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Abstract We present software for spherical harmonic
analysis (SHA) and spherical harmonic synthesis (SHS),
which can be used for essentially arbitrary degrees and all
co-latitudes in the interval (0◦, 180◦). The routines use
extended-range floating-point arithmetic, in particular for
the computation of the associated Legendre functions. The
price to be paid is an increased computation time; for degree
3, 000, the extended-range arithmetic SHS program takes
49 times longer than its standard arithmetic counterpart. The
extended-range SHS and SHA routines allow us to test
existing routines for SHA and SHS. A comparison with the
publicly available SHS routine GEOGFG18 by Wenzel and
HARMONIC SYNTH by Holmes and Pavlis confirms what
is known about the stability of these programs. GEOGFG18
gives errors <1 mm for latitudes [−89◦57.5′, 89◦57.5′] and
maximum degree 1, 800. Higher degrees significantly limit
the range of acceptable latitudes for a given accuracy.
HARMONIC SYNTH gives good results up to degree 2, 700
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for almost the whole latitude range. The errors increase
towards the North pole and exceed 1 mm at latitude 82◦ for
degree 2, 700. For a maximum degree 3, 000, HARMONIC
SYNTH produces errors exceeding 1 mm at latitudes of about
60◦, whereas GEOGFG18 is limited to latitudes below 45◦.
Further extending the latitudinal band towards the poles may
produce errors of several metres for both programs. A SHA
of a uniform random signal on the sphere shows significant
errors beyond degree 1, 700 for the SHA program SHA by
Heck and Seitz.

Keywords Spherical harmonic analysis · Spherical
harmonic synthesis · Extended-range arithmetic ·
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1 Introduction

Spherical harmonic analysis (SHA) and spherical harmonic
synthesis (SHS) are basic tools in Earth sciences. The wealth
of data provided by space-borne, airborne and terrestrial
measurement sensors allows the computation of spherical
harmonic expansions far beyond degree, say, 360. Today,
expansions of degree 2,160 or higher have become feasible
in real data processing or simulations (e.g., Pavlis et al. 2005).
It is expected that the degree of spherical harmonic models
will continue to increase, although combinations of mod-
erate-degree spherical harmonic expansions with spherical
basis function representations (e.g., wavelets) are becoming
more popular (e.g., Freeden and Windheuser 1997).

When ultra-high degree (2,000) spherical harmonic expan-
sions are used for data analysis and modelling, three basic
numerical aspects become important: (i) the numerical effi-
ciency of the algorithm, (ii) the stability of the recurrence
relations that are used to compute the associated Legendre
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Fig. 1 Maximum admissible spherical harmonic degree n for IEEE
double precision as a function of cos ϑ . Solid line without re-scaling.
Dashed line re-scaling with factor 10200 as proposed by Wenzel (1998)
and implemented in GEOGFG18

functions (ALFs), and (iii) the underflow of early values in
the recurrence relations.

Much literature has been devoted to the numerical effi-
ciency of algorithms and to the stability of recurrence rela-
tions, in particular in geodesy, meteorology, and numerical
mathematics (Tscherning and Poder 1982; Tscherning et al.
1983; Gleason 1985; Koop and Stelpstra 1989; Driscoll and
Healy 1994; Holmes 2003).

Much less attention has been paid to the problem of under-
flow. This problem is easily visible in the asymptotic approx-
imation (Smith et al. 1981)

P̄n,n ∼ 1

2

( n

π

)1/4
(1 − t2)n/2, n → ∞, t fixed, (1)

where P̄n,n is the fully normalized ALF of degree and order n,
t = cos ϑ , and ϑ is the spherical co-latitude. From Eq. (1), we
can determine the maximum admissible degree n for a given
t as function of the smallest non-zero positive and the largest
non-zero negative normalized number ω that is storable for
the given compiler and software:

nmax <
2α − 1

2 lg 2α
πx

x
≈ 2α

x
, (2)

where α = lg 2ω and x = lg(1 − t2).
According to the IEEE standard for binary floating-point

arithmetic in double precision (which applies to a Pentium
IV processor), it is ω ≈ ±2.225 × 10−308. For degrees
n > nmax , the standard recursion commonly used to com-
pute P̄n,m cannot be initialized due to underflow during the
computation of the seeds P̄n,n . Figure 1 shows nmax as func-
tion of the argument t for ω according to the IEEE double
precision standard.

For instance, underflow will occur in IEEE double preci-
sion for co-latitudes outside the interval [21.7◦, 158.3◦] and
[45.9◦, 134.1◦] if the maximum degree is 720 and 2, 160,
respectively.

The simplest way of alleviating the underflow problem
would be to employ multiple-precision software (e.g., Brendt
1978). Koop and Stelpstra (1989) propose to scale the ALFs
when an underflow is about to occur. Wenzel (1998) scales all
the computations upwards by a factor of 10200. This extends
the interval of admissible co-latitudes to [11.3◦, 168.7◦] and
[35.5◦, 144.5◦] for a maximum degree 720 and 2, 160,
respectively.

A more sophisticated treatment of the underflow problem
is in Holmes and Featherstone (2002). They use a method
proposed by Libbrecht (1985), which is based on recurrence
relations for P̄n,m(cos ϑ)/ sinm(ϑ). In this way, the problem-
atic sinm ϑ term is eliminated from the recursive algorithms;
later on, this term is gradually re-introduced employing
Horner’s scheme. To avoid overflow during the recursions,
a scale factor of 10−280 is introduced. They conclude that
spherical harmonic expansions up to degree 2, 700 can be
computed without either underflow or overflow according to
the IEEE standard for binary floating-point arithmetic in dou-
ble precision for all co-latitudes. No tests with ‘real’ spheri-
cal harmonic coefficients were presented, but are in Holmes
(2003).

Jekeli et al. (2007) have proposed a new approach for the
computation of ALFs. It is mainly based on the observation
that ALFs show a very strong attenuation in the degree-and-
order domain for specific orders as function of the degree
and the co-latitude. The attenuation is used to neglect insig-
nificant ALFs. This requires the use of other recursions than
usually used, which are known to be unstable. Their sim-
ulations indicate that the errors can be made smaller than
the noise level up to degrees of at least 10,800 at all
latitudes.

The subject of the short note is a special form of computer
floating-point arithmetic, which is introduced in Smith et al.
(1981). The basic idea of this extended-range arithmetic is to
allocate a separate storage location to the exponent of each
floating-point number. As such, there is no need to use mod-
ified recursions or to introduce any re-scaling in the course
of the computations.

In extended-range arithmetic, the smallest number, which
can be represented in base ten, according to the IEEE stan-
dards, is 10−10343312045. Hence, ALFs up to ultra-high degree
can be computed for all latitudes in the interval (0◦, 180◦).
Figure 2 shows nmax (Eq. (2)) as a function of t in extended-
range arithmetic. For instance, suppose an expansion up to
degree n = 100, 000. Let us assume that the smallest co-
latitude to be processed is π

100,000 rad. In standard double-

precision arithmetic, the maximum degree P̄n,n is nmax = 68.
In extended range-arithmetic, nmax ≈ 4.56 × 109.
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Fig. 2 Maximum admissible spherical harmonic degree n for IEEE
double precision (dashed line) and IEEE extended-range arithmetic
(solid line) as a function of cos ϑ

When extended-range arithmetic is applied to the recur-
sive computation of ALFs, there is a loss of precision, which
does not exceed (Smith et al. 1981)

lg n + lg(10 + 2|ϑ cot ϑ |). (3)

Equation (3) is shown in Fig. 3. For ϑ = 179.982◦, we loose
about 10 digits for degree 10, 000; for ϑ = 179.9982◦, we
loose about 12 digits for degree 100, 000.

Lozier and Smith (1981) developed an extended-range
software package, which contains a number of useful rou-
tines, to support the development of our extended-range arith-
metic SHA and SHS software. This package is now part
of the SLATEC Common Mathematical Library, a software
library containing over 1, 400 general purpose mathemati-
cal and statistical routines written in Fortran 77. The current
version is 4.1, which was released in July 1993 (see http://
performance.netlib.org/slatec/).

The objective of the short note is twofold: (i) to investi-
gate the numerical performance of extended-range arithmetic
SHA and SHS programs, and to compare it with the perfor-
mance of standard double precision arithmetic SHA and SHS
programs. Smith et al. (1981) report that the extended-range
arithmetic computation of the ALFs is a factor two slower
than the corresponding double-precision computation. Noth-
ing is known about whether this also applies to SHA and SHS;
(ii) we want to investigate the numerical stability of publicly
available SHA and SHS programs.

2 Numerical tests

Extended-range floating-point arithmetic SHA and SHS
software has been developed, which makes use of routines
of Lozier and Smith (1981). The SHA program SHA devel-
oped by Heck and Seitz (1991, 1993), and the SHS pro-
gram GEOGFG18 of Wenzel (1998) form the basis of the

0 20 40 60 80 100 120 140 160 180
4

5

6

7

8

9

10

co−latitude [deg]

lo
ss

 o
f d

ec
im

al
 fi

gu
re

s

Fig. 3 Loss of significant decimal figures when computing P̄n,n(t)
with extended-range arithmetic as a function of the co-latitude.
Solid line n = 100,000, range [0.0018◦, 179.9982◦]. Dashed line
n = 10,000, range [0.018◦, 179.982◦]

new routines, which are called ERA-SHA and ERA-SHS,
respectively.

The correctness of ERA–SHA and ERA–SHS was checked
by synthesizing gravity potential values up to degree 1, 800
on a global grid, using Wenzel’s GPM98b potential model
and ERA–SHS. These gravity potential values were then used
to estimate the original potential coefficients using SHA with
the program ERA-SHA. The resulting error degree variances
were in the range of 10−15, the magnitude of numerical accu-
racy. Moreover, the computation of the ALFs were compared
for various degrees and latitudes with the values published in
Lozier and Smith (1981). Finally, we used relationships for
the sum of ALFs for validation. Therefore, we safely assume
both programs to work correctly up to degree 1, 800.

We performed a number of numerical tests to assess the
influence of using extended-range arithmetic. All tests were
performed on an Intel Pentium D 830 clocked at 3 GHz, using
Intel’s Fortran compiler 9.1 under Linux. All programs were
run single-threaded in 64 bit-mode.

3 Results

The first series of tests was devised to quantify the impact of
using extended-range arithmetic on computation times. For
SHS, we used Wenzel’s GEOGFG18 and ERA-SHS. Values
were computed on a regular global grid for various maxi-
mum spherical harmonic degrees nmax ; the grid spacing was
chosen according to �ϑ = �λ = π

nmax
rad.

Table 1 and Fig. 4 show the resulting run-times as func-
tion of nmax . The extended-range arithmetic SHS requires
significantly more computation time than standard arithme-
tic SHS. For instance, at nmax = 1, 800, the computation
time is a factor 40 larger. This is much above the factor of
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Table 1 SHS run-times and
run-time ratios for standard and
extended-range arithmetic at
various maximum degrees nmax

nmax Spacing Standard [s] Extended [s] Ratio

30 6◦ 4.3 4.7 1.1

60 3◦ 4.5 5.5 1.2

90 2◦ 4.8 7.8 1.6

180 1◦ 6.5 28.9 4.5

360 30′ 15.4 193.9 12.6

720 15′ 61.0 1518.4 24.0

900 12′ 100.3 3004.8 30.0

1800 6′ 574.2 24204.4 42.2

3000 3′ 751.2 37065.2 49.3
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Fig. 4 SHS run-times for standard (solid line) and extended-range
(dashed line) arithmetic as a function of maximum degree nmax . Note
the logarithmic scale

two reported in (Smith et al. 1981) for a single ALF. This is
because the computation of the ALFs is not the only operation
in SHA and SHS that has to be executed in extended-range
arithmetic.

A similar test was done for the SHA programs SHA and
ERA-SHA. As the standard arithmetic program SHA is con-
sidered to be stable only up to degree 720, this was selected
as nmax . Results are shown in Table 2 and Fig. 5. The addi-
tional computation time needed for extended-range SHA is
not as large as for SHS. For nmax = 720, about 12 times more
computation time is needed. This is about half the value for
SHS.

We tested the stability of the SHS programs for degrees up
to 3, 000. We compared the results of GEOGFG18 by Wenzel
(1998), HARMONIC SYNTH by Holmes and Pavlis, and our
extended-range ERA-SHS. All tests were performed using a
synthetic model complete to degree 3, 000. The coefficients
up to degree 2,160 were derived from EGM96 (Lemoine et al.
1998) and a global digital terrain model according to the

procedure proposed by Claessens (2002). The model was
extrapolated beyond degree 2,160 using Kaula’s rule of
thumb for degree variances.

The comparison is done for height anomalies, which were
synthesized along a profile at 90◦ longitude. GEOGFG18
is supposed to be stable up to degree 1, 900, while HAR-
MONIC SYNTH is supposed to be stable up to degree 2, 700.
This leads to the following four test setups and expected out-
comes:

• Maximum degree and order nmax = 1, 800. Profile from
−89◦57.5′ to 89◦57.5′ at 5′ spacing. All programs should
work for this setup.

• Maximum degree and order nmax = 2, 160. Profile from
−89◦57.5′ to 89◦57.5′ at 5’ spacing. GEOGFG18 should
give erroneous results.

• Maximum degree and order nmax = 2, 700. Profile from
−89◦58.5′ to 89◦58.5′ at 3′ spacing. HARMONIC
SYNTH should still work correctly.

• Maximum degree and order nmax = 3,000. Profile from
−89◦58.5′ to 89◦58.5′ at 3′ spacing. This should give
erroneous results with both GEOGFG18 and
HARMONIC SYNTH.

The values computed by GEOGFG18 and HARMONIC
SYNTH were compared to the values from ERA–SHS, which
was used as a benchmark. For instance, for n = 100, 000 and
a spherical grid with spacing 180◦

n , only 10 decimal figures
are lost when computing ALFs in extended-range arithmetic,
according to Eq. (3).

The results for nmax = 1, 800 are shown in Fig. 6. As
expected, the height-anomaly errors are very small, with
amplitudes <1 mm. Note that HARMONIC SYNTH produces
slightly different results than GEOGFG18, which we attri-
bute to different implementations. The extended-range
arithmetic program ERA–SHS delivers identical results at
uncritical latitudes, which is expected because ERA–SHS is
based on GEOGFG18.
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Table 2 SHA run-times and
run-time ratios for standard and
extended-range arithmetic at
various maximum degrees nmax

nmax Spacing Standard [s] Extended [s] Ratio

30 5◦ 0.02 0.03 1.8

60 2.5◦ 0.07 0.22 3.2

90 1.5◦ 0.23 0.94 4.1

180 48′ 1.38 10.7 7.7

360 24′ 14.52 154.25 10.6

540 18′ 59.99 687.14 11.5

720 12′ 205.96 2403.1 11.7
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Fig. 5 SHA run-times for standard (solid line) and extended-range
(dashed line) arithmetic. Logarithmic scale

Figure 7 shows the results for the second test case,
nmax = 2, 160. As expected, HARMONIC SYNTH still pro-
duces stable results with a maximum height-anomaly error
of 0.3 mm. GEOGFG18 works fine up to latitudes of approx-
imately ±50◦, but errors increase beyond that, up to 1.9 m.

The errors for nmax = 2, 700 are shown in Fig. 8. The
height-anomaly errors produced by GEOGFG18 increase,
with a maximum error of 51.7 m. However, good results
are obtained for latitudes smaller than ±45◦. HARMONIC
SYNTH produces good results over almost the whole latitude
range. The errors increase towards the North Pole, reaching
1 mm at approximately 82◦ latitude, with a maximum error
of 4.1 cm.

Finally, the height-anomaly errors for nmax = 3, 000 are
shown in Fig. 9. As expected, GEOGFG18 and HARMONIC
SYNTH produce large errors. GEOGFG18 starts producing
errors at latitudes just below ±45◦, the maximum error is
147.6 m. The maximum error for HARMONIC SYNTH is
29.8 m. Errors start exceeding 1 mm at latitudes of ±60◦.

The benefit of using extended-range arithmetic in SHA
has been verified with a test computing spherical harmonic
coefficients up to degree 3, 000. As input data, uniformly
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Fig. 6 SHS errors in terms of height anomalies (in metres) for
nmax = 1, 800. Top GEOGFG18, maximum error is 0.03 µm. Bottom
HARMONIC SYNTH, maximum error is 0.2 mm

distributed random numbers on a global grid with three-min-
ute spacing were generated. This results in a “worse case”
scenario as, unlike with real data, the power in the higher fre-
quencies does not diminish. In real applications, the errors
are expected to be smaller.

From this data set, potential coefficients were computed
using (i) the routine SHA and (ii) the routine ERA-SHA. The
difference between the two is shown in Fig. 10. The differ-
ence is shown as

∑
m |c̄l,m − c̄re f

l,m |2
∑

m |c̄re f
l,m |2

,

with the extended arithmetic solution serving as reference
solution. Figure 10 shows very small differences up to about
degree 1, 700. Beyond that, errors quickly increase to a point
where the standard double precision solution is totally mean-
ingless.

The test shows that, at least with this worst-case scenario,
extended-range arithmetic is required if meaningful coeffi-
cients are to be computed beyond degree 1, 700.
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Fig. 7 SHS errors in terms of height anomalies (in metres) for nmax =
2, 160. Top GEOGFG18, maximum error is 1.9 m. Bottom HARMONIC
SYNTH, maximum error is 0.3 mm
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Fig. 8 SHS errors in terms of height anomalies (in metres) for
nmax = 2, 700. Top GEOGFG18, maximum error is 51.7 m. Bottom
HARMONIC SYNTH, maximum error is 4.1 cm

4 Summary and conclusions

We have developed routines for SHA and SHS, which use
some open source extended-range software of the SLATEC
Common Mathematical Library. The routines allow SHA and
SHS up to essentially arbitrary degrees for all co-latitudes in
the interval (0◦, 180◦). The current implementation of the
extended-range arithmetic is significantly more time-con-
suming than standard arithmetic, although there is scope for
optimizing the computational efficiency. Hence, for the time
being and for applications where time is a limiting factor, the
approach by Jekeli et al. (2007) is preferred. However, for
applications, where time is not a limiting factor, extended-
range arithmetic offers very accurate results and gives a high
level of confidence that the results of scientific computations
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Fig. 9 SHS errors in terms of height anomalies (in metres) for nmax =
3, 000. Top GEOGFG18, maximum error is 147.6 m. Bottom HAR-
MONIC SYNTH, maximum error is 29.8 m
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Fig. 10 Relative degree variances of the difference between the stan-
dard double precision SHA program SHA and the extended-range arith-
metic SHA program ERA-SHA

are not corrupted by numerical instabilities, which may affect
proper interpretation.

The extended-range SHA and SHS programs allow valida-
tion of existing SHA and SHS software for high-degree SHA
and SHS. The tests of the publicly available routines GEOG-
FG18 and HARMONIC SYNTH confirm the expected accu-
racy and range of application of these routines. However, they
also showed their limitations. Users of these routines have to
take into account that errors increase quickly with decreas-
ing distance to the North Pole, whereas the South Pole is less
critical. Moreover, for equatorial areas and mid-latitudes, the
admissible range of degrees of these routines may increase,
beyond degree 1, 800 and 2, 700, respectively. The source
code of the programs ERA-SHA and ERA-SHS will be pro-
vided on request. Please contact T. Wittwer (t.f.wittwer@
tudelft.nl) or K. Seitz (seitz@gik.uni-karlsruhe.de).
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