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Ultra-large-scale phase-field simulation study of ideal grain

growth
Eisuke Miyoshi1, Tomohiro Takaki2, Munekazu Ohno3, Yasushi Shibuta4, Shinji Sakane1, Takashi Shimokawabe5 and Takayuki Aoki6

Grain growth, a competitive growth of crystal grains accompanied by curvature-driven boundary migration, is one of the most

fundamental phenomena in the context of metallurgy and other scientific disciplines. However, the true picture of grain growth is

still controversial, even for the simplest (or ‘ideal’) case. This problem can be addressed only by large-scale numerical simulation.

Here, we analyze ideal grain growth via ultra-large-scale phase-field simulations on a supercomputer for elucidating the

corresponding authentic statistical behaviors. The performed simulations are more than ten times larger in time and space than the

ones previously considered as the largest; this computational scale gives a strong indication of the achievement of true steady-state

growth with statistically sufficient number of grains. Moreover, we provide a comprehensive theoretical description of ideal grain

growth behaviors correctly quantified by the present simulations. Our findings provide conclusive knowledge on ideal grain

growth, establishing a platform for studying more realistic growth processes.

npj Computational Materials  (2017) 3:25 ; doi:10.1038/s41524-017-0029-8

INTRODUCTION

Microstructural coarsening during grain growth plays a significant
role in the manufacturing of engineering materials, since their
properties are largely affected by grain size.1, 2 Moreover, cellular
pattern evolutions exhibiting common features with grain growth
are ubiquitously observed in organic and inorganic matters of all
aggregation states.3 Thus, grain growth has long been the subject
of multi-disciplinary interest. Among the various types of grain
growth phenomena, ideal grain growth under the conditions of
isotropic grain boundary energy and mobility is the most
simplified but important one, and its understanding offers an
essential model highlighting the effects of complicated factors
present in real materials (e.g., anisotropy, lattice defects, solute,
and additional phases). For more than half a century, many
researchers have attempted to develop a theoretical model of
ideal growth. However, a conclusive model has yet to be
established especially for three-dimensional systems, largely
because a ‘correct answer’ for testing the validity of theoretical
predictions is still not available, despite a significant amount of
studies devoted to the observation and characterization of ideal
grain growth.
Since the experimental observation of three-dimensional ideal

grain growth in model systems such as soap froths is complicated,
the detail of this phenomenon has been investigated via
numerical simulations using continuum-based grain growth
models.4–15 The reported results generally agree in that the grain
growth kinetics in the steady-state regime, where the normalized
grain size distribution is time invariant,16 obeys the parabolic
law.17, 18 However, the values calculated for the kinetic coefficient
of the above law vary from study to study. Furthermore, the

reported steady-state grain size distributions exhibit large
discrepancies, even for studies employing the same numerical
model.8, 11 This confusion is attributable to the different
simulation scales employed in previous studies. Actually, to
definitely confirm that the steady-state regime has been reached,
a statistically sufficient number of grains must remain in the
system for checking the time invariance of the grain size
distribution; however, there appears to be no agreement on the
adequate number of remaining grains.19 Thus, ultra-large-scale
simulation is strongly demanded as the only method to solve this
problem and capture the nature of ideal growth.
In this study, we perform ultra-large-scale ideal grain growth

simulations with up to 2,5603 grid points by utilizing parallel
graphics processing unit (GPU) computing20–22 on a super-
computer. The multi-phase-field (MPF) numerical model23 is
employed, enabling accurate treatment of curvature-driven
boundary migration. The performed simulations elucidate the
authentic statistical behavior of ideal grain growth. Furthermore,
we propose a theoretical model capable of describing the ‘correct
answer’.

RESULTS

First, we investigated the number of sample grains sufficient to
obtain repeatable results for grain size distributions without large
statistical bias and noise. For this purpose, three replicated
simulations were performed for randomly generated grain
structures, with size distributions calculated for all of them.
Herein, the size of a grain is defined by its volume (V)-equivalent
radius, R ¼ 3V=4=πð Þ1=3; whereas normalized grain size
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histograms (R/<R>, where <R> denotes the average grain radius)
were built using a typical bin width (0.1). The statistical reliability
of the calculated distributions was evaluated by checking their
coincidence. To ensure that the obtained results are free from the
artificial effects of periodic boundaries, five computational models
with different domain sizes were employed (Supplementary Fig. 1);
cubic domains including 25,000; 200,000; 675,000; 1,600,000; and
3,125,000 initial grains were divided by cubic regular grids into
5123; 10243; 15363; 20483; and 25603 grid points, respectively. The
initial <R> values were same for all cases. Dimensionless
computational parameters were set as follows: time increment
Δt = 0.075, grid size Δx = 1, grain boundary energy σ = 1, and grain
boundary mobility M = 1.
The evolved microstructures obtained for a 25603-point system

are depicted in the Supplementary Movie, and some of them are
displayed in the upper row of Fig. 1a, with roughly 10% (333,833),
1% (29,644), and 0.4% (12,380) of initial grains remaining at times
t = 10,000Δt, 55,000Δt, and 100,000Δt, respectively. This computa-
tional scale exceeds those of the largest simulations performed to
date11–15 by a factor of more than 10 in space (domain size and
grain number) and time (elapsed simulation time11, 13, 15 or
fraction of the disappeared initial grains12, 14). The above figures
confirm that grains generally exhibit equiaxed shapes, as expected
for microstructures formed via ideal grain growth. The lower row
of Fig. 1a shows grain size distributions at times corresponding to
the upper row, as calculated from three replicated simulations for
25603-point systems (results for other domain sizes are given in
Supplementary Fig. 2). Here, the average numbers of remaining
grains, <N>, in three simulations are also provided for each time.
The figures reveal that the difference between the results of each
simulation run increases (or, equivalently, the statistical bias or
noise increases) with decreasing grain number. Herein, we
introduce the maximum difference, δmax, between the results at
a given time as a simple quantity to evaluate the statistical
reliability of the calculated distributions:

δmax ¼ max DPði;mÞ � DPði; nÞj j ji ¼ 1; 2; 3; � � � ;m; n ¼ 1; 2; 3f g;
(1)

where DP (i, m) is the value of the ith data point in the size
distribution obtained from the mth simulation (Eq. (1)). Figure 1b
shows δmax values calculated for different domain sizes as a

function of <N>, revealing that δmax increases almost mono-
tonically with decreasing <N>, with the curve shape being
independent of the domain size. Even when several thousands
to approximately ten thousand grains remain, δmax values
significantly exceeding 0.1 are observed, considered being not
very small compared to the height of the size distribution (~0.9–1
at its maximum). For example, size distributions at t = 100,000Δt
(δmax = 0.105) show relatively large differences around their peaks
(Fig. 1a). In contrast, at t = 10,000Δt (δmax = 0.018) and 55,000Δt
(δmax = 0.042), these differences are acceptably small. For the
remainder of this study, in order to discuss grain growth behavior
based on maximally reliable statistics, we mainly use the data set
obtained for 25603-point systems within t≤ 75,000Δt, where far
more than then thousand grains remain in each system (<N> =
18,878 at t = 75,000Δt) and δmax is less than 0.1. This time range is
long enough to observe a steady-state regime, as demonstrated
below.
Next, we present a detailed investigation of steady-state grain

growth behavior, with Fig. 2a, b showing the temporal evolution
of grain size distribution (see Supplementary Movie for more
detailed data). Numeric data points are given as the average of
three replicated simulations with error bars representing the
standard deviation, which is the same for the following figures.
The theoretical function of Hillert18 is also depicted for compar-
ison. In Fig. 2a, the peak height of the distribution suddenly
declines at early stages, well matching Hillert’s prediction around
t = 2,500Δt. Subsequently, however, the peak height continues to
fall, and the distribution becomes broader. At later stages of
10,000Δt≤ t≤ 75,000Δt, the temporal change of the distribution is
quite small, while <N> decreases by a factor of about 20 (Fig. 2a,
b). In particular, almost no change with very small statistical errors
is observed for 35,000Δt≤ t≤ 75,000Δt, strongly indicating that
the true steady state has been reached. The steady-state grain size
distribution exhibits a symmetrical shape similar to that of a
normal distribution, but has a relatively long tail extending toward
large sizes. This feature is also maintained for t > 75,000Δt
although the statistical fluctuation gets larger, depicted in the
Supplementary Movie. Figure 2c shows the temporal variation of
the squared average grain radius, <R>2, in the steady-state regime
(35,000Δt≤ t≤ 75,000Δt), with all error bars being smaller than
0.2% of the mean. During this period, the kinetics of the system

Fig. 1 Evaluation of the statistical reliability of calculated grain size distributions. a Top: evolved microstructures obtained for a 25603-point
system at different time periods. Grains are distinguished by different colors. Bottom: grain size distributions calculated from three replicated
simulations for 25603-point systems for times corresponding to the upper row. b Maximum difference as a function of the average number of
remaining grains in three simulations, calculated for different domain sizes
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follows the parabolic law17, 18:

<RðtÞ>2 � <Rðt0Þ>2 ¼ KMσ t � t0ð Þ; (2)

where t0 is the initial time, and K is the kinetic coefficient obtained
as K = 0.479 by least-square fitting.
The results summarized above provide robust evidence for the

existence of a steady-state regime and correct statistics describing
the morphology and kinetics of ideal grain growth (Eq. (2)). The
transient time required to achieve the steady state was around
35,000Δt, during which 98% of the initial grains disappeared; this
is several times longer than the total simulation time used in the
largest simulations11–15 reported so far. The present extra-large-
scale simulations have enabled us to retain far more than ten
thousand grains for such long time periods and certainly observe
the time-invariant grain size distribution. Hereafter, based on the
obtained results, we discuss the theoretical description of ideal
grain growth, demonstrating that the morphological and kinetic
aspects of this phenomenon can be predicted analytically.

DISCUSSION

To our knowledge, the only analytical approach describing ideal
grain growth without any fitting parameters is the mean-field
theory, which was originally developed by Hillert18 and recently
reformulated to a more general form by Rios et al.24 and Darvishi

Kamachali et al.25 The basic equation of this theory is the mean-
field approximation for the growth rate of individual grains:

R
dR

dt
¼ αMσ ρ

R

<R>
� 1

� �

; (3)

where α is a geometrical constant and ρ is a parameter
determined from volume conservation as ρ = <R>2/<R2>, where
<R2> denotes the average squared grain radius. Hillert estimated α
as ~1. In Fig. 3a, we tested the validity of Eq. (3) with α = 1 by
comparing it to the present simulation result, confirming that this
equation exhibits good agreement with simulated results in the
range of 0.2≤ R/<R> ≤ 1.8. Since grains with R/<R> = 0.2 − 1.8
account for almost 97% of all grains in the steady state, Eq. (3) is
believed to be a good approximation. Using Eq. (3) and the
Lifshitz-Slyozov theory26 of particle ripening, recent studies24, 25

have derived a generalized form of Hillert’s grain size distribution
function, f (R/<R>), that depends on the mean-field parameter, γ,
involved in the Lifshitz–Slyozov stability condition. The value of γ
can be calculated using ρ = <R>2/<R2> and the relation25 0.8557 +
0.0107γ − 0.5509 exp(-γ) ≈ ρ. When ρ = 8/9 and γ = 4, f (R/<R>) is
identical to Hillert’s original solution. Figure 3b shows the
temporal variations of ρ and γ calculated from simulations. At
early stages, these parameters suddenly decrease and cross ρ = 8/
9 and γ = 4 around t = 2500Δt, where the grain size distribution is
similar to the original Hillert distribution (Fig. 2a). During the

Fig. 3 Comparison of theoretical models and simulated results for the grain-size-related aspects of steady-state ideal grain growth. a Average
growth rate for each size class. b Temporal variations of mean-field parameters ρ and γ. c Grain size distribution. In all panels, numeric data
points are given as the average of three replicated simulations for 25603-point systems, with error bars representing the standard deviation.
For most of the data points, the error bars are smaller than the symbols

Fig. 2 Investigation of steady-state ideal grain growth behavior. a, b Grain size distributions during a transient and b steady-state regimes. c
Temporal variation of the squared average radius during the steady state regime. In all panels, numeric data points are given as the average of
three replicated simulations for 25603-point systems, with error bars representing the standard deviation. For most of the data points, the
error bars are smaller than the symbols
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subsequent steady-state regime, the above parameters take
almost constant values of ρ ≈ 0.866 and γ ≈ 3.17. For γ < 4, the
specific form of f (R/<R>) is given by24, 25:

f R
<R>

� �

¼ 3γ3=2ρ R
<R>

ρ R
<R>

� �2 � γρ R
<R>

þ γ
n o5=2

exp � 3
ffiffiffi

γ
p
ffiffiffiffiffiffiffiffiffiffiffi

4� γ
p arctan

2ρ R
<R>

� γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ 4� γð Þ
p þ arctan

γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ 4� γð Þ
p

 !( )

;

(4)

A curve for Eq. (4) with ρ = 0.866 and γ = 3.17 is depicted in Fig. 3c
and compared with the simulated result, confirming that the

above equation shows excellent agreement with our simulation. In
addition, the kinetic coefficient K of the parabolic law (Eq. (2)) can
be derived as K = 2ρ2α/γ from the mean-field theory.18, 24, 25

Substituting the ρ and γ values obtained above into this formula

yields K = 0.473, which is very close to the simulated value of 0.479
(Fig. 2c).
We also found it possible to theoretically predict another

morphological aspect of ideal grain growth in addition to grain
size, namely grain topology (usually defined by the number of

faces per grain, n). Herein, we constructed a predictive model by
utilizing the mean-field theory and some previous works.27, 28 The
starting point of our approach was to obtain a topology-based
kinetic equation consistent with the mean-field approximation

(Eq. (3)). Recently, Okita and Shibuta28 have derived the following
topological equation for the growth kinetics of three-dimensional
individual grains: RdR=dt ¼ πMσ=6

ffiffiffi

n
p � 12=πð Þ: In this derivation,

they simplified the MacPherson–Srolovitz law,27 which is a

rigorous extension of the well-known von Neumann–Mullins
law29 to three-dimensional systems, by approximating a grain with
a volume-equivalent sphere. Although their model provides a

fairly simple formula, the spherical approximation could mis-
estimate the one-dimensional measure (mean width) included in
the MacPherson–Srolovitz law for polyhedral grains with small
number of faces,30 leading to an inaccurate prediction of the

growth kinetics of such grains. Thus, instead of the spherical
model, we created a modified one that treats an n-faced grain as n
cones. This approximation results in the following equation as a

simplified form of the MacPherson-Srolovitz law

(see Supplementary Note):

R
dR

dt
¼ π

6
Mσg1ðnÞ

ffiffiffi

n
p

� 12

π
g2ðnÞ

� �

;

g1ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n n� 1ð Þ
p

= n� 2ð Þ
n o1=3

;

g2ðnÞ ¼ 0:52504
ffiffiffi

n
p

arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2 cos πn= n� 2ð Þ=3f g
p

:

(5)

When n→∞, Eq. (5) is reduced to the original Okita–Shibuta
equation, since g1(n) and g2(n) asymptotically approach unity with
increasing n. Combining Eqs. (3) and (5) affords a relationship
between grain topology and size, which can be almost perfectly
fitted by a quadratic function (see Supplementary Fig. 3):

n ¼ 3:944α2ρ2
R

<R>

� �2

þ 13:91� 7:887αð Þαρ R

<R>

þ 14:76� 13:91αþ 3:944α2

(6)

By applying a variable transformation R/<R>→ n to the grain size
distribution function (Eq. (4)) using Eq. (6), the distribution
function for grain topologies, f(n), can be obtained as:

f n ¼ n R
<R>

� �� �

¼ f R
<R>

� �d R=<R>ð Þ
dn

¼ f R
<R>

� �

´ 7:887α2ρ2 R
<R>

þ 13:91� 7:887αð Þαρ
	 
�1

:
(7)

In Fig. 4, we tested the validity of our present Eqs. (5)–(7) by
comparison with simulated results. Here, the value of α in Eqs. (6)
and (7) was set to unity following Hillert’s estimation. Figure 4a
concludes that both the original and modified Okita-Shibuta
equations offer a fairly good description of the individual grain
growth kinetics for relatively large n values. However, while the
original equation deviates from the simulation for small n values,
the modified one preserves its good agreement. Figure 4b reveals
that Eq. (6) is in good agreement with the simulated topology-size
relation within relative errors of less than 5% for a wide range of
sizes, 0.1≤ R/<R>≤ 1.8, accounting for almost 97% of all grains.
On the other hand, there is relatively large deviation between the
analytical curve and simulation results for very small and large
grain sizes. One possible source of the deviation is the mean-field
approximation (Eq. (3)) that we used in deriving Eq. (6). Actually,

Fig. 4 Comparison of theoretical models and simulated results for the grain-topology-related aspects of steady-state ideal grain growth. a
Average growth rate for each topological class. b Average topological class for each size class. c Grain topology distribution. In all panels,
numeric data points are given as the average of three replicated simulations for 25603-point systems, with error bars representing the
standard deviation. For most of the data points, the error bars are smaller than the symbols
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we can see in Fig. 3a that the mean-field approximation deviates
from the simulation results when grain size is very small or large,
as in Eq. (6). Another possible source causing the deviation for
small sizes is the diffuse interface used in the phase-field model,
due to which error inevitably occurs in counting the faces of small
grains comparable with the interface thickness.8 In the current
simulations, the interface thickness was set to 6Δx, corresponding
to the 0.11 times of <R> at t = 75,000Δt. Thus, the measured
topological characteristics for R/<R> ≤ 0.11 might be inaccurate. In
Fig. 4c, our present Eq. (7) exhibits some discrepancy to the
simulated grain topology distribution for relatively small and large
n values. This discrepancy also may result from the shortcoming of
the mean-field approximation and the diffuse nature of the phase-
field model, since small/large n values correspond to small/large
grain sizes, as shown in Fig. 4b. However, on the whole the
present model captures the features of the topology distribution
well in terms of peak height and position and the lognormal-like
tendency.
In summary, by performing ultra-large-scale phase-field simula-

tions of ideal grain growth, we succeeded in clearly observing and
quantifying the steady-state growth behaviors. All aspects of
simulated results were described by theoretical models. Interest-
ingly, the three-dimensional grain growth behaviors experimen-
tally observed in real materials are quite different from those of
the ideal case. For instance, experimental studies on grain growth
have reported that the grain size distribution usually exhibits a
lognormal-like shape, and the parabolic growth law does not
hold.2, 31 The present work on ideal growth offers a useful
yardstick to evaluate the impacts of complicated factors in reality,
which is crucial for developing a predictive model for realistic
growth processes.

METHODS

Phase-field simulation

The MPF model proposed by Steinbach and Pezzolla23 was employed for
simulating ideal grain growth, describing a polycrystalline system of N
grains with N phase-field variables, ϕi (i = 1, 2, …, N), which take a value of
unity in the ith grain, and equal zero in other grains, with 0 < ϕi < 1 at grain
boundaries. The migration of grain boundaries is reproduced by
calculating the time evolution of ϕi for each spatial point under the
constraint of free energy minimization. The time-evolution equation is
given by:

∂ϕi

∂t
¼ � 2

ν

X

ν

j¼1

M
ϕ
ij

X

ν

k¼1

Wik �Wjk

� �

ϕk þ
1

2
a2ik � a2jk

� �

∇
2ϕk

 �

;

where ν is the number of coexisting grains at the specified point. M
ϕ
ij , Wij,

and aij represent phase-field mobility, barrier height, and the gradient
coefficient of the boundary between the ith and jth grains, respectively.
These parameters are related to the thickness (ξ), energy (σ), and mobility
(M) of the grain boundary via the following equations: M

ϕ
ij ¼ π2M=ð8ξÞ,

Wij ¼ 4σ=ξ , and aij ¼ 2ð2ξσÞ1=2=π. Note that the grain boundary thickness
ξ has no specific physical meaning in current simulations and must be
sufficiently large to resolve the boundary regions. Herein, we set ξ to six
times the size of the grid spacing (Δx), which is reported to be a good
compromise between computational accuracy and cost.8

For each simulation run, initial grain structures were created by growing
randomly distributed nuclei under a constant driving force. The time-
evolution equation was numerically solved using the first-order forward
difference scheme and the second-order central difference scheme for
time and space, respectively. To ensure effective MPF simulations, the
active parameter tracking algorithm8, 32, 33 proposed by Kim et al.8 was
employed, storing only nonzero phase-field variables. The maximum
number of variables stored at each grid point was set to seven.
Measurements of the size (volume) and face number of grains were
conducted as described in ref. 8.

Parallel GPU computation

In order to perform large-scale parallel GPU computations, we employed
the GPU-rich supercomputer TSUBAME2.5 at the Tokyo Institute of

Technology. TSUBAME2.5 has 1408 nodes, each of which consists of two
CPUs (Intel Xeon X5670) and three GPUs (NVIDIA Tesla K20X). The GPU code
was written in compute unified device architecture based on the C/C++
language. Internode communication was performed using the message
passing interface. The entire computational domains for 5123; 10243;
15363; 20483; and 25603-point systems were decomposed into (1 × 4 × 4),
(1 × 8 × 8), (1 × 16 × 16), (1 × 16 × 32), and (1 × 20 × 40) subdomains,
respectively, and each subdomain was assigned to one GPU. The
connection of boundary data between GPUs was performed via their host
CPUs.20

Data availability

The authors declare that the data supporting the findings of this study are
available within the paper and its Supplementary Information files.
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