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Ultra-Compact Multi-Band Chiral Metamaterial Circular Polarizer
Based on Triple Twisted Split-Ring Resonator

Yongzhi Cheng1, 2, *, Chenjun Wu2, Zhengze Cheng3, and Rongzhou Gong2

Abstract—An ultra-compact chiral metamaterial (CMM) using triple-layer twisted split-ring
resonators (TSRRs) structure was proposed, which can function as a multi-band circular polarizer.
This ultra-compact structure CMM can convert an incident linearly y-polarized (x-polarized) wave
propagating along the −z(+z) direction to the transmitted left circularly polarized (LCP) waves at
7.28 GHz, 13.22 GHz and 15.49 GHz while the right circularly polarized (RCP) waves are at 9.48 GHz
simultaneously. In addition, the large polarization extinction ratio (PER) of more than 20 dB across four
resonance frequencies can be achieved. The experiment results are in good agreement with the numerical
simulation results. The surface current distributions of the structure are analyzed to illustrate this linear
to circular polarization conversion. The unit cell structure is extremely small both in longitudinal
and transverse directions. Good performances and compact design of this CMM suggest promising
applications in circular polarizers that need to be integrated with other compact devices.

1. INTRODUCTION

Chiral metamaterials (CMMs) is lack of any mirror symmetry and also neither violates reciprocity nor
time-reversal symmetry, which has been paid attention increasingly due to their exotic electromagnetic
(EM) properties [1–9]. From microwave to optical ranges, negative refraction [1], giant gyrotropy [2],
optical activity [3–6], circular dichroism (CD) [7–9], asymmetric transmission (AT) [10–13], and linear
or/to circular polarization conversion [14–16] can be explored and realized by special CMM design.
Essentially, these unique EM properties mainly originate from cross-coupling of the electric and
magnetic fields among these chiral structures [17–23]. In effect, the coupling mechanisms have been
studied in detail at microwave and optical frequencies. Optical activity and CD effect have also
been observed [24, 25]. On these peculiarities, the giant CD effect for circular polarization is very
important, which has many potential applications, such as antennas [26], liquid crystal displays and
remote sensors [27, 28]. It is highly desirable to design high-performance circular polarizer or circular
polarization convertor. CMMs based circular polarizer has some advantages in a compact design scheme
and scaled to different EM spectrum due to the geometry scalability. For the CMMs based circular
polarizer, firstly, Gansel et al. proposed a broadband circular polarizer based on three-dimensional
(3D) gold helices at infrared region [29]. However, only one kind of circularly polarized waves could
be obtained by such a helix CMM, which is hard to fabricate and integrate into present microwave
systems. Later, a photonic CMM composed of twisted split-ring-resonator was proposed, where a
significant circular polarized wave with different rotation directions at two distinct resonances was
observed [20]. Then, four U-shaped split ring structures with different sizes [30], planar bi-layer spiral
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structures [31, 32], twisted split ring resonators (SRRs) with double rings [33], Hilbert-shaped structure
and other novel asymmetric CMMs [34–38] have afterwards been intensively reported. Among them,
nearly all these CMMs could be available to tailor the cross coupling between electric and magnetic
fields, resulting in a giant CD effect for circular polarization at resonances [39]. However, multi-band
or bandwidth expansion is still a main concern which needs improvement. An effective method is
stacking metallic-dielectric multilayer planar structure [40], which gives some new ideas for multi-band
or broadband device design for polarization transformation [11, 25, 40, 41].

In this work, an ultra-compact CMM using multilayer-stacked system is proposed, which is capable
of emitting circularly polarized waves from incident linearly polarized wave at four resonances under
normal incidence. A strategy of stacking metal-dielectric multilayer planar structure is shown to
dramatically excite the multi-resonance modes. From the bottom to the top, there are three layers
of SRRs with double ring structures stacked with the angle of mutual twist α = 45◦. The simulated
and measured results demonstrate that when a plane wave with y(x) direction linear polarization is
incident on this CMM slab propagating along −(+)z direction, circular polarization waves with different
rotation directions and high polarization extinction ratio (PER) are obtained at four distinct resonances.
In addition, the unit cell of the structure is extremely small in all three dimensions simultaneously
compared with the operation wavelengths, which can be integrated easily with other electrical small
devices such as antennas or sensors in lower frequency.

2. FUNDAMENTAL THEORY, AND UNIT-CELL STRUCTURE DESIGN

Firstly, we briefly recall some fundamental theories of the CMMs for circular polarizer or circular
polarization convertor before characterizing the polarization characteristics of our design. Under the
Cartesian coordinates of x-y-z, considering an incident EM wave propagating in the +z direction, the
expressions of electric field vector of incident and transmitted wave along x-polarized and y-polarized
direction are as following [17]:
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where ω, k, Ex, and Ey represent the angular frequency, wave vector, and complex amplitudes of EM
wave, respectively. The transmission coefficient tij = Et

i/E
i
j is defined in terms of complex amplitude

of the electric field, with the first and second subscripts i and j (= x, y for linear polarization, = +,−
for circular polarization) denoting the polarized states of the transmitted wave and incident wave
components, respectively. It is indicated that an arbitrary plane linear polarization wave through
certain CMMs slab can be decomposed into different components (Et

x and Et
y) of the transmitted EM

waves through the above transmission coefficients (the complex Jones matrix). For our designed CMMs,
the transmitted circularly polarized waves with two orthogonal polarization eigenstates right-handed
circularly polarized (RCP, +) and left-handed circularly polarized (LCP, −) waves associated with the
two incident orthogonal linearly polarized components can be expressed as [22, 31]:

tcir-lin =
(

t+x t+y

t−x t−y

)
=
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txx − ityx txy − ityy

)
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where t+x, t−x, t+y and t−y are the four RCP and LCP transmission coefficients from the linear to
circular polarization conversion, which indicates the capability of the CMM to convert an EM wave
with linear to circular polarization [30–34]. Moreover, the substantially large or small difference (PER)
between the RCP and LCP waves can be calculated as:

PER = 20 log10

(|t+x(y)|/|t−x(y)|
)

(3)

Thus, we can also use the PER to characterize the circular polarization conversion efficiency of the
transmitted waves. The transmission coefficients and PER should be as high as possible for the circular
polarizer or circular polarization convertor in engineering. Generally, the polarization properties of the
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transmitted EM waves can be characterized by the polarization rotation angle θ and ellipticity angel
η. The polarization rotation angle θ represents the rotation angle between the polarization planes of
the transmitted and incident waves when linearly polarized wave passes through a CMM slab. Thus,
we can use θ to characterize the rotation property of the transmitted waves. On the other hand, η
characterizes polarization state of the transmitted wave and also measures the CD effect due to the
difference of RCP and LCP waves in magnitudes. Polarization azimuth rotation angle θ and ellipticity
angle η for the normal incident wave can be expressed by the following formulas [17, 41]:

θ =
1
2

tan−1

(
2p cos(ϕ)
1 − p2

)
(4)

η =
1
2

sin−1

(
2p sin(ϕ)
1 + p2

)
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where p = |txy/tyy| and ϕ = arg(txy) − arg(tyy). Note that the transmitted wave will be purely
circular and linear polarization if η equals ±45◦ and 0◦, respectively. Otherwise, the transmitted wave
is elliptically polarized if η is between 0◦ and 45◦, −45◦ and 0◦.

To go a step further, we will demonstrate our proposed CMMs numerically and experimentally
for the multi-band circular polarization conversion. Since the split-ring resonators (SRRs) allow for a
control and manipulation of EM (light) waves on sub-wavelength length scales [8, 12, 14, 15, 23], which
is also employed as the basic element in our design. Figs. 1(a), (b) show the unit cell structure of
the designed CMM in detail. As shown in Fig. 1(a), the designed CMM is composed of three metallic
layers and two dielectric spacer layers from the top to bottom layers. Similarly to the unit cell structure
configuration in [11, 41], the split direction of DSRRs is rotated in a certain angle α along axial direction.
The DSRRs in the two layers are coaxial but mutually twisted by α = 45◦. The front DSRR pattern
is formed by rotating an enantiometric form of the back DSRR by 90◦. This construction law in our
design distinguishes any previous design with only a mutual 90◦ twist or with only an enantiometric
form [3–9]. Thus, the chirality of the design can be further enhanced. The DSRRs have undergone
several miniaturized refinements in an attempt to optimize the resonances supported in the structure
as four resonances hold the key in tailoring the cross-coupling of chiral structures between the electric
and magnetic fields. Thus, circular dichroism and optical activity can be expected. The EM response of
the normally incident wave with x polarization is different from that with y polarization since no line of
mirror symmetry and any four-fold rotational symmetry (C4) can be observed. In our design, circular
polarization waves can only be obtained in the case of incident y(x)-polarized wave propagating along
−z(+z) direction. We demonstrate our proposed CMMs for multi-band circular polarization conversion
through numerical simulation and experiments. The dielectric substrate is chosen to be an FR-4 board
with relative permittivity of 4.2 and dielectric loss tangent of 0.025. The metallic structure layers in
both sides are modeled as a 0.02 mm copper film with an electric conductivity σ = 5.8 × 107 S/m. The
optimized geometry parameters are as follows: p = 3.5 mm, ts = 0.55 mm, r1 = 1.1 mm, r2 = 1.6 mm,
w = 0.25 mm, g = 0.4 mm.

3. SIMULATION AND EXPERIMENT

To study the polarization conversion characteristic of the designed CMMs, the numerical simulations
are performed using the standard finite difference time domain (FDTD) method. In the simulation,
the unit cell boundary condition is applied to the transverse boundaries to replicate an infinite planar
array, while perfectly matched layers are applied to the z direction. The designed CMMs are fabricated
by the conventional printed circuit board (PCB) process, and a photograph of the fabricated sample is
depicted in Fig. 1(d). The total area of the fabricated sample is 196× 196 mm2, containing 56× 56 unit
cells. Agilent PNA-X N5244A vector network analyzer connected to the two standard gain broadband
linearly polarized horn antennae is employed to measure the fabricated CMM sample in an EM anechoic
chamber. The CMM slab is placed in the middle of the horn antennas. Both antennas own VSWR < 2
and face each other with a distance of 1 m over a wide frequency range of 5 to 17 GHz to eliminate
near-field effect [30]. When a broadband plane EM wave with y-polarization is normally impinged on
the designed CMM slab propagating along −z direction, the transmission coefficients of co-polarization
tyy and cross-polarization txy are obtained. The plane waves with different linear polarizations are
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(a)

(c)

(b)
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Figure 1. (a), (b) The perspective view and front view of the unit cell structure of the designed CMMs,
(c) three dimensional array structure, (d) photograph of the fabricated sample.

generated and received by rotating the orientation of the two horn antennas. For both simulation
and experiment, according to above Eq. (2), the transmitted circular polarization coefficients can be
expressed as t± = txy ± ityy, where the subscripts “+” and “−” denote the RCP and LCP waves,
respectively. As a circular polarizer or circular polarization convertor, the difference between the RCP
wave and LCP wave transmission coefficients for linear to circular polarization conversion and the
efficiency should be as high as possible in engineering. The electric response for the normally incident
x-polarized wave distinguishes from that for the y-polarized wave due to the lacking of C4 symmetry of
the proposed structure [34]. Thus, for our design, the giant circular dichroism and good performances
of the circular polarization can be valid only for the y-polarized waves propagating along −z direction.

4. RESULTS AND DISCUSSIONS

Figure 2(a) presents the simulated and measured co- and cross-polarization transmission coefficients
for the normal incident y-polarized wave propagating along −z direction. A good agreement of
results between simulation and experiment is observed across the whole frequency range. As shown
in Fig. 2(a), four resonant frequencies are observed at f1 = 7.15 (7.28) GHz, f2 = 9.24 (9.38) GHz,
f3 = 13.22 (13.29) GHz, and f4 = 15.34 (15.45) GHz from the co- and cross-polarization transmission
coefficients (tyy and txy) in experiment (simulation). There are slight frequency shifts between

(a) (b)

Figure 2. Simulated and measured results for the designed CMM: (a) the co- and cross-polarization
transmission coefficients (tyy and txy), (b) the ratio py and phase difference ϕy between the co- and
cross-polarization.
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simulation and measurement curves due to the tolerances occurring in the fabrication and measurements.
Simulation and measurement results indicate that the peak amplitudes of tyy and txy are nearly the
same and are about 0.5 around above four resonance frequencies. In order to demonstrate the linear-to-
circular polarization conversion, the ratio of transmission coefficients py = |txy|/|tyy| and phase difference
ϕy = arg(txy)−arg(tyy) for cross-polarization and co-polarization are also calculated. The corresponding
results are depicted in Fig. 2(b). The simulated values of ratio py are about 1.05, 1.01, 1.12 and 0.98,
while the phase differences ϕy are 90.6◦, −91.2◦, 89.5◦ and 88.7◦ at 7.15 GHz, 9.44 GHz, 13.19 GHz and
15.34 GHz, respectively, which are in good agreement with measurements. Thus, the high conversion
efficiency for linear-to-circular polarization can be unambiguously demonstrated. These results suggest
that nearly pure circular polarization waves with different rotation directions can be obtained around
four resonances after the y-polarized wave passing through the designed CMMs slab propagating along
forward (−z) direction.

Taking a further step, the simulated and measured normalized linear-to-circular polarization
transmission coefficients are depicted in Fig. 3(a). It can be observed that there are significant
differences between the RCP and LCP waves in the frequency band ranging from 5GHz to 17 GHz.
The measured (simulated) transmission coefficients for the LCP wave reach their minimum values
about 0.037 (0.021), 0.056 (0.021) and 0.062 (0.055) at 7.15 (7.28) GHz, 13.19 (13.22) GHz, and 15.34
(15.45) GHz, respectively. However, the transmission magnitudes for the RCP wave are 0.77 (0.749),
0.788 (0.777) and 0.844 (0.839). To further demonstrate the differences between the transmissions of
the RCP and LCP waves and circular polarization conversion efficiency for our designed CMM, we
also calculate the PER according to Eq. (3), and the corresponding results are depicted in Fig. 3(b).
From Table 1, it can be observed that the measured (simulated) PERs are about 26.11 (30.84) dB,
20.95 (30.46) dB and 23.15 (23.76) dB at the above three frequencies, which further indicate that the
transmitted EM waves are the relatively pure RCP. At another resonance frequency of 9.24 (9.38) GHz,
the transmission coefficient for LCP waves is 0.78 (0.765), while one of the RCP waves is as low as
0.045 (0.057). The PER is 22.61 (26.22) dB as shown in Fig. 3(b), indicating that the LCP wave is
obtained from a y-polarized incident wave after it travels through the designed CMM at this resonance.
It is revealed that the incident y-polarized (x-polarized) waves along the −z (+z) directions can be
converted well to nearly pure RCP and LCP waves around the four resonances after passing through

(a) (b)

Figure 3. Simulated and measured (a) transmission spectra of the LCP and RCP waves for linear to
circular polarization conversion, (b) polarization extinction ration (PER).

Table 1. Circular polarization characteristics for designed CMM at resonances.

Operation frequency (GHz) PER (dB) Ellipticity η(◦) Relative dimension
f1 (7.15 GHz) 26.1 dB 42.17◦ λ0/11.98 × λ0/11.98 × λ0/36.17
f2 (9.24 GHz) −26.2 dB −42.21◦ λ0/9.27 × λ0/9.27 × λ0/36.17
f3 (13.22 GHz) 30.1 dB 40.43◦ λ0/6.47 × λ0/6.47 × λ0/36.17
f4 (15.34 GHz) 23.2 dB 41.29◦ λ0/5.58 × λ0/5.58 × λ0/36.17
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(a) (b)

Figure 4. Simulated and measured (a) ellipticity η and (b) polarization azimuth rotation angle θ for
the forward (−z) propagation in y polarization.

the designed CMMs slab.
The functionality of multi-band circular polarizer or circular polarization convertor of the proposed

CMMs can be further demonstrated through the analysis of ellipticity η and polarization rotation angle
θ [22]. According to Eqs. (4) and (5), η and θ for the y-polarized waves propagating along forward (−z)
direction can be calculated, respectively. From Fig. 4(a) and Table 1, the experiment (simulation) peak
values of η are about 42.17◦ (43.35◦), 40.43◦ (43.28◦), 41.29◦ (41.02◦) and −42.21◦ (−40.76◦) at 7.15
(7.28) GHz, 13.19 (13.22) GHz, 15.34 (15.45) GHz and 9.24 (9.38) GHz, indicating that the transmitted
waves are nearly pure circular polarization at the four resonances. Furthermore, from Fig. 4(b), it
can be seen that the values of η are zero at 6.65 (6.78) GHz, 9.09 (9.21) GHz, and 16.48 (16.58) GHz,
respectively. On the other hand, the values of θ are about 28.47◦ (28.15◦), −29.92◦ (−40.11◦), and
−74.65◦ (−75.22◦) when η = 0◦ with respect to the incident linearly polarized wave. Obviously, the
transmitted wave is still linear polarization with rotation angle θ at above three frequencies and also
indicating giant optical activity. These results further indicate that the designed CMM can function as
a nearly perfect circular polarization convertor at resonances. Furthermore, it should be noticed that
the size of the unit cell of the designed CMMs is only λ0/11.98 × λ0/11.98 × λ0/36.17 at 7.15 GHz,
where λ0 is corresponding to the resonance wavelength. Thus, our proposed CMM has some advantages
compared with previous CMM in circular polarization extinction ration and ultra-compact structure
design [38–40].

Finally, the resonances mechanism of the proposed CMM structure can be understood by examining
the surface current distributions. As shown in Fig. 5, surface current distributions in each DSRR layer
are investigated at each resonant frequency to analyze the polarization conversion. Intrinsically, the
operation mechanism of circular polarizer featured with giant CD effect mainly originates from the
interlayer near-field coupling between two twisted layers [31–36]. At resonances, all the field patterns will
be twisted inside the slab as a consequence of interlayer longitudinal magnetic dipole to magnetic dipole
coupling or transverse electric dipole to electric dipole coupling [11, 14, 18, 36, 42, 43]. Furthermore, the
EM fields within metallic layers can be rigorously expressed as series of eigenmodes of the SRRs [41].
From Figs. 5(a1)–(a3), at the first resonance of 7.28 GHz for RCP wave, the surface current directions
on both inner and outer rings of three SRR layers are the same, resulting in parallel magnetic dipole
moments in outer and inner rings of three layers. From Figs. 5(b1)–(b3) and 5(c1)–(c3), at 13.22 GHz
and 15.45 GHz for the RCP wave, the cases become complex. At these two resonances, both the same
and opposite direction currents exist on both inner and outer rings of the top and middle SRRs layers,
but only the same direction currents exist on both inner and outer rings of the bottom SRRs layer, thus
producing the cross-coupling between the electric and magnetic fields in the triple-layer twisted SRRs
structure. From Figs. 5(d1)–(d3), at 9.38 GHz for LCP wave, the surface currents on the top and bottom
layers are antiparallel for both rings, indicating antiparallel magnetic dipole moments in both layers.
The distinguished current direction from the top to bottom layers gives rise to the different rotation
directions of the transmitted circularly polarization waves at the four resonant frequencies. These
surface current distributions properties effectively explain different transmitted circular polarizations.
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(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

(d1) (d2) (d3)

Figure 5. The simulated surface currents distributions for the proposed CMMs in the case of the
incident y-polarized wave propagating along −z direction at (a1)–(a3) 7.28 GHz, (b1)–(b3) 13.22 GHz,
(c1)–(c3) 15.45 GHz and (d1)–(d3) 9.38 GHz for top layer, middle layer and bottom layer structure.
Solid black line arrows denote the current directions.

5. CONCLUSION

In conclusion, an ultra-compact CMMs composed of triple-layers TSRRs structure is proposed and
comprehensively characterized by simulation and experiment in microwave region. Simulation results
exhibit that it can convert a linearly polarized wave to an RCP waves at 7.28 GHz, 13.22 GHz, and
15.45 GHz and an LCP at 9.38 GHz, respectively, which are in good agreement with the experiments.
The unit cell of the designed structure is extremely thin in the longitudinal direction and also very small
in the transverse directions compared with the operation wavelength (λ0/11.98 × λ0/11.98 × λ0/36.17
at 7.15 GHz). Moreover, this ultra-compact structure CMM possesses four resonant bands and high
PER of more than 20 dB across four bands. The physical mechanism behind the phenomena has been
further illustrated by simulated surface current distributions. This ultra-compact structure CMM with
four-band operation can be developed to explore more potential applications where the circular polarizer
needs to be integrated with other compact devices, such as electrically small antennas and small sensors.
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