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ABSTRACT

Future surveys of large-scale structure will be able to measure perturbations on the scale of the cosmological
horizon, and so could potentially probe a number of novel relativistic effects that are negligibly small on sub-
horizon scales. These effects leave distinctive signatures in the power spectra of clustering observables and, if
measurable, would open a new window on relativistic cosmology. We quantify the size and detectability of
the effects for the most relevant future large-scale structure experiments: spectroscopic and photometric
galaxy redshift surveys, intensity mapping surveys of neutral hydrogen, and radio continuum surveys. Our
forecasts show that next-generation experiments, reaching out to redshifts z 4, will not be able to detect
previously undetected general-relativistic effects by using individual tracers of the density field, although the
contribution of weak lensing magnification on large scales should be clearly detectable. We also perform a
rigorous joint forecast for the detection of primordial non-Gaussianity through the excess power it produces
in the clustering of biased tracers on large scales, finding that uncertainties of f 1 2NL( ) –s ~ should be
achievable. We study the level of degeneracy of these large-scale effects with several tracer-dependent
nuisance parameters, quantifying the minimal priors on the latter that are needed for an optimal measurement
of the former. Finally, we discuss the systematic effects that must be mitigated to achieve this level of
sensitivity, and some alternative approaches that should help to improve the constraints. The computational
tools developed to carry out this study, which requires the full-sky computation of the theoretical angular
power spectra for 100( ) redshift bins, as well as realistic models of the luminosity function, are publicly
available at http://intensitymapping.physics.ox.ac.uk/codes.html.
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1. INTRODUCTION

The current success of relativistic cosmology is primarily
based on the use of observations of large-scale structure (LSS)

to infer the properties of the universe. The statistics of

temperature and mass fluctuations, from maps of the cosmic
microwave background (CMB) and galaxy surveys respec-
tively, have been used to place remarkably tight constraints on
the key cosmological parameters (Planck Collaboration
2015a), and we have now measured the spectral index of

primordial fluctuations, the Hubble constant, and the present-
day densities of dark matter, baryons, and relativistic species
to exquisite precision. While many of these parameters can
have similar effects on cosmological observations, by
combining different observables at different times and length

scales, we have been able to break the degeneracies
between them.

While a variety of upcoming surveys will certainly improve
the existing cosmological constraints, they will also allow us

to probe an altogether new regime of large-scale structure—
perturbations that span the cosmological horizon. While such
scales are routinely studied in the CMB, these measurements
consist of a single two-dimensional projection of the radiation
density field and gravitational potentials at a fixed time. As

such, the amount of information we can obtain from them is
fundamentally limited by projection effects and cosmic
variance. With three-dimensional maps of the matter density
field, on the other hand, it should be possible to greatly refine
our measurements of horizon-scale perturbations and, in

doing so, explore a variety of new relativistic effects in
cosmology.
As pointed out in Bonvin et al. (2006), Yoo et al. (2009),

Yoo (2010), Bonvin & Durrer (2011), and Challinor & Lewis
(2011), relativistic effects come into play through apparent
distortions of the projected survey volume by lensing, the
propagation of light through inhomogeneous potentials, and the
large-scale effect of peculiar velocities at the source. While
they are strongly sub-dominant on scales of order h100 1-

Mpc, where current galaxy surveys are focused, they can
substantially modify the power spectrum of, e.g., the number
density of galaxies from the usual Newtonian predictions on
extremely large scales.
The familiar Kaiser redshift-space distortion (RSD) is a sub-

horizon approximation to a general-relativistic redshift-space
distortion, with the post-Kaiser terms becoming non-negligible
only around the horizon scale. Terms accounting for lensing,
time delays, and the Sachs–Wolfe and integrated Sachs–Wolfe
(ISW) effects are also present. (For analysis of each of these
effects in large-scale structure observables, see Bertacca et al.
2012; Bruni et al. 2012; Jeong et al. 2012; Yoo et al. 2012; Hall
et al. 2013; Lombriser et al. 2013; Yoo & Desjacques 2013;
Raccanelli et al. 2014; Yoo & Seljak 2015.)
Most of these additional effects can safely be ignored in

standard analyses of galaxy clustering, simply because they are
negligible for current surveys of limited volume. A partial
exception is the lensing term, which contributes to the observed
overdensity (modulated by the magnification bias), and which
has occasionally been incorporated into clustering analysis—it
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can become significant on sub-horizon scales, but only at high
redshift. The remaining terms6 will be referred to as the “GR
terms” for the purposes of this paper, which focuses on very
large-scale effects. We will define the GR terms more precisely
in due course. The hope, then, is that the GR effects can be
teased out of cosmological data on ultra-large scales, and used
to test the standard relativistic model of cosmology.

Another effect that can come into play on large scales is a
scale-dependent bias due to primordial non-Gaussianity (Dalal
et al. 2008; Matarrese & Verde 2008). If the primordial
fluctuations are non-Gaussian, there will be a coupling between
short- and long-wavelength modes such that the clustering of
galaxies with respect to the underlying density field is
enhanced on large scales. Specifically, the galaxy bias gains
a scale dependence proportional to k ,2~ - where k is the
wavenumber of the mode being observed. The scale on which
this effect comes into play is again of the order the
cosmological horizon if the parameter quantifying the non-
Gaussianity is f 1.NL ~ Hence, in addition to detecting
relativistic effects in structure formation, measurements of
horizon-scale modes can also be used to constrain the statistics
of primordial fluctuations, and thus the mechanism that seeded
structure in the early universe.

As we can see, the scientific returns from measuring horizon-
size fluctuations are legion. In this paper, we take a
comprehensive view of future observations, and attempt to
quantify how well both relativistic effects and primordial non-
Gaussianity can be constrained with upcoming surveys. To do
so, we examine four different types of survey: spectroscopic
and photometric galaxy redshift surveys, continuum surveys of
radio galaxies, and intensity mapping surveys of neutral
hydrogen (H I). Each of these techniques will probe different
redshifts with different sensitivities, but all will (in principle) be
able to access horizon-scale modes in the next decade. The
surveys will also measure different combinations of the
relativistic corrections, and will be sensitive to different
systematic effects. We will therefore pay close attention to
identifying the different obstacles for detecting large-scale
modes and discussing possible methods for mitigating their
effects.

The paper is structured as follows. In Section 2 we present
the various large-scale effects that we are targeting, focusing on
the relativistic effects and primordial non-Gaussianity, and
discuss how they might show up in galaxy surveys and
intensity mapping experiments. We also discuss the nuisance
parameters that determine the amplitudes of these effects, and
their dependence on astrophysical uncertainties. In Section 3,
we briefly present the Fisher forecasting formalism we will be
working with. Then, in Section 4, we systematically present the
forecasted uncertainties in these observables for the different
types of survey, discussing the specific experiments that we
consider, their sensitivity to ultra-large-scale observables,
possible degeneracies with nuisance parameters, and their
main sources of systematic uncertainties. The models used to
describe the signal and noise for each experiment are
summarized in Appendix B. Finally, in Section 5 we discuss
our findings and draw conclusions for the prospects for
detecting the ultra-large-scale effects.

2. ULTRA-LARGE-SCALE COSMOLOGICAL
OBSERVABLES

2.1. Relativistic Effects in Large-scale Structure Observables

The aim of this section is to compute all the terms that give
rise to fluctuations in the number of light-emitting sources
measured by an observer in a given redshift interval dz and
observed solid angle d .oW The main result from this calculation
is the following: neglecting all perturbations in the trajectory of
the photons emitted by these sources, the observed perturbation
in the number counts is simply given by the perturbation in the
comoving number density of sources. The comoving 4-volume
that we ascribe to the patch defined by dz and d oW depends on
the direction and redshift of the photons received from these
sources, however, and therefore any perturbation in their
trajectory will induce additional contributions to the total
fluctuation of source number counts.
RSDs are a perfect example of one of these contributions,

where the observed redshifts are perturbed by the peculiar
velocity of the source. While RSDs have been well understood
for decades, several other terms have only recently been
rigorously quantified (Bonvin & Durrer 2011; Challinor &
Lewis 2011). These terms are relativistic in nature, and affect
the clustering spectrum only on extremely large scales,
approaching the horizon size. Since these relativistic effects
have been thoroughly discussed in the literature, the aim of this
section is not to provide a derivation from first principles, but
rather to give some physical intuition for the interpretation of
each of these terms, as well as to establish the notation that will
be used in what follows.

2.1.1. Relativistic Lightcone Effects: Number Counts

Consider a set of sources with comoving number density
xn ,s ( )h (as measured in their own rest frame) and 4-velocity

u .s
m These sources emit photons with a wave vector
k dx dlºm m (λ is an affine parameter of the photon geodesic)
and rest-frame energy k u .sm

m During an interval dl of the affine

parameter, the photons cover a volume dA k u d ,e s( ) lm
m where

dAe is the invariant area of the wavefront corresponding to the
observed solid angle d .oW Throughout, we have labelled
quantities measured in the emitter’s and observer’s frames with
subscripts e and o respectively.
The total number count in a redshift interval dz correspond-

ing to dl is therefore

dN

dz d
n

dA

d
k u

d

dz
. 1

o
s

e

o
s( ) ( )
l

W
=

W
m
m

Each of these terms is straightforward to compute in the

absence of perturbations:

xn n z

dA

d
a z r z

k u
d

dz

a z

H z

, ,

,

.

s s

e

o

s

2 2

( )

( ) ¯ ( ( ))

( ( )) ( )

( ( ))

( ( ))

h h

h

l h
h

=

W
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=m
m

Here z( )h is the background conformal time at redshift z, r(z) is

the background comoving angular diameter distance,

a z z1 1( ( )) ( )h = + is the scale factor, and H a a˙º is the

expansion rate. For the rest of this work we will assume a flat

6
While excluded from our list of “GR terms,” we will also pay some

attention to the lensing term, as it is a “hybrid” term that is only observable via
clustering in very high volume surveys.
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background cosmology, so that radial (χ) and angular distances

are the same.
In the presence of inhomogeneities, all of these quantities are

perturbed with respect to their background values at redshift z,
and in general we can write

nz z, , 2( )ˆ ( ) ( )h h dhº +

nn z n z
n

, 1
ln

, 3s s n
s( )ˆ ¯ ( ( ))

¯
( )h d

h
dh= + +

¶
¶

⎡

⎣
⎢

⎤

⎦
⎥

dA

d
a z z 1 2 , 4

e

o

2 2 [ ]( ( )) ( ) ( )h c d
W
º + ^

k u
d

dz

a z

H z
1 , 5s( )

( ( ))

( ( ))
( )

l h
h

dº +m
m

⎡⎣ ⎤⎦

where nd is the perturbation to ns, and we have defined the

perturbations to the conformal time, ,dh transverse distance, ,d̂
and radial distance, .d

One extra detail must be taken into account: not all sources
are equally bright, and sources will generally be distributed
according to a particular luminosity function, xn L, ln , ,s ( )h
which we define as the density of sources in a logarithmic
interval of luminosity:

n
d

dVd L

sources

ln
. 6s

( )
( )º

#

Only sources with a flux (observed power per unit detector

area) above a given detection cut, F ,cut will be detected. Flux

and luminosity are related by an inverse-square law in angular

distance, so perturbations to the angular diameter distance will

affect the measured flux. Linearizing with respect to these

perturbations gives

nF z
L

z a z z
,

4 1
1 2 . 7

4 2 2
[ ]( )ˆ

( ) ( ( )) ( )
( )

p h c
d=

+
- ^

At a given redshift and flux cut, we will only observe sources

with luminosities above a threshold L ,cut related to Fcut by the

previous equation. In order to take this into account, we must

replace ns by the cumulative luminosity function,

x xL d L n L, , ln ln , , ln , 8
L

s
ln

( ) ( ) ( ) òh h> º ¢ ¢
¥

so that Equation (3) becomes

nz F
n

, , 1
ln

2 .
s

cut( ) ¯
¯ ¯

¯
 




d
h
dh d= + +

¶
¶

- ^

⎡

⎣
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⎤

⎦
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We have shortened our notation such that

z L z F, ln , 9cut cut( )( )¯ ¯ ( ) ¯ ( )  hº >

(and likewise for ns¯ ), and have overlined all quantities

evaluated in the background.
The full linear expression for the source number counts can

finally be written as

n
dN

dzd

a z

H z
z z1 , , 10

o
N

3
2 ( )¯ ( )

( )
( ) ˆ ( ) c

W
= + D⎡⎣ ⎤⎦

where the perturbation is given by

nz
n

,
ln

2 1 . 11N
s( )ˆ

¯ ¯

¯
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


d
h
dh d dD = +

¶
¶
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⎤
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In order to simplify the notation, from now on we will refer to

the observed background number of sources found per unit

redshift and solid angle simply as N z ,¯ ( ) i.e.,

N z
a z

H z
z . 12

3
2¯ ( ) ¯ ( )

( )
( ) ( ) cº

The terms ,dh ,d and d̂ can be related to the metric, density,
and velocity perturbations by solving the geodesic equation for
photons in any gauge. In the conformal Newtonian gauge,
defined by the line element

ds a d dx dx1 2 1 2 , 13ij
i j2 2 2( ) ( ) ( – ) ( )h y h f d= - + -⎡⎣ ⎤⎦

these perturbations read
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d
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d
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d
1

2
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0

2 ( ) ( )òk
c c
cc

f y cº
- ¢
¢
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c

W

where n vvr sˆ ·º is the radial peculiar velocity of the sources,
2W is the Laplacian on the unit sphere, and κ is the lensing

convergence. Note that we have denoted all partial derivatives

with respect to conformal time as b b¶ º ¢h (and a a º ¢ ),

and that the operator d dh denotes a total lightcone derivative
along the unperturbed photon trajectory,

x n
db

d

d

d
b , , 180( )( ) ˆ ( )

h h
h h hº = -⎡⎣ ⎤⎦

where 0h is the age of the universe. Likewise, all integrals

shown in the equations above must be understood as lightcone

integrals along the same trajectory.

2.1.2. Relativistic Lightcone Effects: Intensity Mapping

Besides source number counts, another promising observa-
tional tool for studying large-scale structure is a technique
known as intensity mapping. The technical details of this
method are discussed in Section 4.1, but we will describe the
relevant relativistic effects here (see also Hall et al. 2013).
In intensity mapping, the observable used to trace the matter

density is the intensity received from a line-emitting medium
integrated over a patch of the sky (i.e., the total power
measured in a frequency interval per unit detector area and
observed solid angle). We assume that this line emission is
caused by some well-defined transition line, and can therefore
be used to recover the redshift of the source by comparing the
observed frequency with the known rest-frame one. In the rest

3
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frame of a set of line-emitting sources, the emissivity is

dE

dt d d dV
A

x

m2
, 20

e

e e e e
e e

a

a
21

2
( ) ( )


n

n j n
r

W
=

where A21 is the Einstein coefficient for the transition, ar is the

comoving density of the emitting gas, ma is its atomic mass, x2
is the (number) fraction of the gas in the excited state, and ( )j n
is the line profile (normalized to unity when integrated over all

frequencies).
As shown in Section 2.1.1, the volume covered by the

emitted photons in an affine parameter interval dl is

dV dA k u d . 21e e s( ) ( )l= m
m

Assuming that no absorption or scattering of the emitted

photons occurs, the emissivity can be related to the measured

intensity by

nI
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m

The frequencies and time intervals in both frames are directly

related through the redshift z, as are angles and invariant areas

(from Etherington’s reciprocity relation),

dt d

dt d

dA d

dA d z
1,

1

1
. 22

e e

o o

e e
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2( )

( )
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n
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W
W
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+

Using these relations, and assuming that observations will take

place on frequency intervals onD much larger than the line

width, we finally obtain the relation

nI
A x

m z
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d

dz
,

2 1
, 23o

a
a s

21 21 2

2
( )( )ˆ

( )
( )


n

n
r

l
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+
m
m

where 21n is the rest-frame line frequency. We can see that this

is equivalent to Equation (1) for number counts, except for the

factor of the angular diameter distance, dA d .e oW This is

because the observable in intensity mapping is not the total

number of objects in a given patch of sky, but the combined

emitted light from the same patch. Since luminosities and

angular distances are affected in the same way by lightcone

effects, these cancel exactly for intensity mapping.

Expanding both ar and k us
d

dz
( )m

m l
to linear order, we can

therefore compute all of the linear perturbations to the observed
intensity mapping signal,

nI I

I
d
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1
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, 24
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⎤

⎦
⎥

where ad is the intrinsic perturbation of the emitting gas density.

By comparing this with Equation (11), we can see that the

linear perturbation for intensity mapping is equivalent to the

perturbation of the number counts for a population of sources

with a particular form of the luminosity function, such that the

number of sources observed above a given flux is proportional

to the luminosity associated with that flux,

L L. 25IM
¯ ( ) ( ) > µ

The somewhat unfortunate consequence of this result is that

there are no linear perturbations to angular distances for

intensity mapping,7 which could potentially reduce the amount

of cosmological information that can be extracted from this

probe.
The background term in Equation (24) is commonly

expressed in terms of antenna temperature, defined through
the Rayleigh–Jeans relation for a blackbody emitter
T I c k2 ,2

B
2( ) ( ) ( )n n n= where kB is the Boltzmann constant.

In terms of background quantities, the homogeneous intensity
mapping signal is

T z
A x c

Gk m

H x z z

H z

3

32

1
, 26

a

b a21 2
2

B 21
2

0
2

,0
2

¯ ( )
( )( )

( )
( )


p n

=
W +

where xa(z) is the fraction of baryons made up by the line-

emitting species under study.

2.1.3. Clustering Bias

Until now, we have not related the intrinsic perturbation in
the number density of sources to the perturbations of the
energy–momentum tensor. Assuming that galaxies form in
dark matter haloes, which themselves form preferentially in
high-density regions, one would expect the halo (or galaxy)
number overdensity to trace the fluctuations in the overall
matter density on large (linear) scales with a simple linear bias
factor, b .Mhalo halod d This bias is a central piece of the halo
model of structure formation (Mo & White 1996; Peacock &
Smith 2000), the validity of which has been extensively tested
against numerical simulations (Cole et al. 2008). Although the
linear bias is expected to be scale-dependent on nonlinear and
mildly nonlinear scales, where nonlinear and stochastic bias
terms could also be important, we are mainly interested in
large-scale observables in this paper, where the approximation
of a linear, scale-independent bias should be valid (although
see Section 2.2). This bias will depend on redshift and
luminosity, however (e.g., more luminous, and therefore rarer,
objects are expected to be more highly biased).
Since it is not possible to unambiguously define the matter

overdensity Md in a gauge-invariant way in a general-relativistic
context, a subtle point is the choice of overdensity field on
which the bias relation is applied. In this work we take the
point of view of Challinor & Lewis (2011), Baldauf et al.
(2011), Jeong et al. (2012), and Bruni et al. (2012), and argue
that, since the process of galaxy formation is due to local
physics, and since we expect our sources to follow the same
velocity field as the dark matter, the bias relation should be
applied in the synchronous comoving gauge. Note that it is also
the comoving gauge perturbation that appears in the Poisson
equation. A more complete discussion of this argument, which
can also be extended to the case of primordial non-Gaussianity,
can be found in Baldauf et al. (2011).
It follows that the intrinsic perturbation to the number

density of sources, ,Nd in the Newtonian gauge—our choice for
this work—is related to the matter overdensity in the
synchronous comoving gauge, ,M,synd through

b L z k
d

v

k
, ,

ln
, 27MN ,syn( )

¯
( )


d d

h
= +

¶

7
Note that this is equivalent to the result that lensing of the CMB is a second-

order effect.
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where v is the peculiar velocity in the Newtonian gauge, and

we have allowed the bias, b, to be scale-dependent, in

anticipation of the discussion in Section 2.2.

2.1.4. Magnification and Evolution Bias

The amplitudes of the perturbations to the conformal time
and transverse distances depend explicitly on the derivatives of
the luminosity function of the source population with respect to
luminosity and time (see Equation (11)). It has become
common to express these derivatives in terms of the so-called
magnification bias, s ,( )h and evolution bias, f ,evo ( )h defined as

s
n L

L

5

2

, ln

, ln
, 28

s cut

cut
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( )
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¯ ¯

¯ ¯
( )
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h
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. 29evo

3
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

h
h

º
¶ >

¶
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As with the clustering bias, the values of s and fevo depend on

the source population under study, so must be modeled

correctly in order to maximize the information that can be

extracted from any clustering analysis. While b(z) must be

determined directly from clustering statistics, it is possible to

estimate s and fevo directly from the overall number counts of

sources as a function of redshift and magnitude. Let

N z m,¯ ( )
*

< be the cumulative number of sources with

magnitude m brighter than m ,
*

per unit solid angle and redshift

interval. N̄ is related to the luminosity function, n ,s¯ through

N z m
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z H z
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1
, ln ln , 30
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where the threshold luminosity L* is

L z z F4 1 ,2 2( ) ( )
* *

p c= + and fluxes and magnitudes are

related through

m
F
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⎤

⎦
⎥

Note that we have neglected evolution and k-corrections.
Using the definitions of fevo and s in Equations (28) and (29),

these quantities can be related to the derivatives of N̄ with
respect to z and m* by

N

m
s
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, 3210

¯
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¶
¶
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Note that, in order to use these relations to estimate s and fevo, it

is necessary to have full redshift information about the source

distribution. While this is available by default for spectroscopic

surveys, determining the redshift distribution becomes more

involved for photometric and radio continuum surveys. This is

nevertheless a necessary task if these probes are to be usable for

cosmological studies, where, e.g., the redshift and photometric

redshift distributions must be correctly modeled. In any case,

the uncertainties on s and fevo will tend to grow toward large z,

and must therefore be taken into account in any cosmological

analysis.

As we described in Section 2.1.2, the case of intensity
mapping is slightly different. In this case, perturbations to the
angular distance cancel, which is equivalent to setting the
magnification bias to the critical value s 2 5IM = . fevo can be
determined directly from the redshift dependence of the
background brightness temperature, T z¯ ( ) (Equation (26)).

2.1.5. Power Spectra

The most informative observable regarding the clustering of
astrophysical sources is their two-point correlation,

n nz z, , .1 1 2 2( ˆ ) ( ˆ ) áD D ñ The perturbation D can be
expressed in terms of spherical harmonic coefficients,

n n na z d z Y, , 34ℓm ℓm( ) ( )( ) ˆ ˆ ˆ ( )òº D

where nYℓm ( ˆ) are the spherical harmonics. The clustering of

number counts can then be studied through the angular power

spectrum, defined by the correlation

a z a z C z z, , 35ℓm ℓ m ℓℓ mm ℓ1 2 1 2( ) ( ) ( ) ( )* d dá ñ º¢ ¢ ¢ ¢

where angle brackets denote an ensemble average.
In practice, nz,( ˆ)D is not measured in infinitesimal intervals

of z, but by averaging over a set of finite radial bins, which we
will label here by a Latin index, i. The observed anisotropy in
bin i is

na dz W z z, , 36ℓm
i

i ( )( ) ˆ ( )òº D

where the window function Wi is normalized to 1 when

integrated over redshift. The shape of Wi is determined by both

the background redshift distribution of observed sources, N z ,¯ ( )

and the probability that a source at redshift z will be included in

the ith bin p z ,i ( ) so that

W z N z p z . 37i i( ) ¯ ( ) ( ) ( )µ

Using this, one can show that the cross-spectrum between two

bins can be written as (Di Dio et al. 2013)

C
dk

k
k k k4 , 38ℓ

ij
ℓ
i

ℓ
j

0
( ) ( ) ( ) ( )òp= D D

¥

where k( ) is the dimensionless primordial power spectrum,

which is assumed to take the form k A k k ,s
n

0
1s( ) ( ) = - and

kℓ
i ( )D contains the transfer functions of the terms that

contribute to the anisotropy in bin i, in Fourier space and

projected on the sky. Expanding the various contributions to

Equation (11), the functions kℓ
i ( )D can be written as a sum of

10 terms corresponding to different physical effects (Di Dio

et al. 2013):

k d b W k j k
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In these equations, the quantities k, ,M,syn ( )d h k, ,( )q h k, ,( )y h
and k,( )f h are the transfer functions for the perturbation in the

synchronous comoving gauge matter density, the divergence of

the peculiar velocity, and the two metric potentials respectively.
Each term is sourced by a different physical effect. ℓ

DD
corresponds to the intrinsic perturbation in the comoving
number density of sources, which is the dominant contribution
in most cases, and is the only term that has traditionally been
taken into account when RSDs and lensing can be neglected.

ℓ
RSDD is the usual RSD term corresponding to the Kaiser effect,

due to the deformation of the Lagrangian volume in redshift
space. ℓ

LD is the lensing convergence term, caused by the
deformation of the Lagrangian volume in the transverse
directions due to weak lensing. The terms ℓ

V1D and ℓ
V2D are

extra RSD contributions that come from evaluating the
background terms at a redshift perturbed by the Doppler effect.
The remaining terms correspond to the same effect, but for
redshift perturbations caused by gravitational redshifting
instead of peculiar velocities. In particular, ℓ

ISWD is the
analogue of the integrated Sachs–Wolfe (ISW) effect (Sachs
& Wolfe 1967) for number counts.

Of these terms, the first three give the largest contribution to
the total clustering anisotropy, so only these have traditionally
been included in clustering analyses. The remaining terms are
mainly relevant on super-horizon scales at the position of the
sources, and even on those scales their amplitude is
significantly smaller than the first three (see Figure 1).
Nevertheless, these terms contain useful information that could

potentially be used, for example, to constrain different theories
of gravity (Lombriser et al. 2013; T. Baker & P. Bull 2015, in
preparation). One of the aims of this paper is to forecast the
detectability of these terms by future experiments. In order to
do so, we have defined an effective parameter, ,GR which

multiplies the terms , , andℓ ℓ ℓ
V1,2 P1 4 ISW–D D D and has a fiducial

value of 1. GR therefore parameterizes the amplitude of the
relativistic corrections to the clustering of sources.
Even though the origin of the lensing convergence term ( ℓ

LD )

is clearly general-relativistic, we have not included it under the
umbrella of GR for two main reasons: first, we would like to
focus on yet-undetected effects, and lensing magnification has
already been detected by cross-correlating pairs of distant
tracers (Scranton et al. 2005; Hildebrandt et al. 2009). Second,
in this work we aim to identify possibly detectable observables
on ultra-large scales, but the lensing term has a non-negligible
effect on small angular scales. Nevertheless, for completeness
we have also forecasted for the detectability of lensing
magnification by defining an effective amplitude, ,WL multi-

plying .ℓ
LD In keeping with the main aim of this paper,

however, we will only produce forecasts for this parameter
based on its effects on the largest angular scales (lowest
multipoles).
Thus, to clarify the terminology used here, we will refer to

the terms ,V1,2D P1 4–D , and ISWD as “GR effects” or “GR terms”
and to LD as the “lensing term,” even if the nature of the latter
is clearly relativistic.

2.2. Primordial Non-Gaussianity

A fundamental assumption of current theories of large-scale
structure is that the primordial seed fluctuations can be
described as a multivariate Gaussian random process, uniquely
characterized by the primordial power spectrum (Baumann
2009). For many years, the Gaussianity of primordial
fluctuations was one of the main predictions of inflationary
theories of the early universe. More recently, the possibility of
non-Gaussian primordial fluctuations has been revisited for two
main reasons. On the one hand, a battery of statistical
techniques have been developed to quantify primordial non-

Figure 1. Amplitude of the different terms listed in Equations (39)–(44)

relative to the amplitude of ℓ
DD in the power spectrum. TheC sℓ were calculated

for a redshift bin at z=2 with width z 0.12D = and for constant bias functions
(b z 1.5,( ) = s z 1,( ) = f z 1evo ( ) = ). We have also included in green the
contribution of primordial non-Gaussianity for f 1.NL =

6
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Gaussianity, primarily from the CMB, but also adapted to
large-scale structure data (Yadav & Wandelt 2008; Fergusson
& Shellard 2009; Planck Collaboration 2014c). There is a hope
that these techniques will uncover something that will enrich
our understanding of the early universe, above simple one- and
two-point statistics. On the other hand, the Effective Field
Theory approach to inflation (Cheung et al. 2008; Weinberg
2008) can be used to systematically quantify all possible
deviations from the quadratic action of linear perturbation
theory around quasi-de Sitter space. These deviations, in the
form of higher-order terms, will lead to non-trivial Gaussian
signatures that are directly related to the fundamental
parameters (and more importantly, the fundamental structure)
of the theory of the early universe.

A useful (though not universal) way of describing deviations
from primordial Gaussianity (Komatsu & Spergel 2001) is to
assume that the gravitational potential Φ can be decomposed
into a quadratic polynomial in a Gaussian random field f, of
the form

f ,NL
2 2( )f f fF = + -

where fNL is, in the simplest scenarios, a constant. fNL has been

calculated for a family of inflationary models. In the local

(“squeezed”) configuration, it is expected to be of order

n 1 10 ,s
2∣ ∣ ( )- ~ - where ns is the spectral scalar index of

primordial fluctuations (although some non-canonical models

can lead to f 1;NL ~ Verde et al. 2000; Liguori et al. 2006;

Smith & Zaldarriaga 2011). Current constraints from higher

order statistics of CMB maps place the constraint at f 7NL∣ ∣ 
(Planck Collaboration 2015b).

A novel proposal is to look for the effects of non-Gaussian
initial fluctuations at the level of the power spectrum. It has
been shown that primordial non-Gaussianity induces a scale-
and redshift-dependence for any biased tracer, X, of the overall
density field (Dalal et al. 2008; Matarrese & Verde 2008). If the
density contrast of X has a linear, Gaussian bias, b ,X

G then the
non-Gaussianity of the distribution will induce a correction of
the form

b z k f
b z H

T k D z k
, 3

1
. 47X

X
G

M c

NL

0
2

2( )
( )

( )

( ) ( )
( )

d
D =

- W⎡⎣ ⎤⎦

Here, M b CW = W + W is the fractional energy density in matter

(i.e., baryons plus dark matter), H0 is the Hubble constant,

1.686cd  is the critical density contrast of matter from the

spherical collapse model, T(k) is the matter transfer function,

and D(z) is the linear growth function for density perturbations.
As can be seen from Equation (47), there will be a

substantial enhancement of the tracer power spectrum on large
scales, with a k1 2~ scale dependence (since T 1~ on large
scales). A rough estimate is that the transition scale is of order
k f H ,NG NL 0~ i.e., we expect the scale-dependent signature to
kick in close to the horizon scale for f 1.NL ~ There have
already been some attempts to constrain fNL from the scale-
dependent galaxy bias, although they have been severely
hampered by systematic effects on extremely large scales
(Giannantonio et al. 2014). In parallel, there have also been
attempts to forecast the possibility of measuring f 1NL ~ with
future surveys (e.g., Namikawa et al. 2011; Giannantonio et al.
2012; Camera et al. 2013, 2015b; Ferramacho et al. 2014;
Raccanelli et al. 2015a).

Given the nature of this signature—the fact that it arises on
large scales and has a k1 2 scale dependence—it has been
argued that non-Gaussianity may be degenerate with the
relativistic effects we are studying in this paper (Bertacca et al.
2012; Bruni et al. 2012; Jeong et al. 2012). We will therefore
include the effect of fNL throughout our analysis and, in the
process, present the most up-to-date and conservative forecasts
for its detectability with future surveys. As illustrated in
Figure 1, the extra power induced by a value of f 1NL ~ on
large scales is typically similar to the amplitude of the
relativistic corrections presented in the previous section.
Including our three main observables ( fNL, ,GR and WL ) the

total perturbation to the number counts is

f

, 48

ℓ
i

ℓ
i

ℓ
i

ℓ
i

ℓ
i

ℓ
i

ℓ
i

ℓ
i

ℓ
i

ℓ
i

ℓ
i

D,
NL

RSD,
WL

L,

GR
V1, V2, P1, P2,

P3, P4, ISW,

( )

( )





D =D + D + D

+ D + D + D + D

+ D + D + D

⎡⎣

⎤⎦

where there is an implied scale- and time-dependence in all of

these terms.

3. FORECASTING FORMALISM

The spherical harmonic coefficients of the fluctuation in the
observed number counts in the ith redshift bin, a ,ℓm

i contain
most of the information about the clustering of sources.
Assuming that they are Gaussian-distributed with a variance
given by the cross-power spectrum Cℓ

ij (Equation (38)), it is
straightforward to show that the log-likelihood for a given
realization of the harmonic coefficients is

a aln
1

2
ln det const ., 49

ℓ m

ℓm
T

ℓ ℓm ℓ

,

1 ( )[ ] ( )C C å= - - +-
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

where we have written aℓm
i for each ℓ and m as a vector

a a ,ℓm i ℓm
i[ ] º and the set of cross-spectra Cℓ

ij as a matrix

C .ℓ ij ℓ
ij[ ]C º Our aim here is to forecast the precision with

which different experiments will be able to measure a certain

set of parameters, ,{ }qa which boils down to predicting the

parameter covariance matrix. An efficient way of doing this is

to use the Fisher matrix formalism, wherein the likelihood is

approximated by a Gaussian expansion of Equation (49)

around a fiducial set of parameters,

Fln
1

2
, 50

,

3( ) ( ) ( )¯ ¯ ( ) å q q q q q= - - - +
a b

a a ab b b

where we have defined the Fisher matrix

F ln .2  q qº á¶ ¶ ¶ ñab a b The covariance matrix

C ( ¯ )( ¯ )q q q qº á - - ñab a a b b can then be approximated as the

inverse of F .ab For our likelihood, one can show that

F f
ℓ2 1

2
Tr , 51

ℓ

ℓ

ℓ ℓ ℓ ℓsky
2

1 1
max

( )( )
( )

( )C C C Cå=
+

¶ ¶ab a b
=

- -⎡⎣ ⎤⎦

where .q¶ º ¶ ¶a a
We model the observable aℓm as the sum of two

contributions: a a a ,ℓm ℓm
S

ℓm
N= + corresponding to signal (i.e.,

cosmological anisotropies) and noise (non-cosmological fluc-
tuations due to instrumental or shot noise). We will also assume
that the two contributions are uncorrelated, so that

.ℓ ℓ
S

ℓC C N= + Here, ℓ
S
C is given by Equation (38), and ℓN is
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the noise power spectrum, the exact form of which will depend
on the particular type of experiment.

The theoretical power spectra ℓ
S
C were computed using a

modified version of the public CLASS code (Lesgourgues
2011; Di Dio et al. 2013). Our modifications are documented
in detail in Appendix A. For our fiducial cosmology, we
adopted a model consistent with the best-fit flat ΛCDM
parameters from Planck (Planck Collaboration 2014b), given
by f h w A n, , , , ,M b s s( )W = 0.315, 0.156, 0.67( , 1, 2.46- ´
10 , 0.96 ,9 )- where fb b Mº W W is the baryon fraction. We
further set the fiducial value of fNL to 0, the value for Gaussian
initial conditions, and 1.GR WL = =

While we are primarily interested in forecasting for fNL and
,GR we must also marginalize over other parameters that could

be correlated with them, which includes the six other
cosmological parameters listed above, as well as the bias
nuisance parameters described below. When forecasting for the
uncertainty on fNL, we do not consider GR as an extra free
parameter, and fix it to its fiducial value of 1. Conversely, for
the GR forecasts we fix all but fNL and ,GR assuming that only
a possible degeneracy with fNL could hamper a detection of the
GR effects (all other parameters would simply change the
shape of the GR correction “template”).

The derivatives required by Equation (51) were computed
using central finite differences,

f
f f

2
,3( )

( ) ( )


q dq q dq

dq
dq¶ =

+ - -
+a

a a a a

a

where we chose intervals dqa such that the estimated derivatives

converged to the required numerical accuracy.
We also need to impose priors on certain parameters (e.g.,

the bias functions) to mitigate degeneracies. These are
straightforward to incorporate into the Fisher matrix formalism:
a Gaussian prior on { }qa with a covariance C p

ab can be added
directly to the Fisher matrix as

F F C . 52p 1
( )⟶ ( )+ab ab ab

-

For the cosmological parameters in particular, it is useful to add

a Planck CMB prior, which we construct by estimating their

covariance matrix directly from the corresponding Planck

Markov Chain Monte Carlo (MCMC) chains (Planck Colla-

boration 2014a).
Finally, the constraints that any experiment will be able to

yield will depend crucially upon the smallest and largest scales
that can be used. For angular scales, this is explicitly taken into
account in Equation (51) as the maximum multipole, ℓ ,max that
we sum up to. This cutoff is determined either by the angular
resolution of the experiment (e.g., the beam size for intensity
mapping) or by the nonlinear scale, beyond which the
theoretical predictions become unreliable and the modes must
be discarded from the analysis. The smallest radial scale
corresponds to the comoving width of the redshift bins used,
and is also determined by either instrumental effects (e.g., the
redshift resolution in continuum and photometric surveys) or
the nonlinear scale. In any case, since the effects we aim to
study in this work are dominant on large scales, most of the
information about them is concentrated on scales well inside
the linear regime, and our final results are fairly insensitive to
the choice of a minimum scale. By default we assume
ℓ 500max = for all of the probes considered here, and address
the redshift binning for each case individually. The maximum

angular scale is set by the sky area surveyed by each telescope.
In our analysis, all surveys can probe down to ℓ 2.= In later
sections we analyse the effect of changing this minimum ℓ. The
largest radial scale is set by the available redshift range, or the
maximum scale that is free from foreground contamination in
the case of intensity mapping.
As described in Section 2.1, the amplitude of the number

count spectra also depends on three redshift-dependent
parameters: the clustering bias, b z ,( ) the magnification bias,
s z ,( ) and the evolution bias, f z .evo ( ) We will refer to these three
parameters collectively as the “bias functions” in what follows.
The value of b(z) can only be determined from the clustering
statistics of the sample under study, and must therefore be
marginalized over in the cosmological analysis. As discussed
previously, s(z) and f zevo ( ) can be estimated from the redshift–
magnitude distribution of the sources, although these estimates
will inevitably be uncertain and, to some extent, model-
dependent. Properly accounting for this uncertainty is vital, as
the behavior of the bias functions can strongly affect the
detectability of the signal. In the absence of strong prior
measurements from observations or simulations, these para-
meters must therefore also be marginalized over.
In order to do this, we defined a small number of redshift

bins that sample the bias functions well enough for each
survey. The mean values of the bias functions were computed
in each bin, and a linear interpolation between those values was
used to define each fiducial bias function. We then margin-
alized over the functions by treating each of the mean values as
an additional free parameter that was included in the
computation of the Fisher matrix (see Figure 3). We also
explored other strategies, such as higher order interpolation and
local modifications to the fiducial functions in each bin, but the
method described above was found to be the best compromise
between simplicity and stability to variations in each parameter.
We also confirmed that the final results do not change
significantly for the different methods. The redshift bins used
for the bias functions for each of the four survey types are
given in Table 1, and the input bias functions for the surveys8

are shown in Figure 2.

4. FORECASTS

The aim of this section is to present the forecasted
uncertainties on our main observables ( fNL, WL , and GR ) for
the main four types of cosmological surveys that will be used to
measure them in the future: intensity mapping, radio continuum
surveys, spectroscopic redshift surveys, and photometric red-
shift surveys. For each of them we will also discuss the main
sources of systematic uncertainties that could prevent these

Table 1

Redshift Bins Used for the Bias Function Nuisance Parameters,
for Each Survey

Survey # bins Bin Edges

Intensity mapping (SKA1-MID) 5 0.0, 0.7, 1.3, 2.0, 3.0, 4.0

Continuum survey (SKA) 5 0.0, 0.5, 1.0, 2.0, 3.0, 5.0

Spectroscopic (Hα survey) 4 0.5, 0.75, 1.0, 1.3, 2.1

Photometric (LSST), red 4 0.0, 0.35, 0.7, 1.05, 1.4

Photometric (LSST), all 5 0.0, 0.5, 1.0, 1.5, 2.2, 3.0

8
The codes used to estimate the bias functions for the models detailed in

Sections 4.1–4.4 can be found at http://intensitymapping.physics.ox.ac.uk/
codes.html

8

The Astrophysical Journal, 814:145 (28pp), 2015 December 1 Alonso et al.

http://intensitymapping.physics.ox.ac.uk/codes.html
http://intensitymapping.physics.ox.ac.uk/codes.html


measurements. The signal and noise models assumed for each

of these experiments are presented in detail in Appendix B and

summarized in Table 2.

4.1. H I Intensity Mapping

Intensity mapping (IM) is a relatively new technique, but has

a number of potential advantages for the study of ultra-large

scales (Battye et al. 2004; Chang et al. 2008; Wyithe & Loeb

2008). The idea is to observe the unresolved emission

integrated over many line-emitting sources that are assumed

to trace the large-scale matter distribution, sacrificing angular

resolution for survey speed. For source populations with

sufficiently narrow, isolated emission lines, high redshift

resolution can nevertheless be obtained with a suitable

spectroscopic instrument, allowing the 3D redshift-space

matter distribution to be reconstructed. Thus, for a given

pointing on the sky, one measures the combined emission from

all the sources in it essentially as a continuous field, much like

the CMB, rather than as a set of separately identifiable objects.

There is therefore no need to set a flux threshold that rejects

most of the peaks in the signal for being insufficiently far above

the noise level; the whole of the signal can be used, but

different modes will be recovered with more or less noise. This

leads to significant gains in survey speed, making it possible to

cover extremely large volumes—and thus constrain ultra-large

scales—in a relatively short time.
The most developed technique to date is H I intensity

mapping, which uses the redshifted 21 cm radio emission line

of neutral hydrogen (H I) as its tracer. H I is ubiquitous even in

the post-reionization universe, where it is mostly confined to

dense, self-shielded damped Lyα systems. Forthcoming large,

high-sensitivity, wide-bandwidth radio arrays such as the

Square Kilometre Array (SKA), and purpose-built IM experi-

ments like CHIME, are expected to be able to detect

fluctuations in the cosmological H I signal over ∼75% of the

sky, for a wide range of redshifts (Bull et al. 2015). We have

focused our analysis on Phase I of the SKA, which has the

large survey area and extremely wide frequency/redshift
coverage needed to access ultra-large scales (although we have

also computed the constraints for a cosmic variance-limited

experiment).
The SKA is a proposed and partially funded multi-science

radio facility that will be able to survey a large fraction of the

sky in the frequency range from 50 MHz~ to 20 GHz.~ It will

comprise two different instruments, built at separate sites in the

South African Karoo region and Western Australia’s Murch-

ison region:

1. SKA1-MID: an array of 200~ single-pixel, 15 m dishes to

be installed in South Africa. It will cover the frequency

range 350–1760MHz (z 3 ) in two separate bands.
2. SKA1-LOW: a set of about 455 aperture array stations

each with 35 m diameter. It will cover the frequency

range 50–350MHz ( z3 20  ).

Further information regarding the baseline design for the SKA
can be found in Dewdney et al. (2009) and Braun et al. (2015).
As discussed in Bull et al. (2015) and Santos et al. (2015),

the most efficient use of SKA1 for intensity mapping at late

times (z 3 ) would be to use SKA1-MID as an autocorrelation

experiment. If used in interferometric mode, the number of

short baselines—needed to resolve the scale of baryon acoustic

oscillations and larger—is not large enough. This fact is all the

more important for ultra-large scales, and so we have focused

on the SKA1-MID, single-dish case.

Figure 2. Linear clustering bias (top panel), evolution bias (middle panel), and
magnification bias (bottom panel) for the different experiments consid-
ered here.

Figure 3. Illustration of the procedure used in this work to marginalize over the
bias functions in the case of the H I clustering bias. First the theoretical function
is calculated (solid red line). Then, the mean values of the function in the
redshift bins listed in Table 1 are computed (black circles), and the linear
interpolation between these values (black dashed line) is used as the fiducial
function in the computation of the power spectra. Finally, in order to
marginalize with respect to this bias function, the mean values mentioned
above are used as free parameters and varied to compute the numerical
derivatives in Equation (51) (blue circles and dotted blue lines).
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4.1.1. Constraints on Relativistic Effects

As we have argued above, the two main sources of extra
power on ultra-large scales are primordial non-Gaussianity and
relativistic corrections. In order to study the detectability of the
latter, we can therefore treat only fNL and GR as free
parameters, and fix the rest to their fiducial values. While this
procedure would clearly yield an optimistic prediction of the
actual constraint on ,GR it mimics what a survey attempting a
first detection of any new effect would do: fix all non-
degenerate parameters to their best-fit values, and fit for the
amplitude of the terms related to the new effect. If, in doing
this, the S/N on the amplitude of the effect is smaller than
unity, then there is no point in even considering the covariance
with other parameters.

We applied this procedure for both SKA1-MID and a cosmic
variance-limited survey ( f N1, 0ℓ

ij
sky = = ), obtaining the

following result:

SKA1 MID 2.75, 53GR‐ ⟶ ( ) ( )s =

CV limited 1.97. 54GR‐ ⟶ ( ) ( )s =

Thus, even in the best-case scenario, it is not possible to detect

the effect of the relativistic corrections on the brightness

temperature fluctuations.
This may seem like a striking result, as one of the relativistic

effects is the equivalent of the CMB ISW effect for large-scale
structure ( ISWD in Equation (44)), and the CMB ISW has
already been detected above 4s by cross-correlating CMB
maps with different LSS data sets (Giannantonio et al. 2008). In
simplistic terms, intensity mapping surveys can be thought of
as a set of uncorrelated “CMB” maps at different redshifts, so it
is legitimate to ask why a similarly significant measurement is
not possible in this case.

This can be explained in terms of the clustering variance of
both data sets. Consider an attempt to measure the ISW effect
by cross-correlating two data sets, one at high redshift (e.g., the
CMB or a high-z H I intensity map), which we label here by a
superscript h, and another at low redshift (e.g., a galaxy survey
or low-z intensity map), which we label by g. Assuming that
the ISW is the only term that could give rise to a significant
cross-correlation between the two data sets, the signal would be
given by the cross-power spectrum,

S C . 55ℓ
hg

ISW ( )=

Neglecting any instrumental or shot noise, and assuming full-

sky coverage and Gaussian statistics, the noise is purely given

by the sample variance,

N
ℓ

C C
2

2 1
, 56ℓ

gg
ℓ
hh

ISW ( )
+



where we have assumed that C C C .ℓ
hg

ℓ
gg

ℓ
hh Except for

factors of order unity, the amplitude of the signal depends only

on the value of f y¢ + ¢ at the redshift of g, and not on the

nature of the high-redshift sample, so it will be roughly the

same for both a high-z intensity mapping bin and the CMB.

The difference in S/N between the two cases must therefore

depend primarily on the amplitude of the noise, which differs

by the ratio of Cℓ
hh for the two cases. Since perturbations have

grown significantly since z 1100,CMB ~ we can expect the

power spectrum of the intensity mapping to have a much larger

amplitude, C C ,ℓ
hh

ℓ
hh,IM ,CMB which would explain the

difficulty of achieving a good S/N in this case. This is shown

explicitly in Figure 4: even at the highest redshift we

Table 2

Properties of the Experiments Under Consideration

Experiment Type Experiment z z, f0[ ] S Ná ñ bá ñ sá ñ fevoá ñ
Intensity mapping SKA1-MID 0.1, 3.5[ ] 6.7 1.2 0.4 −0.4

Continuum survey S 10 Jycut m= 0, 3[ ] 8.3 1.9 0.4 −0.6

S 5 Jycut m= 0, 4[ ] 13 2.5 0.3 −0.3

S 1 Jycut m= 0, 5[ ] 32 2.9 0.3 −0.2

Spectroscopic survey Hα survey 0.65, 2.05[ ] 3.6 1.5 0.55 −2.0

Photometric survey LSST-red 0, 1.4[ ] 25 1.75 0.04 3.5

LSST-full 0, 2.5[ ] 210 2.1 0.35 −0.7

Note.The quantities shown in columns 3–7 are, in order: the approximate redshift range probed by each experiment, the average signal-to-noise ratio (S/N, computed

by averaging the ratio of the signal and noise power spectra over redshift and angular scale), and the clustering, magnification, and evolution biases averaged over

redshift.

Figure 4. Dimensionless angular power spectrum for a H I intensity map at
redshift z 3~ with width z 0.5D ~ (orange) and dimensionless temperature
angular power spectrum of the CMB (blue). The much larger amplitude of
perturbations at lower redshifts for intensity mapping can explain the difficulty
in detecting the effect of relativistic corrections in LSS.
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considered, the power spectrum of the intensity mapping is four

orders of magnitude larger than that of the CMB.
Another effect conspiring against the detection of the

relativistic terms in an intensity mapping survey is the fact
that the perturbations on transverse scales cancel exactly (i.e.,
s z 2 5( ) º ), as previously discussed. This further suppresses
the overall amplitude of the relativistic effects, and is the reason
why we do not present forecasts for WL in this case.

4.1.2. Constraints on Primordial Non-Gaussianity

The uncertainty on the level of primordial non-Gaussianity
measured by an intensity mapping experiment will depend on
our prior knowledge of the free parameters of the model. Here
we have imposed a (non-diagonal) Gaussian prior on the
cosmological parameters f h w n A, , , , ,M b s s0{ }W using a prior
covariance matrix estimated from the appropriate Planck 2015
MCMC chains for our set of parameters (Planck Collaboration
2015a). As we have argued, it is reasonable to assume that, by
the time the SKA attempts to measure fNL, prior information
will be available regarding the H I clustering bias (e.g., from
experiments on smaller scales) and evolution bias (e.g., from
external measurements of T zH I ( )).

Before we assume any specific priors for these parameters, it
is worth studying their effect on fNL( )s in order to quantify
how good prior measurements will need to be in order to
optimize the constraints on fNL. We first studied the level of
degeneracy between fNL and b(z) by estimating the value of
fNL( )s assuming a relative Gaussian prior on b z ,( ) constant

across the whole redshift range. The result is shown in the left
panel of Figure 5. We observe that a mild improvement on
fNL( )s ( 10%~ for SKA1-MID and 20%~ for a CV-limited

survey) can be achieved only for extremely accurate prior
measurements of the clustering bias ( b b 10 3D - ). Since it
would not be realistic to expect such a tremendous accuracy,
we adopted a fiducial prior on b of 10%, more compatible with
current measurements of the bias of neutral hydrogen (Masui
et al. 2013).

Using this fiducial prior, we then explored the degeneracy
between fNL and fevo by studying the dependence of fNL( )s on
the prior uncertainty, fevoD . The result is shown in the right
panel of Figure 5. While fNL( )s increases only slightly when

factoring in the uncertainties on the clustering bias, we observe
a much larger increase (e.g., by a factor 2.4 for SKA1-MID)

when we assume no knowledge about the evolution bias of the
sample at all. This suggests a much stronger degeneracy
between fNL and fevo, which could affect any attempt at
measuring fNL with LSS probes (note that a similar issue was
reported by Camera et al. 2015b).
The source of the degeneracy can be understood by

comparing the scale dependence of the terms in Equations (39)–
(44) that are proportional to fevo and fNL respectively.
Primordial non-Gaussianity introduces a term, included in

,ℓ
DD with a k-dependence of the form

k kj k k T k j k k ,ℓ ℓ
2 2( ) ( ) ( ( )) ( ) ( )d c d cµ  where the second

equality holds on ultra-large scales. The evolution bias, on
the other hand, multiplies four different terms:

1. ,ℓ
P1D proportional to k kj k j k k .ℓ ℓ

2( ) ( ) ( ) ( )y c d cµ
2. ,ℓ

V1D which is proportional

to k kj k k j k k .ℓ ℓ
2 2( ) ( ) ( ) ( )q c d cµ

3. ,ℓ
V2D proportional to k j k k.

ℓ
( ) ( )q c¢ For sufficiently large ℓ

( 5 ), this term is also proportional to k j k k .ℓ
2( ) ( )d c

4. ,ℓ
ISWD the ISW term, which involves a much wider

window function covering the full photon path from the
source.

Thus, on large scales, three out of the four terms involving fevo
have the same scale dependence as the fNL term, which
explains the result found above. Fortunately, as can be seen in
Figure 5, the effect of this degeneracy disappears if we can
assume a relatively loose prior on fevo of f 1.evo D That is, if
we parameterize the evolution of background density of H I in
the universe as a a ,H I

( )r µ a the slope α should then be
measured with an error 1.aD In what follows we assume
that such an accuracy will be available from external
measurements of T z ,H I ( ) and impose a Gaussian prior
of f 1.evoD =
For our fiducial set of priors (Planck CMB priors for the

cosmological parameters, b b 0.1,D = and f 1evoD = ), the
final constraints on fNL for SKA1-MID and for a cosmic
variance-limited survey are given in Table 3. We also include
results for an IM survey with a higher fiducial bias, which we
discuss in Section 5.

Figure 5. Left panel: uncertainty in fNL as a function of the prior on b z .( ) A constant Gaussian relative prior was imposed over the whole redshift range. Right panel:
assuming a prior of 10% on b(z) (e.g., 10% uncertainty). This plot shows the dependence of fNL( )s on the prior for fevo.
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4.1.3. Systematic Uncertainties

One of the most important observational challenges for
intensity mapping is the presence of galactic and extragalactic
radio foregrounds (e.g., galactic synchrotron emission and
extragalactic continuum radio sources) with amplitudes several
orders of magnitude larger than the cosmological H I signal.
The potential bias and extra variance induced in the measured
signal by the process of foreground removal must be correctly
taken into account in any analysis.

The strategy underlying most foreground cleaning methods
is to exploit the very different frequency structures of signal
and foregrounds. Most foreground signals have a very smooth
frequency dependence, while the cosmological signal traces the
stochastic fluctuations in the matter density, and is therefore
much “noisier” in the radial (frequency) direction. Broadly
speaking, most cleaning methods try to remove the foregrounds
by fitting and subtracting a set of smooth functions of the
frequency from the combined foreground + cosmological
signal. See Alonso et al. (2015) for a description and
comparison of different methods.

Since foregrounds are smooth in frequency, and frequency is
a proxy for radial distances for an IM experiment, we can
expect the foreground-cleaned maps to be dominated by
systematics on large radial scales. These scales must then be
omitted from the analysis, which reduces the sensitivity of an
experiment to fNL. In order to understand the importance of this
effect, we have studied the dependence of fNL( )s on the
maximum radial separation between redshift bins included in
the computation of the Fisher matrix, i.e., we set to zero the off-
diagonal elements of ℓC corresponding to pairs of bins
separated by more than some radial separation .cD

The results are shown in Figure 6 for SKA1-MID and for a
cosmic variance-limited survey. Reducing the range of the
cross-correlations included in the analysis can degrade the
sensitivity to fNL significantly, enlarging the errors by up to a
factor ∼3.3 in the case of SKA1-MID.

Given that measurements of ultra-large-scale modes will
typically need to be done in single-dish (autocorrelation) mode,
one also needs to worry about the stability of the instrument
and the observational strategy. Much as in CMB experiments,
long-term noise drifts (the “ f1 ” noise) will lead to striping in
the maps, i.e., a coherent set of large-angle features that have
been artificially projected on the sky. A sensible choice of scan
strategy that leads to appreciable cross-linking between the
scans can mitigate the effect, but there will always be a residual

large-angle contaminant. Again, we can model this effect by
not including the very large angular modes in the analysis
(tantamount to assuming that they are filtered out by the
destriping process). Figure 7 gives some idea of the impact of
this effect on the constraints: a severe cut in the large-angle
data significantly degrades any attempt to detect large-scale
features.

4.2. Radio Continuum Surveys

Radio continuum surveys measure the integrated emission of
radio sources in one broad frequency band (or a small number
of them). At radio wavelengths, the spectral energy distribu-
tions (SEDs) of most sources are generally smooth and
featureless, except for a few radio lines such as the
aforementioned 21 cm signal (which can only be resolved for
individual sources after a long integration time). For this
reason, there is little distance information to be gained by

Table 3

Forecasted Constraints on fNL, ,GR and WL .

Experiment Type Experiment fNL( )s GR( )s WL( )s
Intensity mapping SKA1-MID 3.01 2.75 L

(w. 1.5´ bias) 0.90 1.90 L

CV-limited 1.68 1.97 L

Continuum survey S 10 Jycut m= 18.5 26.7 1.90

S 5 Jycut m= 16.0 24.6 0.57

S 1 Jycut m= 11.8 17.1 0.25

Spectroscopic survey Hα survey 6.64 2.57 0.19

CV-limited 3.02 1.35 0.10

Photometric survey LSST-red 4.32 1.41 0.14

LSST-full 1.71 2.33 0.04

Figure 6. Constraint on fNL as a function of the maximum comoving
separation between pairs of redshift bins included in the analysis (at z 1.7,~ 1
Gpc corresponds to ∼100 MHz).

Figure 7. Uncertainty on fNL as a function of the largest angular scale
(minimum ℓ) included in the Fisher matrix calculation. Systematic effects and
incomplete sky coverage can prevent recovery of the lowest multipoles (in this
plot, sky coverage, fsky, is fixed to the survey specifications).
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integrating the flux density over more than a single, wide band.
In turn, using a wide band significantly increases sensitivity,
allowing much fainter sources to be observed than it would be
possible to detect otherwise. Continuum surveys can therefore
cover extremely large volumes, with the caveat that essentially
all information on radial scales (even the ultra-large ones) is
completely inaccessible.

That continuum surveys have the potential to constrain the
level of primordial non-Gaussianity has already been shown in
the literature (Ferramacho et al. 2014; Raccanelli et al. 2015a),
especially if the survey can be split into several different
populations so that the multi-tracer technique (Seljak 2009) can
be used. We attempt to reproduce this result here, as well as
exploring the possible degeneracies of fNL with the relativistic
corrections, and the possibility of detecting the latter. As with
the other probes, we treat the continuum survey as being single-
tracer only, and will not study the potential of the multi-tracer
technique here. (This is left for future work, in which all the
possible cross-correlations will be considered systematically.)

Our forecasts focus on a continuum survey with Phase 1 of
the SKA, since this would correspond to the widest proposed
survey area to date in the Jym~ regime. SKA1 should be able
to detect radio sources out to z 5~ over an area of about 3p
steradians. This survey would be carried out using the SKA1-
MID facility, integrating the source flux in the band
350–1050MHz with an rms noise of S 1 Jyrms m (see Jarvis
et al. 2015 for details).

It is common to define the source detection limit Scut to be
several times higher than the noise level of the experiment
(usually by a factor of 5 or 10, depending on the intended use
of the sample). Assuming an rms instrumental noise for SKA1-
MID of S 1 Jy,rms m= we have defined a fiducial 5s detection
limit (i.e., S 5 Jycut m= ). In order to explore the dependence on
the survey depth, we have also produced forecasts for
S 10 Jycut m= and S 1 Jy.cut m=

4.2.1. Constraints on Relativistic Effects

Relativistic effects in the continuum angular power spectrum
were considered in Maartens et al. (2013) and Chen & Schwarz
(2015). As in the previous section, we first present the most
optimistic forecasts for GR by marginalizing only over fNL. If
the uncertainty on GR is larger than unity (i.e., no detection of
GR effects) in this optimistic case, there is no point in
exploring more realistic scenarios.

There are two main differences between intensity mapping
and continuum surveys in terms of the quantities that can affect
these forecasts. First of all, we can expect the lack of radial
information in continuum surveys to considerably degrade the
constraints on most parameters. Perturbations to transverse
scales will affect the observed clustering of radio sources in this
case, however (i.e., s z 2 5,( ) ¹ unlike for intensity mapping),
which will enhance the amplitude of the relativistic terms.

The constraints on GR found for the three flux limits that we
considered are shown in Table 3. Due to the lack of radial
information, there is no hope of detecting GR effects using only
a single-tracer analysis, in spite of the enormous volume
probed; 17.1GR( )s = even for the deepest (1 Jym ) survey.

We have also produced forecasts for the detectability of the
weak lensing term on large scales for continuum surveys,
following the same logic used in the case of GR (i.e., we keep
all other parameters fixed, except for fNL). In order to pick up
only the large-scale lensing contribution we also used a more

stringent value of ℓ 100.max = The results are summarized in
Table 3: a continuum survey with a flux limit of 1 Jym would
be able to clearly detect the large-scale lensing effect above
4 ,s~ although the level of this detection would be below 2s

for S 5 Jy.cut m= No detection would be possible for a flux cut
of 10 Jy.m

4.2.2. Constraints on Primordial Non-Gaussianity

In a continuum survey, the available information is
compressed into only a small amount of data—the angular
clustering statistics of radio sources—due to the lack of any
sensitivity to radial modes. We can therefore expect an even
larger degree of degeneracy between the various cosmological
and nuisance parameters than for intensity mapping. As before,
we assume Planck CMB priors on all cosmological parameters
(except fNL), and start our discussion of the primordial non-
Gaussianity forecasts by exploring the effect of prior informa-
tion about the bias functions on the fNL constraints. The results
of this analysis are shown in Figure 8.
The top panel of Figure 8 shows the forecast uncertainty on

fNL as a function of a constant relative Gaussian prior for b. In
contrast with the situation for intensity mapping, the constraints
are much more sensitive to the prior on the clustering bias. The
main reason for this is that, for IM experiments, the availability
of redshift information helps to break the degeneracy between
the parameters through the scale dependence of the fNL term
along the line of sight. We find that a 10%~ error on b(z)
would be sufficient to minimize the uncertainty on fNL. Since
this is compatible with previous smaller-scale observations (see
Lindsay et al. 2014), we chose this value as our fiducial prior
on the clustering bias.
The effect of a prior on the magnification bias is shown in

the bottom left panel of Figure 8. We observe a similar
degeneracy with fNL, again mainly due to the lack of redshift
information, which can only be mitigated by prior measure-
ments of s(z) with an error better than s 0.1.D »  We have
assumed that such an accuracy would be achievable using the
magnitude–redshift distribution of sources, although this could
be an optimistic assumption at the highest redshifts. Finally, as
in the case of intensity mapping, we observe a significant
degradation in the uncertainty on fNL if we assume no
knowledge about the evolution bias of the sample (bottom
right panel in Figure 8). This is again due to the degeneracy in
the scale dependence of the terms corresponding to both
quantities (see Section 4.1.2), and can be mitigated by
measuring fevo to an accuracy of better than f 10.evo D
In view of this analysis, our final fiducial set of priors on the

bias functions is b b 0.1,D = s 0.1,D = and f 1.evoD =
Forecasts for fNL with these priors are listed in Table 3 and,
with f 16NL( )s = for the 5 μJy sample, are compatible with the
results of Ferramacho et al. (2014) for their combined sample.
This is far worse than the constraints possible with multiple
tracers, however.

4.2.3. Systematic Uncertainties

The different frequency range and observational techniques
involved in radio astronomy give rise to potentially very
different sources of systematics for continuum surveys
compared with optical and near-infrared surveys. To begin
with, the diffuse nature of galactic synchrotron emission (the
largest galactic foreground at radio frequencies) makes it
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virtually transparent to the long interferometer baselines needed
for a survey aiming to resolve individual sources, and hence the
problem of galactic foregrounds is greatly ameliorated. On the
other hand, in order to produce a full-sky catalog, mosaicing of
the individual pointings must be implemented. If the mosaicing
pattern and correlations in the noise properties between
pointings are not fully understood, they could introduce
systematic deviations on large angular scales. Ionospheric
effects will also be relevant at low frequencies, although this
should not be a problem in the SKA1-MID frequency range.
Bright point sources would also need to be masked in a non-
trivial way, due to dynamical range issues causing increased
noise in the far beam sidelobes. The extent to which this would
affect ultra-large scales is instrument-dependent, however.
Avoiding these systematics might again entail removing the
smallest multipoles of the power spectrum from the analysis;
we show how the constraints on fNL depend on the minimum
multipole ℓmin in Figure 9.

4.3. Spectroscopic Redshift Surveys

Spectroscopic galaxy redshift surveys in the optical and
near-infrared represent the current state-of-the-art in large-scale
structure observations (Percival 2014). The premise is simple:
to detect redshifted emission lines from as many resolved

sources as possible, over as large a spatial volume as possible,

and then to reconstruct the 3D distribution of sources in

redshift-space. Assuming that the source population traces the

Figure 8. Dependence of the uncertainty on fNL on the prior assumed for the clustering bias (top panel, in terms of a relative prior) and the magnification and evolution
biases (bottom left and right panels, shown in terms of an absolute prior).

Figure 9. Dependence of the uncertainty on fNL (solid lines) and GR (dashed
lines) on the minimum scale probed by the survey for different flux limits.
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underlying matter density field, and samples it sufficiently well,
one can then constrain the statistical properties of the
cosmological matter distribution as a function of scale and
redshift. Because the positions and redshifts of the sources can
both be measured with high precision, information about the
matter distribution is retained in the angular and radial
directions, unlike with more lossy techniques like intensity
mapping and photometric redshifts. The downside is that taking
high-resolution spectra for a large number of sources is
extremely time-consuming.

For ultra-large scales, we are primarily interested in beating-
down sample variance by increasing the effective survey
volume. This requires a wide survey area, broad redshift
coverage (preferentially at higher redshifts, where longer
wavelength Fourier modes are accessible), and a sufficiently
high signal intensity/source density that noise will be sub-
dominant. Of the methods considered in this paper, spectro-
scopic galaxy surveys appear the least well-suited to the task of
surveying extremely large volumes. Spectroscopy is time-
consuming, and while precision redshift information is
extremely useful for studying baryon acoustic oscillations
and other smaller-scale phenomena, it is less necessary for the
largest scales, apart from allowing the survey to be split into a
larger number of redshift bins (compare intensity mapping).
Nevertheless, spectroscopic galaxy surveys are the most
developed of the methods, and so have comparatively well-
understood systematic effects. The additional small-scale
information also allows them to measure basic cosmological
parameters more accurately, which helps to break parameter
degeneracies.

We base the specifications of our reference spectroscopic
survey on a large emission-line galaxy (ELG) survey along the
same lines as Euclid (Laureijs et al. 2011), a satellite mission
with a near-infrared spectrograph that will detect 6 107~ ´
Hα-emitting galaxies over 15,000 deg2 in the redshift range

z0.65 2.05.  A similar ELG survey will be performed by
DESI (formerly BigBOSS), which will target [O II] galaxies out
to z=1.7 over 14,000 deg2 (Schlegel et al. 2011). These are
the largest planned spectroscopic surveys,9 but have the
smallest area of the experiments considered here, and the
lowest maximum redshift apart from LSST-red (see
Section 4.4).

4.3.1. Constraints on Relativistic Effects

The most optimistic forecast for ,GR marginalizing over fNL
only, yields 2.6GR( )s = for the Hα survey’s narrowest
redshift binning ( z 0.025D = ). This result is insensitive to bin
width, increasing only slightly to 2.7 for the widest binning
( z 0.1D = ); the additional information gained by decreasing
the bin width is mostly confined to small scales, where the
relativistic effects are essentially negligible. The correlation
between GR and fNL is very weak, and there is no change in the
constraint whether fNL is marginalized or fixed. The survey is
also quite close to its ideal (sample variance-limited)
performance, with GR( )s improving only slightly to 2.2 in
the limit N 0ℓ  for z 0.025.D = These results, together with
the constraints corresponding to a cosmic variance-limited

results (assuming N 0ℓ = and f 1sky = ) are summarized in
Table 3, and have a qualitatively similar behavior.
As with the two previous surveys, then, the relativistic

effects are undetectable. This is despite the relatively high
magnification bias of the Hα galaxies, which boosts the size of
some of the relativistic correction terms. The Hα survey’s sky
coverage and maximum redshift are smaller than for the other
surveys though, which weakens its constraining power. An
experiment with the same specifications as the Hα survey but
covering twice the area (30,000 deg2) would give

1.8GR( )s = (compared with 1.4 in the CV-limited case),
which is still not enough to gain a detection.
Nevertheless, the Hα surveys’s forecast constraint of

2.6GR( )s = is the best so far, and the CV-limited figure of
1.36 is markedly better than SKA1-MID’s value of 1.97,
despite the IM survey having a significantly wider redshift
range. The enhanced performance of the spectroscopic survey
over intensity mapping is primarily due to the different
behavior of the bias functions, particularly s z ,( ) which caused
many of the relativistic effects to cancel for the IM survey.
As before, we also forecast for the detectability of the large-

scale lensing effect, parameterized by .WL After restricting to
modes ℓ 100 and marginalizing only over fNL, we find

0.19WL( )s = for all three choices of redshift bin width—a
strong detection (see Table 3).

4.3.2. Constraints on Primordial Non-Gaussianity

As with the previous two probes, our fNL forecasts include a
Planck CMB prior and priors on the bias functions
( b b 0.1,D = s 1,D = f 1evoD = ). The results are shown in
Table 3 for the z 0.025D = redshift binning.
The forecast constraint from the Hα survey is f 6.8,NL( )s =

which is worse than the intensity mapping survey by a factor of
∼2. While the Hα survey has a consistently higher bias (which
enhances the non-Gaussian bias signal, b 1µ - ), it covers a
narrower redshift range and smaller area than the IM survey, so
ultimately loses out when the higher-redshift bins of the IM
survey are taken into account (see Figure 16, below). The
difference in performance remains in the CV-limited case,
again mostly due to the wider redshift range of the IM survey.
The Hα constraint degrades only slightly to f 7.2NL( )s =

for the widest redshift binning, z 0.1.D = Similarly, it is only
weakly sensitive to ℓ ,max improving from f 7.2NL( )s = for
ℓ 200max = to 6.6 for ℓ 1000max = (both for z 0.025D = ). The
addition of significantly more small-scale information in both
the radial and transverse directions is therefore only mildly
beneficial.
As with the IM survey, there is a reasonably strong

degeneracy between fNL and fevo, predominantly for the
highest-redshift nuisance parameter bin. Figure 10 shows the
effect of changing the prior on fevo—an 1( ) prior is sufficient
to completely break the degeneracy. The results are insensitive
to the prior on the magnification bias, and there is no gain to be
had from tightening the bias prior until a very low level of
b b 1%D is reached.

4.3.3. Systematic Uncertainties

Spectroscopic surveys are prone to systematic effects on
large angular scales. Redshift surveys commonly consist of
samples from several non-contiguous fields, surveyed during
different observing seasons and possibly even with different

9
A proposed H I galaxy survey with Phase 2 of the SKA would detect 109~

galaxies over ∼30,000 deg2 for redshifts z0 2  (Yahya et al. 2015), but is
considerably more futuristic.
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instruments, which can make it tricky to patch them together
into a single coherent survey volume. They may also suffer
from the problem of not having a homogeneous magnitude
limit, i.e., the magnitude cuts vary, and cannot easily be
mapped onto a substantial and complete 3D volume of the sky.

Galactic extinction is a dominant source of systematic error
on large angular scales. Dust in our galaxy changes the overall
true flux cut of the survey, and introduces number density
fluctuations that vary with the shape of the Galaxy. This must
be corrected for (e.g., by fitting an extinction template) to avoid
biasing the inferred large-scale power. Variations in airmass
and seeing also affect the number of photons reaching the
detector in a way that is correlated with the elevation of the
telescope. This induces additional dispersion in the magnitude
of the measured galaxies, and the ability to distinguish them
from stars.

Stars themselves are problematic. For example, a small
fraction of the observed sources may in fact be misidentified
stars that contaminate the galaxy sample. Stars also obscure
regions of the sky of the order of the size of the point-spread
function, which reduces the observed density of galaxies
nearby. While this should be a small effect for an individual
star, which will mask an area of 10 6~ - of a degree, the total
obscured area can be significant given the large stellar density
(which grows toward the galactic plane). In fact, stellar
contamination was found to be a dominant source of systematic
error in the recent analysis of the BOSS data (Ross et al. 2011),
where it introduced a significant bias in the measurement of the
correlation function on large angular scales if left uncorrected.
This bias was well above the statistical uncertainty, to the
extent that the correlation functions measured in the northern
and southern Galactic hemispheres of the survey were
inconsistent with one other.

While many of these effects can lead to fluctuations in the
number density of galaxies as a function of redshift, inducing
systematics along the radial direction, the dominant effect is on
large angular scales, reducing the effective area of the survey
and hampering accurate recovery of the lowest ℓ modes.
Figure 11 shows how the forecast constraints on GR and fNL
depend on the minimum recoverable ℓ mode of the survey.
There is a rapid loss of information on both parameters as ℓmin

increases, with fNL( )s doubling from 6.8 for ℓ 2min = to
around 13 at ℓ 10.min = The degradation is similar for ,GR( )s
which also doubles in the same range. As such, future
spectroscopic surveys will likely need excellent control over
large-scale systematics if they are to be used to constrain fNL.

4.4. Photometric Redshift Surveys

One of the main drawbacks of spectroscopic surveys is the
long integration times needed to resolve galaxy spectra
sufficiently well to yield a good redshift estimate. Because of
this, the number of targets selected for spectroscopic follow-up
is usually much smaller than the total imaged sample, which
significantly limits the survey depth and number density that
can be achieved.
In a photometric redshift survey, each galaxy that is detected

with a sufficiently high signal-to-noise ratio is imaged in a
small number of wide frequency bands. This provides a very
coarse measurement of the galaxy’s spectrum, convolved with
the bandpass of each band, which can be used to statistically
infer its redshift. These photometric redshifts (usually abbre-
viated “photo-zʼs”) have much larger uncertainties than their
spectroscopic counterparts, and most of the information about
gravitational clustering on radial scales is lost. Photo-zs can be
recovered for much fainter galaxies than spectroscopic red-
shifts, however, and so photometric surveys have the ability to
cover significantly larger volumes. This potentially makes them
more suitable for constraining cosmological observables on
ultra-large scales.
The first wide-area, deep photometric surveys are already

underway (Kaiser et al. 2002; Dark Energy Survey Collabora-
tion 2005). Their results will pave the way for the Large
Synoptic Survey Telescope (LSST, LSST Collaboration et al.
2009), which will surpass them in terms of area, depth, and
angular resolution (although the latter is not a critical factor for
this work). We have thus chosen to produce Fisher forecasts for
LSST as the best photometric survey that we will have access
to in the foreseeable future.
We have assumed that the LSST will observe two separate

galaxy populations: early-type (“red”) galaxies and late-type
(“blue”) galaxies. Although this is a simplistic picture, it allows

Figure 10. 1D marginal errors on fNL for a Hα spectroscopic survey as a
function of the prior on fevo. A Planck prior on the cosmological parameters is
also included.

Figure 11. 1D marginal errors on fNL and GR as a function of the minimum
usable spherical harmonic mode, ℓ ,min for the Hα survey z 0.025 .( )D = For the
fNL results, we have added a Planck prior to break degeneracies with other
cosmological parameters, as well as priors on the bias func-
tions ( b b 0.1,D = s 1,D = f 1evoD = ).
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us to study the effect that different properties of the sample will
have on the final constraints:

1. Early-type galaxies form preferentially in high-density
regions, and are associated with high-mass haloes. They
are therefore more highly biased than blue galaxies,
which is desirable for measuring fNL.

The number density of red galaxies decays very fast
beyond redshift z 1.~ On the one hand, the drop should
be associated with a larger evolution bias, which could
enhance the amplitude of the relativistic terms. On the
other, it limits the largest scales that the red sample can
probe. Finally, the spectra of red galaxies show
prominent features, most importantly the 4000ÅBalmer
break. These features are easy to locate, even using only
photometric information, and therefore photo-zs for red
galaxies are more accurate on average.

2. Blue galaxies are found in lower density regions and
correspond to lower-mass haloes. They are therefore
more faithful tracers of the total matter density field, and
have a lower bias, which impacts their usefulness for
measuring fNL. LSST should be able to observe a
significant number of blue galaxies up to much higher
redshifts than the red population (z 3~ ), however, so
their large-scale clustering properties can be studied more
accurately. Finally, photometric redshifts for blue
galaxies will be more uncertain than those for red
galaxies, as discussed above.

We will provide forecasts for two samples: a sample of red
galaxies only, labeled “red,” and a sample containing all of the
galaxies observed by LSST (red + blue), which we will call the
“full” sample. Although LSST will be able to detect galaxies
down to a magnitude limit of 27.5 in the r-band, it is not clear
that the photometric redshift requirements will be satisfied for
this survey depth. We have therefore adopted a more stringent
magnitude cut of i 25.3,< corresponding to the so-called
LSST “gold” sample (LSST Collaboration et al. 2009). We
have further assumed that LSST will cover the whole southern
hemisphere ( f 0.5sky = ).

4.4.1. Constraints on Relativistic Effects

As with the previous experiments, we start by exploring the
possibility of detecting the contribution of the relativistic terms
to the clustering of LSST galaxies in the best-case scenario, by
marginalizing over only fNL while keeping all other cosmolo-
gical parameters fixed to their fiducial values. Two main
differences with respect to the previous tracers give some hope
for detecting GR with LSST. First of all, the sharp decay in the
number density of red galaxies can enhance the amplitude of
the relativistic terms thanks to the large value of fevo. Also,
LSST covers a wider survey area and redshift range than
spectroscopic surveys, so has access to larger scales.

The results are summarized in Table 3. Even though the
higher value of fevo for red galaxies helps to decrease the
forecast uncertainty on ,GR it is still impossible to detect
relativistic effects using either sample; 1.4GR( )s = and 2.3
for the red and full samples respectively. The red sample
nevertheless produces the best constraint on GR of any of the
surveys considered above.

As before, we predict the detectability of the large-scale
magnification lensing by marginalizing only over fNL and using
a small-scale cutoff ℓ 100.max = Our results (see Table 3) show

that this effect should be clearly detectable (well above 5s) for
both the “red” and “full” samples.

4.4.2. Constraints on Primordial Non-Gaussianity

Even though photometric redshifts erase most of the
clustering signal on all but the largest radial scales, they are
still sufficient to enable a tomographic analysis of galaxy
clustering to be performed. This helps immensely in breaking
many of the degeneracies reported for continuum surveys
(which retain essentially no radial information).
We studied the importance of breaking these degeneracies by

again calculating fNL( )s as a function of the priors on the bias
parameters, finding that the forecasted uncertainty is almost
completely insensitive to any priors on the clustering and
magnification biases, b(z) and s z .( ) For the reasons outlined in
Section 4.1.2, this behavior does not follow for the evolution
bias, so it is useful to explore the prior constraints on fevo that
are required in order to optimize the measurement of fNL.
Figure 12 shows the dependence of fNL( )s on a constant
Gaussian prior imposed on fevo. The degeneracy between the
parameters can be largely mitigated by measuring the evolution
bias with an accuracy of f 1.evo D
As in the previous cases, we produced our final forecasts for

fNL by assuming Planck CMB priors for the cosmological
parameters, a 10% uncertainty on the clustering bias, and priors
of s 1D = and f 1.evoD = The final results are summarized in
Table 3. LSST should be able to impose very tight constraints
of f 1.7NL( )s  using galaxy clustering autocorrelations
(single-tracer) alone.

4.4.3. Systematic Uncertainties

Most of the sources of systematics that affect photometric
redshift surveys are exactly the same as for their spectroscopic
counterparts: galactic extinction, variations in sky brightness,
seeing, and stellar contamination (due to both stars affecting the
local observed number density of galaxies and stars erro-
neously being included in the galaxy sample). All of these
effects can potentially contaminate the signal measured on
large angular scales. Figure 13 shows the degradation in the
constraints on fNL when the largest scales are omitted in the

Figure 12. Uncertainty on fNL as a function of the size of the prior assumed for
fevo for the “red” and “full” samples.
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analysis. Limiting ourselves to scales ℓ 10 would increase
our best-case error bars by over 50%, to f 2.8.NL( )s ~

The use of photometric redshifts also carries its own
systematic effects. In order to obtain a reliable estimate of
the power spectrum of the galaxy density field that we can use
to constrain large scales, it is necessary to have a sufficiently
accurate model of the window function for every redshift bin.
Unless a spectroscopic subsample drawn from the same
distribution as the photometric one is available, which is rarely
the case, deriving a correct model for the true redshift
distribution N z¯ ( ) is a challenging task, although it has been
noted that this issue could be ameliorated by cross-correlating
the photometric sample with any spectroscopic survey (New-
man 2008). The presence of photometric redshift outliers can
also modify the tails of the photo-z distribution, which affects
the shape of the redshift window functions. The level to which
this effect is problematic will depend on how accurately the
photo-z probability density function (pdf) can be characterized.

5. DISCUSSION

It has been argued that general-relativistic corrections to the
number density of galaxies should be observable with future
cosmological surveys. In particular, ultra-large-scale features in
the power spectrum of density fluctuations could in principle be
detectable with deep and wide surveys such as those that will
be carried out by the next generation of experiments. In this
paper we set out to systematically examine this claim for the
most relevant surveys planned for the next decade or so. At the
same time, we performed forecasts for the expected constraints
on the scale-dependent bias that arises from primordial non-
Gaussianity, another key effect on ultra-large scales. Our
analysis uses a more rigorous formalism than is usually
followed, based on computing all possible angular cross-
correlations between different redshift bins instead of using an
approximate 3D power spectrum approach, and avoiding the
flat-sky and Limber approximations.

Our main conclusion is that, if we restrict ourselves to the
single-tracer power spectrum of the density fluctuations, in
either two or three dimensions, all previously undetected
contributions to the power spectrum of source number counts

are completely unobservable. Note that we have labelled these
terms as “GR effects” in this work, thus excluding the lensing
magnification term, which we have treated separately due to its
very different properties (see below).
In hindsight, this result is not surprising.10 A number of

papers have previously attempted to forecast the optimal
constraints on fNL from a variety of surveys, with the general
conclusion being that, at best, one can detect a value of
f 1 2NL –~ at 1σ. Our work has confirmed these results. Given
that GR has a similar (although not identical) effect on the
power spectrum as f 1,NL ~ we expect the same level of
sensitivity to relativistic effects. If we are to aspire to a
statistically significant detection of the relativistic effects, we
would need a sensitivity of 0.1 0.2,GR( ) –s ~ which is clearly
unachievable with any of the single-tracer survey techniques
and strategies analyzed here.
It is interesting to look at each of the survey techniques in

turn to see why they fall short of our desired target:

1. On the face of it, intensity mapping is a particularly
promising approach to efficiently surveying large
volumes of the universe—it can simultaneously produce
very deep surveys and cover large areas. One would
expect this to be ideal for constraining both GR and fNL.
Relative to the other techniques, intensity mapping
suffers from the fact that one of the substantial
corrections on large scales—the perturbation to angular
distances—is absent. As was shown in Section 2.1,
because one is measuring an intensity rather than source
number density, there is an exact cancellation of the
lensing contributions to both the number density and
angular diameter distance corrections. This has a
significant impact on the size of the relativistic correction
signal and thus the detectability of .GR Intensity mapping
can be used to obtain reasonably tight constraints on fNL,
although there too it is placed at a disadvantage by the
“Gaussian” clustering bias, bG, for neutral hydrogen
being smaller than for other types of probe. Note that
while most halo-based models predict a low H I bias,
measurements of the clustering of damped Lyα systems
carried out by Font-Ribera et al. (2012) point toward a
significantly higher value at z 2. If we multiply our
fiducial bias function by a factor of 1.5´ (so that b 2» at
z=2.2), we obtain a significantly better constraint of
f 0.9NL( )s = for an IM survey going out to z=3.5. Our

forecasts for fNL are very sensitive to the fiducial bias
model, and therefore could change significantly with
better empirical measurements.

We must also point out that the survey specifications
we assumed are such that the measurements of the power
spectra are only cosmic variance-limited on the very
largest scales. It might be possible to improve the
constraints on fNL (by up to 30% in the most optimistic
case) by reducing the noise (e.g., by increasing the
survey time).

2. Radio continuum surveys, while efficient at accessing
large volumes, are remarkably poor at constraining both

GR and fNL in a single-tracer context. The loss of all
radial information through projection over a wide redshift
range has a significant toll on their ability to discriminate

Figure 13. Dependence of the uncertainty on fNL (solid lines) and GR (dashed
lines) on the minimum scale probed by LSST for the two samples
considered here.

10
See, e.g., Challinor & Lewis (2011), Jeong et al. (2012), and Yoo et al.

(2012) for similar statements using less quantitative analyses.
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between different effects in the power spectrum. If we are
to benefit from continuum surveys, a more sophisticated
multi-tracer approach is needed, as we will discuss below.

3. We also looked at the ability of a spectroscopic survey to
constrain large-scale features in the power spectra. The
advantage of this type of survey is ostensibly their ability
to obtain high-resolution measurements in both the
angular and radial directions—more so than in any other
type of survey considered here, although in practice this
comes at a price. Spectroscopic surveys are time-
intensive, and so surveys are limited to smaller areas of
the sky and shallower depths. The average number
density of (usable) galaxies is also lower than for other
surveys, and hence the effective noise on large angular
scales can be more substantial. As was the case with
intensity mapping, our forecasts for fNL depend crucially
on the fiducial clustering bias, which for Hα emitters is
also relatively low.

4. Deep and wide photometric surveys seem to be the most
effective method for probing large scales, for the
parameters we considered here. The loss of resolution
along the radial direction (as compared to a spectroscopic
survey) is compensated by the significantly wider redshift
coverage and larger survey area. Photometric surveys are
also a more rapid way of counting galaxies, so source
number densities are higher than for contemporary
spectroscopic surveys. Finally, the clustering bias for
the sources that LSST will observe is significantly higher
than for H I and Hα galaxies, boosting its ability to detect
fNL substantially.

Figure 14 compares the redshift range and comoving volume
probed by the various experiments studied here. Measuring
ultra-large-scale observables depends critically on the ability to
cover very large volumes, but we have seen here that this is far
from the only factor. Even though an SKA1 continuum survey
should be able to access the largest volume of any of the
surveys, its inability to use radial information prevents it from
achieving a competitive measurement of fNL without the use of
the multi-tracer technique.

It is therefore also relevant to compare the range of radial
and angular scales covered by each experiment. We do this in

Figure 15 for intensity mapping, photometric, and spectro-
scopic surveys covering redshifts z 2.< The gray hashed
region corresponds to inaccessible scales, either larger than the
survey volume or smaller than the nonlinear scale. While
spectroscopic surveys have essentially complete access to the
k k- ^ plane, photometric surveys and intensity mapping are
limited to only large radial or angular scales respectively.
This is not necessarily an important inconvenience for ultra-

large-scale observables. The colored contours show the relative
amplitude of the fNL signal for each of these surveys
(spectroscopic in black, photometric in red, and IM in blue)
for f 10.NL = In the large-k region that only spectroscopic
surveys have access to, the amplitude of the signal is relatively
low. Note also that radial and angular scales should not be
treated equally in this plot; simply by a dimensionality
argument (two angular dimensions versus one radial), better
angular coverage will usually be more advantageous.
Finally, our ability to measure any signal depends critically

on its amplitude. In the case of primordial non-Gaussianity, this
depends on the sample’s clustering bias, since
b b 1 .NG ( )D µ - This dependence can be observed in

Figure 16, where we show the forecasted uncertainty on fNL
as a function of the maximum redshift covered by each survey.
Even though intensity mapping has the potential to cover the
largest volume while also preserving radial information, the
improvement of fNL( )s with z is significantly slower, in
particular in the range z 1 1.5,–~ where the H I bias is very
close to unity.

Figure 14. Comoving volume and redshift range covered by the experiments
considered in this work.

Figure 15. Regions in the space of transverse and parallel wavenumbers
(k k,^ ) accessible for various surveys. Red: region accessible to a photometric

redshift survey with 0.05.0s = The large k-regime is lost due to the

inaccuracy of photo-zs. Blue: region accessible by an SKA1-MID IM survey in
single-dish mode (D 15 mdish = ). Small transverse scales are inaccessible due
to the beam width. White (containing red and blue regions): region accessible
to a full-sky spectroscopic survey covering up to z=2. Contours: the relative
amplitude of the contribution to the three-dimensional power spectrum due to
primordial non-Gaussianity, with f 10,NL = for these three experiments, in
black (spectroscopic), red (photometric), and blue (intensity mapping). Note
that this amplitude depends on the clustering bias of each tracer.
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We emphasize that all of our forecasts depend on a variety of
astrophysical model assumptions. By this we mean that we
have had to predict the number densities and biases for the
surveys as a function of redshift, based on existing data and
simulations. Getting these assumptions correct is key for
accurate forecasting, and substantial work will have to be done
—for all types of surveys—to better estimate these quantities.
Nevertheless, we are confident that our models are sufficiently
representative that our broad point is correct, and that the
numbers we present here give a fair representation of what to
expect from future surveys. On this point it is also worth noting
that it is in principle possible to further constrain the level of
primordial non-Gaussianity from measurements of higher-order
correlations. Such measurements are extremely challenging at
present due to the large theoretical uncertainties (e.g., in the
form of the bias in the presence primordial non-Gaussianity,
the form of the bispectrum and its covariance in redshift space,
the value of the nonlinear clustering bias etc.). Further studies
of the three-point function might eventually make such
measurements possible, possibly superseding the forecasts
presented here.

Conservatively, we did not include the lensing magnification
contribution to the power spectrum as one of the effects
parameterized by ,GR even though it is a fully relativistic
effect. This is because magnification has a significant amplitude
on sub-horizon scales, and has in fact already been detected by
cross-correlating pairs of distant tracers. This is qualitatively
different to the situation for the other relativistic terms, which
are significant only on ultra-large scales, and which have not
been measured yet in large-scale structure. Figure 1 indicates
that the lensing magnification contribution to the power
spectrum can dominate the GR terms parameterized by GR at
ultra-large scales, however. This large-scale contribution has
not been detected in current small-volume surveys, but
previous work has forecasted its detectability (Yoo 2009;
Namikawa et al. 2011; Yang & Zhang 2011; Montanari &
Durrer 2015; Yang et al. 2015). By defining a parameter, ,WL
corresponding to the amplitude of the magnification lensing
term alone, we have quantitatively verified its detectability,

showing that the large-scale lensing contribution should be
detectable above 5s in all relevant experiments. It has also been
shown by Lopez-Honorez et al. (2012), Namikawa et al.
(2011), and Camera et al. (2015a) that omission of the lensing
+ GR terms leads to a bias in the recovered value of f .NL This
was predicted to be at the 3s~ level for an SKA Phase 2 H I

spectroscopic survey (Camera et al. 2015a). Our analysis shows
that GR cannot be responsible for this bias, leading to the
conclusion that it must be almost exclusively due to the ultra-
large-scale lensing term.
We also tested the consistency of our results with the recent

work by Montanari & Durrer (2015), who find 1%~ constraints
on WL (their parameter β) for a Euclid photometric survey.
Marginalizing over the same set of cosmological parameters as
them (except the neutrino mass, mν), and choosing
ℓ 1000,max = we obtain 0.06WL( )s = for the Hα spectro-
scopic survey with z 0.1D = bins. This is consistent with their
results to within a factor of a few, which is reasonable given the
differences in survey specifications, fiducial magnification bias
functions, and maximum ℓ used.
As a further test we then repeated this analysis, but restricted

ourselves to only large-scale modes, ℓ 100, and marginalized
over the bias nuisance parameters as well. While one would
likely fix the bias functions to their fiducial forms when
attempting a first detection of the large-scale lensing effect, the
bias uncertainties must be taken into account for precision
measurements of WL (e.g., if used to test GR, as discussed in
Montanari & Durrer 2015). We find a strong correlation
between WL and the magnification bias, especially at higher
redshifts, which is to be expected given that both factors
multiply the lensing term in the expression for the number
count. Figure 17 shows how the WL constraint depends on the
magnification bias prior for the various surveys; the spectro-
scopic and photometric surveys both require s 1D to
measure WL to better than 100%, and sD of order a few
10 2´ - to reach their optimal constraints. Continuum surveys

require a stronger prior of 0.1~ just to reach a 100% constraint
on WL (for 1 and 5 μJy flux limits), and are also subject to
strong correlations with other bias parameters, as discussed in
Section 4.2.2. The continuum constraints shown in Figure 17
were derived for fixed clustering bias, but if this is marginalized

Figure 16. Constraints on fNL as a function of the maximum redshift covered
by each of the surveys considered here. The comoving volume per steradian at
each z is indicated on the upper x-axis.

Figure 17. Constraints on WL as a function of the prior on the magnification
bias. The same parameters, and priors for the other bias functions, were used as
in the fNL analysis, except for the continuum survey, where the clustering bias
was not marginalized.
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over (with a 10% relative prior on b), WL( )s increases by a
factor of ∼2.

The fact that we are unable to detect GR from the single-
tracer power spectrum should not at all lead us to give up hope
of seeing the GR corrections, however. Indeed, this is just the
first step in identifying the most effective observables for
teasing out the ultra-large-scale effects. In order to beat down
the cosmic variance that is a fundamental barrier to single-
tracer detectability, one must use multi-tracer techniques. In
some sense these divide out the stochastic part of the
perturbation field, avoiding the effects of cosmic variance for
certain (non-stochastic) quantities. By cross-correlating differ-
ent tracers, with different bias functions, it is possible to isolate
a number of terms from the scale dependence due to non-
Gaussianity, relativistic effects, and growth of structure, in such
a way as to obtain much tighter constraints than those from the
overall power spectrum alone. It has been shown that multi-
tracer techniques applied to continuum surveys can lead to an
improvement by almost an order of magnitude in the detection
of fNL, for example. We expect that the GR effects will also be
detectable via this approach (Yoo et al. 2012). A systematic
analysis of multi-tracer techniques in the surveys described
here is, therefore, an obvious next step in trying to identify
robust methods for measuring ultra-large-scale effects.

Note added.While this paper was being finalized, Raccanelli
et al. (2015b) appeared, which discusses some related topics.
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APPENDIX A
MODIFICATIONS TO CLASS

In order to compute the power spectra used for the Fisher
forecasts, we used the public code CLASS (Lesgourgues 2011).
In its current version, CLASS encompasses the extension
CLASSgal (Di Dio et al. 2013), which can be used to compute
the transfer functions iD in Equations (39)–(44). The public
version of the code is easy to install, run, and modify, and we
encourage its use; however, a number of modifications had to
be implemented in order to make it usable for our work. We
have made our modified version of the code publicly available
at http://intensitymapping.physics.ox.ac.uk/codes.html, and
document the main changes here:

1. The terms ,LD P4D , and ISWD in Equations (39)–(44) can
be computationally very demanding to compute. The
main reason for this is the wide redshift range covered by
their window functions—these terms correspond to
integrated effects along the photon trajectory from the
source to the observer. In the current version of CLASS,
including these terms in the calculation of Cℓ

ij for a single
redshift bin at z=0.5 takes about 10 minutes running on
a modern four-core computer. This makes including these

terms for the large number of bins used in this project
(e.g., 100 bins for intensity mapping) prohibitively
expensive, so we invested some time in speeding up the
calculation of these terms.

Two modifications were implemented. First of all,
the code was parallelized for distributed memory
machines using MPI, so that each node computes the
transfer functions of a different set of redshift bins.
Second, some redundant calculations were circumvented
by precomputing the window functions W ,L ( )h WP4 ( )h ,

and W ISW ( )h in Equation (45) and storing them in
memory. This last modification speeds up the computa-
tion of the integrated terms by a factor of ∼4, although it
requires more memory.

2. We implemented the effect of primordial non-Gaussianity
by including the scale-dependent contribution to the bias
in Equation (47).

3. We modified the input/output system for the bias
parameters b z ,( ) s(z), and f z .evo ( ) These can now be
supplied as tabulated z-dependent functions. Furthermore,
fevo must now be provided separately from the redshift

distribution, N z .¯ ( )
4. We implemented the possibility of adding an extra

parameter for each redshift bin that corresponds to the
photo-z uncertainty, so that the window function in each
bin can be computed as in Equation (82). In doing this,
we also modified the input/output system for defining the
redshift bins. The bin properties must now be supplied in
different columns in a separate text file. We believe this
system is better suited for a large number of redshift bins.

5. Finally, we included the extra parameter ,GR used in this
paper to parameterize the amplitude of the relativistic
corrections. This is not a general-purpose modification.

APPENDIX B
SURVEY SPECIFICATIONS

In this appendix we provide the detailed specifications for all
four of our reference surveys. The codes used to generate the
fiducial redshift distributions and bias functions have been
made available online.11

B.1. Intensity Mapping

B.1.1. Noise Model and Redshift Binning

For an IM autocorrelation experiment, the simplest case is to
assume that the noise is uncorrelated between different
frequency channels, and has a white noise power spectrum:

N . 57ℓ
ij

ij sr
2 ( )d s=

Here sr
2s is the noise variance per steradian, and can be

calculated as follows: the noise per pointing can be estimated as

the rms temperature fluctuation of the system, T ,sys scaled by the

number of independent samples measured (given by t ,pdn
where dn is the frequency channel width and tp is the

integration time per pointing). tp can be approximated by

t f4 ,tot sky( )pDW where fsky is the surveyed fraction of the sky,

DW is the solid angle covered in each pointing, and ttot is the

total survey time. Finally, scaling this by the total number of

11
http://intensitymapping.physics.ox.ac.uk/codes.html
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dishes in the experiment, we obtain the power spectrum

N
T f

t N

4
. 58ℓ

ij
ij

isys
2

sky

tot dish

( )
( )d

n p

dn
=

Note that the variance per pointing has been multiplied byDW
to obtain the variance per steradian, which cancels the

dependence on .DW The system temperature receives two

contributions, T T T ,sys sky inst= + due to atmospheric and

background radio emission (T 60 K 300 MHzsky
2.5( )n´ - )

and instrumental noise (Tinst).
Finally, it is worth noting that two different conventions

have been adopted in the literature regarding the effect of the
beam that defines the angular resolution of the experiment. The
difference is in interpreting the beam as smoothing the signal
on scales beyond the resolution, or as enhancing the noise at
those same scales. We use the former, so that the model for the
total observed power spectrum is

C C B B N , 59ℓ
ij

ℓ
S ij

ℓ
i

ℓ
j

ℓ
ij, ( )= +

where Bℓ
i is the harmonic transform of the instrumental beam in

the ith frequency bin. We have assumed that the beams are

Gaussian, B ℓ ℓexp 1 2 ,ℓ
i

B
2( ( ) )q= - + where Bq is related to

the beam FWHM through 2 2 ln 2 .FWHM Bq q= The beam

width can be related to the dish diameter approximately

as c D .FWHM dish( )q n
In our forecasts for SKA1-MID, we used the instrumental

parameters T K25inst = , f 0.75sky = , t 10 htotal
4= ,

D 15 m,dish = and N 254,dish = and assumed a minimum
frequency of 350 MHz, corresponding to z 3.max 

Modern radio receivers have very high frequency resolution
(e.g., 0.1 MHzdn ~ ), so H I intensity mapping experiments
should be able to resolve radial structures on scales much
smaller than those relevant for cosmology. We are therefore
free to choose the width and shape of the redshift bins used for
the cosmological analysis. In order to avoid inhomogeneous
coverage of radial scales, we divide the total frequency band
into frequency bins of varying width ( )n nD such that the
corresponding comoving size cD is held constant. We
estimated the minimum number of frequency bins needed for
the constraints on fNL and GR to converge, finding that at least
100 bins were necessary. This corresponds to a radial width
of h44 Mpc .cD 

B.1.2. Nuisance Parameters and Redshift Evolution

We model the clustering, magnification, and evolution biases
for H I using an approach based on the halo model. We first
assume that a one-to-one relationship exists between halo mass
and H I mass, M M M z, .H HI I ( )= The density and clustering
bias can then be computed as

z dM n M z M M z, , , 60
M

M

H HI I

min

max

( ) ( ) ( ) ( )òr =

b z dM n M z b M z
M M z

z
, ,

,
, 61

M

M

H
H

H

I
I

Imin

max

( ) ( ) ( )
( )

( )
( )ò r

=

where n M z,( ) is the halo mass function (comoving number

density per unit mass) and b M z,( ) is the halo bias. The

background brightness temperature can then be computed in

terms of H I
r using Equation (26).

As described in Section 2.1.2, the transverse distance
perturbations cancel out for intensity mapping, so that
s z 2 5H I ( ) = exactly. Furthermore, since we observe the
emission from all of the H I in each patch of the sky, the
evolution bias can be computed directly by differentiating H I

r
with respect to z,

f
d z

d z

log

log 1
. 62evo

H I[ ]( )

( )
( )

r
= -

+

All that remains is to specify the function M M z, .H I ( ) As in

Bull et al. (2015), we assume a power-law relation

M M z M,H I ( ) µ a with an exponent 0.6,a  and with the

normalization set by constraints on H IW at z=0.8 from

Switzer et al. (2013).

B.2. Radio Continuum Surveys

B.2.1. Number Counts, Bias Functions, and Noise Model

The models for the signal and noise power spectra are very
simple compared with the other probes, as the galaxy sample is
distributed in a single redshift bin, with a window function
given by the redshift distribution,

W z N z . 63( ) ¯ ( ) ( )µ

We estimate N z¯ ( ) for the radio sources from empirical

estimates of the luminosity functions of the main radio

populations, since these also contain the necessary information

to estimate the magnification and evolution biases. We consider

four main radio galaxy types: star-forming galaxies (SF),

starbursts (SB), radio-quiet quasars (RQQ), and Faranoff–Riley

type I active galactic nuclei (AGNs) (FRI).12 The luminosity

functions for each population were computed following the

prescriptions of Wilman et al. (2008).
We will now outline the procedure used to calculate the

redshift distribution, s, and fevo in all cases, and refer the reader
to Wilman et al. (2008) and the references Yun et al. (2001)
(SF and SB), Ueda et al. (2003) (RQQ), and Willott et al.
(2001) (FRI) for details on the observations that the luminosity
functions are based on. These details are also summarized in
Appendix C. As with optical and IR surveys (see Sections 4.3
and 4.4), the k-correction to the flux measured in a given band
is also needed in order to accurately estimate the observed
number counts. This can be done for radio sources by assuming
a particular SED for each population. For this, we again used
the models from Wilman et al. (2008).
In its rest frame, a radio source has a luminosity per unit

frequency given by

L
dE

dt d
L , 64

e

e e

( )

( )
( )

*
*n
j n
j n

º =n n

where
*
n is a pivot frequency and ( )j n is the source SED. This

is related to the flux per unit frequency measured by the

observer by

S
dE

dt d dA

L

z z4 1
1 2 . 65

o

o o o

z1

2
( )

( )( )
– ( )

( )

n pc
dº =

+
n

n +
^

12
We also considered FRII galaxies, but their number density is so low that

they contribute negligibly to the total number counts.
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Consider a radio survey in a given frequency band

( , f0[ ]n n nÎ ). The average flux density measured for one

source is defined as

S S
d

, . 66f
f

0
0

f

0

¯ ( ) ( )òn n
n

n n
=

-n

n
n

A given source will be detected if its average flux is above the

detection limit S ,cut and therefore all sources with a pivot

luminosity above a minimum value L L 1 2cut cut¯ ( )
* *

dº +n n ^ will

be included in the sample, where the average threshold

luminosity is

L z S
S z z

z z
,

4 1

1 , 1
, 67

f

cut
cut

cut
2

0( )
( )¯

( )( ) ( )

¯ ( ) ( )
( )*

*

p c j n
j n n

=
+

+ +
n

and the average SED in the observed band is

d
, . 681 2

2 11

2

¯ ( ) ( ) ( )òj n n j n
n

n n
º

-n

n

Given a pivot frequency ,
*
n the luminosity function

n z L, lns¯ ( )
*
n at that frequency, and a characteristic SED

,( )j n the redshift distribution of sources can be computed
as

N z
c z

z H z
z L

1
, , 69

2

3

cut( )¯ ( )
( )

( ) ( )
¯ ¯ ( )

*


c
=

+
> n

where ̄ is defined as in Equation (8). s(z) and f zevo ( ) are then

calculated from ̄ using Equations (28) and (29).
For the clustering bias, we follow the same approach used in

Wilman et al. (2008) and assign a fixed halo mass to each
population. The corresponding bias is then found as the halo-
model bias for that mass as a function of redshift. For this we
parameterize the halo bias as in Sheth & Tormen (1999). We
have also explored the approach followed in Ferramacho et al.
(2014), where each population is given a distribution of halo
masses rather than a fixed one, and the bias is found by
averaging over that distribution. No significant differences
were found between the approaches, so we use the first,
simpler one.

Once the redshift distribution and bias functions have been
calculated for each population, we compute them for the
combined sample as a weighed average of the individual ones,

N z N z , 70
a

atot
¯ ( ) ¯ ( ) ( )å=

b s f z b s f z
N z

N z
, , , , , 71

a
a

a
evo tot evo

tot

( ) ( )( ) ( )
¯ ( )

¯ ( )
( )å=

where a labels the population. Separating the different

populations is a very costly observational task. For our

purposes, the main benefit of doing this is to allow the use of

the multi-tracer technique to circumvent cosmic variance.

Since we have postponed the multi-tracer analysis for future

work, we will only report our forecasts here for the combined

sample of radio sources. Figure 18 shows the redshift

distribution for the combined sample for the three different

detection limits considered here. The luminosity functions,

redshift distributions, and bias can be obtained using a code

that we have made publicly available.13 This provides an easy

way to obtain number counts and power spectra without

needing to query the full simulation of Wilman et al. (2008).

Our results are consistent with the simulation except for the

total number counts of star-forming galaxies, where our

numbers are a factor of 2.5´ higher. This is consistent with

what is described in Jarvis et al. (2015) and references therein,

however.
The most relevant source of noise in a clustering analysis of

discrete sources is shot noise, determined by the number

density of sources. The angular number density of radio

sources in the sample, N ,¯W is determined by integrating the

redshift distribution

N dz N z , 72
0

¯ ¯ ( ) ( )òºW
¥

and the noise power spectrum is given by

N N . 73ℓ
1¯ ( )= W

-

B.3. Spectroscopic Redshift Surveys

B.3.1. Noise and Signal Model

Spectroscopic galaxy surveys measure Equation (11), the

perturbation to flux-limited number counts

nz F, , log .N cut( ˆ )D > This depends on the clustering, magnifi-

cation, and evolution bias functions for the source population.

The latter two can be derived from the background luminosity

function of the sources, n z L, log ,s ( ) given the flux limit and

efficiency of the survey. Number counts are subject to a

Poisson shot noise term that depends on the number density of

sources, which can also be obtained from the luminosity

function.
We follow the current set of public specifications for a

realistic Hα spectroscopic survey, described in Amendola et al.

(2013). The number counts presented in Table 1.3 of that paper

can be approximately reproduced by using the best-fit Hα

Figure 18. Angular number density of radio galaxies as a function of redshift
for the combined continuum sample considered here, and for different flux cuts.

13
http://intensitymapping.physics.ox.ac.uk/codes.html

23

The Astrophysical Journal, 814:145 (28pp), 2015 December 1 Alonso et al.

http://intensitymapping.physics.ox.ac.uk/codes.html


Schechter luminosity function found by Geach et al. (2010),

n z L L x e dx

x L L z

L z
z z

z

, ;

,
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erg s ,
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( )
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*

*
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ò j> =

º

=
´ + <
´ < <

a
¥

-

-
⎧
⎨
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where L is the Hα line luminosity and we have assumed a flux

limit of F 3 10cut
16= ´ - erg s−1 cm−2, an efficiency of

0.45, = a faint-end slope of 1.35,a = - and comoving

number density normalization 1.37 10 3*f = ´ - Mpc−3. The

predicted galaxy number density as a function of redshift is

shown in Figure 19. There are significant uncertainties in this

model, which we account for by marginalizing over a set of

bias function nuisance parameters, as explained in Section 3.

Finally, for the clustering bias we use the simplified

prescription from Amendola et al. (2013), b z z1 ,( ) = +
which we also subject to the nuisance parameterization.

The assumed bias functions for the Hα survey were shown
in Figure 2. The evolution bias is large and negative, and grows
more negative with redshift until z 1.3,= where there is a
discontinuity in the L z( )* model, beyond which L z const.( )* =
and so f 0.evo = This is not particularly realistic, but is the best
that can be done until updated constraints on the high-redshift
Hα luminosity function become available. The magnification
bias grows rapidly with redshift, and deviates significantly from
s=0.4 over most of the range, meaning that there is little or no
cancellation of the transverse scale perturbation as there was in
the intensity mapping survey (although this is contingent on the
uncertain behavior of the luminosity function model for
z 1.3> ). The clustering bias is relatively close to unity across
the entire redshift range, slowly evolving from a minimum of
b 1.3» at z=0.65 to a maximum of b 1.8» at z 2.»

We consider three constant-width redshift binnings for
the selection function over the interval z0.65 2.05:  zD =
0.025, 0.05, 0.10 ,( ) yielding (56, 28, 14) bins respectively. The
target redshift uncertainty for, e.g., Euclid is z0.001 1z ( )s +
(Laureijs et al. 2011), which is always significantly smaller than
the narrowest bin width. As such, we assume a uniform (top-hat)

selection function, weighted by the source redshift distribu-
tion, N z .¯ ( )
Our noise model assumes that only shot noise is relevant,

and that effects such as spectroscopy failures and point source
masking have been taken into account in the survey efficiency,
ò. The shot noise angular power spectrum is

N n n N z dz; . 74ℓ
ij

ij i i
z i

¯ ( ) ( )òd= º

with ni measured in units of sr−1. In our forecasts, we assumed

that a wide range of multipoles can be recovered,

ℓ2 1000,  with no cuts at high or low ℓ due to systematics,

nonlinear effects, and so on (this assumption was relaxed in

Section 4.3.3).

B.4. Photometric Redshift Surveys

B.4.1. Redshift Distribution and Bias Parameters

In order to compute N z ,¯ ( ) s z ,( ) and f zevo ( ) for our two
samples, we need an estimate of the luminosity function for
both red and blue galaxies, preferably in the r-band, for which
the LSST specifications are provided. We describe the method
used for this task here.
For the red sample we follow a method similar to that used

by Joachimi et al. (2011). First, an estimate of the B-band
luminosity function for red galaxies is obtained from Faber
et al. (2007) as a Schechter function with constant slope

0.5,a = - and z-dependent
*
f and M ,

*
measured in a number

of redshift bins in the interval z 0.2, 1.2 .( )Î We extrapolate
the luminosity function to higher/lower redshifts by fitting the
values of these parameters, measured by Faber et al. (2007), to
the models

M z M M z, 750 1( ) ( )
*

= +

z
z z1

10 Mpc 76
a

0

0

3 3( )
( )

( )
*
f

f
=

+
- -⎡⎣ ⎤⎦

with M 20.6,0 = - M 0.49,1 = - 1.82,0f = z0=1.04, and

a=7.17. In order to translate this into an r-band luminosity

function, we use B r 1.32- = (Fukugita et al. 1995) and

assume that B−r does not evolve significantly for the red

sample in the redshift range under study.
For the full sample, we use the r¢-band luminosity function

found by Gabasch et al. (2006) and approximate r r.¢  This is
again given as a Schechter function with constant slope

1.33a = - and z-dependent M* and ,
*
f for which we have

used the following parameterizations:

M z M a zln 1 , 770( ) ( ) ( )
*

= + +

z z z 10 Mpc 780 1 2
2 3 3( )( ) ( )

*
f f f f= + + - -⎡⎣ ⎤⎦

with M 21.49,0 = - a 1.25,= - 2.59,0f = 0.136,1f = -
and 0.081.2f = - The luminosity function for blue galaxies

is then estimated as the difference between those of the full and

red samples.
An absolute magnitude, M, measured in a given rest-frame

band for a galaxy at redshift z is related to the apparent

Figure 19. Predicted number density of galaxies as a function of redshift for
the Hα spectroscopic survey.

24

The Astrophysical Journal, 814:145 (28pp), 2015 December 1 Alonso et al.



magnitude in the observer-frame band, m, by

M m
d z

h

h k z

25 5 log
1 Mpc

log , 79

L
10 1

10

( )

( ) ( )

= - -

+ -

-

⎡

⎣
⎢

⎤

⎦
⎥

where dL(z) is the luminosity distance and k(z) is the k-

correction corresponding to that galaxy’s SED redshifted to z.

We estimated k(z) for red and blue galaxies by running the code

kcorrect (Blanton & Roweis 2007) on the spectra of an

elliptical galaxy and a barred spiral galaxy (Sbc) respectively,

as measured by Coleman et al. (1980). We approximate and

extrapolate these k-corrections as k z z2.5red ( ) ~ and

k z1.5 .blue ~ We verified that these parameterizations are

compatible with the k-corrections shown in Fukugita et al.

(1995) for both types, and also that the final redshift

distributions did not vary significantly when other functional

forms are used. For a given magnitude limit m ,cut we use

Equation (79) to compute the corresponding luminosity cut Lcut
¯

as a function of redshift. The redshift distribution, magnifica-

tion bias, and evolution bias for each population are then

estimated using Equations (28)–(30), respectively, and with the

luminosity functions described above.
Regarding the clustering bias, for the full sample we use the

parameterization b z z1 0.84 ,full ( ) = + based on the simula-
tions of Weinberg et al. (2004) and quoted in the LSST science
book (LSST Collaboration et al. 2009). Red galaxies should
have a larger bias, which we parameterize as
b z z1 .red ( ) + This parameterization is compatible with
bias measurements at redshifts z 1< (e.g., Coil et al. 2008).
Since the red population dies off at z 1.4,~ this extrapolation
should not significantly influence our final result, especially as
we ultimately marginalize over b z .( )

The redshift distributions for the two samples considered
here are shown in Figure 20. For this figure, as well as in our
forecasts, we assume a magnitude limit of i 25.3,= corre-
sponding to r 26~ for typical galaxy colors, as quoted in
LSST Collaboration et al. (2009). According to the models
used here, the total number of galaxies observed by LSST
should be ∼40 per arcmin2, in qualitative agreement with
previous results (Ilbert et al. 2006; LSST Collaboration
et al. 2009).

B.4.2. Photometric Redshifts, Binning, and Shot Noise

The quality of a given photo-z algorithm is normally quoted
in terms of its rms error, z z ,z

2
photo true

2( )s º á - ñ which is
typically parameterized as

z z1 . 80z 0( ) ( ) ( )s s= +

The photometric redshift requirement for the LSST gold

sample, as quoted in LSST Collaboration et al. (2009), is

0.05,0s < with a goal of 0.02. As described above, since the

spectral properties of red galaxies make their photometric

redshifts more accurate than those of the blue population, we

have assumed the following photometric redshift uncertainties

for the two samples:

0.02, 0.05. 810
red

0
full ( )s s= =

We have also assumed that the data will be analyzed by
dividing the sample into a number of photo-z bins. Let z0

i and zf
i

be the limits of the ith bin. The window function in this bin
must trace the true z distribution of galaxies within it, and is
therefore given by the product of the overall redshift
distribution and the photo-z probability distribution, integrated
over the bin:

W z N z w z , 82i i( ) ¯ ( ) ( ) ( )µ

w z dz p z z , 83i

z

z

p p
i

f

i

0

( )( ) ( )ò=

where p z zp( ∣ ) is the photo-z pdf. Assuming a Gaussian photo-z

distribution, we can write the window functions w zi ( )

analytically as

w z
z z z z1

2
erf

2
erf

2
. 84i

i

z

f
i

z

0( ) ( )
s s

=
-
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-⎡

⎣
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⎛

⎝
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⎞

⎠
⎟
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⎝
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⎞
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⎤

⎦
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The tails of w zi ( ) correlate different redshift bins to a much
larger degree than the intrinsic correlations due to gravitational
clustering do, which is an expression of the loss of information
on radial scales. In order to reduce this correlation and avoid
redundant calculations, the widths of the redshift bins are
usually defined to be of the order of .zs In this work we have
chosen to define the width of our bins to be three times the
photo-z dispersion at the bin center. For the values of zs

Figure 20. Angular number density of galaxies as a function of redshift for the LSST “red” (left plot) and “full” (right plot) samples. The colored lines show the
window functions of the different redshift bins considered here.
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assumed here, this results in 15 bins for the red sample and 9
bins for the full sample. The window functions for the bins are
shown in Figure 20.

Finally, as in the case of spectroscopic and continuum
surveys, the main source of statistical noise in the measurement
of clustering anisotropies is shot noise. The noise bias term for
photometric surveys is thus given by

N
n n

, 85ℓ
ij ij

i j
( )

d
=

where

n dz N z w z , 86i i

0

¯ ( ) ( ) ( )òº
¥

Note that this reduces to Equation (74) in the case of top-hat

windows (i.e., 0zs  ).

APPENDIX C
LUMINOSITY FUNCTION OF RADIO SOURCES

We will summarize here the steps that were followed to
compute the luminosity functions of the different radio sources
that would be observable with a continuum survey. We follow
almost exactly what was done by Wilman et al. (2008) to
simulate the distribution of radio galaxies, but we would like to
describe the details of the calculation here for the benefit of the
potential users of the codes used in this paper.

We will discuss five main galaxy populations: star-forming
galaxies, starbursts, radio-quiet AGNs, and radio-loud AGNs
of types FRI and FRII. We note that we use the convention for
the luminosity function used in Section 2.1, where n z L,s ( ) is
the physical (not comoving) number density of objects per
unit Lln .

C.1. Star-forming Galaxies and Starbursts

The luminosity functions of normal star-forming galaxies
and starbursts used here are based on the luminosity function
derived from the IRAS 2 μJy sample by Yun et al. (2001) at
1.4 GHz. This is modeled as a sum of two Schechter functions,
which we identify with two populations: normal and starburst
galaxies respectively. Thus, for both normal star-forming
galaxies and starbursts, the z=0, 1.4 GHz luminosity function
is parameterized as

n z L n
L

L

L

L
0, exp , 87s ( ) ( )

*
* *

= = -
a⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
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where in each case

n
3.2 10 Mpc for normal galaxies

8.3 10 Mpc for starbursts
88

4 3

6 3
( )

*
=

´
´

- -

- -

⎧
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L
2.10 10 W Hz sr for normal galaxies

1.44 10 W Hz sr for starbursts

89

22 1 1

23 1 1
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*
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⎡⎣ ⎤⎦
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and 0.633a = - in both cases. This parameterization is valid

for luminosities above Llog W Hz sr 19.6,10
1 1[ ] =- - and it is

assumed to be constant for lower values of L, in agreement with

Mauch & Sadler (2007).

In agreement with Rowan-Robinson et al. (1993), we assume
a pure luminosity evolution of this luminosity function,

n z L z n z L f z, 1 0, , 90s s
3( ) ( ) ( ( )) ( )= + =

f z
z z z

z z z

1 for

1 for ,
91
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with z 1.5.0 = This parameterization was obtained assuming a

cosmological model , 1, 0 .M( ) ( )W W =L We adapt it to our

fiducial cosmology by scaling the number densities and

luminosities by the ratios of comoving volumes and luminosity

distances in both models,

n z L n z L
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where the indices 1( ) and 2( ) indicate quantities computed in

two different cosmological models.
The SED for both normal and starburst galaxies was

assumed to be

e1 1 10 93GHz
2

GHz
0.65( )( )( ) ( )j n n nµ - +t- -

with 1 GHzGHz ( )n nº and ,GHz
2.1( )

*
t n n= with

0.005
*
n = for normal galaxies and 1

*
n = for starbursts. This

corresponds to a combination of thermal free–free emission and

non-thermal synchrotron from supernovae. We did not include

a dust component in this SED, as mentioned in Wilman et al.

(2008), which should be irrelevant for the range of redshifts

and frequencies studied here.

C.2. Radio-loud AGNs

The luminosity function for FRI and FRII radio-loud AGNs
was based on model “C” of the luminosity function at151 MHz
derived by Willott et al. (2001). This luminosity function
consists of low-luminosity and high-luminosity components,
which we identify with FRI and FRII sources respectively.
For FRI galaxies, the z=0 luminosity function takes the

form of a Schechter function

n z L
n L

L

L

L
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with n 10 Mpc ,7.12 3

*
= - - Llog 1 W Hz sr 26.110

1 1( )
*

=- - ,

and 0.539.a = - The model also assumes a pure density

evolution,

n z L z f z n z L, 1 0, 95s s
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z z z

1 for

1 for
, 96

4.3
0

0
4.3

0( )
( )

( )
( )=

+ <

+

⎪

⎪

⎧
⎨
⎩

where z 0.706.0 =
For FRII galaxies, the luminosity function takes the form of

a Schechter function with an inverted exponential term,

n z L
n L

L

L

L
0,

ln 10
exp , 97s ( ) ( )*

*

*= = -
a⎛

⎝
⎜

⎞

⎠
⎟

⎡
⎣⎢

⎤
⎦⎥

with n 10 Mpc ,6.196 3

*
= - - Llog 1 W Hz sr 26.95,10

1 1( )
*

=- -

and 2.27.a = - As for FRI, a pure density evolution is
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assumed, with

f z
z z

z
exp

2
98

0
2

2
( )

( )

( )
( )

*
s

= -
-⎛

⎝
⎜

⎞

⎠
⎟

z
z z

z z

0.559 for

1.378 for ,
99

0

0

( ) ( )
* s =

<⎧
⎨
⎩

where z 1.91.0 = As in the case of star-forming galaxies, these

luminosity functions were derived for an Einstein–de Sitter

background, so had to be adapted to our fiducial cosmology

using Equation (92).
A power-law SED with 0.75( )j n nµ - was assumed for both

types of radio-loud AGNs.

C.3. Radio-quiet AGN

Radio-quiet AGNs make up the majority of the total AGN
population, as is observed from the hard X-ray luminosity
function. This can be combined with the relation between hard
X-ray and radio luminosities (Brinkmann et al. 2000),

L

L

log erg s

1.012 log W Hz sr 21.3, 100

10 2 10 keV
1

10 1.4 GHz
1 1

( )

( )

( )

( ) ( )

–

= +

-

- -

to derive the 1.4 GHz luminosity function.
For this we use the X-ray luminosity function of Ueda et al.

(2003) in the 2 10 keV– band, parameterized at z=0 as

n z L
A

L L L L0,
ln 10

, 101s X X X
1

1 2( ) ( ) ( ) ( )
* *

= = +g g -⎡⎣ ⎤⎦

where LX is the X-ray luminosity, A 5.04 10 Mpc6 3= ´ - - ,

0.861g = , 2.23,2g = and Llog erg s 43.94.10
1( ( ))

*
=-

The evolution with redshift is parameterized as a luminosity-
dependent density evolution,

n z L z f z L n z L, 1 , 0, , 102s X X s X
3( ) ( ) ( )( ) ( )= + =

with

f z L

z z z

z
z

z
z z

,

1 for

1
1

1
for ,

103X

4.23
0

0
4.23

0

1.5

0

( )
( )

( )

( )=
+ <

+
+
+

-

⎧

⎨
⎪

⎩
⎪

⎛

⎝
⎜

⎞

⎠
⎟

where z0 is a luminosity-dependent function

z L
L L L L

L L

1.9 for

1.9 for ,
104X

X X

X

0
1
0.335

1

1

( ) ( )
( )


= <⎪

⎪

⎧
⎨
⎩

with Llog erg s 44.6.10 1
1( ( )) =-

A power-law SED with 0.7( )j n nµ - was assumed for
radio-quiet AGNs.
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