ORIGINAL PAPER

Vol. 26 no. 19 2010, pages 2398-2405
doi:10.10983/bioinformatics/btq444

Structural bioinformatics

Advance Access publication August 4, 2010

Ultra-fast FFT protein docking on graphics processors

David W. Ritchie* and Vishwesh Venkatraman

INRIA Nancy—Grand Est, LORIA, 615 Rue du Jardin Botanique, 54506 Vandoeuvre-les-Nancy, France

Associate Editor: Burkhard Rost

ABSTRACT

Motivation: Modelling protein—protein interactions (PPIs) is an
increasingly important aspect of structural bioinformatics. However,
predicting PPIs using in silico docking techniques is computationally
very expensive. Developing very fast protein docking tools will be
useful for studying large-scale PPl networks, and could contribute to
the rational design of new drugs.

Results: The Hex spherical polar Fourier protein docking algorithm
has been implemented on Nvidia graphics processor units (GPUs).
On a GTX 285 GPU, an exhaustive and densely sampled 6D docking
search can be calculated in just 15s using multiple 1D fast Fourier
transforms (FFTs). This represents a 45-fold speed-up over the
corresponding calculation on a single CPU, being at least two orders
of magnitude times faster than a similar CPU calculation using
ZDOCK 3.0.1, and estimated to be at least three orders of magnitude
faster than the GPU-accelerated version of PIPER on comparable
hardware. Hence, for the first time, exhaustive FFT-based protein
docking calculations may now be performed in a matter of seconds
on a contemporary GPU. Three-dimensional Hex FFT correlations
are also accelerated by the GPU, but the speed-up factor of only 2.5
is much less than that obtained with 1D FFTs. Thus, the Hex algorithm
appears to be especially well suited to exploit GPUs compared to
conventional 3D FFT docking approaches.

Availability: http://hex.loria.fr/ and http://hexserver.loria.fr/
Contact: dave.ritchie@Ioria.fr

Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

Protein docking is the task of calculating the 3D structure of a protein
complex starting from unbound or model-built protein structures
(Halperin et al., 2002). As well as providing a useful technique to
help study fundamental biomolecular mechanisms, using docking
tools to predict protein—protein interactions (PPIs) is emerging
as a promising complementary approach to rational drug design
(Grosdidier et al., 2009).

Although proteins are intrinsically flexible, many protein docking
algorithms begin by assuming the proteins to be docked are rigid, and
they employ geometric hashing (Bachar et al., 1993) or fast Fourier
transform (FFT) correlation techniques (Katchalski-Katzir et al.,
1992) to find putative initial docking poses, which are then re-scored
and refined using more sophisticated but more computationally
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expensive techniques (Ritchie, 2008; Vajda and Kozakov, 2009).
This article focuses on using graphics processor units (GPUs) to
accelerate FFT-based approaches to the initial rigid body stage of a
docking calculation.

The FFT approach was first used to as a rapid way to calculate
shape complementarity within a 3D Cartesian grid (Katchalski-
Katzir et al., 1992). It was later extended to include electrostatic
interactions, e.g. FTDOCK (Gabb et al., 1997) and DOT (Mandell
etal., 2001), or both electrostatic and desolvation contributions, e.g.
ZDOCK (Chen et al., 2003). However, because most FFT-based
approaches use 3D Cartesian grid representations of proteins, they
can only compute translational correlations, and these must be
repeated over multiple rotational samples in order to cover the 6D
search space. Recently, FFT techniques have been used to calculate
correlations of multi-term knowledge-based potentials (Kozakov
et al.,2006; Sumikoshi et al., 2005). However, each cross-term in the
potential requires a corresponding FFT to be calculated, and this adds
to the overall computational expense. Furthermore, protein docking
algorithms provide a useful way to study the nature of encounter
complexes (Griinberg et al., 2004), and they are beginning to be
used as an in silico technique to help predict PPI networks (Mosca
et al., 2009; Yoshikawa et al., 2009). Both of these approaches are
computationally intensive because they involve performing many
cross-docking calculations. There is, therefore, a need to develop
more efficient techniques to calculate PPIs.

To address the main limitations of the Cartesian FFT approaches,
we developed the spherical polar Fourier (SPF) technique, which
uses rotational correlations (Ritchie and Kemp, 2000) to accelerate
the calculation. This reduces execution times to a matter of minutes
on an ordinary workstation (Ritchie, 2008). The related FRODOCK
(fast rotational docking) approach has also recently demonstrated
considerable performance gains compared to Cartesian grid-
based FFT approaches (Garzon et al., 2009). Nonetheless, further
computational improvements are always desirable because greater
speed may be traded for greater accuracy.

In recent years, many scientific calculations have benefited from
the very high arithmetic capabilities of modern GPUs (Owens
et al., 2007). Initially, it required considerable skill and knowledge
of graphics programming techniques to transform a scientific
calculation into a form that could be executed by dedicated pixel
processing hardware on a GPU. However, with the advent of
programmable GPUs and software development tools such as Brook
(Buck et al., 2004) and the CUDA (Common Unified Device
Architecture) toolkit (http://www.nvidia.com/), it is now much easier
to deploy scientific software on GPUs. For example, using GPUs to
calculate protein and DNA sequence alignments can give speed-ups
from at least a factor of 10 (Manavski and Valle, 2008; Schatz et al.,
2007) to over a 100 (Suchard and Rambaut, 2009) compared to
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the same calculation on conventional CPUs. Similarly, GPUs can
give speed-ups from around 10 to 100 for molecular dynamics
simulations (Stone et al., 2007; van Meel et al., 2008), up to a factor
of 130 for quantum chemistry calculations (Ufimtsev and Martinez,
2008), and more than a 200-fold increase for wavelet analyses of
mass spectrometry data (Hussong et al., 2009). GPUs have also been
used to accelerate the calculation of protein accessible surface areas,
for example, giving speed-up factors from around 100 to over 300,
depending on the size of the protein (Dynerman et al., 2009).

In the context of protein docking, Sukhwani and Herbordt (2009)
have implemented the PIPER program (Kozakov et al., 2006) on a
C1060 GPU, to achieve a speed-up of about a factor of 18 compared
to a 2GHz CPU. As far as we know, PIPER is so far the only
docking program for which GPU performance results have been
published. However, because PIPER uses 3D Cartesian FFT grids,
and because processing each grid takes over 0.5 s on the GPU, a 6D
docking calculation still takes several GPU-hours. Although Hex is
already much faster on one CPU than the GPU version of PIPER, we
were nonetheless encouraged by these earlier successes to explore
whether similar speed-ups could be achieved by implementing SPF
docking correlations on a GPU.

2 METHODS
2.1 GPUs

Although the details may vary, modern GPUs consist of several
programmable multi-processors (MPs) each of which comprises multiple
scalar processors (SPs), or ‘cores’, and a modest amount of fast on-chip, or
‘local’, memory. This local memory is often divided into read-only ‘constant’
memory for storing constant parameters, and re-writable ‘shared memory’
which may be accessed simultaneously by multiple SPs. Additionally, GPUs
often have a large amount of external ‘global’ memory (in the order of
hundreds megabytes or several gigabytes), which is accessible by each SP.
Communication between the CPU and the GPU mainly involves copying
data between the CPU and global GPU memory.

The main GPU used here is an Nvidia GeForce GTX 285. This relatively
high-end device has 30 MPs, 240 SPs, 1 Gb of global memory, and a clock
speed of 1.48 GHz. Each SP can calculate at least one single precision floating
point arithmetic operation (or ‘flop’) per clock cycle, and in favourable
circumstances fused multiply—add instructions (three flops per cycle) can
be used. Hence, this GPU is capable of at least 355 Gflops and has a
theoretical maximum of 1065 Gflops. This is at least 100 times greater than
that of a single core of a conventional CPU. GPUs manufactured by ATI, for
example, have a somewhat different architecture, but have broadly similar
computational performance. We chose to use Nvidia hardware in order to
exploit the associated CUDA programming development tools and run-time
libraries.

The CUDA device architecture promotes a very fine-grained ‘SIMT’
(Simultaneous Instructions Multiple Threads) programming model in which
individual threads of execution are responsible for manipulating a small
number of closely related data elements. The SIMT model is implemented
using small ‘kernel’ functions, which have a similar syntax to the C
and C++ programming languages, and which are executed in parallel by
the MPs. This model is well suited for performing simple and repetitive
arithmetic operations such as those found in matrix multiplications and FFTs.
For such calculations, it is natural to let one SIMT thread be responsible for
calculating one element of an array, for example.

Although the overall aim of CUDA is to provide an abstract way to
program Nvidia GPUs, it is still necessary to understand the characteristics of
these devices in order to achieve the best possible performance. For example,
in contrast to conventional CPUs that often have several megabytes of fast
cache memory, a considerable drawback of current GPUs is that they do not

have any cache memory at all. This is significant because access to global
memory is about 80 times slower than access to a register or shared memory.
Hence, it is important to ensure that data traffic between the MPs and global
memory is kept to a minimum, and that as much work as possible is done
with data in the fast on-chip registers and shared memory.

In the CUDA SIMT model, threads are given numerical index identifiers
and are grouped into ‘blocks’ with consecutive indices. Blocks of threads
may further be grouped into ‘grids’ of thread blocks. Thus, threads may
be indexed using 1D, 2D or 3D indexing schemes, respectively. CUDA
devices schedule and execute blocks of threads by dividing them into
‘warps’ of 32 threads. Each warp executes one instruction at a time, so
maximum efficiency is achieved when all of the threads of a warp execute
the same sequence of instructions. On the other hand, access to global
memory is most efficient when the data is aligned in memory on even
word boundaries, and when all threads in a half-warp (i.e. either the first
or second group of 16 threads in a warp) access consecutive memory
elements simultaneously, for example. When this occurs, the MP can coalesce
multiple memory accesses into a single transaction (the precise conditions
necessary for coalescing memory accesses are described in the CUDA
Programming Guide: developer.nvidia.com/object/cuda_downloads.html).
By running several warps concurrently, MPs can hide the latency of global
memory provided that at least one warp always has sufficient data in registers
or shared memory to operate on.

To take into account the above characteristics and to optimize overall
performance with a minimum of effort, we compiled from the CUDA
Programming Guide and associated code examples a list of simple strategies
for porting code to the GPU:

¢ only implement rate-limiting calculations on the GPU;

» perform non-trivial initializations on the CPU and copy the values to
the GPU;

¢ store commonly used constants in the ‘constant’ memory area of the
GPU;

¢ store complex numbers as consecutive pairs of single precision data
elements;

* use the CUDA ‘__align__’ macro to force data structures to begin on
8-byte boundaries;

* re-structure complicated data structures as regular arrays;

¢ round up array dimensions to multiples of 16;

e re-write a group of matrix—vector multiplications as one matrix—matrix
multiplication;

 avoid using conditional statements inside loops;

* associate one array subscript with one thread index;

* access multi-dimensional arrays in natural subscript order;

¢ copy data between CPU and GPU memory in large chunks;

¢ perform matrix operations using 16 x 16 tiles of data following the
‘matrixMul” example in the Nvidia developers’ toolkit;

* copy data between global and shared GPU memory using 16 x 16 tiles
following the ‘transpose’ example in the Nvidia developers’ toolkit.

All of these techniques were used here, as described below.

2.2 SPF correlations

The SPF docking approach has been described previously (Ritchie and
Kemp, 2000; Ritchie, 2005; Ritchie et al., 2008). Nonetheless, a brief
summary is given here in order to describe how it has been implemented
on GPUs.

The SPF approach begins with a voxel-based representation of protein
shape similar to that originally described by Katchalski-Katzir et al. (1992).
However, instead of directly calculating conventional 3D Cartesian FFTs,
we use the voxel samples to encode the shapes of proteins as 3D polynomial
expansions of orthonormal spherical polar basis functions. For example, the
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Fig. 1. Schematic illustration of the calculation and storage of the SPF
expansion coefficients as compact 1D coefficent vectors indexed by three
subscripts, nlm. Overlines represent negative subscript values.

interior volume of protein A (the ‘receptor’) is encoded as an expansion to
order N using

w(=_a%,Ru(r)ym(©,9), M

nim

where r=(r,0, ¢) are 3D spherical polar coordinates, y;, (0, ¢) are normalized
real spherical harmonic functions (Biedenharn and Louck, 1981), R,;(r) are
orthonormal Gauss-Laguerre radial basis functions (Ritchie, 2005) and afl]m
are the expansion coefficients. The summation ranges over all subscript
values that satisfy |m|<I<N. The default expansion order is N =25.
The volumes of a surface skin region around the receptor o4(r) and the
corresponding volumes on protein B (the ‘ligand’), t5(r) and op(r), are
expressed in a similar way. Other properties such as electrostatic potential and
charge density may also be encoded similarly. Thanks to the orthogonality
of the basis functions, the expansion coefficients are easily determined by
numerical integration on a 0.6A3 grid (Ritchie and Kemp, 2000). This
correspond to performing a forward Fourier transform in conventional
Cartesian grid-based FFT approaches.

Although the SPF expansion coefficients have three subscripts, it is often
convenient to store and manipulate them as compact 1D vectors, as illustrated
in Figure 1. With this representation, shape complementarity may be written
as a two-term overlap expression:

C= / (oa(O)TB(D)+TB(NTAM))AV, (@)

where op(r)=0p(r)—Qtp(r), and where Q is a penalty factor that penalizes
interior—interior overlaps. We use Q=11.

Now, it can be shown that the SPF coefficients transform among
themselves under rotation according to

anm(e.B.y) =Y RY (et B Y) 3)
-~

where (o, B, y) are Euler rotation angles and Rgin, (o, B, v) are matrix elements
of the real Wigner rotation matrices (Biedenharn and Louck, 1981). In other
words, the effect of rotating a protein may be simulated by transforming
only its expansion coefficients according to Equation (3). Similarly, it can be
shown that the effect of translating a protein by a distance R along the z-axis
may be simulated by transforming its expansion coefficients according to:

aun(R)= Y To/W (R)aim. “
kj

where the T,E‘,",ill.)(R) are the matrix elements for translations of the

Gauss-Laguerre basis functions (Ritchie, 2005).

Our overall strategy for calculating docking correlations, therefore, is to
calculate lists of rotated and translated coefficient vectors for the receptor
and ligand proteins, and to evaluate Equation (2) for all possible pairs of such
vectors. However, in order to accelerate the calculation using FFT techniques,
it is convenient to use both real and complex expansion coefficients.

For example, Equation (1) can equally be written as

() =) AL, Ru(r)Yin(6,9), ©)

nim

where Y,,(0,¢) are the complex spherical harmonics and Ay, =~ are the
corresponding complex expansion coefficients. It can be shown that the real
and complex coefficients are related according to

U]
A;lm = Zarrllm’ Um’m ’ (©)
v

where U® is a unitary transformation matrix (Biedenharn and Louck, 1981).
Hence, by taking complex linear combinations of pairs of property vectors

. 0
Anim = Z(afl,m/ +iay, UG

m
. o )
T
Buim = Z(bnlm’ + lbnlm’)Um/m ’
Y
the overlap Equation (2) may be calculated as
C=Re( A%y, Bum). ®

nim

where i=+/—1 and the asterisk denotes complex conjugation. The in vacuo
electrostatic interaction energy may be calculated in a similar way (Ritchie
and Kemp, 2000).

Furthermore, if A, (R, Ba,ya) and By, (Bp, vp) represent translated and
rotated complex coefficients of the receptor and ligand, respectively, the
overlap score as a function of the remaining twist angle degree of freedom,
ap, may be calculated as

Clap)=1) e ™ S,(R, Ba.va- Bp. vB), ©)

m

where the coefficients S, are given by

Sm(R, Ba,va,Bs, }/B)=ZAﬁlm(R,/3A, ¥A)Buim (BB, vB)- (10)
nl

Because Equation (9) has the form of a 1D Fourier series in the m index,
the calculation over multiple rotational samples for «p may be performed
efficiently using a 1D FFT. We normally use an FFT length of 64, which
gives angular increments of 360°/64=5.625°. For the remaining rotation
angles, near-regular patterns of (8, ) angles are generated from icosahedral
tessellations of the sphere (Ritchie and Kemp, 2000). For example, the default
icosahedral tessellation of 812 vertices gives angular samples with an average
separation of ~7.5°. To complete a docking search, Equation (9) is evaluated
over multiple pairs (812 x 812) of (8, y) molecular rotations, and the entire
calculation is repeated over a range of intermolecular separations, R. We
normally use 50 translational steps of 0.8 A. This generates in the order of
two billion (2 x 10%) trial docking poses.

By rewriting Equations (3) and (9) to expose different Euler rotational
angles as complex exponentials, it is possible to express the overall
calculation as a list of 3D or even 5D FFTs. For example, a 3D rotational
FFT can be calculated using

Clap, Bp,yp)=y_e " "B 2PHYES, (R, Ba, va), (an

muy

where the S,, coefficients are now given by

SR, Barya)= Y Ak (R, Ba, va)Buy Afy" (12)
nl

and where Aj" is a rotational scaling factor (Ritchie er al., 2008).
Equation (11) is normally evaluated using a 3D FFT grid of 48 x 24 x 48
elements, which gives rotational steps of 7.5° for each of the three ligand
rotation angles («, Bg, ¥g). In each case, outer iterations over the remaining
degree(s) of freedom must be performed to cover the 6D search space. Five-
dimensional rotational FFTs may be calculated in a similar way. It might be
expected that 5D FFTs would be faster than 3D and 1D FFTs, but we find that
this is often not the case in practice due to the large memory requirement
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Fig. 2. Re-ordering the expansion coefficient vectors into sparse arrays suitable for tiled matrix multiplication on the GPU. Here, M rotated receptor coefficient
vectors are re-indexed to give a 3D array of 2L+ 1 planes of dimension M x P. Similarly, the translation matrix elements are re-indexed to give L+ 1 planes
of dimension P x P. This allows multiple coefficient vectors to be translated efficient using tile-based matrix multiplications.
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Fig. 3. Calculating multiple 1D FFTs on the GPU for multiple pairs of transformed receptor and ligand coefficient vectors. For each translation step R, M
translated and rotated receptor coefficient vectors and N rotated ligand coefficient vectors are combined using Equation (10) to give M x N vectors of twist
angle coefficients, S(R, B4, va, B8, yB). The S coefficients are then transformed into an array of docking scores using a batch of 1D FFTs [Equation (9)], and

the result is scanned to find the best score for each twist angle, op.

of the 5D FFT grid. Hence, only the above 1D and 3D FFT schemes are
considered further here.

2.3 Implementing SPF correlations on the GPU

From previous experience, we knew a priori that the rate-limiting steps
in the CPU-based Hex docking calculations are the receptor translation
[Equation (4)] and pair-wise coefficient multiplication steps [Equations (10)
and (12)], all of which involve double summations over the n and / subscripts.
Although calculating the initial expansion coefficients and applying the (8, y)
rotations to the receptor and ligand coefficients costs several seconds of CPU
time, these are not rate-limiting steps because they can be performed before
the main iteration over pairs of receptor and ligand poses. We, therefore,
wrote GPU kernels only to implement Equations (4), (10) and (12), and
we used the Nvidia cuFFT library for the 1D and 3D FFTs to calculate
Equations (9) and (11), respectively.

Using the GPU programming strategies listed in Section 2.1, each pair of
nl subscripts are first mapped to single index, p, in which successive data
elements are arranged in order of the / and then n subscripts, and where
the total number of elements, P, is rounded up to a multiple of 16. This
scatters the elements of a compact coefficient vector into a sparse 2D array
of dimension P x (2L+ 1) elements, where L=N — 1. This is illustrated in the
upper part of Figure 2. Re-indexing M rotated coefficient vectors in this way

gives a 3D block of P x M x (2L+1) coefficients in sparse format (Fig. 2).
Similarly, the SPF translation matrix elements are re-indexed to give a sparse
3D array of P x P x (L+ 1) elements. This allows all M coefficient vectors to
be translated together by performing 2L+ 1 matrix—matrix multiplications,
as illustrated in the lower part of Figure 2. This can be done very efficiently
in a GPU kernel by using one 16x 16 block of threads to calculate each tile
of the result matrix. Furthermore, it is straightforward to make this kernel
skip completely any tile consisting entirely of zeros.

To complete the 1D FFT docking scheme, two further GPU kernels
were implemented. The first of these cross-multiplies and zero-pads pairs
of receptor and ligand coefficient according to Equation (10). This gives a
list of N x M data vectors of length 64 which can be evaluated as a batch of
1D FFTs using the cuFFT library. The output from the FFT is an array of
docking scores, or pseudo-energies, as a function of the intermolecular twist
angle ap. This array is scanned by the second kernel to identify the lowest
energy for each twist angle. Finally, the resulting list of poses and energies
is copied back to main CPU memory. These steps are illustrated in Figure 3.
The above sequence of operations is repeated for each translational step of
the 6D search.

The 3D FFT scheme generally follows the same execution path, but only
a single unrotated ligand coefficient vector has to be copied to the GPU
to calculate the array of 3D FFT coefficients [Equation (12)]. This array is
then passed to the 3D cuFFT function, and the best poses and energies are
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Table 1. Typical SPF initialization times in seconds for some example
complexes using expansions to order N =25 on a 2.3 GHz workstation

Receptor #residues  Ligand #residues IxCPU  4xCPU
Kallikrein A 233 BPTI 58 7.5 2.0
HyHel-5Fv 215 Lysozyme 130 8.5 2.3
TGF-8 331 FKB12 108 11.7 3.1

Table 2. Mean rank, RMS deviation, and number of hits obtained for
exhaustive unbound—unbound docking of the 63 ‘rigid body’ complexes of
the Docking Benchmark (version 2)

3D CPU 3D GPU 1D CPU 1D GPU
Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits

147 (7.8)64 147 (1.9)6.2 166 (7.9) 5.8 165 (7.9) 5.6

copied back to CPU main memory, as before. Faster implementations of
the 3D FFT have been proposed for GPUs (Govindraju et al., 2008; Nukada
et al., 2008), but we have not explored these here because significantly better
docking performance is obtained using 1D FFTs, as shown below.

3 RESULTS AND DISCUSSION

3.1 Multi-threaded implementations

All calculations have been implemented using ‘thread-safe’
programming techniques using the Posix ‘pthreads’ and Windows
thread libraries for Linux and Windows systems, respectively. Thus,
multiple GPUs and CPU cores may be used simultaneously on most
current workstations. The results presented here refer mainly to a
contemporary workstation with a quad-core 2.3 GHz Xeon CPU and
one GTX 285 GPU. Some overall timing results are also given for
several other Nvidia devices for comparison.

3.2 Forward SPF transforms are not rate-limiting

In the SPF approach, protein shapes are sampled just once by an
initial forward transform using numerical integration. Thereafter,
assuming that different complexes are docked with the same search
parameters, as is normally the case in Hex, all subsequent SPF
calculations are independent of the size and nature of the proteins
because they manipulate and transform SPF coefficient vectors of
the same length and in the same way. Hence, calculation times for
SPF docking correlations are practically constant for all complexes
for a given FFT sampling scheme (1D or 3D). Table 1 shows the
extent to which the initial sampling times (and, therefore, also overall
execution times) vary according to the sizes of the proteins. Because
this initialization step is currently not rate-limiting for docking, it
has not been implemented on the GPU.

3.3 GPUs give almost identical numerical results

All FFT calculations were performed in double precision using
the Intel Math Kernel Library (MKL) on the CPU and in single
precision using the cuFFT library on the GPU. Hence, some small
numerical differences between the CPU and GPU results are to be
expected. From visual inspection of the results for docking the
Kallikrein A / BPTI example, we find that the calculated GPU and
CPU docking energies agree to within at least four decimal digits,
or equivalently to within at least 0.05 kJ/mol for each pose (data not
shown). However, as expected, some small differences between the
1D and 3D FFT schemes were observed, because the two schemes
use fundamentally different rotational sampling techniques.

To quantify the effect of these differences in more detail, blind
docking was performed on the 63 ‘rigid body’ complexes of the
Protein Docking Benchmark (Mintseris et al., 2005). Full details
of the results are presented in Supplementary Materials. Table 2

This table summarizes the results presented in Supplementary Table 1. For each FFT
docking scheme, the overall results are listed as the mean rank, the average ligand Cy
RMS deviation with respect to the crystal structure of the complex, and the average
number of ‘hits” found within the top 1000 docking poses. Any pose for which the
ligand RMS is within 10 A of the complex is considered to be a ‘hit’. Means of ranks
were calculated using the mean log rank formula of Ritchie et al. (2008). All docking
runs used default search parameters with a steric scan using N =18 followed by shape
plus electrostatic re-scoring using N =25.

summarizes these results in terms of the mean rank and average
ligand Cy root-mean-squared (RMS) deviation from the complex
of the first ‘hit’ (here defined as a pose within 10 A RMS of the
complex) found within the first 1000 solutions. These values show
that there is very little overall difference between the GPU and CPU
calculations. This may be confirmed by closer examination of the
individual docking results in Supplementary Table 1. This shows
that the GPU and CPU calculations often give identical or very
similar ranks to the first pose found within 10 A RMS of the complex,
although there are sometimes some fluctuations in the ranks and
poses of less highly ranked predictions.

Table 2 also shows that the 3D FFT scheme gives marginally
better results than the 1D scheme. We believe this is because the
3D FFT scheme tends to over-sample rotation space near the poles,
and hence has a slightly better chance of sampling a near-native
poses than the more regular icosahedral sampling pattern used in the
1D FFT scheme. Clearly, using different rotational and translational
sampling densities for either FFT scheme would cause comparable
fluctuations in the results. Overall, these tables show that the GPU
and CPU calculations give almost identical numerical results, and
that the effect of any arithmetic differences is very small compared
to using different orientational sampling patterns.

3.4 Over 100-fold GPU speed-up for 1D correlations

Figure 4 shows the overall docking correlation rates at different
polynomial expansion orders for both the 1D and 3D FFT calculation
schemes described above. This shows that a GPU can calculate
the 1D FFT docking scheme significantly faster than the same
calculation on the CPU, and indeed also significantly faster than the
3D FFT scheme on both the GPU and CPU. As might be expected,
3D FFT calculation rates are less sensitive to the polynomial order
than the 1D FFTs because they require less explicit matrix arithmetic
and they can benefit more from the O(NlogN) nature of the FFT.
However, for the relatively low expansion orders used here, 3D
FFTs on the GPU are not substantially faster than using a single
CPU core. On the other hand, because Hex performs an initial scan
of the search space using N =18, and because only a small fraction
of the remaining poses are re-scored using N =25, the overall benefit
of using a GPU to calculate the 1D docking scheme is dramatic. As
shown in Figure 4, the 1D FFT scheme can score 236 million poses
per second using N =18 on the GPU, and 104 million poses per
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Fig. 5. Total execution times for exhaustive Hex docking runs with default
search parameters on a variety of GPU devices compared to using from one
to four CPU cores simultaneously. The GPU devices have the following
specifications: GTX 285: 240 cores, 1.48 GHz, 1 GB memory (workstation);
GTX 9800: 128 cores, 1.7 GHz, 512 MB memory (workstation); GTS 260M:
112 cores, 1.37 GHz, 1 GB memory (laptop); 9400M: 16 cores, 1.4 GHz,
256 MB memory (laptop). The 9400M device has insufficient memory for
shape plus electrostatic correlations.

second using N =25. These rates correspond to speed-up factors of
100 and 130, respectively, compared to a single CPU core.

Although the above speed-ups are impressive, overall execution
times are reduced by smaller factors than these because it is not
feasible to implement all of the steps of a docking calculation on
the GPU. Furthermore, because current CPUs typically have up to
four identical cores, it is perhaps fairer to compare one GPU with
four CPU cores. Although other protein docking programs such as
DOT (Mandell et al., 2001), PIPER (Kozakov et al., 2006) and
ZDOCK 3.0.1 (Mintseris et al., 2007) can distribute the workload
over multiple nodes in a compute cluster using, for example, the
MPI message passing library (http://www.open-mpi.org/), to our
knowledge Hex is currently the only protein docking program that
uses multi-threading techniques to exploit multi-core processors.
Figure 5 compares the overall execution times of a typical Hex
docking run on a variety of GPU devices with using from one to
four CPU cores simultaneously. In all cases, adding electrostatics to
the scoring function costs little because it is only calculated for the
best 25 000 poses in the final re-scoring step.

Table 3. Total execution times in seconds for ZDOCK, PIPER and Hex

ZDOCK PIPER® PIPER®  Hex Hex Hex®
1xCPU 1xCPU 1xGPU 1IxCPU 4xCPU 1xGPU
3D 7172 468625 26372 224 60 84
(3D (1195)  (42602) (2398) 224 60 84
ID - - - 676 243 15

In this table, the ZDOCK and Hex values are measured execution times for
unconstrained exhaustive docking of the Kallikrein A/ BPTI complex, and are tabulated
according to the number of CPUs and GPUs used. Dense rotational sampling was used
in ZDOCK with a Cartesian grid size of (92A)3. A comparable rotational sampling
density was used in Hex, as described in the main text.

4The PIPER times are estimated for 54 000 rotational sample steps (as in ZDOCK
dense sampling) using the per-rotation times quoted in Table 1 of Sukhwani and
Herbordt (2009), i.e. 2.0 GHz CPU: 9.98 s/rotation and C1060 GPU: 0.556 s/rotation,
for a receptor grid size of 1283 and a ligand grid of 323. The PIPER CPU time given
here has been scaled to that of a 2.3 GHz processor, and the GPU time (C1060: 240
cores, 1.3 GHz) has been scaled to that of a GTX 285 (240 cores, 1.48 GHz).

bHere, only the GPU is used in the docking search, although the initialization step uses
four CPU cores (see Table 1).

‘Times given in brackets for ZDOCK and PIPER have been corrected from the
times measured for 12-term (ZDOCK) and estimated for 22-term (PIPER) runs to a
hypothetical two-term potential like the two-term pseudo-energy used in Hex.

Figure 5 also shows that using two CPU cores nearly doubles the
overall speed, but using four CPU cores gives only about a 3-fold
speed-up. On the other hand, for the 1D FFT scheme, using one
GPU core is still at least 10 times faster than using four CPU cores
together, which is clearly a significant improvement. Furthermore,
on our GPU-based server (Macindoe et al., 2010), we find that using
two GPUs together is twice as fast as one GPU. However, because
the 1D FFT scheme is so fast, much of this gain is masked by file
transfer and network overheads on the web server.

3.5 Speed comparison with ZDOCK and PIPER

To allow a more direct comparison between the performance of
the SPF representation and conventional Cartesian FFT grid-based
docking approaches, Table 3 compares overall docking times for
Hex with the execution time for ZDOCK 3.0.1 measured on the
same CPU along with CPU and GPU execution times for PIPER,
which have been estimated from the timings given by Sukhwani
and Herbordt (2009) using the same ‘dense’ rotational sampling
as ZDOCK (54000 ligand rotational steps of ~6°). The ZDOCK
dense sampling mode is similar to the default Hex sampling scheme
(812x64=51968 ligand rotations). However, it should be noted
that the ZDOCK and PIPER grid sizes of (92 x I.ZA)3 and (128 x
1.0A)3, respectively, are both larger than the default translational
step size used in Hex (0.8 A). Furthermore, ZDOCK 3.0.1 and PIPER
both employ multi-term potentials derived from 12 residue types in
ZDOCK (Mintseris et al., 2007) and using up to 22 cross-terms in
PIPER (Kozakov et al., 2006), whereas Hex uses a much simpler
two-term shape complementarity model with an optional two-term
in vacuo electrostatic contribution.

Bearing these similarities and differences in mind, Table 3 shows
that using the Hex 1D FFT scheme on a high-end GPU is about 475
times faster (7172/15) than ZDOCK 3.0.1, about 31 200 times faster
(468 625/15) than PIPER on a single 2.3 GHz CPU core, and about
1750 times faster (26 372/15) than PIPER on a comparable GPU.
Table 3 also shows the overall Hex execution times for different
numbers of CPU cores. This shows that using one GPU to calculate
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1D FFT scheme gives the best overall performance, being over 45
times faster (676/15) than the corresponding calculation on a single
CPU core, whereas the GPU accelerates the 3D FFT scheme by only
a very modest factor of about 2.5 (224/84).

Given that one complex FFT calculation can correlate two
shape terms in Hex or two potentials in ZDOCK or PIPER, the
underlying difference in speed between the 1D SPF (GPU) and
3D Cartesian (CPU) approaches may be estimated to be about
a factor of 80 for ZDOCK (i.e. 7172/15/6) and 2840 for PIPER
(i.e. 468 625/15/11) per pair-wise property correlation. This clearly
indicates that PIPER contains some very expensive steps compared
to ZDOCK. Comparing the Hex 3D SPF CPU time with the 3D
FFT Cartesian calculation in ZDOCK in a similar way gives a
SPF/Cartesian speed-up factor of about 14 (i.e. 7172/84/6). Hence,
the relatively low GPU/CPU factor of 2.5 for the Hex 3D SPF
correlations indicates that the Hex 3D CPU implementation is in
fact very well optimized. Overall, Table 3 shows that the fastest
GPU scheme (1D SPF) is about 15 times faster (224/15) than the
fastest CPU scheme (3D SPF) which is itself about 32 times faster
(7172/224) than the 3D Cartesian-based FFT in ZDOCK.

3.6 1D SPF correlations are well suited for GPUs

Taking into account that Sukhwani and Herbordt (2009) compared
PIPER using cuFFT on the GPU with FFTW (http://www.fftw.org)
on the CPU (which is known to be slower for FFTs than MKL), our
3D SPF results also show that GPUs do not give substantial speed-
ups for 3D FFT calculations. This is because 3D FFT algorithms
require multiple passes through the data volume, and on the GPU
this exposes the latency of repeatedly accessing global memory
without the benefit of fast cache memory. On the other hand, because
multiple 1D FFTs can be processed in a single pass over global GPU
memory, it follows that the SPF 1D FFT scheme is especially well
suited to exploit current GPU architectures.

4 CONCLUSION

The Hex 1D and 3D FFT docking schemes have been implemented
on CUDA GPUs. Although the CPU version of Hex is already
much faster than conventional Cartesian grid-based FFT docking
algorithms, GPU-based correlations using the 1D FFT scheme are
accelerated by at least a factor of 100 compared to a single CPU
core, and a very satisfactory 45-fold overall speed-up is achieved
for the 1D FFT scheme. This corresponds to an 15-fold speed-up
compared to the 3D FFT scheme on the CPU. However, only a very
modest GPU/CPU speed-up factor of about 2.5 is obtained for the
3D FFT scheme. This shows that the Hex 1D FFT docking scheme
is especially well suited to exploit current GPU architectures. On
a contemporary high-end GPU, the 1D FFT scheme allows an
exhaustive protein docking calculation to be completed in just
15's, which is at least two orders of magnitude faster than leading
conventional Cartesian-based docking algorithms such as ZDOCK
and PIPER. Thus, for the first time, exhaustive FFT-based protein
docking may now be carried out in interactive time-scales using a
modern GPU. This algorithmic improvement will facilitate the use
of docking techniques to help study PPIs and PPI networks.
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