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Abstract

Background: Ultra-high throughput sequencing technologies provide opportunities both for discovery of novel 
molecular species and for detailed comparisons of gene expression patterns. Small RNA populations are particularly 
well suited to this analysis, as many different small RNAs can be completely sequenced in a single instrument run.

Results: We prepared small RNA libraries from 29 tumour/normal pairs of human cervical tissue samples. Analysis of 
the resulting sequences (42 million in total) defined 64 new human microRNA (miRNA) genes. Both arms of the hairpin 
precursor were observed in twenty-three of the newly identified miRNA candidates. We tested several computational 
approaches for the analysis of class differences between high throughput sequencing datasets and describe a novel 
application of a log linear model that has provided the most effective analysis for this data. This method resulted in the 
identification of 67 miRNAs that were differentially-expressed between the tumour and normal samples at a false 
discovery rate less than 0.001.

Conclusions: This approach can potentially be applied to any kind of RNA sequencing data for analysing differential 
sequence representation between biological sample sets.

Background
Since the discovery that small RNA effectors define a

number of developmental transitions and biological

defence mechanisms [1,2], sequencing efforts in a variety

of organisms have led to the recognition of several dis-

tinct small RNA sub-classes. These small RNAs (~18-30

nucleotides in length) function by guiding sequence-spe-

cific gene silencing at the transcriptional and/or post-

transcriptional level and have been shown to play impor-

tant regulatory roles in diverse biological processes [3-5].

Among the small RNA classes, microRNA (miRNA) is

the most abundant class in mammals. Over the past 5

years, more than 8000 different miRNA genes have been

identified in animals and plants (miRBase release version

12.0 [6]), and the number is expected to continue grow-

ing.

miRNA genes were first discovered by forward genetic

methods. These methods led to the identification of sev-

eral miRNA genes associated with developmental pheno-

types in Caenorhabditis elegans (for example, lin-4, let-7

and lsy-6) [2,7-9] and programmed cell death in Droso-

phila melanogaster (for example, miR-14 and bantam)

[10,11]. Forward genetics approaches are relatively ineffi-

cient for miRNA gene discovery, in part because of a

small mutagenic target size and in part due to functional

redundancy. The development of large-scale RNA

sequencing methods [12-15] has greatly facilitated

miRNA discovery, with thousands of miRNAs now iden-

tified from various cell lines and tissues from a variety of

organisms. Apart from serving as a tool for novel small

RNA discovery, the small RNA sequencing approach

offers the potential to quantify and detect variation in

mature miRNAs, including RNA editing [16-18] and 5'/
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3'-end variations [19-21]. Recent developments in ultra-

high throughput sequencing technology greatly augment

this approach, providing the possibility of a near-com-

plete view of miRNA profiles.

Small RNA profiling by deep sequencing has been

applied in an increasing variety of biological situations

(for example, [22-31]). While greatly expanding the possi-

bilities for precise expression profiling, sequencing-based

profiling methods also raise new quantitative issues in

recognizing and representing variation and significance

in the resulting data sets. Many parallel questions were

addressed in the early days of microarray analysis.

Although sequence count data is analogous in some ways

to microarray data, the two data types differ in numerous

ways. First, microarray data provides an analogue mea-

sure of sequence prevalence while sequencing is inher-

ently digital. Second, microarray analyses generally

operate above a low background level of non-specific and

off-target probe-array binding that can complicate the

analysis of low-abundance molecular species (particular

in cases where a related highly abundant product is pres-

ent). With large enough sample sets, sequence-based

analysis can avoid these background problems, allowing

exquisite sensitivity. Still, rare molecular species are cer-

tainly subject to stochastic fluctuations in sequence data

sets and these fluctuations can be large components of

the total signal in cases where the counts of individual

species are small. Microarray and sequence-counting

based approaches share certain challenges, including bio-

logical and non-biological contamination and sample

quality and reliability. Finally, it should be pointed out

that microarray and sequencing procedures each give rel-

ative (and not absolute) measures of sequence abun-

dance. Thus, the most informative comparisons look at

changes in an expression ratio (involving at least two

sequences) between two samples. This makes absolute

comparisons of RNA abundance for different sequences

problematic. Comparisons of relative RNA levels avoid

such challenges and have been the focus of many analyti-

cal processes in both areas. In this work, we generate and

analyse a large dataset of small RNA sequences in cervical

cancer/normal sample pairs. We show that this approach

provides an extensive coverage of miRNAs expressed in

human cervical cancer tissues and normal cervices,

including the detection of many previously known

human miRNAs and their respective miRNA* sequences,

as well as the identification of a number of novel miR-

NAs. Based on this sequence data we describe a statistical

approach for cancer classification and we propose a new

method for the identification of diagnostic miRNAs using

sequencing-based miRNA profiling data. This approach

should have general utility in analysing differential

sequence representation between biological sample sets.

Results
miRNA profiling by small RNA cDNA library sequencing

We captured, amplified and sequenced 58 small RNA

libraries prepared from 29 pairs of cervical cancer tissues

and matched normal tissues (Additional File 1). In addi-

tion, the capture, amplification and sequencing for two

small RNA libraries (G699N and G761T) were repeated

in order to determine the reproducibility of the results. A

total of 42,348,326 independent small RNA sequences

(25,007,613 from normal cervices and 17,340,713 from

cervical cancer samples) were obtained (Additional File

1). The average library coverage was 705,805 sequences

(ranging from 29,848 to 2,624,426 for individual libraries)

with the sequenced population containing 32.4%

(13,710,440) miRNA sequences representing 626 distinct

mature miRNAs (Additional File 2). Of these, 210 miRNA

genes produced sequencing reads corresponding to both

arms of the miRNA precursors. As expected, a majority

of miRNA genes displayed strand bias. The relative abun-

dance of most of the star forms (miRNA*) was lower than

that of their corresponding miRNAs. However, six miR-

NAs (miR-17, miR-202, miR-425, miR-493, miR-624 and

miR-625) had a higher number of sequencing reads origi-

nating from the annotated miRNA* strand than the

mature miRNA sequence across majority of the libraries

(Additional File 3). Some miRNA genes demonstrated a

nearly equal number of sequencing reads originating

from the 5' and 3' arms of the miRNA precursor.

The sequence data reveal a very broad range of expres-

sion levels for known miRNAs (based on sequence

counts): ~6% of miRNAs were detected at high sequence

counts (>104), 14% were in the intermediate range (103-

104), and the remaining were at low sequence counts

(<100) (Additional File 3).

Novel miRNA genes

To search for novel candidate miRNAs, we used criteria

as previously described [32]: (i) at least 20 consecutive

bases (measured from the start of the small RNA) aligned

to human genome without any gaps; (ii) formation of a

sufficiently low-energy (<-20 kcal/mol) secondary fold-

back hairpin structure with small internal bulge(s) within

the miRNA region and (iii) complete containment of the

cDNA sequence within one arm of a hairpin. The result-

ing set of hairpin-derived small RNAs was further analy-

sed to distinguish genuine miRNA precursors from other

RNAs with similar structures.

Sixty-four novel miRNA genes (88 distinct mature miR-

NAs) were identified from a total of 45,299 novel

sequence reads (Additional File 4). Twenty-three of these

newly identified miRNA candidates were represented

both in 5' and 3' arms of the hairpin precursor, providing

strong evidence for biogenesis from a hairpin precursor.

Two of the miRNA candidates were classified as mirtrons



Witten et al. BMC Biology 2010, 8:58

http://www.biomedcentral.com/1741-7007/8/58

Page 3 of 14

(intronic miRNA precursors that bypass Drosha process-

ing) [33-35]. A distinct characteristic of a mirtron is that

the miRNA precursor is directly adjacent to the splice

sites. Among the novel candidate miRNAs, we identified

eight putative antisense miRNAs (referring to those miR-

NAs derived from the antisense strand of annotated

miRNA genes). Seven of these are antisense to known

miRNA genes, while the eighth is antisense to a novel

miRNA identified in this study (miR-3622a and miR-

3622b). All new miRNAs (except one, miR-1323-3p) were

observed more than once and detected in more than one

library (Additional File 2). Although the majority of the

newly identified miRNAs was detected at low abundance

(as reflected by low sequence count across all the librar-

ies), some were rather prominent (Additional File 2).

Among these, miR-1246 was the most abundant with

>13,000 sequencing reads detected.

Forty-one of the new miRNAs were located in introns,

one in an exon, and five in the 5'/3' untranslated regions

of known genes; 17 were found in the intergenic regions.

Notably, miR-3608 is located adjacent to a vault RNA,

HVG-2 (Additional File 5). Vault RNAs are a noncoding

RNA family as part of the vault ribonucleoprotein com-

plex that has been suggested to be involved in multidrug

resistance [36]. Interestingly, this candidate was only

detected in cervical cancer samples (G547T, G659T and

G026T) (Additional File 2).

miRNA data analysis

Sequencing-based miRNA profiling does not provide

absolute measurements of miRNA expression, but rather

the relative counts of different miRNAs within each sam-

ple. As described in the previous section, miRNA-seq

data are typically characterized by variances in total

counts for each sample. These, as well as sequence counts

for individual miRNAs, will be subject to large sampling

noise. Moreover, in contrast to microarray data, the

miRNA-seq data involve non-negative counts.

All statistical analyses were performed on the cube-

rooted data, unless otherwise specified. The raw data had

a very skewed distribution, with many large values.

The cube-root transformation reduced this skewness

and gave the resultant data an approximate Poisson dis-

tribution, which was important for our log-linear model-

ling. The standard approach for testing differential

expression of genes measured on microarrays is to com-

pute a t-statistic for each gene; a permutation distribution

is then used to estimate false discovery rates. The use of a

t-statistic is justified if the data are approximately nor-

mally distributed with equal variances, as is the case for

microarray data after suitable transformations. However,

since sequencing data involve non-negative counts, the

assumption of normality is not appropriate. We instead

develop a new method to identify differentially-expressed

sequences based on a Poisson log linear model.

In order to evaluate reproducibility between replicates,

we prepared two additional (duplicate) libraries for which

small RNA capture, amplification and sequencing were

carried out independently (and at a different time) from

the respective original samples. The two samples for

which this was done were G699N and G761T. From the

raw data, we saw correlations of 0.8966 between the two

libraries from G699N and 0.7836 for the two libraries

from G761T. For reference, the mean correlation between

pairs of different normal tissue samples was 0.6708, with

the mean correlation between pairs of samples from dif-

ferent tumours being 0.5735. The observed duplicates are

by no means perfectly concordant between replicate sam-

ples; in addition, we noted that some non-replicate pairs

show more correlation with each other than do the pairs

of replicates.

In order to visualize the 714-dimensional vectors of

miRNA expression in a lower-dimensional subspace, we

performed principal components analysis (PCA). The

principal components are the linear combinations of the

miRNAs that have the largest variance and provide infor-

mative axes for projection of the data. The analysis

revealed clear separation between tumour and normal

samples, but not between tumour types (Figure 1).

In order to assess the difference between normal and

tumour samples, we performed an unsupervised hierar-

chical clustering of the samples using complete linkage

and correlation-based distance. Hierarchical clustering

groups the samples by their similarity, in a bottom-up

fashion. As shown in Figure 2A, the clustering analysis

resulted in the identification of two major subgroups that

show an almost perfect separation between normal and

tumour samples. Recently, Berninger et al. also presented

a method for defining distances between samples for

miRNA expression profiling based on small RNA cloning

data [37]. For comparison, we also performed clustering

using the distance measure defined in Berninger et al.

and the results revealed two subgroups with good separa-

tion (Figure 2B).

In order to classify samples based on miRNA expres-

sion levels, we applied the nearest shrunken centroids

(NSC) method [38]. This method classifies samples by

computing an average miRNA expression vector for each

class; these average expression vectors are then shrunken

towards the overall miRNA expression mean across the

classes in order to avoid over-fitting and to obtain a clas-

sifier that makes use of only a subset of the miRNAs.

Cross-validation (CV), a process in which samples are

repeatedly split into training and test sets, was performed

in order to select the optimal number of miRNAs to use

in the classifier and to assess its accuracy. Applying NSC

for: (i) normal versus tumour resulted in 4/58 CV errors
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(P < 0.002); (ii) normal versus adenocarcinoma (ADC)

versus squamous cell carcinoma (SCC) resulted in 7/56

CV errors (P < 0.002); and (iii) ADC versus SCC resulted

in 4/27 CV errors (P = 0.064). The two adenosquamous

carcinoma (ASC) samples were excluded from analyses

(ii) and (iii). The miRNAs used in the three NSC classifi-

ers are shown in Additional Files 6, 7, 8.

In order to further explore the performance of NSC for

normal versus tumour samples, we randomly split the

samples into a training set of 40 samples and a test set of

18 samples. We trained NSC on the training set and

tested on the test set; this was repeated 100 times. This

resulted in an average of 1.77 errors for normal versus

tumour classification. The samples that were most fre-

quently misclassified were G529N, G696T, G701T,

G850N and G871T. Not surprisingly, the samples are

located near the boundary of the tumour and normal

Figure 1 Distinctive patterns of miRNA expression between cervical cancer and normal samples revealed by principal component analysis. 
microRNA incidence values from each sample were projected onto the first two principal components, using cube-rooted data. This two-dimensional 
representation of the ~714 dimensional primary data resulted in evident separation between normal and tumour samples but not between adeno-
carcinoma (ADC) and squamous cell carcinoma (SCC) samples. The first principal component explains 21.2% of the variation present in the data and 
the second explains 11.6%. ASC, adenosquamous cell carcinoma; T, tumour; N, normal.
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Figure 2 Clustering analyses of normal and tumour samples based on microRNA expression. (a) Samples were clustered using cube-rooted 

data and correlation-based distance (as described in Additional File 9). Two large subgroups and one small outgroup resulted, with separations 
1N:1T, 29N:1T and 0N:28T, respectively. The small outgroup consisted of tumour and normal samples from patient G428. The remaining samples were 
partitioned among the two larger subgroups, one of which consisted of the other 29 normal samples and one tumour sample, and the other consisted 
of the remaining 28 tumour samples. (b) Samples were clustered using the distance metric defined in Section 4.1 of Berninger et al. [37]. Again, an 
outgroup and two major subgroups resulted, with separations 0N:2T, 25N:2T and 5N:26T, respectively. For both panels, 'N' indicates a normal sample 
and 'T' indicates a tumour sample. Note: the duplicates of G699N and G761T are clustered near each other in both methods.

(a)

(b)
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samples in the principal component analysis (PCA) plot

(Figure 1).

In order to identify miRNAs that are differentially

expressed between tumour and normal tissue, we needed

to address the fact that the data were characterized by a

high variance in sequence counts between samples as

well as between miRNAs, and the fact that the data were

discrete. For this purpose, we propose the use of a Pois-

son log-linear model. In this model, the cube-rooted

counts for each miRNA for each sample are taken as Pois-

son random variables and the logs of the means of these

Poisson variables are estimated using a linear model (see

Additional File 9). We allow a separate term for each

miRNA (since different miRNAs have different frequen-

cies) and for each sample (since some samples have much

higher counts of all miRNAs). An additional term for

each miRNA quantifies the extent to which each miRNA's

counts differ between tumour and normal tissue. That is,

we model 1 + Xij ~ Poisson(μij), where X denotes the cube-

rooted data matrix, iindexes the miRNAs, j indexes the

samples, and log(μij) = βi + γj + ρi(1jεTumour -1jεNormal). Here,

we are using indicator variable notation: 1A equals 1 if A

is true and 0 otherwise. In order to test how well the

model fits the data, we binned the observations based on

their fitted mean value in the Poisson model and esti-

mated the mean and variance of the observations in each

bin. As expected, under the Poisson model, the mean and

variance of the observations within each bin are approxi-

mately equal (Additional File 9). In our model,  can

be thought of as a score for the extent to which miRNA i

is differentially expressed between tumour and normal

samples. Here, the denominator se (ρi) indicates the stan-

dard error of ρi. In order to estimate the false discovery

rates (FDRs) for these scores, we randomly permuted

tumour and normal sample labels and compared the

observed  scores to the null distribution of these

scores obtained by permutations. For comparisons, we

also computed FDRs resulting from the log-linear model

on raw data, t-statistics on raw data, and t-statistics on

cube-rooted data. We found that our log-linear model on

cube-rooted data resulted in extremely low FDRs (Figure

3). Based on the permutation results, only ~4 of the 200

miRNAs with highest estimated absolute  are false

positives. The miRNAs with highest absolute 

scores are shown in Table 1. (A list of all miRNAs with

estimated absolute  scores and FDRs is available in

Additional File 10). All computations were carried out

using the R statistical package version 2.6.2.

Dependence of analysis on sequencing scale

Variation in overall sequence depth for different samples

will be present in any analysis of independent biological

specimens due to differences in tissue makeup and abun-

dance, with some additional variation due to technical

aspects of library construction and sequencing. Our dis-

cussions above make use of datasets with numbers of

sequence reads for the different samples that range from
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Table 1: miRNAs with significant changes determined by our Poisson log-linear model

miRNA
†

FDR§

miR-205 10.8525 0

miR-143 -8.292 0

miR-10b* -7.6723 0

miR-31 6.7684 0

miR-203 6.4009 0

miR-145* -6.2416 0

miR-944 6.1095 0

miR-1 -5.9363 0

miR-1246 5.7935 0

miR-204 -5.7914 0

miR-1303-3p 5.7469 0

miR-31* -5.6673 0

miR-126* -5.6346 0

miR-7 5.4282 0

miR-10b -5.3186 0

miR-425 5.2653 0

miR-200a* 5.1818 0

miR-125b -5.1426 0

miR-140-5p -5.0996 0

miR-21* 5.0897 0

miR-126 -5.0092 0

miR-183* 4.9398 0

miR-147b 4.9109 0

r

r

i

se i( )
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tens-of-thousands to over a million (Additional File 1). In

order to characterize the effect of sequencing scale on the

statistical results obtained, we generated resampled data

sets with various numbers of miRNAs. That is, for n =

103,104,105 and 106, we sampled with replacement n miR-

NAs from each of the 58 samples. We fit an NSC classifier

in order to distinguish between normal and tumour sam-

ples using the resampled data sets. Regardless of the value

of n in this range, around 4/58 cross-validation errors

resulted. This suggests that the extent of library coverage

does not greatly affect the classifier. We also computed

the number of miRNAs found to be differentially-

expressed at a given FDR threshold for each of the resam-

pled data sets. The results can be seen in Additional File

11. As n increases, so does the number of miRNAs (as

expected, particularly with a stringent FDR threshold). As

n becomes quite large, the benefit of further increasing n

in terms of new miRNA identification becomes marginal.

These results indicate that conclusions can be drawn at

a variety of experimental scales, with deeper library cov-

erage resulting in more power for some statistical analy-

ses but with biological factors (for example, number and

uniformity of specimens) eventually exerting the major

limitations on interpretation as sequencing depth

increases.

Analysis of clustered miRNA expression

We defined a miRNA cluster as a set of miRNAs located

(i) within a 1 kb region or (ii) in close proximity (<4 kb),

with the same orientation and not separated by a miRNA

in the opposite orientation. Our data contained 56

miRNA clusters consisting of 236 miRNAs (Additional

File 12). In order to determine whether the clustered

miRNAs showed significant co-expression, we calculated

the average correlation of miRNA pairs within each clus-

ter. As shown in Additional File 12, we observed that

many clusters contain miRNAs that have more correlated

expression than one would expect due to chance. Twenty-

three miRNA clusters show significantly correlated

expression (P < 0.05). Of these, eight clusters are highly

correlated (P < 0.001). These include miR-200b~429,

miR-34b~34c, miR-503~424, miR-29c~29b, miR-15b~16,

miR-200c~141, miR-99b~125a and miR-25~106b clus-

ters.

In order to determine whether any of the 56 clusters

contain miRNAs that are significantly associated with the

cervical cancer versus normal class labels, we applied the

log linear model and calculated the median scores for the

expressed miRNAs in each cluster. We found that 30 clus-

ters contain expressed miRNAs that are significantly

associated with the disease (P < 0.05; Additional File 13).

Seventeen of the 30 clusters are associated with increased

expression in cervical cancer and the remaining 13 clus-

ters are associated with reduced expression in cancer.

Interestingly, the two clusters that are most associated

with the cervical cancer versus normal class labels both

belong to the miR-200 family.

miR-155 4.7346 0

miR-25* 4.6551 0

miR-450a -4.584 0

miR-142-3p 4.5778 0

miR-99b -4.427 0

miR-424 -4.3806 0

miR-141* 4.3352 0.0001

miR-96 4.3028 0.0001

miR-3614-5p 4.2005 0.0001

† can be considered as a score for whether microRNA i is differentially expressed between tumour and normal: a large positive value indicates 

higher expression in tumour than normal.
§ Only microRNAs with low FDR (≤ 0.0001) are shown.

FDR = false discovery rate.

Table 1: miRNAs with significant changes determined by our Poisson log-linear model (Continued)
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Assessment of miRNA expression patterns

We compared the expression level of miR-21 and miR-

143 in all cervical cancer samples and matched normal

cervices used in this deep sequencing experiment with

previously published Northern blot results of the same

materials [32]. As shown in Additional File 14, both miR-

21 and miR-143 expression patterns obtained from the

sequencing data correlate well with the Northern data.

Modest differences, observed for a number of the sam-

ples, could be indicative of non-linearity in either assay;

alternatively such differences may be due to RNA cross-

hybridization (an ability to pick up alternate miRNAs

with the same probe), uncertainty in loading controls (in

some cases the ribosomal bands are difficult to quantitate

due to low levels) and to gel exposure artifacts (some

Northern bands are difficult to distinguish from optical

noise on the filters.).

Discussion
In this work, we used high throughput sequencing

approaches combined with statistical analysis in order to

comprehensively characterize miRNA expression profiles

of 29 matched pairs of human cervical cancer and normal

cervical samples. Our results reveal a large number of

miRNAs detected in all libraries and provide quantitative

measures for a broad range of miRNA expression levels.

miR* and antisense miR sequences

One aspect of miRNA diversity comes from the ability to

produce two distinct miRNAs (termed miR-X and miR-

X*) from a given hairpin precursor RNA. In this case, the

two RNAs are distinct products of the same initial pro-

cessing product (pre-RNA), one located 5' and one 3' on

this precursor. The standard nomenclature for miRNAs

assigns the asterisk to the less abundant of the two forms

found in the first identifying study. In this work, we

detected a large number of miR* sequences, as well as

mature miRNAs from both 5' and 3' arms of the hairpin

precursor. For six miRNAs, we detected a higher number

of miR* sequence than the annotated mature miRNA

sequence in a majority of the libraries. This may indicate

that both 5' and 3' arms of the pre-miRNA can be

expressed in specific tissues/cells and that they may have

a functional relevance. Consistent with such a dual role,

reversals of abundance between miR and miR* have been

observed in several recent miRNA transcriptome analy-

ses [20,25,39] and miR/miR* strand selection have also

been shown to be different among different Argonaute

complexes [40,41]. Furthermore, Okamura et al. recently

demonstrated that some miRNA* species can associate

with the RNA-induced silencing complex and have inhib-

itory function [42]. These findings suggest that there are

additional levels of complexity in miRNA processing

which remain to be determined.

Three recent studies demonstrate that sense and anti-

sense miRNAs can be generated by bidirectional tran-

scription of the Drosophila Hox miRNA locus miR-iab-4

[43-45]. Interestingly, these sense and antisense miRNAs

are expressed in non-overlapping spatial domains and

have different targets. This phenomenon is not restricted

to the Hox loci in flies. Many more sense-antisense

miRNA pairs have also been identified in flies and mam-

mals [44,45]. Here, we provide further evidence for the

existence of sense-antisense miRNA pairs in human tis-

sues. Although these antisense miRNAs are low in abun-

dance (<100 copies in all libraries), their low

concentration does not rule out their possible biological

relevance. Further investigations are warranted in order

to assess the biological significance of these sense-anti-

sense miRNA pairs for a complete understanding of the

complexity of gene regulation by miRNAs.

miRNA complexity

Given that our small RNA libraries were prepared from a

single tissue type (cervical tissues), we unexpectedly

found a large number of miRNAs (ranging from 156 to

555) in each library, with the number depending on the

depth of sequencing. The data suggest that many miR-

NAs may lack complete tissue specificity, instead show a

continuum of expression variability in different tissues/

cells and physiological/pathological states. Alternatively,

a small population of distinct cell types may be present in

the samples used for the analysis and contribute to the

low-level detection of large numbers of miRNAs. Data

with cell lines, which have more homogenous cell popula-

tions, are of relevance to this issue. Consistent with the

hypothesis of extensive diversity in a single cell type,

Friedländer et al. recently detected a total of 213 known

miRNAs in a single HeLa sample [46].

miRNA expression in cervical cancer and matched controls

We used two statistical techniques to develop an under-

standing of the differences in miRNA expression between

normal and tumour cervical tissue.

First, we used NSC [38], a method originally developed

for microarray data analysis, to construct a classifier that

performs cancer class prediction from sequencing-based

miRNA expression profiling. The method successfully

classified the normal and tumour samples in approxi-

mately 16 of 18 test samples. Second, in order to identify

miRNAs that are differentially expressed between

tumour and normal tissue, we developed a simple log lin-

ear model for data from ultra-high throughput sequenc-

ing. This model is analogous to using a t-statistic to

identify differentially expressed genes in the case of

microarray data. Unlike the t-statistic, it is appropriate in

cases where the observations take on discrete values and

where variation occurs between samples as well as
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between genes or miRNAs. This model resulted in the

identification of a set of miRNAs that distinguish tumour

from normal samples, with low FDRs (≤ 0.0001; Table 1

and Additional File 10). The model can potentially be

applied to any kind of sequencing data that produce

count data. Software implementing this log linear model

will be made freely available.

In agreement with our [32] and other previous findings

[47,48] with smaller data sets, the expression of miR-143

was significantly lower in cervical tumours as compared

to their matched normal controls. Importantly, miR-143

has been shown to inhibit cell growth in HeLa cells [48],

supporting its critical role in cervical carcinogenesis.

Also, a suppressor role of miR-143 has also been impli-

cated in different tumour types [49-51].

Among the most abundant miRNAs in the cervical can-

cer tissues, miR-205 has the highest estimated 

score in the log linear model. Its increased expression has

also been observed in a variety of carcinomas, including

cervical cancer [48], endometrioid endometrial adeno-

carcinoma [52], ovarian cancer [53], bladder cancer [54],

head and neck squamous cell carcinoma [55] and non-

small cell lung cancer [56]. Very recently, Yu et al. demon-

strated that the lipid phosphatase SHIP2 (SH-2 contain-

ing inositol 5'-phosphatase 2) can serve as a target of

miR-205 in SCC cells [57], with down-regulation of miR-

205 in SCC cells leading to a marked increase in apopto-

sis and cell death [57]. This will certainly provide an

important lead in investigating roles for miR-205 in cervi-

cal cancer.

An additional miRNA demonstrating strong regulation,

miR-944 (identified from small numbers of sequences in

an earlier study; [32]), was significantly more abundant in

the cervical cancer tissues than in their normal counter-

parts. This miRNA seems to be cervical tissue specific in

that it had not been previously observed in other tissues

or cell types [20]. miR-944 is located in the intron of TP63

(a member of the p53 family) and maps to chromosome

3q27-28, a region frequently amplified in cervical carci-

nomas [58-60]. It will be of interest to test for potential

roles of miR-944 in cervical carcinogenesis and/or pro-

gression.

Clustered miRNA expression

An analysis of clustered miRNA expression revealed

strong positive correlations among the closely neighbour-

ing miRNAs, suggesting that these miRNAs may be con-

trolled by common regulatory factor(s). The data are in

consistent with several previous findings [61-63]. Inter-

estingly, we found that the miR-200 family of miRNAs

(miR-200a/b/c, miR-141, and miR-429) was highly co-

expressed in cervical cancer. These miRNAs are located

at two different genomic loci: the miR-200b~429 cluster

is located on chromosome 1, and the miR-200c~141 clus-

ter is located on chromosome 12. The co-expression of

these miR-200 loci suggests that these miRNA clusters

might be co-regulated by common regulator(s) and func-

tion together. In line with such hypothesis, Bracken et al.

recently demonstrated that both miR-200b~429 and miR-

200c~141 clusters are encoded by single polycistronic

primary miRNA transcripts [64]. Furthermore, the E-

cadherin transcriptional repressor ZEB1 was found to

directly suppress transcription of both clusters [64,65].

As the five miR-200 family members contain very similar

seed sequences, these miRNAs are likely to regulate some

common targets. In support, several independent studies

showed that two transcriptional repressors of E-cadherin,

ZEB1 and ZEB2, are the direct targets of the miR-200

family miRNAs [66-68]. Although the expression of miR-

200 clusters is reduced in mesenchymal and invasive

cells, its over-expression has also been observed in ovar-

ian [69] and cervical [70] cancers.

A unique small RNA downstream of the Vault transcript

Among the novel miRNAs discovered here, miR-3608 has

the unique feature of sitting immediately downstream of

vault RNA, HVG-2 (Additional File 5). Vault RNAs are

small non-coding RNAs produced by RNA polymerase

III [71]. The possibility that miR-3608 might be produced

from the HVG-2 promoter suggests a type of dicistronic

heterologous Pol III transcript similar to tRNA-miRNA

dicistronic transcripts that have been identified in the

mouse gammaherpesvirus 68 [72] and in the C19MC

cluster of the human genome [73].

Conclusions
Our approach illustrates the high value of ultra-high

throughput sequencing data for novel miRNA discovery

and quantitative analysis of miRNAs. The statistical

approach described in this study is broadly applicable to

the analysis of any RNA sequencing data.

Methods
Clinical samples

Twenty-nine pairs of snap-frozen cervical tumour and

matched normal tissue were obtained from the Gyneco-

logic Oncology Group Tissue Bank (PA, USA). Of these

29 cases with paired specimens, 21 patients had a diagno-

sis of SCC, six had ADC and two had an intermediate

diagnosis of adenosquamous cell carcinoma (ASC)

(Additional File 1). All matched normal cervical tissues
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were obtained from the same patients and had been his-

topathologically verified. This study was approved by the

Institutional Review Board of Stanford University.

Small RNA library construction and Solexa sequencing

Small RNA isolation was performed using mirVana

miRNA isolation kit (Applied Biosystems/Ambion, TX,

USA). The capture and amplification procedure was done

as previously described [32], with slight modifications.

Purified small RNAs were ligated to the 3'-adaptor

["Linker-1", IDT Inc., IA, USA] and 5' adaptor [5'-

ACGCTCTTCCGATCTv-3' (uppercase, DNA; v = bar-

codes with triple RNA molecules: aaa, ggg, ccc or uuu;

IDT Inc, IA, USA)] oligonucleotides. Products from the

second ligation were gel-purified and reverse transcribed

using the reverse transcription primer [5'-ATTGATG-

GTGCCTACAG-3']. cDNA was amplified with 16-20

polymerase chain reaction cycles, using a forward primer

5'-GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT

TCC CTA CAC GAC GCT CTT CCG ATC T-3' and a

reverse primer 5'-CAA GCA GAA GAC GGC ATA CGA

GCT CTT CCG ATC TAT TGA TGG TGC CTA CAG-

3', to produce sequencing libraries that were subjected to

Solexa/Illumina sequencing platform (Illumina 1G

Genome Analyzer, CA, USA). Details of small RNA

library preparation protocol are available upon request.

The sequencing data have been deposited at Gene

Expression Omnibus (accession No. GSE20592).

Sequencing analysis

Individual sequence reads were initially generated follow-

ing sequencing using the Solexa software pipeline (Illu-

mina Inc, CA, USA). Reads from each of the pooled

libraries were then separated based on their barcode

sequence and mapped against human genome using

ELAND (Solexa, Illumina Inc, CA, USA). Perfectly

aligned sequences with at least 20 consecutive bases were

analysed further. Aligned sequences were then further

analysed with BLAST (blastn, [74]) and BLAT in order to

exclude other known structural RNAs.

In order to identify sequence reads that match previ-

ously identified miRNAs, we aligned sequences against

miRNA data from miRBase release version 10.1 [6] using

BLAT [75]. miRNAs with varying 3' terminal were

grouped together for tag counts. In order to uncover

novel miRNA genes, we identified hairpin-like RNA

structures in a window of 80 bases around recovered

small RNA sequences using mfold (version 3.2 [76]). All

predicted hairpin-like precursors were analysed carefully

in order to distinguish genuine miRNA precursors from

other RNA classes that may contain similar RNA struc-

tures (for example, snoRNAs, vault RNAs and tRNA-

derived repeat elements).

Statistical analysis

All statistical analyses were performed using the statisti-

cal software language R (version 2.6.2), freely available at

http://cran.r-project.org/[77].

The miRNA count data are characterized by very large

variances in both the total counts for each miRNA and

the total counts for each sample. Total miRNA counts

ranged from 1 to 2,253,073 (with a mean of 19,189), and

total sample counts ranged from 1,322 to 1,227,057 (with

a mean of 236,227). Because the row and column totals of

the data matrix vary by many orders of magnitude, cube-

rooted miRNA counts were used for almost all statistical

analyses. Let X denote the matrix of cube-rooted data,

where the rows denote the miRNAs and the columns

denote the samples. In order to visualize the samples, we

performed PCA after standardizing each column of X to

have mean zero and standard deviation 1.

NSC [38] is a classification method intended for the

case where the number of samples is small relative to the

numbers of features or variables. A centroid (or mean

vector) is computed for each class; the centroids are then

'shrunken' towards the overall centroid for the full data

set. New observations are then classified to the shrunken

centroid to which they are nearest. Depending on the

amount of shrinkage performed, only a subset of the fea-

tures will differ between the shrunken centroids. The

number of features that differ between the shrunken cen-

troids is treated as a tuning parameter for the method,

and is selected by CV. NSC was performed using the R

library 'pamr' on the cube-rooted data, after scaling each

column of the cube-rooted data by the total for that col-

umn. NSC classifiers were constructed to distinguish

between the following sets of classes: (i) tumour versus

normal; (ii) tumour versus ADC versus SCC; and (iii)

ADC versus SCC. For each classifier, the tuning parame-

ter value (controlling the number of miRNAs used by the

classifier) was selected by 10-fold CV. In order to obtain a

P-value for each classifier, CV errors were computed on

the real data and on null data obtained by randomly per-

muting the class labels for the samples. The P-value is

given by the fraction of null data sets resulting in CV

errors less than, or equal to, the CV error of the real data

set. To further explore the performance of NSC for nor-

mal versus tumour, we randomly split the samples into a

training set of 40 samples and a test set of 18 samples. We

trained NSC on the training set and tested it on the test

set; this was repeated 100 times. Only the first replicate in

each pair was used in the NSC analysis.

We also took an unsupervised approach to assess the

difference between normal and tumour samples: we used

complete linkage and correlation-based distance to hier-

archically cluster the cube-rooted data using the R lan-

guage function 'hclust'. For comparison, we performed

http://cran.r-project.org/
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clustering using the distance metric defined in Berninger

et al. [37].

In order to identify miRNAs that were differentially

expressed between normal and tumour samples, we

developed a Poisson log-linear model. The model

assumes that 1 + Xij ~ Poisson(μij) and log(μij) = βi + γj +

ρi(1jεTumour - 1jεNormal); that is, βi is the miRNA-specific

term, γj is the sample-specific term and ρi is the difference

between tumour and normal for miRNA i. We fit this

model in two steps, using an offset. The quantity

can be considered as a 'score' for whether miRNA i is dif-

ferentially expressed between tumour and normal; a large

positive value indicates higher expression in tumour than

in normal. FDRs were estimated by permutations:

tumour and normal sample labels were randomly per-

muted, and the estimated distributions of  for real

and permuted data were compared. Details are given in

Additional File 9. For comparison, we also computed

FDRs resulting from our log-linear model using raw,

rather than cube-rooted data, as well as FDRs resulting

from computing a paired two-sample t-statistic for each

miRNA (using both raw and cube-rooted data). Note that

the first replicate from each pair of duplicate libraries was

arbitrarily chosen for fitting the log linear model.

Analysis of miRNA clusters

In this analysis, we considered any two miRNA precur-

sors on the same chromosome strand (i) within 1 kb or

(ii) within close proximity (<4 kb), but not separated by a

miRNA in the opposite orientation as the same miRNA

cluster. Using this cutoff, we identified 56 miRNA clus-

ters, which contain 236 miRNAs from our datasets

(Additional File 15).

In order to determine whether the miRNAs in cluster k

have correlated expression, we computed the average cor-

relation of miRNA pairs within the cluster. We estimated

a null distribution for this average correlation by ran-

domly sampling nk miRNAs from the full set of miRNAs

and computing the average correlation of the pairs within

this null cluster. The null distribution was used to esti-

mate P-values for the extent to which the miRNAs in a

single cluster are correlated with each other.

In order to determine whether the miRNAs in cluster k

were significantly associated with the tumour/normal

phenotype, we fitted the log linear model mentioned pre-

viously and computed the median of the resulting scores

for the miRNAs in cluster k. We also permuted the

tumour/normal labels repeatedly and each time re-fit the

log linear model and recorded the resulting median

miRNA score for cluster k. These median scores for the

permuted data served as a null distribution, which we

used to obtain a P-value for the extent to which each clus-

ter k's miRNAs are associated with tumour/normal.

Additional material
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