND FIG. 22) FOR FILTER III  
Parameters Optimised 

values 

Parameters Optimised 

Values 

Lfin1 6.4 Wfin3 1.6 

Lfin2 6.5 Wsept 20.5 
Lfin3 6.4 Wsep1 1.6 

Wfin1 1.6 Wsep2 1.6 

Wfin2 1.6 GAP 0.0 
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Taking into consideration the inaccuracies of some of the 

dimensions during fabrication of the waveguide housing 

which was hand crafted, the measured results show good 

agreement with that of the simulated. The insertion losses for 

the three filters of around 1.5 dB for the fabricated filters 

described in section IV.A-B and 1.0 dB for the fabricated filter 

described in section IV.C, that can be observed in Fig. 21-23, 

are mainly due to signal leakage through the imperfect custom 

made waveguide housing. A slight shift in the transmission 

zeros can also be observed for the Filter III which is mainly 

due to inaccuracies of the inner channel dimensions. Further 

contributions to these are imperfections in alignment of the 

two inserts within the waveguide housing and tolerances 

encountered during fabrication process such as the limitation 

to accuracy which the plotter reaches. A sensitivity analysis 

with a tolerance limit of ±50µm with respect to the insert 

dimensions and ±100µm with respect to the alignment 

between the two inserts as well as the inserts and the side 

walls has been provided for the Filter II in order to 

demonstrate feasibility of these proposed filters. Measured 

results of the proposed filters can be further improved through 

meticulous use of the available tools and through an accurate 

construction of the waveguide housing using precision 

equipment. 

Photographs of the three fabricated filter prototypes are 

shown in Figs. 26, 27 and 28 respectively. 

 
Fig. 23. Simulated and measured frequency responses of Filter I. 

 
Fig. 24. Simulated and measured frequency responses of Filter II. 

 
Fig. 25. Simulated and measured frequency responses of Filter III. 

 
Fig. 26. View of fabricated Filter I. 

 
Fig. 27. View of fabricated Filter II. 

 
Fig. 28. View of fabricated Filter III. 

TABLE IV 
COMPARISON OF THE PROPOSED FILTERS 

WITH CONVENTIONAL E-PLANE WAVEGUIDE FILTERS
1  

Filter Description Fc, 

GHz 

BW, 

GHz 

Total Insert 

Length, mm 

Conventional 3rd-order filter 9.2 0.2 71.7 

Proposed 3rd-order Filter I (see IV.A) 9.2 0.2 21.8 
Conventional 4th-order filter  10 0.25 98.6 

4th-order EPS filter 10 0.25 39.1 

Proposed 4th-order Filter II (see IV.B) 10 0.25 25.6 
Conventional 3rd-order filter  9.4 0.5 62.6 

Proposed 3rd-order Filter III (see IV.C) 9.4 0.5 20.5 
1Fc – center frequency, BW – bandwidth 
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TABLE V 

Q-FACTORS COMPARISON 
BETWEEN PROPOSED AND CONVENTIONAL RESONATORS 

Resonator type Unloaded Q-factor (QU) 

Conventional E-plane resonator 5991 

E-plane EPS 4449 

Proposed E-plane singlet 3962 
Proposed E-plane doublet 3130 and 2898 

VI. DISCUSSION 

A. Size and Losses 

In order to demonstrate size reduction achieved by the 

proposed filters, we designed four E-plane filters with 

identical specifications using traditional approaches, such as 

[7] and [10]. Comparison between the sizes of conventional, 

E-plane EPS and proposed filters is provided in Table IV. It is 

evident that the proposed structures are approximately 70-74% 

more compact comparing to a conventional E-plane filter with 

similar response and 35% smaller than standard E-plane 

extracted pole filters of the same order. Additionally, the 

filters have improved upper and lower stop band selectivity 

due to a transmission zero generated through source-load, or 

inter resonator cross coupling. 

For each one of these sections, we used the Eigen-mode 

solver in CST Microwave Studio™ to compute their resonant 

frequencies and the corresponding electromagnetic field 

patterns with no excitation applied. Subsequently, we 

estimated unloaded quality factors (QU) through the inbuilt 

tool for loss and Q calculation using the obtained field 

solutions. Table V summarises the Q-factors of a conventional 

E-plane resonator, E-plane EPS, proposed singlets and 

doublets. One can see that the QU of the proposed structures 

dropped by 34% for the singlet and almost by 50% for the 

doublet comparing to the conventional E-plane resonator. In 

other words, the size reduction has been achieved at the cost 

of increased losses. However, it should be remarked that the 

estimated Q-factors of the presented structures are still high. 

B. Limitations 

It is possible to design filters with wider bandwidths using 

the proposed approach. However, this results in narrowing of 

the septa as well as the fins in order to obtain the required 

couplings. For a filter designed for a centre frequency of 

9.7 GHz with 12% fractional bandwidth, the widths of the 

metallic fins and the septa are 0.5 mm and 0.7 mm 

respectively. Any further increase in fractional bandwidth 

would lead to further narrowing of these dimensions. 

Therefore the bandwidth limitation is due to physical 

realisation of the filter dimensions. 

VII. CONCLUSION 

In this paper, we have proposed novel ultra-compact 

E-plane waveguide filters that exhibit pseudo-elliptic 

frequency responses with ability to place transmission zeros in 

both the upper and lower stopbands. Three examples of such 

filters were given, two of which use extracted pole sections 

cascaded with proposed cross-coupled modules, whereas the 

third consists of three resonators bypassed between source and 

load. A GCC extraction procedure has been provided which 

can facilitate the development of these filters. A tolerance 

analysis conducted showed that the filters are sensitive to 

variation in the dimensions of fins which represent 

quarter-wave resonators. Inherently, proposed structures are 

more sensitive to fabrication tolerances in comparison to 

conventional E-plane filters. However, only the copper insert 

(which is cheap to fabricate) is needed to be changed in order 

to realise different filter characteristics.  In order to validate 

the performance of these filters, they have been fabricated and 

tested. S-parameter responses of the fabricated prototypes 

show reasonably good agreement with that of the simulated, 

even considering low accuracies of the fabrication device 

used, especially when fabricating the custom aluminium split 

block waveguide housing. 
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