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Abstract: X-ray microscopy based on Fresnel zone plates is a powerful 
technique for sub-100 nm resolution imaging of biological and inorganic 
materials. Here, we report on the modeling, fabrication and characterization 
of zone-doubled Fresnel zone plates for the multi-keV regime (4―12 keV). 
We demonstrate unprecedented spatial resolution by resolving 15 nm lines 
and spaces in scanning transmission X-ray microscopy, and focusing 
diffraction efficiencies of 7.5% at 6.2 keV photon energy. These 
developments represent a significant step towards 10 nm spatial resolution 
for hard X-ray energies of up to 12 keV. 
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1. Introduction 

X-ray imaging, in particular X-ray microscopy [1,2], is an appealing technique for the 
inspection of both organic [3–5] and inorganic [6–8] materials. Its prospects rely on a 
combination of high spatial resolution, high penetrating power, analytical chemical sensitivity 
and compatibility with wet specimens, without the cumbersome sample preparation required 
by other imaging techniques such as transmission electron microscopy. 

Fresnel zone plates (FZPs) [9] are widely used diffractive optical elements for X-ray 
focusing and imaging. Progress on the fabrication of these optical devices plays a key role in 
improving the performance of FZP-based X-ray microscopes; for instance, their spatial 
resolution is limited to the width of outermost zone of the FZP, Δr. To date, electron-beam 
lithography (EBL) has been the most successful technique for producing diffractive X-ray 
optics since this approach is capable of writing patterns with a precision and an electron beam 
spot size of a few nanometers. The smallest features that can be reliably manufactured are, 
however, limited by the electron scattering in the exposed resist material. This effect is 
particularly detrimental when writing dense patterns and has become a fundamental limit in 
the manufacturing of diffractive X-ray optics. Due to this limitation, soft X-ray (0.2―2 keV) 
microscopes typically operate with minimum spatial resolutions of 30 to 25 nm, and sub-20 
nm features have only been resolved in a few cases [10–12]. Although many specimens can 
be investigated at this low energy range [13], higher X-ray energies provide access to a 
broader range of chemical specificities and allow for the investigation of significantly thicker 
samples due to the higher penetration depth of the radiation. Nevertheless, the fabrication of 
FZPs for hard X-ray photon energies is more challenging because the dense lens pattern must 
be transferred into extremely high aspect ratio (e.g., > 20) structures to provide satisfactory 
diffraction efficiency. In the multi-keV regime (4―12 keV), FZPs have delivered spot sizes 
below 50 nm [14–16] but sub-25 nm spatial resolution has not been yet reported. 

To surpass the intrinsic limitations that EBL imposes on the manufacture of diffractive X-
ray optics, we introduced a zone-doubling approach [17] that overcomes the difficulty of high 
feature density patterning and allows us to produce extremely high aspect ratio structures with 
lateral dimensions in the sub-50 nm regime. This technique resembles the so-called iterated 
spacer lithography [18–20] and is based on the deposition of a thin layer of high refractive 
index material onto the sidewalls of a pre-patterned template made of a low refractive index 
material. This leads to an effective line density doubling in the deposited material compared to 
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that of the template. Here, we report on the modeling, fabrication and characterization of 
zone-doubled FZPs for the multi-keV regime. Using wavefront calculations, we compare the 
behavior and performance of ordinary and zone-doubled FZPs in simulated experiments. We 
derive relevant information such as the position, shape and efficiency of the foci 
corresponding to any diffraction order. Subsequently, we report on the fabrication of the zone-
doubled FZPs and their characterization as focusing elements in scanning transmission X-ray 
microscopy. 

2. Zone-doubled Fresnel zone plate design and modeling 

Zone-doubled diffractive X-ray optics are made of a combination of two materials with low 
and high refractive indices. For X-ray energies, the refractive index of a material, n, is 
represented by the complex expression n = 1 – δ + iβ. The real coefficient δ denotes the phase 
shifting component, while the β coefficient of the imaginary part accounts for the X-ray 
absorption in the material. Higher values of δ and β imply a stronger interaction between the 
X-rays and the material. Here, materials with high refractive indices must be understood as 
materials with high values of δ and β. As previously reported [10,17], this manufacturing 
approach exploits the fact that the patterning of sparse structures by EBL is advantageous, and 
the possibility to metal-coat a surface uniformly and conformally by atomic layer deposition 
(ALD) [21]. Figure 1 shows a drawing of a zone-doubled FZP made of hydrogen 
silsesquioxane (HSQ) resist and iridium. HSQ is a negative tone EBL resist transforming into 
a SiO2-like material after irradiation by electrons, photons or ions and development in a 
buffered alkaline solution. The iridium line density at the outer regions of the structure is 
effectively doubled in comparison to that of the HSQ resist template. The effective outermost 
zone width, Δr, of the zone-doubled element coincides with the thickness, w, of the uniform 
layer of iridium coating the template. 

 

Fig. 1. Schematic illustration of a zone-doubled FZP made of HSQ resist and iridium. The HSQ 
resist template is coated by a uniform layer of iridium of thickness w, which matches the 
outermost zone width of the FZP, Δr. The structures have an iridium zone height h. 

The geometry of a zone-doubled FZP is significantly different from that of a conventional 
FZP. Diffraction efficiency calculations of zone-doubled FZPs were already assessed in [17] 
but further insight can be gained by comparing the propagation of a planar illuminating X-ray 
wavefront after interaction with both ordinary and zone-doubled FZPs. Here, we have 
implemented the Fresnel propagation of a circularly symmetric wavefront by means of the 
zeroth-order Hankel transform of a one dimensional radial refractive index profile [22]. To 
our knowledge, the amount of input points accepted by standard Hankel transform 
computation routines is normally limited to a few thousand, due to extremely high and 
unattainable computer memory requirements. However, a much larger number of points is 
required to accurately model X-ray FZP refractive index profiles which can be as wide as a 
few hundreds of microns in diameter and comprised of rings that can be as small as 10 nm. To 
achieve a precision of 0.5 nm for a 100 µm diameter FZP, we required the zeroth-order 
Hankel transform of a profile containing N = 10

5
 points. A MATLAB code was implemented 

following the method of Ferrari et al. [23,24]. The simulated wavefront is then sampled with 
an accuracy of 0.5 nm and the intensity distribution created by a large 100 µm diameter FZP 
is well-reproduced. 
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Figure 2 shows the results of the Fresnel wavefront propagation for a photon energy of 6.2 
keV (corresponding to hard X-rays of wavelength, λ, of 0.2 nm). The calculations assumed a 
FZP diameter of 100 µm, a central stop diameter of 35 µm and an iridium zone height, h, of 
600 nm. The central stop consists of a thick, absorbing circular obstruction that is aligned at 
the center of the FZP. It stops the propagation of the zeroth-order radiation and in 
combination with an order sorting aperture removes the unwanted diffraction orders to create 
a clean focus. The FZPs were modeled as a complex transmission function described by the 
zone-plate equation and the refractive index of the component materials. Diffraction and 
refraction effects within the FZP volume were neglected, that is, we assume the kinematic 
diffraction approximation of a “thin” zone plate that holds in grating structures as long as the 
period-to-wavelength ratio is high and as long as the element is not too thick. Figure 2(a) 
shows the calculated intensity distribution along the optical axis behind an ordinary FZP made 
of iridium, and an outermost zone width of Δr = 40 nm. The wavefront is propagated from the 
optical element located at 0 mm to its 1st order focal spot located at a distance f1 = 20 mm 
from the exit pupil. Several foci corresponding to the odd diffraction orders can be identified. 
In comparison with this conventional FZP, Fig. 2(b) shows the intensity distribution 
calculated for a zone-doubled FZP made of HSQ resist and iridium with an effective 
outermost zone width of w = Δr = 20 nm. The zone-doubled structure has a main focal spot 
corresponding to its 1st diffraction order located at a distance f1 = 10 mm. We note that a 
conventional FZP with Δr = 40 nm and a zone-doubled FZP with w = Δr = 20 nm were 
compared because both elements have to be written with similar line periodicity during the 
EBL step. As a consequence of the doubling, the main 1st diffraction order focus of the zone-
doubled structure is shifted from 20 to 10 mm and the focal spot size is also expected to 
shrink by a factor of two. The zone-doubled FZP concentrates some intensity at a distance of 
20 mm, creating a faint focal spot that originates from the periodicity of the HSQ resist 
template that has half of the spatial frequency of the iridium structures; it can be interpreted as 
a sub-harmonic order of the structure. In addition, the zone-doubled lenses have a significant 
2nd order focus that is not expected for a conventional FZP. This extra focal spot arises 
because the uniform coating over the whole HSQ resist template leads to a departure from the 
ideal 1:1 line-to-space ratio for most of the zones in the FZP pattern. Figure 2(c) represents a 
refined intensity calculation in the vicinity of the 1st diffraction order focus of the zone-
doubled FZP, from which one can estimate a depth of focus of DOF = 8.0 µm that matches 
the analytically derived value, DOF = (Δr)

2
/λ . 

Figure 2(d) shows the focal spot intensity profiles under different conditions, allowing us 
to assess the effect of the zone-doubling on the shape of the focal spot. All intensity profiles in 
the figure have been normalized to their peak values for ease of comparison. The intensity 
profile for the 1st order focus of an ordinary iridium FZP with Δr = 20 nm matches the 
analytically expected Airy pattern. The insertion of a central stop has the expected effect of 
slightly narrowing the central peak and somewhat increasing the intensity of the side lobes of 
the profile [25]. The curves corresponding to the shapes of the focal spots for the 1st and 2nd 
diffraction orders of a zone-doubled FZP with w = Δr = 20 nm made of HSQ resist and 
iridium from Fig. 2(b) are also shown. The intensity profile of the 1st order focus is not 
substantially different from that of an ordinary FZP, that is, the zone-doubling process does 
not have any significant impact on the shape of the focal spot. 

#136632 - $15.00 USD Received 21 Oct 2010; revised 10 Dec 2010; accepted 17 Dec 2010; published 22 Dec 2010

(C) 2011 OSA 3 January 2011 / Vol. 19,  No. 1 / OPTICS EXPRESS  178



 

Fig. 2. Comparison of the Fresnel wavefront propagation for (a) an ordinary FZP with an 
outermost zone width of Δr = 40 nm and (b) a zone-doubled FZP with an effective outermost 
zone width of w = Δr = 20 nm. For both structures, a similar line periodicity has to be written 
during the electron beam lithography step. In the calculations, the lens diameter was 100 µm, 
the iridium zone height, h, was 600 nm, the central stop diameter was 35 µm and the photon 
energy was 6.2 keV. The positions of the foci corresponding to several diffraction orders are 
indicated. (c) Beam waist in the vicinity of the 1st order focus of the zone-doubled FZP, 
showing a depth of focus, DOF, of 8 µm. (d) Comparison of the calculated intensity profiles at 
the focus under several conditions. All intensities were normalized to peak values for ease of 
comparison. There is no significant shape difference between the focal spots of ordinary and 
zone-doubled FZPs. A 2nd order focus with a spot size reduced by a factor of two in 
comparison to the 1st order focus is expected for the zone-doubled diffractive lenses. 
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The diffraction efficiency, that is, the fraction of the incoming intensity delivered into a 
particular diffraction order, can also be calculated from the intensity distributions in Fig. 2. 
Table 1 summarizes the calculated diffraction efficiencies for the most relevant diffraction 
orders of the ordinary and the zone-doubled FZPs for a photon energy of 6.2 keV from Figs. 
2(a) and (b). Despite the X-ray absorption in the HSQ resist template and the uniform iridium 
coating over the whole FZP pattern, a 600 nm-tall zone-doubled structure is calculated to have 
13% diffraction efficiency for the 1st order focus. This is an acceptable decrease relative to 
the 18% diffraction efficiency that could be obtained for a conventional FZP providing only 
half of the resolving power. In addition, 2% efficiency is expected for the 2nd order focus of 
the zone-doubled FZP. Since the focal spot size corresponding to this 2nd diffraction order is 
a factor of two smaller than the 1st order focus, it could potentially be used to achieve higher 
spatial resolution imaging and will be investigated in future work. The residual sub-harmonic 
focus originated by the HSQ template in the zone-doubled FZP has a very low diffraction 
efficiency of 0.35%. 

Table 1. Calculated diffraction efficiencies for ordinary and zone-doubled FZPs at 6.2 
keV photon energy from the wavefront propagation in Fig. 2. The structures are made of 

an iridium height of h = 600 nm. 

 diffraction order DE[%] 

Ordinary Ir FZP, Δr = 40 
nm 

1st 18.40 
3rd 2.08 

Zone-doubled Ir-HSQ FZP 
w = Δr = 20 nm 

Sub-harmonic (½th) 0.35 
1st 13.10 
2nd 2.00 
3rd 0.97 

3. Zone-doubled Fresnel zone plate fabrication 

The production of the zone-doubled FZPs starts using 100 keV EBL to expose template 
patterns onto a 550―600 nm-thick layer of HSQ resist spin-coated on 200 nm-thick silicon 
nitride (Si3N4) membranes. The exposures were performed with a Vistec EBPG5000Plus EBL 
tool. The HSQ resist was developed with a high contrast developer (buffered sodium 
hydroxide solution) followed by supercritical drying in carbon dioxide. Subsequently, the 
HSQ templates were iridium coated by ALD [21]. Further and extensive details of the 
manufacturing process can be found in [26] and the references therein. 

Figure 3 shows several scanning electron micrographs of a zone-doubled FZP made of 
HSQ resist and iridium. The lens diameter is 100 µm and its effective outermost zone width is 
w = Δr = 20 nm. Low magnification images in Figs. 3(a) and (b) show overviews of the HSQ 
template prior to the iridium coating by ALD and illustrates the capability of patterning large 
defect-free elements. Figures 3(c) shows a high magnification top view of 20 nm-wide lines 
made of HSQ resist with 80 nm period at the outermost part of the HSQ template. Figure 3(d) 
shows an equivalent region after the iridium coating demonstrating the high accuracy of the 
deposition. In regions of the template containing structures below 150 nm in width, the zones 
were buttressed by narrow connecting spokes to prevent their collapse as a result of surface 
tension forces of the liquid trapped in the pattern during development. The buttressing density 
was gradually increased as a function of the FZP radius. Finally, Figs. 3(e) and 3(f) show 
tilted views of the edge of the zone-doubled FZP before and after iridium deposition, acquired 
at a tilt angle of 50°. The measured height, h, of the zones is ~ 550 nm and therefore, the 
zone-doubled FZP is made of an effective iridium grating of 20 nm-wide structures having an 
aspect ratio of h/w = 27.5. The scanning electron micrographs demonstrate the quality of the 
EBL and there are only occasional defects created during the processing of chips that might 
jeopardize the performance of some of the FZPs. 

We have used this approach to manufacture zone-doubled FZPs for the multi-keV regime 
with diameters up to 150 µm and outermost zone widths between 30 and 15 nm. Our 
fabrication method has proven to be robust and reliable, in terms of reproducibility and high 
fabrication yield. 
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Fig. 3. Scanning electron micrographs of a zone-doubled FZP made of HSQ resist and iridium 
(100 µm diameter, outermost zone width of w = Δr = 20 nm and height of h ~550 nm). (a) and 
(b) show overviews of the diffractive X-ray lens. (c) High magnification top view of the 
outermost region consisting of 20 nm-wide lines made of HSQ resist in 80 nm period before 
the iridium coating. (d) High magnification top view of the zone-doubled structure after the 
iridium coating by atomic layer deposition. Tilted views (at 50°) of the edge of the zone-
doubled FZP (e) before and (f) after the iridium deposition. The final structure contains an 
effective iridium grating made of 20 nm lines and spaces with an aspect ratio of h/w > 27.5. 

4. Zone-doubled Fresnel zone plate characterization 

The zone-doubled FZPs were characterized as focusing devices at the optical test bench of 
ID06 beamline of the European Synchrotron Radiation Facility (ESRF) and at the coherent 
small-angle X-ray scattering beamline, cSAXS, of the Swiss Light Source (SLS). 

The scanning transmission X-ray microscopy (STXM) setup consisted of a zone-doubled 
FZP, a central stop to obstruct the zeroth-order (i.e., transmitted) radiation and an order-
sorting aperture used to select the 1st order diffraction cone. The sample, mounted on a 
piezoelectric positioning stage for high-resolution scanning, was located at the 1st order focal 
plane. An X-ray detector located behind the sample collected the intensity transmitted and 
refracted by the sample. 

During the experiments at the ID06 beamline (ESRF), a 100 µm diameter zone-doubled 
FZP was positioned at 57 m from an undulator insertion device giving a source size of 980 × 
25 µm

2
 (H × V). The X-ray beam illuminating the FZP had an expected transverse coherence 

length (FWHM) of about 10 × 250 µm
2
 (H × V). Under these conditions, it was not possible 
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to coherently illuminate the full FZP in the horizontal direction. Consequently, the focal spot 
was expected to be diffraction-limited only along the vertical direction. Photons of energy 6.2 
keV were selected from the undulator beam by a double-crystal monochromator and a 
photodiode located a few centimeters after the sample was used to record the transmitted 
intensity. The zone-doubled FZP had an outermost zone width of w = Δr = 20 nm and an 
iridium zone height of h ~550 nm. As a high resolution test sample we used another zone-
doubled structure containing an iridium grating made of 20 nm lines and spaces. Figure 4(a) 
shows the transmission profile from a line scan along the vertical direction over an area of the 
iridium grating. The modulation of the measured signal clearly shows well-resolved 20 nm 
lines and spaces and one can distinguish between the features in the structure: the gaps, the 
iridium lines and the HSQ resist template. The STXM scan was acquired using a dwell time of 
50 ms and a step size of 5 nm. 

 

Fig. 4. STXM images acquired using zone-doubled FZPs with a diameter of 100 µm. (a) 
Transmission signal from zone-doubled grating containing 20 nm lines and spaces. The gaps, 
the iridium lines and HSQ resist template can be clearly distinguished. The scan was acquired 
using a FZP with an outermost zone width of w = Δr = 20 nm, a dwell time of 50 ms and step 
size of 5 nm (ID06 beamline, ESRF). (b) Differential phase contrast (DPCx and DPCy) and 
phase images from a zone-doubled grating made of 15 nm lines and spaces. The differential 
phase contrast images were calculated from the displacement of the full divergent radiation 
cone recorded by the PILATUS 2M pixel detector at each scanning position. The phase was 
obtained by integration from the differential phase contrast images. The image was acquired 
using a FZP with an outermost zone width of w = Δr = 15 nm, a dwell time of 15 ms and a step 
size of 2.5 nm (cSAXS beamline, SLS). 

During the experiments at cSAXS beamline, the X-ray radiation was produced by an 
undulator insertion device with a source size estimated to be about 200 × 20 µm

2
 (H × V). The 

monochromatic beam was vertically pre-focused using the beamline optics, to double its 
intensity. The transverse coherence length (FWHM) at the position of the FZP, at roughly 
34.5 m from the source, was therefore expected to be 25 × 200 µm

2
 (H × V) at 6.2 keV photon 

energy. The zone-doubled FZP used to focus the incoming X-ray beam had a diameter of 100 
µm, an outermost zone width of w = Δr = 15 nm and an iridium zone height of h ~ 350 nm. 
The detector was positioned 7 m downstream of the focal plane, behind a He-filled flight tube 
to avoid excessive absorption and scattering by air. The spatially resolving PILATUS 2M 
pixel detector [27], operated in single photon counting mode, was used to record the full 
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divergent radiation cone emanating from the sample. For every scan, the variations in 
intensity and position of the cone footprint on the active area of the detector were processed to 
derive absorption, differential phase contrast (DPC) and dark field images of the sample [28–
30]. A phase contrast image of the sample was also obtained by integration of the DPC 
images. This analysis is especially beneficial for specimens that are weakly interacting with 
the X-ray beam and have low contrast in transmission. A zone-doubled iridium grating 
containing 15 nm lines and spaces was used as a high-resolution test sample. Figure 4(b) 
displays the DPC images of the grating, and the phase signal obtained by integration. An area 
of 1x1 µm

2
 of the structure was scanned using a step size of 2.5 nm and a dwell time of 15 ms. 

The 15 nm lines and spaces were resolved and demonstrate an unprecedented resolution in 
STXM for the multi-keV photon energies. 

The spatial resolution tests were complemented by measurements of the focusing 
diffraction efficiency (ID06 beamline, ESRF). We measured the intensity concentrated into 
the 1st order focus of several zone-doubled FZPs with a 100 µm diameter and outermost zone 
widths of 30, 25, 20 and 15 nm. To obtain the diffraction efficiency of a FZP, two different 
intensity measurements were done: (1) the intensity of the 1st order was obtained by scanning 
a 5 µm diameter pinhole along the both vertical and horizontal directions at the focal plane, 
measuring the signal of the central plateau and subtracting the background signal, mostly 
originated by the zeroth-order of the lens. The transmitted background through a 5 µm 
diameter aperture is sufficiently small and smaller apertures are not commercially available; 
(2) the incoming intensity was measured by removing the FZP and placing a 100 µm aperture 
at the same position. Then, the diffraction intensity was obtained as the ratio of the two 
measured intensities. The initial measurements were done at a photon energy of 6.2 keV. 
Table 2 compares the experimental and calculated diffraction efficiencies for several zone-
doubled FZPs. A maximum value of 7.55% diffraction efficiency was measured for a FZP 
with an outermost zone width of 25 nm. On average, the measured values are about 45-60% 
of the simulated diffraction efficiencies.. The difference can be attributed partly to absorption 
in the buttressing, which was not included during the calculations, and partly to the existence 
of defects in the fabricated zone-doubled FZPs. 

Table 2. Calculated and measured 1st order diffraction efficiencies of 100 µm diameter 
zone-doubled FZPs at 6.2 keV photon energy. 

Δr 
[nm] 

h 
[nm] 

Calculated 
DE [%] 

Measured 
DE [%] 

30 ~550 11.10 6.05 

25 ~550 11.60 7.55 

20 ~550 12.15 4.97 
15 ~350 5.70 1.15 

 

Fig. 5. Experimentally obtained 1st order diffraction efficiency of zone-doubled FZPs as 
function of photon energy. The structures have a 100 µm diameter, an iridium zone height of h 
~550 nm and outermost zone widths, w = Δr, of 25 and 20 nm. 
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For two zone-doubled FZPs the diffraction efficiency was obtained as a function of photon 
energy from 5.7 to 12.7 keV. Figure 5 shows the results for zone-doubled FZPs with 25 and 
20 nm outermost zone widths. As expected the diffraction efficiency decreases at higher 
energies dropping to about 3% at 10.0 keV. The effect of the iridium absorption edge causing 
a reduction in the efficiency is perceptible at 11.2 keV. 

To date, the zone-doubled Fresnel zone plates have only been kept continuously in hard X-
ray beams for short periods of time, up to a couple of weeks, for which no degradation of the 
performance has been observed. Thus, it is not yet possible to estimate the lifetime of these 
new diffractive optics. Nevertheless, the HSQ template is essentially SiO2, and should be 
radiation hard. 

5. Conclusions 

We have demonstrated the feasibility of using zone-doubled diffractive X-ray optics for high 
resolution imaging in the multi-keV regime (4―12 keV). The zone-doubling technique was 
successfully employed to bypass the limitations of electron beam lithography for the 
patterning of dense nanostructures and provides us with a method to fabricate Fresnel zone 
plates with smaller outermost zone widths and higher aspect ratios than previously attainable. 
Wave-optical calculations demonstrated that the zone-doubling process did not have any 
significant effect on the shape of the focal spot created by this modified type of diffractive 
lenses when compared to conventional Fresnel zone plates. By using state-of-the-art 
nanofabrication techniques, we have produced zone-doubled Fresnel zone plates with 
outermost zone widths down to 20 and 15 nm and aspect ratios higher than 25. We used these 
lenses to achieve unprecedented spatial resolution by resolving 15 nm lines and spaces in 
scanning transmission X-ray micrographs. We have also measured a diffraction efficiency of 
7.5% at 6.2 keV photon energy for a zone-doubled Fresnel zone plate with an outermost zone 
width of w = Δr = 25 nm. Due to its robustness and reliability, the zone-doubling technique 
offers significant advantages in terms of reproducibility and the high fabrication yield. This 
manufacturing approach can provide Fresnel zone plates to routinely achieve sub-25 nm 
spatial resolution for X-ray microscopes operating in the multi-keV regime. These 
developments represent a significant step towards 10 nm spatial resolution for hard X-ray 
photon energies up to 12 keV. 
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