
Ultra-fast Aliasin9 Analysis using CLA: 

A Million Lines of C Code in a Second I 

Nevin Heintze 
Research, Agere Systems 

(formerly Lucent's Microeleetronics Division) 
nch©agere, com 

Olivier Tardieu 
Ecole des Mines, Paris 

olivier, tardieu@mines, org 

ABSTRACT 
We describe the design and implementation of a system for 

very fast points-to analysis. On code bases of about a million 

lines of unpreprocessed C code, our system performs field- 

based Andersen-style points-to analysis in less than a second 

and uses less than 10MB of memory. Our two main contri- 

butions are a database-centric analysis architecture called 

compile-link-analyze (CLA), and a new algorithm for imple- 

menting dynamic transitive closure. Our points-to analysis 

system is built into a forward data-dependence analysis tool 

that  is deployed within Lucent to help with consistent type 

modifications to large legacy C code bases. 

1. INTRODUCTION 
The motivation for our work is the following software main- 

tenance/development problem: given a million+ lines of C 

code, and a proposed change of the form "change the type 

of this object (e.g. a variable or struct field) from typel  to 

type2", find all other objects whose type may need to be 

changed to ensure the "type consistency" of the code base. 

In particular, we wish to avoid data  loss through implicit 

narrowing conversions. To solve this problem, we need a 

global data-dependence analysis that  in effect performs a 

forward data-dependence analysis (Section 2 describes this 

analysis, and how it differs from other more standard de- 

pendence analyses in the literature.). A critical part  of this 

dependence analysis is an adequate treatment of pointers: 

for assignments such as *p = x we need to determine what 

objects p could point to. This kind of aliasing analysis is 

commonly called points-to analysis in the literature [4]. The 

scalability of points-to analysis has been a subject of inten- 

sive s tudy over the last few years [5, 8, 21, 11, 23]. However 

the feasibility of building interactive tools that  employ some 

form of "sufficiently-accurate" pointer analysis on million 

line code-bases is still an open question. 

The paper has two main contributions. The first is an archi- 

1This is a substantially revised version of [16]. 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that 

copies are not made or distributed for profit or commercial advan- 

tage and that copies bear this notice and the full citation on the first page. 

To copy otherwise, to republish, to post on servers or to 

redistribute to lists, requires prior specific permission and/or a fee. 

PLDI 2001 6/01 Snowbird, Utah, USA 

© 2001 ACM ISBN 1-58113-414-2/01/06... $5.00 

tecture for analysis systems that  utilizes ideas from indexed 

databases. We call this architecture compile-link-analyze 

(CLA), in analogy with the standard compilation process. 

This architecture provides a substrate on which we can build 

a variety of analyses (we use it to implement a number of 

different algorithms for Andersen-style points~to analysis, 

dependence analysis and a unification-style points-to anal- 

ysis, all using a common database format for representing 

programs). It  scales to large code bases and supports sepa- 

rate and/or  parallel compilation of collections of source files. 

Also, its indexing structures support  rapid dynamic loading 

of just those components of object files that  are needed for 

a specific analysis, and moreover after reading a component 

we have the choice of keeping it in memory or discarding it 

and re-reading it if we even need it again (this is used to 

reduce the memory footprint of an analysis). We describe 

CLA in detail in Section 4, and discuss how it differs from 

other approaches in the literature, such as methods where 

sepaxate files are locally analyzed in isolation and then the 

individual results are combined to analyze an entire code- 

base. 

The second contribution is a new algorithm for implement- 

ing dynamic transitive closure (DTC). Previous algorithms 

in the literature for Andersen's analysis are based on a tran- 

sitively closed constraint graph e.g. [4, 10, 11, 21, 23, 22]. 

In contrast, our algorithm is based on a pre-transitive graph 

i.e. we maintain the graph in a form tha t  is not  transitively 

closed. When information about a node is requested, we 

must perform a graph reachability computat ion (as opposed 

to just  looking up the information at the node itself in the 

case of a transitively closed constraint graph). A direct im- 

plementation of the pre-transitive graph idea is impractical. 

We show how two optimizations - caching of teachability 

computations, and cycle elimination - yield aa  efficient al- 

gorithm. Cycle elimination has previously been employed 

in the context of transitively closed graph and shown to re- 

sult in significant improvement [11], however in that  work 

the cost of finding cycles is non-trivial and so completeness 

of cycle detection is sacrificed in order to contain its cost. 

However, in the pre-transitive setting, cycle detection is es- 
sentially free during graph teachability. We describe our 

algorithm in detail in Section 5. 

Section 6 presents various measurements of the performance 

of our system. For the Lucent code bases for which our sys- 

tem is targeted, runtimes are typically less than a second 

(800MHz Pentium) and space utilization is about 10MB. 

................ 254 



These code bases are in excess of a million lines of code (un- 

commented non-blank lines of source, before pre-processing). 

On gimp (a publicly available code base of about  440K 

lines), our system performs field-based Andersen-style points- 

to analysis in about  a second (800MHz Pentium) and uses 

about  12MB. We also present da t a  to illustrate the space 
advantages of CLA. 

2. MOTIVATING APPLICATION- DEPEN- 

DENCE ANALYSIS 
Our points-to analysis system is built  into a forward data- 

dependence analysis tool tha t  is deployed within Lucent to 

help with consistent type modifications to large legacy C 

code bases. The basic problem is as follows: suppose that  

the  range of values to be stored in a variable must  be in- 

creased to support  addit ional system functionality. This 

may  require changing the type of a variable, for example 

from s h o r t  to i n t .  To avoid da ta  loss through implicit  nar- 

rowing conversions, any objects tha t  take values from the 

changed variable must  also have their  types appropriately 

altered. Consider the  following program fragment. 

short x, y, 

y = x; 
z = y+l; 
p = ~v; 
*p = Z; 

w = 1; 

Z, *pp V~ W; 

If  the type  of x is changed from s h o r t  to i n t ,  then we may 

also have to change the types of y, z, v and probably p, but 

we do not need to change the type of w. 

Given an object  whose type  must be changed (the target), 
we wish to find all other objects tha t  can be assigned val- 

ues from the specified object. This is a forward dependence 

problem, as opposed to backwards dependence used for ex- 

ample in program slicing [25]. Moreover it only involves 

data-dependencies,  as opposed to both data-dependencies 

and control-dependencies which are needed in program slic- 

ing. Our analysis refines forward data-dependence analysis 

to reflect the importance of a dependency for the  purposes 

of consistent type  changes. The most important  dependen- 

cies are those involving assignments such as x = y and z = 

y+l .  On the other  hand, an assignment such as z l  = !y 

can be ignored, since changing the type of y has no effect 

on the range of values of z l ,  and so the type of z l  does not 

need to be changed. Assignments involving operations such 

as division and multiplication are less clear. We discuss this 

later  in the  section. 

An impor tant  issue for the  dependence analysis is how to 

t reat  s t r u c t s .  Consider the program fragment involving 

structs  in Figure 1. If the  target  is the variable t a r g e t ,  

then u, w and s .  x are all dependent objects. If the  type 

of t a r g e t  is changed from sho r t  to in t ,  then the types of 

u, w and s . x  should also be changed. To effect this change 

to the type  of s .  x, we can either change the type  of the x 

field of the s truct  S, or we can introduce a new struct  type  

especially for s. The advantage of the former case is that  we 

make minimal changes to the program. The disadvantage is 

t ha t  we also change the type of t .  x, and this may not be 

T a b l e  1: C l a s s i f i c a t i o n  o f  o p e r a t i o n s .  

Operations Argument 1 Argument 2 

+, - ,  l, gq ^ 
* 

~ >>, << 

unary: + , -  

Strong Strong 

Weak Weak 

Weak None 

Strong n / a  

None None 

None n / a  

strictly necessary. However, in practice it is likely tha t  if 

we have to change the type of the x field of s, then we will 

have to change the type of the x field of t .  As a result, it  

is desirable to t rea t  objects that  refer to the  same field in 

a uniform way. By "same field", we mean not  just  tha t  the 

fields have the same name, but  tha t  they are the same field 

of the same struct type. 

Since our ul t imate use of dependence analysis is to help iden- 

tify objects whose type  must  be changed, we are not jus t  in- 

terested in the set of dependent objects. Rather,  we need to 

give a user information about  why one object is dependent on 

another. To this end, we computes the dependence chains, 

which identify paths  of dependence between one object  and 

another. In general there are many dependence paths  be- 

tween a pair of objects. Moreover, some paths are more 

important  than others. Dependencies arising from direct 

assignments such as x=y are usually the  most important;  de- 

pendencies involving ari thmetic operations x=y+l, x=y>>3, 

x=42Xy, x=l<<y are increasingly less important .  Our metric 

of importance is biased towards operations that  are likely 

to preserve the shape and size of input  data.  Table 1 out- 

lines a simple s t rong/weak/none classification that  we have 

employed. Our analysis computes the most impor tant  path,  

and if there are several paths  of the same importance,  we 

compute the shortest path.  

Large code bases often generate many dependent objects - 

typically in the range 1K-100K. To help users sift through 

these dependent objects and determine if they are objects 

whose type must be changed, we prioritize them according 

to the importance of their underlying dependence chain. We 

also provide a collection of graphic user interface tools for 

browsing the tree of chains and inspecting the corresponding 

source code locations. In practice, there are often too many 

chains to inspect - a common scenario is tha t  a central ob- 

ject  that  is not relevant to a code change becomes dependent 

(often due the context- or flow-insensitivity of the underly- 

ing analysis), and then everything tha t  is dependent  on this 

central object also becomes dependent.  We address this is- 

sue with some addit ional domain knowledge: we allow the 

user to specify "non-targets",  which are objects tha t  the 

user knows are certainly not dependent  on the target  ob- 

ject.  This has proven to be a very effective mechanism for 

focusing on the impor tant  dependencies. 

3. ANDERSEN'S POINTS-TO ANALYSIS 
We review Andersen's  points-to analysis and introduce some 

definitions used in the rest of the paper. In the literature, 

there are two core approaches to points-to analysis, ignoring 

context-sensitivity and flow-sensitivity. The first approach is 

........ 255 



i. short target; 

2. struct S { short x; 

3. short u, *v, w; 

4. struct S s, t; 

5.  v = ~w; 

6.  u = target; 

7.  *v = u ;  

8. S.X = ~; 

short y ;  ) ;  

w/short <eg1.c:3> --3- u/short <egl.c:7> --~ target/short <egl.c:6> where target/short <egl.c:l> 

target/short <egl.c:l> 

u/short <egl.c:3> -+ target/short <egl.c:6> where target/short <egl.c:1> 

S.x/short <egl.c:2> -- w/short <egl.c:8> -+ u/short <egl.c:7> ~ target/short <egl.c:6> ... 

F i g u r e  1: A p r o g r a m  f r a g m e n t  i n v o l v i n g  s t r u c t s  a n d  i t s  d e p e n d e n c e  r e s u l t s  ( t h e  t a r g e t  is t a r g e t ) .  

unification-based [24]: an assignment such as x = y invokes 

a unification of the node for x and the node for y in the 

points-to graph. The algori thms for the  unification-based 

approach typical ly involve union/f ind and have essentially 

l inear-t ime complexity. The second approach is based on 

subset relationships: an assignment such as x = y gives rise 

to a subset constraint  x D y between the nodes x and y in 

the points-to graph [4]. The algori thms for the subset-based 

approach utilize some form of subtyping system, subset  con- 

s traints  or a form of dynamic  t ransi t ive closure, and have 

cubic-t ime complexity. 

The unification-based approach is faster and less accurate 

[22]. There has been considerable work on improving the 

performance of the subset-based approach [11, 23, 21], al- 

though the performance gap is still sizable (c.f. [23, 21] and 

[8]). As Das very recently observed "In spite of these efforts, 

Andersen 's  a lgori thm does not  ye t  scale to programs beyond 

500KLOC." [8] There has also been work on improving the 

accuracy of the  unification-based approach by incorporat-  

ing some of the  directional features of the  subset-based ap- 

proach to produce a hybr id  unification-based algori thm [8]: 

for a small  increase in analysis t ime (and quadrat ic  worst- 

case complexity) ,  much of the  addit ional  accuracy of the 

subset-based approach can be recovered. 

A D e d u c t i v e  Reachab i l i ty  F o r m u l a t i o n  
We use a context-insensitive, flow-insensitive version of the 

subset-based approach tha t  is essentially the  analysis due 

to Andersen [4]. One reason for this choice is the bet ter  

accuracy of the  subset-based approach over the  unification- 

based approach.  Another  reason is tha t  users of our depen- 

dence analysis system must  be able to inspect the  depen- 

dence chains produced by our system (Section 2), and un- 

ders tand why they  were produced.  Subset-based approaches 

generate easier to unders tand  results; unificat ion-based ap- 

proaches often introduce hard  to unders tand "backwards" 

flows of information due to the  use of equalities. 

Previous presentat ions of Andersen 's  algori thm have used 

some form of non-s tandard  type  system. Our presentat ion 

uses a simple deduct ive reachabil i ty system. This  style of 

analyses presentat ion was developed by McAllester [20]. It 

has also been used to describe control-flow analysis [18]. To 

simplify our presentat ion,  we consider a t iny language con- 

sisting of jus t  the  operat ions , and &. Expressions e have 

x > &y 
(if , x  = e in P) 

y >e 

x ---~ &y  
(if e = , x  in P) 

e------+y 

(if el = e2 in P) 
e l  ~ 62 

el ~ e2 e2 ) e3 

el --- '~ e3 

F i g u r e  2: D e d u c t i o n  r u l e s  for  a l i a s i n g  a n a l y s i s .  

(STAre 1) 

(STAR-2)  

(ASSIGN) 

(TRANS) 

the form: 

e ::= x I *~ I &x 

We shall assume tha t  nested uses o f ,  and  & are removed 

by a preprocessing phase. Programs are sequences of assign- 

ments  of the  form el = e2 where el  cannot  be &x. 

Given some program P ,  we construct  deduct ion rules as 

specified in Figure 2. In the  first rule, the side condition 

"if *x : e in P"  indicates tha t  there is an instance of this 

rule for each occurrence of an assignment of the  form *x = e 

in P .  The side conditions in the  other rules are similarly 

interpreted.  Intuitively, an edge el ~ e2 indicates  tha t  any 

object  pointer  tha t  we can derive from e2 is also derivable 

from ex. The  first rule deals with expressions of the  form 

*x on the left-hand-sides of assignments:  i t  s ta tes  tha t  if 

there is a t rans i t ion  from x to &y, then  add a t ransi t ion 

from y to e, where e is the left-hand-side of the  assignment.  

The second rule deals with expressions of the  form *x on 

the r ight-hand-sides  of assignments: i t  s ta tes  t ha t  if there  

is a t ransi t ion from x to  &y, then add  a t ransi t ion from e 

to y where e is the r ight-hand-side of the  assignment.  The 

th i rd  rule adds  a t ransi t ion from el to e2 for all assignments 

el  = e2 in the  program, and finally, the  fourth rule is just  

t ransi t ive closure. The  core of our points- to  analysis can 

now be s ta ted  as follows: x can point to y if we can derive 

x ~ &y. Figure  3 contains an example program and shows 

how y ~ &x can be derived. 

Analys i s  o f  Ful l  C 
Extending this  core analysis to  full C presents a number  of 

choices. Adding  values such as integers is s traightforward.  

I t  is also easy to deal with nested uses of * and & through 

the addi t ion of new tempora ry  variables (we remark  tha t  

256 



i n t  x, *y; 
int **Z; Z --> ~y (ASSIGN) 
Z =. 86y; *Z ~ ~X (ASSIGN) 

*z = &X; Y ~ ~x (from STAR-l) 

F i g u r e  3: E x a m p l e  p r o g r a m  a n d  app l i ca t ion  o f  de- 
d u c t i o n  ru les  t o  show y ~ ax. 

considerable implementation effort is required to avoid in- 

troducing too many temporary variables). However, treat- 

ing s t r u c t s  and unions is more complex. One possibility 
is, in effect, to ignore them: each declaration of a variable 

of s t r u c t  or union type is treated as an unstructured mem- 

ory location and any assignment to a field is viewed as an 

assignment to the entire chunk e . g . x . f  is viewed as an as- 

signment to x and the field component f is ignored. We 
call this the field-independent approach and examples in- 

clude [10, 11, 22]. Another approach is to use a field-based 

treatment of structs such as that  taken by Andersen [4]. In 

essence, the field-based approach collects information with 

each field of each struct, and so an assignment to x. f  is 

viewed as an assignment to f and the base object x is ig- 

nored. (Note that  two fields of different structs that  happen 

to have the same name are treated as separate entities.) The 

following code illustrates the distinction between field-based 

and field-independent. 

s t ruct  s ~ i n t  *x; i n t  *y; ]- A, B; 

int  z; 
main ( )  'C 

i n t  *p, *q,  *r ,  * s ;  
A.x = ~z; /* field-based: assigns to "x" 

* field-independent: assigns ~o "A" */ 

p = A.x; /* p gets ~z in both approaches */ 

q = A.y; /* field-independent: q gets Ez */ 

r = B.x; /* field-based: r gets ~z */ 

s = B.y; /* in neither approach does s get ~z */ 
} 

In the field-independent approach, the analysis determines 
tha t  only p and q can point to ~zz. In the field-based ap- 

proach, only p and r can point to ~z .  Hence, neither of 

these approaches strictly dominates the other in terms of ac- 
curacy. We note tha t  while the works [10, 11, 22] are based 

on Andersen's algorithm [4], they in fact differ in their treat- 
ment of structs: they are field-independent whereas Ander- 

sen's algorithm is field-based ~. In Section 6, we show this 

choice has significant implications in practice, especially for 
large code bases. Our aliasing analysis uses the field-based 

approach, in large part  because our dependence analysis is 

also field-based. 

4. COMPILE-LINK-ANALYZE 
A fundamental problem in program analysis is modular- 
ity: how do we analyze large code bases consisting of many 
source files? The simple approach of concatenating all of the 

source files into one file does not scale beyond a few thou- 
sand lines of code. Moreover, if we are to build interactive 

1Strictly speaking, while Andersen's core algorithm is field- 
based, he assumes that a pre-processiug phase has dupli- 
cated and renamed struct definitions so that  structs whose 
values cannot flow together have distinct names (see Section 
2.3.3 and 4.3.1 of [4]). 

tools based on an analysis, then it is important to avoid re- 

parsing/reprocessing the entire'code base when changes are 

made to one or two files. 

The most basic approach to this problem is to parse compila- 

tion units down to an intermediate representation, and then 

defer analysis to a hybrid link-analyze phase. For example, 

at the highest level of optimization, DEC's MIPS compiler 

treats the internal ucode files produced by the frontend as 

"object files", and then invokes a hybrid linker (uld) on the 

ucode files [9]. The uld "linker" simply concatenates the 

ucode files together into a single big ucode file and then 

performs analysis, optimization and code generation on this 
file. The advantage of this approach is it modularizes the 

parsing problem - we don't  have to parse the entire program 

as one unit. Also, we can avoid re-parsing of the entire code 

base if one source file changes. However, it does not mod- 
ularize the analysis problem - the analysis proceeds as if 
presented with the whole program in one file. 

One common way to modularize the analysis problem is to 

analyze program components (at the level of functions or 
source files), and compute summary information that  cap- 

tures the results of these local analyses. Such summaries 

are then combined/linked together in a subsequent "global- 

analysis" phase to generate results for the entire program. 
This idea is analogous to the construction of principle types 
in type inference systems. For example, assigning 'ca ~ o?' 

to the identity function in a simply typed language is essen- 
tially a way of analyzing the identity function in a modular 

way. Uses of the identity function in other code fragments 
can utilize oz -4 ~ as a summary of the behavior of the 
identity function, thus avoiding inspection of the original 

function. (Of course, full polymorphic typing goes well be- 

yond simply analyzing code in a modular way, since it allows 
different type instantiations for different uses of a function 

- akin to context-sensitive analysis - which is beyond the 

scope of the present discussion.) 

This modular approach to analysis has a long history. Ac- 
cording to folklore, one version of the MIPS compiler em- 
ployed local analysis of separate files and then combined the 

local analysis results during a "linking" phase. The idea is 
also implicit in Aiken et. al.'s set-constraint type systems 

[3], and is much more explicit in Flanagan and Felleisen's 
componential analysis for set-based analysis [12]. Recently, 
the idea has also been applied to points-to analysis. Das [8] 

describes a hybrid unification-based points-to analysis with 

the following steps. First, each source file is parsed, and 

the assignment statements therein are used to construct a 
points-to graph with flow edges, which is simplified using a 

propagation step. The points-to graph so computed is then 

"serialized" and written to disk, along with a table that 

associates symbols and functions with nodes in the graph. 
The second phase reads in all of these (object) files, unifies 
nodes corresponding to the same symbol or function from 

different object files, and reapplies the propagation step to 
obtain global points-to information. In other words, the 
analysis algorithm is first applied to individual files and the 

internal state of the algorithm (which in this case is a points- 
to graph, and symbol information) is frozen and written to 

a file. Then, all of these files are thawed, linked and the 

algorithm re-applied. 

.............. 257 



This means that  the object files used are specific not just to 

a particular class of analysis (points-to analysis), but  to a 

particular analysis algorithm (hybrid unification-based anal- 

ysis), and arguably even to a particular implementation of 

that  algorithm. The object files are designed with specific 

knowledge of the internal data-structures of an implemen- 

tation in such a way that  the object file captures sufficient 

information about  the internal state of the implementation 

that  this state can be reconstructed at a later stage. 

The CLA Model 
Our approach, which we call compile-link-analyze (CLA), 

also consists of a local computation, a linking and a global 

analysis phase. However, it represents a different set of 

tradeoffs from previous approaches, and redraws the bound- 
aries of what kind of work is done in each phase. A key 

difference is tha t  the first phase simply parses source files 

and extracts assignment statements - no actual analysis is 

performed - and the linking phase just links together the 

assignment statements. One advantage of the CLA architec- 

ture is that  the first two phases remains unchanged for many 

different implementations of points-to armlysis and even dif- 

ferent kinds of analysis (we return to this point later). A 

follow-on advantage is that  we can justify investing resources 

into optimizing the representation of the collections of as- 

signments, because we can reuse this work in a number of 

different analysis implementations. In particular, we have 

developed a database-inspired representation of assignments 
and function definitions/calls/returns. This representation 

is compact and heavily indexed. The indexing allows rel- 

evant assignments for a specific variable to be identified in 

just one lookup step, and more generally, it supports a mode 

where the assignments needed to solve a particular analysis 

problem can be dynamically loaded from the database on 
demand. 

More concretely, CLA consists of three phases. The compile 
phase parses source files, extracts assignments and function 

calls/returns/definitions (in what  follows we just  call these 

"assignments"), and writes an object file that  is basically an 

indexed database structure of these basic program compo- 

nents. No analysis is performed yet. Complex assignments 

are broken down into primitive ones by introducing tempo- 

rary variables. The elements of the database, which we call 

primitive assignments, involve variables and (typically) at 
most one operation. 

The link phase merges all of the database files into one 

database, using the linking information present in the ob- 

ject files to link global symbols (the same global symbol 

may be referenced in many files). During this process we 

must recompute indexing information. The "executable" file 

produced has the same format as the object files, although 

its linking information is typically obsolete (and could be 
stripped). 

The analyze phase performs the actual analysis: the linked 

object file is dynamically loaded on demand into the running 

analysis. Importantly,  only those parts of the object file 

that  are required are loaded. An additional benefit of the 

indexing structure of the object file is that  when we have 

read information from the object file we can simply discard 

it and re-load it later if necessary (memory-mapped I /O  

is used to support  efficient reading and re-reading of the 

object file). We use this feature in our implementation_ of 

Andersen's analysis to greatly reduce the memory footprint 

of the analysis. It allows us to maintain only a very small 

portion of the object file in memory. 

An example source file and a partial sketch of its object file 

representation is given in Figure 4. These object files consist 

of a header section which provides an index to the remaining 

sections, followed by sections containing linking information, 

primitive assignments (including information about  function 

calls/returns/definitions) and string information, as well as 

indexing information tbr identifying targets for the depen- 

dence analysis. The primitive assignments are contained in 

the dynamic section; it consists of a list of blocks, one for 

each object in the source program. Each block consists of 

information about the object (its name, type, source code 

location and other attributes), followed by a list of prim- 
itive assignments where this object is the source. For ex- 

ample, the block for z contains two primitive assigmnents, 

corresponding to the second and third assignments in the 

program (a very rough intuition is that  whenever z changes, 
the primitive assignments in the block for z tell us what we 

must recompute). 

As mentioned before, one of the goals of our work is to build 

infrastructure that  can be used for a variety of different anal- 

ysis implementations as well as different kinds of analysis. 

We have used our CLA infrastructure for a number of differ- 

ent subset-based points-to analysis implementations (includ- 

ing an implementation based on bit-vectors, as well as many 

variations of the graph-based points-to algorithm described 

later in this paper), and field-independent and field-based 

points-to analysis. The key point is tha t  our object files 

do not depend on the internals of our implementation and 
so we can freely change the implementation details without 

changing the object file format. We have also used CLA 

infrastructure for implementing unification-based points-to 

analysis, and for the dependence analysis described in Sec- 
tion 2. Finally, we note that  we can write pre-analysis op- 

timizers as database to database transformers. In fact, we 

have experimented with context-sensitive analysis by writ- 

ing a transformation that  reads in databases and simulates 

context-sensitivity by controlled duplication of primitive as- 

signments in the database - this requires no changes to code 

in the compile, link or analyze components of our system. 

We now briefly sketch how the dependence and points-to 

analyses use object files. Returning to Figure 4, consider 

performing points-to analysis. The starting point for points- 

to analysis is primitive assignments such as q = ~y in the 

static section. Such an assignment says that  y should be 
added to the points-to set for q. This means tha t  the points- 

to set for q is now non-empty, and so we must load all prim- 

itive assignments where q is the source. In this case, we 

load p = q, which imposes the constraint p D q. This is 
all we need to load for points-to analysis in this case. Now 

consider a dependence analysis. Suppose that  the target of 

the dependence analysis is the variable z. We first look up 

"z" in the hashtable in the target section to find all vari- 

ables in the object file whose name is "z" (strictly speaking, 
we find the object file offsets of all such variables). In this 

case we find just one variable. We build a data-structure to 

258 



file a.c: 

int  x, y, z, 
x = y ;  
x=z; 

*p= z; 
p=q; 

q= ~y; 

x = *p; 

*p, *q; 

header  sect ion:  segment offsets and sizes 
global  section:  linking information 
s ta t ic  sect ion:  address-of operations; always loaded for points-to analysis 

q =  ~y 

s t r ing section:  common strings 
t a rge t  section:  hashtable for finding targets 
dynamic  section:  elements are loaded on demand, organized by object 

x @ a.c:l 
none 

y @ a.c:l 
x = y @ a.c:2 

~ a.c:l 
x : z @ a.c:3 
*p =z ~ a.c:4 

p @ a.c:l 
x = *p ~ a.c:7 

q Q a.c:1 
p = q ~ a.c:5 

F i g u r e  4: E x a m p l e  p r o g r a m  a n d  s k e t c h  o f  i t s  o b j e c t  f i le 

say that  this variable is a target  of the dependence analysis. 

We then load the block for z, which contains the primitive 

assignments x = z and *p = z. Using the first assignment, 

we build a data-s t ructure  for x and then we load the block 

for x, which is empty. Using the second assignment, we find 

from the points-to analysis that  p can point to g~y, and so 

we build a data-s t ructure  for y and load the block for y, etc. 

In the  end, we find that  both  x and y depend on z. 

The  compilation phase we have implemented includes more 

information in object  files tha t  we have sketched here. Our 

object  files record information about  the strength of depen- 

dencies (see Section 2), and also information about any oper- 

at ions involved in assignments. For example, corresponding 

to a program assignment x = y + z, we obtain two prim- 

itive assignments x = y and x = z in the database. Each 

would reta in  information about the  "+" operation. Such 

information is critical for printing out informative depen- 

dence chains; i t  is also useful for other kinds of analysis tha t  

need to know about  the underlying operations. We include 

sections tha t  record information about  constants in the pro- 

gram. To support  advanced searches and experiment with 

context-sensitive analysis, we also include information for 

each local variable that  identifies the function in which it 

is defined. We conjecture that  our object file format can 

be used (or easily adapted)  for any flow-insensitive analysis 

t ha t  computes propert ies about the  values of variables i.e. 

any analysis tha t  focuses entirely on the assignments of the 

program, and ignores control constructs. Examples include 

points-to analysis, dependence analysis, constant propaga- 

tion, binding-time analysis and many variations of set-based 

analysis. One advantage of organizing object files using sec- 

tions (much like C O F F / E L F ) ,  is tha t  new sections can be 

t ransparent ly  added  to object  files in such a way tha t  exist- 

ing analysis systems do not need to  be rewritten. 

We conclude with a discussion of functions and function 

pointers. Function are handled by introducing s tandard-  

ized names for function arguments and returns. For exam- 

ple, corresponding to a function definition i n t  f ( x ,  y) { 

• . .  r e t u r n ( z ) } ,  we generate primitive assignments x = 

f l ,  y = f2, f~t  : z, where ffl, f2, f ~  are respectively the 

s tandardized variables for the two arguments of f and f ' s  

re turn  value. Similarly, corresponding to a call of the form 

w = f ( e l ,  e2), we generate primitive assignments f l  = el ,  

f2 = e2 and w : f~t .  These standardized names are t reated 

as global objects, and are linked together, like other global 

objects, by the linker. The t rea tment  of indirect function 

calls uses the same naming convention, however some of the 

linking of formal and actual parameters  happens at analysis 

time. Specifically, corresponding to a function definition for 

g, there is an object file entry (in the block for g) that  records 

the argument and return variables for 9. Corresponding to 

an indirect call (*f) (x,  y) ,  we mark f as a function pointer 

as well as adding the primitive assignments f l  -- x, f2 = y, 

etc. During analysis, if a function g is added to the points-to 

set for f (marked as a function pointer),  then we load the 

record of argument and return variables for both f and g. 

Using this information, we add new assignments gl  = f l ,  

g2 : f2 and fret = 9rct. 

5. A GRAPH-BASED ALGORITHM FOR AN- 

DERSEN'S ANALYSIS 
Scalability of Andersen's context-insensitive flow-insensitive 

points-to analysis has been a subject  of much research over 

the last five years. One problem with Andersen's analysis is 

the "join-point" effect of context-insensitive flow-insensitive 

analysis: results from different execution paths can be joined 

together and distr ibuted to the points-to sets of many vari- 

ables. As a result, the points-to sets computed by the  anal- 

ysis cam be of size O ( n )  where n is the  size of the program; 

such growth is commonly encountered in large benchmarks. 

This can spell scalability disaster if all points-to sets are 

explicitly enumerated. 

Aiken et. al. have addressed a variety of scaling issues for 

Andersen's  analysis in a series of papers. Their work has 

included techniques for elimination of cycles in the inclusion 

graph [11], and projection merging to reduce redundancies 

in the  inclusion graph [23]. All of these are in the context of 

a transitive-closure based algorithm, and their results show 

very substantial  improvements over their base algorithm - 

with all optimizations enabled, they report  analysis times of 

1500s for the  gimp benchmark on a SPARC Enterprise 5000 

with 2GB [23]. 

Alternatively, context- and flow-sensitivity can be used to 

259 



reduce the effect of join-points. However the cost of these ad- 

ditional mechanisms can be large, and without other break- 

throughs, they are unlikely to scale to millions of lines of 
code. Also, recent results suggest that  this approach may 

be of little benefit for Andersen's analysis [13]. 

In principle, ideas from sub-transitive control-flow analysis 

[18] could also be applied to avoid propagation of the in- 

formation from join-points. The basic idea of sub-transitive 

control-flow analysis is that  the usual dynamic transitive 

closure formulation of control-fiow analysis is redesigned so 

that  the dynamic edge-adding rules are de-coupled from the 

transitive closure rules. This approach can lead to linear- 

time algorithms. However, it is currently only effective on 

bounded-type programs, an unreasonable restriction for C. 

The main focus of our algorithm, much like that  of the sub- 

transitive approach, is on finding a way to avoid the cost of 

computing the full transitive closure of the inclusion graph. 

We begin by classifying the assignments used in the deduc- 

tive reachability system given in Section 3 into three classes: 

(a) simple assignments, which have the form x ---- y, (b) base 

assignments, which have the form x = &y, and (c) complex 

assignments, which have the form x = =~y or *x = y. For 

simplity, we omit treatment of *z = *y; it can be split into 

*x =- z and z -= ~yj where z is a new variable. In what 

follows we refer to items of the form &y as Ivals. 

The central data-structure of our algorithm is a graph Q, 

which initially contains all information about the simple as- 

signments and base assignments in the program. The nodes 

of G are constructed as follows: for each variable x in the 

program, we introduce nodes n~ and n,~ (strictly speaking, 
we only need a node n,~ if there is a complex assignment 

of the form y = *x). The initial edges of ~ are constructed 

as follows: corresponding to each simple assignment x = y, 

there is an edge n~ --+ n u from nz to nu. Corresponding to 
every node n in G, there is a set of base elements, defined 
as follows: 

baseElements(n~) = {y : x = &y appears in P} 

The complex assignments, which are not represented in G, 
are collected into a set C. The algorithm proceeds by it- 

erating through the complex assignments in C and adding 

edges to G based on the information currently in G. At any 

point in the algorithm, G represents what we explicitly know 

about the sets of lvals for each program variable. A major 

departure from previous work is that  ~ is maintained in pre- 

transitive form i.e. we do not transitively close the graph. 

As a result, whenever we need to determine the current lvals 

of a specific variable, we must perform graph reachability: 

to find the set of lvals for variable x, we find the set of nodes 

reachable from n~ in zero or more steps, and compute the 

union of the baseElements sets for all of these nodes. We use 

the function getLvals(n~) to denote this graph reachability 

computation for node n~. 

The process of iterating through the complex assignments in 

C and adding edges to ~ based on the information currently 
in Q is detailed in Figure 5. Note that  line 7 need only be 

executed once, rather than once for each iteration of the 
loop. 

Before discussing the ge tLva l s  0 fimction, we give some in- 

tuition on the computational  tradeoffs invotved in maintain- 

ing the constraint graph in pre-transitive form and comput- 

ing lvals on demand. First, during its execution, the algo- 

rithm only requires the computation of lvals for some subset 

of the nodes in the graph. Now, of course, at the end of' the 

algorithm, we may still have to compute all lvals for all graph 

nodes. However, in the presence of cycle-elimination (dis- 

cussed shortly), it is typicMly much cheaper to compute all 

lvals for all nodes when the algorithm terminates than it is 

to do so during execution of the algorithm. Second, the pre- 

transitive algorithm trades off traversal of edges versus flow 

of lvals along edges. More concretely, consider a complex 

assignment such as *x = y, and suppose t~hat the set of lvals 

for x includes &xl and &x2. As a result of this complex 

assignment, we add edges from xl to y and x2 to y. Now, 

in an algorithm based on transitive-closure, all lvals asso- 

ciated with y will flow back along the new edges inserted 

and from there back along any paths that  end with xl or 

x2. In the pre-transitive graph, the edges are added and 

there is no flow of lvals. Instead, Ivals are collected (when 

needed) by a traversal of edges. In the transitive closure 

case, there are O(n .E)  transitive closure steps, where n is 

the average number of distinct lvals that  flow along an edge, 

and E is the number of edges, versus O(E)  steps per reach- 

ability computation This tradeoff favors the pre-transitive 

graph approach when E is small and n is large. (We re- 

mark that  this is analysis is for intuition only; it is not  a 

formal analysis, since neither the transitive closure step nor 
the reachability step are O(1) operations.) 

We next describe g e t L v a l s 0 ,  which is the graph reachabil- 

ity component of the algorithm. A key part  of the graph 

reachability algorithm is the t reatment  of cycles. Not only 

is cycle detection important  for termination, but  it has fun- 

damental performance implications. The first argument of 

ge tLva ls  0 is a graph node and the second is a list of ele- 

ments that  define the path we are currently exploring; top- 
level calls have the form ge tLvals (n ,  nil).  Each node in 

has a one-bit field onPath. 

The function uni:fyNodes 0 merges two nodes. We imple- 

ment node merging by introducing an optional skip  field 

for each node. Two nodes nl  and n2 are then unified by 

setting skip(n1) to n2, and merging edge and baseElement 

information from nl into n2. Subsequently, whenever node 

nl  is accessed, we follow its skip pointer. We use an incre- 

mental algorithm for updat ing graph edges to skip-nodes to 

their de-skipped counter-parts. 

Cycle elimination was first used for points-to analysis by 

F/ihndrich et. al [11]. In their work, the cost of finding cy- 

cles was non-trivial and so completeness of cycle detection 

was sacrificed in order to contain its cost. In contrast, cy- 

cle detection is essentially free in our setting during graph 

teachability computations. Moreover, we find almost all cy- 
cles - more precisely, we find all cycles in the parts of the 

graphs we traverse during graph reachability. In essence, 

we find the costly cycles - those that  are not detected are 

in parts of the graph that  we ignore. In other words, one 

of the benefits of our algorithm is that  it finds more of the 

important  cycles and it does so more cheaply. 

260 



/* The Iteration Algorithm */ 

I. do { 

2. nochange = true; 

3. for each complex assignment *x = y in 

4. for each Rz in getLvals(nz) 

5. add an edge nz ~ ny to ~; 

6. for each complex assignment x = *y in 
7. add an edge n~ --~ n,y; 
8. for each &z in getLvals(ny) 

9. add an edge n~y -+ nz 

I0. } until nochange 

1. 

2. 
3. 
4. 
5. 
6. 
7. 

C 8. 
10. 

11, 

12, 

13. 
14. 

15. 

F i g u r e  5: T h e  P r e - T r a n s i t i v e  G r a p h  

getLvals(n, path) { 
±f(onPath(n)) < /* we have a cycle */ 

foreach n' in path, unifyNode(n', n); 

return(emptySet); 

} else { /* explore new node n */ 
onPath(n) = 1; 
Ivals = emptySet; 
path = cons(n, path); 

Ivals = union(ivals, baseElements(n); 

foreach n' such that there is an edge from n to n' 

Ivals = union(ivals, getLvals(n, path)); 

onPath(n) = O; 

return(ivals); 
} 

A l g o r i t h m  for P o i n t s - t o  A n a l y s i s  

This completes the basic description of our algorithm. We 

conclude with a number of enhancements to this basic al- 

gorithm. First,  and most important ,  is a caching of reach- 

abili ty computations.  Each call to getLvals 0 first checks to 

see if the Ivals have been computed for the node during the 

current i terat ion of the i teration algorithm; if so, then the 

previous lvals axe returned, and if not, then they are recom- 

puted (and stored in the node). Note tha t  this means we 

might use "stale" information; however if the information 

is indeed stale, the  nochange flag in the iteration algorithm 

will ensure we compute another i teration of the algorithm 

using fresh information. Second, the graph edges are main- 

ta ined in both a hash table and a per-node list so that  i t  is 

fast to determine whether an edge has been previously added 

and also to i terate  through all of the outgoing edges from a 

node. Third,  since many lval sets are identical, a mechanism 

is implemented to share common lvals set. Such sets axe im- 

plemented as ordered lists, mad are linked into a hash table, 

based on set size. When a new lval set is created, we check 

to see if it  has been previously created. This table is flushed 

at the beginning of each pass through the complex assign- 

ments. Fourth,  lines 4-5 and lines 8-9 of Figure 5 are changed 

so tha t  instead of i terat ing over all lvals in ge tLva l s  (n~), we 

i terate over all nodes in getLvalsNodes (n~). Conceptually, 

the function ge tLva lsNodes( )  returns all of the de-skipped 

nodes corresponding to the lvals computed by ge tLva l s  (); 

however it can be implemented more efficiently. 

From the viewpoint of performance, the two most signif- 

icant elements of our algorithm are cycle elimination and 

the caching of teachabil i ty computations. We have observed 

a slow down by a factor in excess of > 50K for gimp (45,000s 

c.f. 0.8s user t ime) when both of these components of the 

algorithm are turned off. 

6. RESULTS 
Our analysis system is implemented using a mix of ML and 

C. The compile phase is implemented in ML using the ckit 

frontend[6]. The  linker and the analyzer axe implemented in 

C. Our implementat ion deals with full C including structs,  

unions, arrays and function cal l / re turn (including indirect 

calls). Suppor t  for many of these features is based on simple 

syntactic transformations in the  compile phase. The field- 

based t rea tment  of structs is implemented as follows: we 

generate a new variable for each field f of a s truct  defini- 

tion, and then map each access of that  field to the variable. 

Our t rea tment  of axrays is index-independent (we essentially 

ignore the index component of sub expressions). The bench- 

marks we use are described in Table 2. The first six bench- 

marks were obtained from the authors of [21], and the lines 

of code reported for these are the  number of lines of non- 

blank, non-#  lines in each case. We do not currently have 

accurate source line counts for these benchmarks. The sev- 

enth benchmark was obtained from the authors of [23]. The 

last benchmark is the Lucent code base tha t  is the main tar- 

get of our system (for proprie tary reasons, we have not in- 

cluded M1 informations on this benchmark).  For each bench- 

mark, we also measure the size of the preprocessed code in 

bytes, the size of the object  files produced by the analy- 

sis (compiler + linker, also in bytes), and the number of 

primitive assignments in the object  files - the five kinds of 

assignments allowed in our intermediate language. 

We remark tha t  line counts are only a very rough guide 

to program size. Source code is misleading for many rea- 

sons. For instance, macro expansion can considerably in- 

crease the amount of work tha t  must be performed by an 

analysis. Preprocessed code is misleading because many ex- 

traneous extern declarations axe included as the result of 

generic system include files. Moreover, these system include 

files can vary considerably in size from system to system. 

AST node counts of preprocessed code are a bet ter  mea- 

sure of complexity because they de-emphasize the effects of 

coding style; however there is no agreed upon notion of AST 

nodes, and AST nodes might still be inflated by unnecessary 

dedara t ions  generated by rampant  include files. Counts of 

primitive assignments may be a more robust measure. 

Results from these benchmarks are included in Table 3. 

These results measure analysis where (a) each stat ic oc- 

currence of a memory allocation primitive (malloc,  c a l l o c ,  

etc.) is t reated as a fresh location, and (b) we ignore con- 

stant  strings. This is the default setup we use for points-to 

and dependence analysis. The first column of Table 3 rep- 

resents the count of program objects (variables and fields) 

for which we compute non-empty pointer sets; it does not  

include any temporary  variables introduced by the analysis. 

The second column represents the  total  sizes of the points-to 

sets for all program objects. The third and fourth columns 

give wall-dock t ime and user t ime in seconds respectively, 

as reported b y / b i n / t i m e  using a single processor of a two 

processor Pentium 800MHz machine with 2GB of memory 

running Linux 2. The fifth column represents space utiliza- 

2Red Hat  Linux release 6.2 (Piglet) 
VA Linux release 6.2.3 07/28/00 bl .1 P2 
Kernel 2:2.14-VA.5.1smp on a 2-processor i686. 

......... ...... 261 



preproc, object 

size size 

nethack 
burlap 

vortex 

emacs 

povray 

gee 

gimp 

lucent 

LOC 

(source) 

440K 

1.3M 

LOC 

(preproc.) 

44.1K 

74.6K 

170.3K 

93.5K 

175.5K 

199.8K 

7486.7K 

1.4MB 

2.4MB 

7.7MB 

40.2MB 

68.1MB 

69.0MB 

201.6MB 

0.TMB 
1.4MB 

2.6MB 

2.6MB 

3.1MB 

4.4MB 

27.2MB 

20.1MB 

Tab le  2: 

program t assignm~lt s______r__r_ ___:__ ~ 
variables X = y x = &y ] *x = y I *x = ~ . . ~ _ 1 ~  

3856 9118 

6859 14202 

11395 24218 

12587 31345 

12570 29565 

18749 62556 

131552 303810 

96509 270148 

1115 30 34 

1049 1160 714 

7458 353 231 

3461 614 154 

4009 2431 1190 

3434 1673 585 

25578 5943 2397 

72355 1562 991 

1897 

1866 

1029 

3085 

1467 

6428 

3989_ 

B e n c h m a r k s  

tion in MB, obtained by summing static data and text sizes 

(reported by / b i n / s i z e ) ,  and dynamic allocation (as re- 

ported by ma l loc_s t a t sO) .  We note that  for the lucent 
benchmark - the target code base of our system - we see 

total wall-clock times of about half a second, and space uti- 

lization of under 10MB. 

The last three columns explain why the space utilizations 

are so low: these columns respectively show the number 

of primitive assignments maintained "in-core", the number 

loaded during the analysis, and the total number of primitive 
assignments in the object file. Note that  only primitive as- 

signments relevant to aliasing analysis are loaded (e.g. non- 

pointer arithmetic assignments are usually ignored). Recall 

that  once we have loaded a primitive assignment from an ob- 

ject file and used it, we can discard it, or keep it in memory 

for future use. Our discard strategy is: discard assignments 

x = y and x = &y, but maintain all others. These num- 

bers demonstrate the effectiveness of the load-on-demand 

and load-and-throw-away strategies supported by the CLA 

architecture. 

Table 4 studies the effect of changing the baseline system. 

The first group of columns represents the baseline and is 
just a repeat of information from Table 3. The second 

group shows the effect of changing the underlying treat- 

ment of structs from field-based to field-independent. We 

caution that  these results are very preliminary, and should 

not be interpreted as a conclusive comparison of field-based 
and field-independent. In particular, there are a number of 

opportunities of optimization that  appear to be especially 

important  in the field-independent case that  have not im- 

plemented in our current system. We expect tha t  these op- 

timizations could significantly close the time and space gap 

between the two approaches. However, it is clear that  the 

choice between field-based and field-independent has signifi- 

cant implications in practice. Most points-to systems in the 

literature use the field-independent approach. Our results 

suggest that  the field-based might in fact represent a better 

tradeoff. The question of the relative accuracy of the two 

approaches is open - even the metric for measuring their 

relative accuracy is open to debate. 

We conclude by briefly discussing empirical results from re- 

lated systems in the literature. Since early implementations 

of Andersen's analysis [22], much progress has been made 
[11, 23, 21]. Currently, the best results for Andersen's are 

analysis times of about 430 seconds for about 500K lines of 

code (using a single 195 MHz processor on a multi-processor 

SGI Origin machine with 1.5GB) [21]. The main limiting 

factor in these results is that  space utilization (as measured 

by the amount of live data  after GC) is 150MB and up - in 
fact the largest benchmark in [21] ran out of memory. Re- 

sults from [23] report analysis times of 1500s for gimp (on 

a SPARC Enterprise 5000 with 2GB). We note that  both 

of these implementations of Andersen's analysis employ a 

field-independent treatment of structs, and so these results 

are not directly comparable to ours (see the caveats above 

about the preliminary nature of  results in Table 4). 

Implementations of Steensgaard's algorithm are faster and 

use less memory. Das reports tha t  Word97 (about 2.2 mil- 

lion lines of code) runs in about  60s on a 450MHz Intel Xeon 

running Windows NT [8]. Das also reports tha t  modifica- 

tions to Steensgaard's algorithm to improve accuracy yield 

analysis times of about 130s, and memory usage of "less 

than 200MB" for the same benchmark. We again note tha t  

Das uses a field-independent t reatment  of structs. 

7. CONCLUSION 
We have introduced CLA, a database-centric analysis archi- 

tecture, and described how we have utilized it to implement 

a variety of high-performance analysis systems for points- 

to analysis and dependence analysis. Central to the per- 
formance of these systems are CLA's  indexing schemes and 

support for demand-driven loading of database components. 

We have also described a new algorithm for implementing 

dynamic transitive closure tha t  is based on maintaining a 
pre-transitive graph, and computing teachability on demand 

using caching and cycle elimination techniques. 

The original motivation for this work was dependence anal- 
ysis to help identify potential narrowing bugs that  may be 

introduced during type modifications to large legacy C code 

bases. The points-to analysis system described in this paper 

has been built into a forward data-dependence analysis tool 

that  is deployed within Lucent. Our system has uncovered 

many serious new errors not found by code inspections and 

other tools. 

Future work includes exploration of context-sensitivity, and 
a more accurate t reatment  of structs tha t  goes beyond field- 

based and field-independent (e.g. modeling of the layout of 

C structs in memory[7], so tha t  an expression x . f  is treated 

as an offset "f" from some base object x) 

A c k n o w l e d g e m e n t s :  Thanks to Satish Chandra and Jeff 

Foster for access to their respective systems and bench- 

262 



] pointer  

variables 

1018 

3332 

4359 

8246 

6126 

11289 

45091 

22360 

7K I 0.03s 10.01s 

201K 0 .08s i0 .03s  

392K 0.15s 0.11s 

11232K 0.54s 0.51s 

141K i0.11s 0.09s 

123K 0.20s 0.17s 

15298K 1.05s 1.00s 

3865K 0.46s 0.38s 

poi  to ii tea loser 
relations time time 

5.2MB 

5.4MB 

5.7MB 

6.0MB 

5.7MB 

6.0MB 

12.1MB 

8.8MB 

T a b l e  3: R e s u l t s  

IJ assignments 
process i n  core 

size loaded in file 

114 5933 10402 

3201 12907 19022 

1792 15411 34126 

1560 28445 36603 

5886 27566 40280 

2732 53805 69715 

8377 144534 344156 

4281 101856 349045 

pointers 

1018 

3332 

4359 

8246 

6126 

11289 

45091 

22360 

nethack 

burlap 

vortex 

emacs 

povray 

gcc 

gimp 

lucent 

nethack 

burlap 

vortex 

emacs 

povray 

gcc 

gimp 

lucent 

field-based 

relations ut ime 

7K 0.01s 

201K 0.03s 

392K 0.11s 

1 1 2 3 2 K  0.51s 

141KI 0.09s 

123K 0.17s 

15298K 1.00s 

3865K 0.46s 

size I pointers 

5.2MB 1714 

5.4MB 2903 

5.7MB 4655 

6.0MB 8314 

5.7MB 5759 

6.0MB 10984 

12.1MB 39888 

8.8MB 26085 

field-independent i(Preliminary) 

pointers relations utime [ size 

97K 0.03s 5.2MB 

323K 

164K 

14643K 

1375K 

408K 

79603K 

19665K 

0.21s 5.9MB 

0.09s 5.7MB 

1.05s 6.7MB 

0.39s 6.6MB 

0.65s 8.8MB 

30.12s 18.1MB 

137.20s 59.0MB 

T a b l e  4: Ef fec t  o f  a f i e l d - i n d e p e n d e n t  t r e a t m e n t  o f  s t r u c t s .  

marks. 

8. REFERENCES 
[1] A. Aiken, M. F~hndrich, J. Poster, and Z. Su, "A Toolkit 

for Constructing Type- and Constraint-Based Program 
Analyses", TIC'98. 

[2] A. Aiken and E. Wimmers, "Solving Systems of Set 
Constraints", LICS, 1992. 

[3] A. Aiken and E. Wimmers, "Type Inclusion Constraints 
and Type Inference", ICFP, 1993. 

[4] L. Andersen, "Program Analysis and Specialization for 
the C Programming Language", PhD. thesis, DIKU 
report 94/19, 1994, 

[5] D. Atkinson and W. Griswold, "Effective Whole-Program 
Analysis in the Presence of Pointers", 1998 Symp. on the 
Foundations of Soft. Eng.. 

[6] S. Chandra, N. Heintze, D. MacQueen, D. Oliva and M. 
Sift, "ckit: an extensible C frontend in ML", to be 
released as an SML/NJ library. 

[7] S. Chandra and T. Reps, "Physical Type Checking for C" 
PASTE, 1999. 

[8] M. Das, "Unification-Based Pointer Analysis with 
Directional Assignments" PLDI, 2000. 

[9] "Appendix D: Optimizing Techniques (MIPS-Based C 
Compiler)", Programmer's Guide: Digital UNIX Version 
4.0, Digital Equipment Corporation, March 1996. 

[10] J. Foster, M. FShndrich and A. Aiken, "Flow-Insensitive 
Points-to Analysis with Term and Set Constraints" U. of 
California, Berkeley, UCB//CSD97964, 1997. 

[11] M. Fg.hndrich, J. Foster, Z. Su and A. Aiken, "Partial 
Online Cycle Elimination in Inclusion Constraint Graphs" 
PLDI, 1998. 

[12] C. Flanagan and M. Felleisen, "Componential Set-Based 
Analysis" PLDI, 1997. 

[13] J. Foster, M. F~hndrich and A. Aiken, "Polymorphic 
versus Monomorphic Flow-insensitive Points-to Analysis 
for C", SAS 2000. 

[14] N. Heintze, "Set Based Program Analysis", PhD thesis, 
Carnegie Mellon University, 1992. 

[15] N. Heintze, ,Set-Based Analysis of ML Programs", LFP, 
1994. 

[16] N. Heintze, "Analysis of Large Code Bases: The 
Compile-Link-Analyze Model" unpublished report, 
November 1999. 

[17] N. Heintze and J. Jaffar, "A decision procedure for a class 
of Herbrand set constraints" LICS, 1990. 

[18] N. Heintze and D. McAllester, "On the Cubic-Bottleneck 
of Subtyping and Flow Analysis" LICS, 1997. 

[19] "Programming Languages - C", ISO/IEC 9899:1990, 
Internation Standard, !990. 

[20] D. McAllester, "On the Complexity Analysis of Static 
Analysis", SAS, 1999. 

[21] A. Rountev and S. Chandra, "Off-line Variable 
Substitution for Scaling Points-to Analysis", PLDI, 2000. 

[22] M. Shapiro and S. Horwitz, "Fast and Accurate 
Flow-Insensitive Points-To Analysis", POPL, 1997. 

[23] Z. Su, M. F£hndrich, and A. Aiken, "Projection Merging: 
Reducing Redundancies in Inclusion Constraint Graphs", 
POPL, 2000. 

[24] B. Steensgaard, "Points-to Analysis in Almost Linear 
Time", POPL, 1996. 

[25] F. Tip, "Generation of Program Analysis Tools", Institute 
for Logic Language and Computation dissertation series, 
1995-5, 1995. 

263 


