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Executive Summary

The U. S. Department of Defense (DoD) has a goal of information 

dominance—to achieve and exploit superior collection, fusion, analysis, and 

use of information to meet mission objectives. This goal depends on 

increasingly complex systems characterized by thousands of platforms,1 

sensors, decision nodes, weapons, and warfighters connected through 

heterogeneous wired and wireless networks. These systems will push far 

beyond the size of today’s systems and systems of systems by every measure: 

number of lines of code; number of people employing the system for 

different purposes; amount of data stored, accessed, manipulated, and 

refined; number of connections and interdependencies among software 

components; and number of hardware elements. They will be ultra-large-

scale (ULS) systems.

The sheer scale of ULS systems will change everything. ULS systems will 

necessarily be decentralized in a variety of ways, developed and used by a 

wide variety of stakeholders with conflicting needs, evolving continuously, 

and constructed from heterogeneous parts. People will not just be users  

of a ULS system; they will be elements of the system. Software and 

hardware failures will be the norm rather than the exception. The acquisition 

of a ULS system will be simultaneous with its operation and will require 

new methods for control. These characteristics are beginning to emerge in 

today’s DoD systems of systems; in ULS systems they will dominate. 

Consequently, ULS systems will place unprecedented demands on software 

acquisition, production, deployment, management, documentation, usage, 

and evolution practices.

Fundamental gaps in our current understanding of software and software 

development at the scale of ULS systems present profound impediments to 

the technically and economically effective achievement of the DoD goal  

of deterrence and dominance based on information superiority. These gaps 

are strategic, not tactical. They are unlikely to be addressed adequately by 

incremental research within established categories. Rather, we require a 

broad new conception of both the nature of such systems and new ideas for 

how to develop them. We will need to look at them differently, not just as 

systems or systems of systems, but as socio-technical ecosystems. We will 

face fundamental challenges in the design and evolution, orchestration and 

control, and monitoring and assessment of ULS systems. These challenges 

require breakthrough research.

1  Bold-italic formatting of a word or phrase indicates that its definition appears in the Glossary.



x Ultra-Large-Scale Systems     

The Software Challenge of the Future   

We propose a ULS systems research agenda for an interdisciplinary portfolio 

of research in at least the following areas:

• Human Interaction: involves anthropologists, sociologists, and social 

scientists conducting detailed socio-technical analyses of user interactions 

in the field, with the goal of understanding how to construct and evolve 

such socio-technical systems effectively.

• Computational Emergence: explores the use of methods and tools based 

on economics and game theory (e.g., mechanism design) to ensure  

globally optimal ULS system behavior and explores metaheuristics and 

digital evolution to augment the cognitive limits of human designers.

• Design: broadens the traditional technology-centric definition of design  

to include people and organizations; social, cognitive, and economic  

considerations; and design structures such as design rules and government 

policies. 

• Computational Engineering: focuses on evolving the expressiveness of 

representations to accommodate the semantic diversity of many languages 

and focuses on providing automated support for computing the evolving 

behavior of components and their compositions. 

• Adaptive System Infrastructure: investigates integrated development 

environments and runtime platforms that will support the decentralized 

nature of ULS systems as well as technologies, methods, and theories  

that will enable ULS systems to be developed in their deployment  

environments.

• Adaptable and Predictable System Quality: focuses on how to maintain 

quality in a ULS system in the face of continuous change, ongoing  

failures, and attacks and focuses on how to identify, predict, and control 

new indicators of system health (akin to the U. S. gross domestic product) 

that are needed because of the scale of ULS systems.

• Policy, Acquisition, and Management: focuses on transforming  

acquisition policies and processes to accommodate the rapid and  

continuous evolution of ULS systems by treating suppliers and supply 

chains as intrinsic and essential components of a ULS system.

Executive Summary
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The proposed research does not supplant current, important software research 

but rather significantly expands its horizons. Moreover, because we are 

focused on systems of the future, we have purposely avoided couching our 

descriptions in terms of today’s technology. The envisioned outcome of the 

proposed research is a spectrum of technologies and methods for developing 

these systems of the future, with national-security, economic, and societal 

benefits that extend far beyond ULS systems themselves.

Though our research agenda does not prescribe a single, definitive roadmap, 

we offer three structures that suggest ways to cluster and prioritize groups of 

research areas mapping the research areas and topics to (1) specific DoD 

missions and required capabilities, (2) DoD research funding types required 

to support them, and (3) estimates of the relative starting points of the 

research. These structures can then be used to define one or more roadmaps 

that could lead to one or more ULS systems research programs or projects. 

As a first step, we recommend the funding and establishment of a ULS 

System Research Startup Initiative, which over the course of the next two 

years would, among other things, 

• work with others to conduct new basic research in key areas;

• foster the growth of a community of informed stakeholders and  

researchers; and 

• formulate and issue an initial Broad Agency Announcement (BAA) to 

attract researchers with proven expertise in the diverse set of disciplines 

(e.g., software engineering, economics, human factors, cognitive psychol-

ogy, sociology, systems engineering, and business policy) that are collec-

tively required to meet the challenge of ULS systems. 

The United States needs a program that will fund the software research 

required to sustain ongoing transformations in national defense and achieve 

the DoD goal of information dominance. The key challenge is the decision  

to move forward. The ULS System Research Agenda presented in this report 

provides the starting point for the path ahead.
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1

1 
Introduction

 1.1  

Genesis of the  

ULS Systems 

Research Study

  The office of the Assistant Secretary of the U. S. Army (Acquisition, 

Logistics, & Technology) (ASA ALT) funded the Software Engineering 

Institute (SEI) to lead a 12-month investigation of ultra-large-scale (ULS) 

systems software. ASA ALT posed this question to the SEI: “Given the  

issues with today’s software engineering, how can we build the systems of 

the future that are likely to have billions of lines of code?” 

The intended outcome of the study was a proposed research agenda for  

ULS systems; a proposal for a program that would fund, coordinate, and 

conduct needed research; and the creation of a collaborative research 

network that would work toward solving the ULS system problem for the  

U. S. Department of Defense (DoD). 

Although a billion lines of code was the initial challenge, increased code 

size brings with it increased scale in many other dimensions, posing 

challenges that strain current software foundations. To understand the 

challenges and the research needed to meet them, the study brought together 

software experts and experts from outside the software engineering field 

from a variety of institutions and organizations. This multi-disciplinary  

team sought solutions both within and beyond traditional software and 

systems engineering disciplines. This report describes and justifies the  

ULS system research agenda that resulted from the year-long study. 

To appreciate the need for the study and the value of its output, it is 

important to first understand current DoD objectives and to analyze the 

fundamental shortfalls in today’s software concepts, tools, and methods  

for reaching those objectives.

Part I
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1.2   

The DoD’s Goal  

of Information 

Dominance

 The DoD has a goal of information dominance—to achieve and exploit 

superior collection, fusion, analysis, and use of information to meet mission 

objectives. As articulated in the recent Quadrennial Defense Review Report,2 

achievement of this goal depends on increasingly complex systems 

characterized by thousands of platforms, sensors, decision nodes, weapons, 

and warfighters connected through heterogeneous wired and wireless 

networks. These systems will be ULS systems. The Global Information Grid 

(GIG), the Army Future Combat Systems (FCS), and FORCEnet are 

examples of emerging DoD systems of systems intended to organize and 

coordinate this large human, application, and technology space to

• provide DoD planners with the right information at the right place and 

the right time across a range of support systems and battlefield systems;

• optimally and adaptively manage information resources to provide usable 

target-quality information to warfighters engaged in tactical operations; 

and

• conduct effective information operations even in the face of attack, while 

also denying information critical to adversaries.

This technology base must be capable of orchestrating the human, comput-

ing, and communications environment to aggregate, filter, and prioritize the 

delivery of this information to work effectively in the context of transient 

and enduring resource constraints and failures. An essential property of 

information dominance is continuous adaptation. Adaptation is needed to 

compensate for changes in the mission requirements (such as rerouting strike 

packages to engage time-critical targets and modifying target/weapon 

pairings to avoid fratricide) and operating environments (such as dynamic 

network topologies, publish/subscribe membership changes, and intermittent 

connectivity). 

1.3   

The Missing  

Key to Information 

Dominance

 Although systems comprise far more than software, it is software that 

fundamentally makes possible the achievement of the DoD goal of informa-

tion dominance and the envisioned improvement in human and organiza-

tional performance. At the same time, though, software also presents the 

greatest impediment to DoD goals. 

We have seen transformations in all facets of society that have been 

catalyzed by advances in software technology. The revolution in business 

practices effected by Google, for example, is directly traceable to advances 

in software technology—specifically, new algorithms that enable a scalable 

architecture for information searches. 

2  Quadrennial Defense Review Report, February 2006, http://www.defenselink.mil/qdr/report/Report20060203.pdf
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Yet, from the perspective of the underlying science and engineering 

knowledge base, software is the least well understood and the most 

problematic element of large-scale systems. Software and software project 

failures are among the dominant causes of system cost and schedule 

overruns; of failures of systems to satisfy the requirements of those who 

procure and use them; and, increasingly, of costly and dangerous system 

failures. Despite the careful application of modern software engineering 

techniques, software failure is far more prevalent than hardware failure  

as a cause of major system outages. While some problems are caused by 

poor practice, the root cause of most system problems is our inadequate 

software knowledge base.  

1.4   

The Engineering 

Perspective on 

Software 

Development

 The problems presented by software have long been recognized. By the late 

1960s, it was clear that the software problem was real, significant, and  

growing rapidly. The NATO Conference held in 1968 was a watershed event. 3 

At that conference, the community agreed to characterize software develop-

ment as an engineering problem and to establish as a goal that the computer 

science research and development community solve the major open problems 

by working to establish a new theoretical and practical discipline of software 

engineering.

In the nearly 40 years since 1968, tremendous progress has been made in the 

field of software engineering. The net effect has made it possible to construct 

increasingly complex systems. At the same time, as our software engineering 

capabilities have grown, so have our aspirations, and our aspirations continue 

to largely exceed our capabilities. That is, with respect to current large 

software-intensive systems, our aspiration to establish software development 

as an engineering discipline is, to a significant extent, still an aspiration. As we 

struggle to develop today’s systems, we simultaneously aspire to develop the 

far more ambitious systems that we envision for the future. 

The President’s Information Technology Advisory Committee (PITAC) clearly 

stated that our current software science and technology base is inadequate to 

meet current and future needs;4 blue-ribbon panels have identified major 

problems in software development as challenge problems in computer science; 

and reports such as that by the Standish Group5 document an unimpressive 

record in large software projects in the private sector—even in the relatively 

well-understood domain of business applications. In the Standish Group’s 

most recent report, only 34% of all projects were deemed to be successful. 

3   Naur, P. & Randell, B. (eds.). Software Engineering: Report of a Conference Sponsored by the NATO Science 

Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels, Scientific Affairs Division, NATO (1969).

4   The President’s Information Technology Advisory Committee. Information Technology: Investing in Our Future, final 

report. February 1999.

5   Standish Group. The Chaos Report, 2003.
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Although this success rate was considered a significant improvement from the 

1994 rate of 16%, it is still far from adequate. The record of large government-

sponsored projects is similarly lamentable; many multi-billion-dollar failures 

have been documented in the open literature.6

Today, as the evidence clearly shows, in software we continue to accept failure 

rates, quality problems, and costs that would be unacceptable in any other 

field of engineering. The software needed to achieve the DoD’s goal of 

information dominance will be orders of magnitude more complex than that 

for even the most demanding of our currently existing systems. Our current 

practices are already extraordinarily costly and problematic; they simply will 

not scale to the size and levels of complexity of the ULS systems that the 

DoD needs in the future. 

The problem that the DoD now faces is clear. Fundamental gaps in our 

understanding of software and software development at the scale of  

ULS systems present profound impediments to the technically and economi-

cally effective achievement of the DoD goal of deterrence and dominance 

based on information superiority. 

1.5   

The Need for  

a New Perspective

 ULS systems will place unprecedented demands on software acquisition, 

production, deployment, management, documentation, usage, and evolution 

practices. The inability of current practices to meet these demands calls for 

breakthrough research in concepts, methods, and tools. 

This report presents a new perspective on problem formulations and an initial 

research agenda that we believe has the potential to lead to the required 

breakthroughs. What this report avoids is any suggestion that adequate 

solutions will be found solely by a straightforward extrapolation from today’s 

technology, including high-visibility concepts such as service-oriented 

architectures and model-based development. The depth of the gaps in current 

knowledge demands not just the incremental extension of existing work but 

also innovation, ranging from new conceptual models of the problem space to 

revolutionary solution approaches. 

There is, without question, a critical need for a significant increase in software 

engineering research; but this alone will be inadequate. We need to shift  

our perspective and how we characterize the problems that we face. We need  

new ideas on how to address these problems. In many cases, such new 

perspectives and solution approaches will be inspired by work emerging at the 

intersection of traditional software engineering and other disciplines, such 

6   See, for example Neumann, P. G. Computer-Related Risks. New York: ACM Press and Reading, MA: Addison-Wesley, 

1995; Defense Science Board. Report of the Defense Science Board Task Force on Information Warfare Defense (IW-D). 

Washington, DC: Office of the Under Secretary of Defense for Acquisition and Technology, November 21, 1996; and 

http://www.csl.sri.com/users/neumann/illustrative.html#7.
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as microeconomics, biology, city planning, and anthropology—fields 

concerned with people as well as with coherence in the context of scale and 

complexity.

1.6  

From Engineering to 

Complex Systems

 Alan Kay7 famously said that the right perspective is worth 80 IQ points.8  For 

40 years, we have embraced the traditional engineering perspective. The basic 

premise underlying the research agenda presented in this document is that 

beyond certain complexity thresholds, a traditional centralized engineering 

perspective is no longer adequate nor can it be the primary means by which 

ultra-complex systems are made real. Electrical and water systems are 

engineered, but cities are not—although their forms are regulated by both 

natural and imposed constraints. Firms are engineered, but the overall 

structure of the economy is not—although it is regulated. Ecosystems exhibit 

high degrees of complexity and organization, but not through engineering. 

The protocols on which the Internet is based were engineered, but the Web as 

a whole was not engineered—although its form is constrained by both natural 

and artificial regulations. In this report, we take the position that the advances 

needed for ULS systems require a change in perspective, from the satisfaction 

of requirements through traditional, rational, top-down engineering to their 

satisfaction by the regulation of complex, decentralized systems. 

1.6.1  

From Buildings  

to Cities

 One way to understand the difference in scale between traditional and ULS 

systems is to think about buildings, infrastructure systems, and cities. 

Designing and building most of today’s large systems can be compared to 

designing and constructing a single, large building or a single infrastructure 

system (such as for power or water distribution). In contrast, ULS systems will 

operate at levels of complexity more similar to cities. At first it might seem that 

designing and building a city is simply a matter of designing and building a 

large number of buildings. However, cities are not conceived or built by 

individual organizations, but rather by the actions of many individuals acting 

locally over time. The form of a city is not defined in advance by specifying 

requirements; rather, a city emerges and changes over time through the loosely 

coordinated and regulated actions of many individuals. The factors that enable 

cities to be successful, then, include both extensive infrastructures not present 

in individual buildings as well as mechanisms that regulate local actions to 

maintain coherence without central control. These mechanisms include 

government organizations and policies, city planning, streets and transportation 

systems, communication and emergency services, and distribution of food and 

consumer goods, to name a few. Moreover, it is not feasible to design and build 

a city in one attempt. People, companies, communities, and organizations 

decide to build parts of cities for their own purposes. Cities grow and thrive 

7   Alan Kay is, among other things, the winner of the Turing Award, the highest scientific award in the field  

of computer science.

8  “Predicting The Future,” reproduced from Stanford Engineering, Volume 1, Number 1, Autumn 1989, pp. 1-6.
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based on cultural and economic necessities, and, although some aspects  

of a city are designed and constructed in a local context, most elements that 

make up the essence of a city arise from more global policies and mecha-

nisms, such as zoning laws, building codes, and economic incentives 

designed to encourage certain sorts of growth and construction. 

Closer examination of the two design and construction problems—buildings 

versus cities—reveals that, although it is necessary, skill in designing and 

constructing buildings does not help much in designing and constructing a 

city. To point out just one of the major differences: every day in every city, 

construction is going on, repairs are taking place, modifications are being 

made, and yet the cities continue to function. Like cities, ULS systems will 

not simply be bigger systems: they will be interdependent webs of software-

intensive systems, people, policies, cultures, and economics.

1.6.2 

From Systems to 

Ecosystems

 Another way to understand the needed 

shift in perspective is in terms of the 

concept of ecosystems—and of what we 

call socio-technical ecosystems in 

particular. Like a biological ecosystem, a 

ULS system comprises a dynamic 

community of interdependent and 

competing organisms (in this case, people, 

computing devices, and organizations) in 

a complex and changing environment. The concept of an ecosystem connotes 

complexity, decentralized control, hard-to-predict effects of certain kinds  

of disruptions, difficulty of monitoring and assessment, and the risks in 

monocultures, as well as competition with niches, robustness, survivability, 

adaptability, stability, and health. 

In a ULS system, there will be competition for resources, such as bandwidth, 

storage capacity, sensors, and weapons. The system will enforce rules 

intended to encourage effective use of these resources to achieve mission 

objectives. There may be variations in service depending on how different 

commanders, planners, and automated subsystems attempt to apply the 

available resources to missions with different levels of importance and 

urgency. With appropriate incentives and rules enforced by the system,  

these resources will be optimized so that they are appropriately available.  

In addition, there may be an overall measure of the quality of service  

being provided to different parts of the system or for different purposes  

(e.g., quality-of-service requirements will change for some parts of the 

system during a mission). This measure can be used to determine if the 

incentives are working as intended. As system behavior changes in response 

to the incentives, the incentives may also need to be changed to ensure  

that key mission goals are accomplished.
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We traditionally view system development and acquisition as a technology-

centric, rational, largely top-down, centrally controlled process of implemen-

tation and deployment. By contrast, a defining element of ULS systems is 

that they will include people, organizations, and technologies at all levels, 

from those responsible for overall policy implemented within the system  

to those producing the system to those actually using it. There will be 

organizations and participants responsible for setting acquisition, production, 

and operational policies governing the overall system, and there will be 

organizations, technologies, and people responsible for producing ULS 

systems. For example, the DoD, Congress, and the Office of the Secretary  

of Defense (OSD), in their roles as policy makers, will play essential roles  

in an overall system. Contractors and warfighters will participate at another 

level of system organization. There are rich kinds of interdependencies 

among players, systems, and activities across all of these levels. 

The concept of an ecosystem is not novel. Nor is the analogy perfect.  

For example, unlike biological ecosystems, whose dynamics involve nutrient 

and energy flows, ULS ecosystem dynamics involve exchanges of economic, 

security, and other forms of value. Yet even with its imperfections, the 

analogy helps illuminate the nature of the problem facing the ULS system 

developer: an inadequate understanding of how to create and maintain 

systems that have characteristics similar to those found in ecosystems.  

The challenge facing the ULS systems research community is to help fill 

these major gaps in knowledge.

1.6.3 

Beyond the Internet 

 The Web foreshadows the characteristics of ULS systems. Its scale is much 

larger than that of any of today’s systems of systems. Its development, 

oversight, and operational control are decentralized. Its stakeholders have 

diverse, conflicting, complex, and changing requirements. The services it 

provides undergo continuous evolution. The actions of the people making use 

of the Web influence what services are provided, and the services provided 

influence the actions of people. It has been designed to avoid the worst 

problems deriving from the heterogeneity of its elements and to be insensi-

tive to connection failures.

But the Web was not designed with the DoD’s needs in mind. Security was 

not given much attention in its original design, and its use for purposes for 

which it was not initially intended, such as e-commerce, has revealed 

exploitable vulnerabilities. The elements of the Web are loosely intercon-

nected in the sense that the failure of most elements does not have a 

significant effect on many users. The bandwidth available to the Web is much 

greater than what is likely to be available for the DoD’s ULS systems. And 

although the Web is an important element of people’s work lives, it is not as 

critical as a ULS DoD system would be. 
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The existence of the Web suggests what ULS systems might be like, but 

despite the Web’s success and ubiquity, ULS systems for DoD purposes are 

likely to push the boundaries of what we have learned (and are learning) 

from the existence of the Web. 

1.7  

The Results of  

This Study

 The DoD’s goal of information 

dominance, the software that 

will be required to achieve that 

goal, and the concomitant need 

for a new perspective in 

software development are all 

fundamental to the research 

agenda that resulted from our 

study. Our agenda is meant to 

catalyze a funded ULS system 

research program and inspire 

researchers from a diverse set of disciplines to address ULS system software 

challenges. We expect researchers to be motivated to investigate the 

identified topics and to propose other research in those areas. Prosecuting a 

research agenda of this magnitude is like planting many seeds. Some will 

bear fruit; others will be weeded out and perhaps substituted with heartier 

types. Similarly, over time we see this research agenda changing to match 

breakthroughs and results. We also recognize a complementary need to 

establish a transition component of the research program that will ensure that 

successful results get packaged and transitioned to the DoD as quickly as 

possible. The rest of this report is divided into two parts as follows:

Part I describes and justifies our ULS system research agenda. 

Section 2: Characteristics of ULS Systems examines the consequences of 

scale implied by ULS systems. It characterizes ULS systems as complex 

systems that are significantly beyond the reach of the traditional engineering 

paradigm of software development and provides the basis for understanding 

the technical challenges that are inherent in these systems. 

Section 3: Challenges in ULS Systems describes and analyzes the major 

challenges posed by ULS systems. 

Section 4: Overview of Research Areas presents seven major research areas 

and underlying topics that hold promise for addressing ULS system 

challenges, thereby filling the most important gaps in software knowledge 

and capability at the scale needed for ULS systems. 
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Section 5: Summary and Recommendations shows how the proposed 

research topics are related to needed DoD capabilities and outlines a path 

forward for a substantive, long-term, funded ULS System Research 

Program. 

Part II provides more detailed information for technically 

oriented readers.

Section 6: Detailed Description of Research Areas presents each research 

area and research topic in detail.

We also provide a Glossary at the end of the report. Words and phrases that 

are defined in the Glossary are formatted in bold-italic typeface when they 

appear within the text.
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2 
Characteristics of  
ULS Systems

There are characteristics of ULS systems that will arise because of their 

scale. These characteristics undermine current, widely used, software 

engineering approaches and provide the basis for the technical challenges 

associated with ULS systems. 

The primary characteristic of ULS systems is ultra-large size on any imagin-

able dimension—number of lines of code; number of people employing the 

system for different purposes; amount of data stored, accessed, manipulated, 

and refined; number of connections and interdependencies among software 

components; number of hardware elements; etc. But to understand the nature 

of ULS systems, we must go beyond just the concept of size; we must un-

derstand the effects of scale and the demands that ULS systems are likely to 

place on technologies and processes. Issues that are not significant at smaller 

scales become significant at ultra-large scales. The problems introduced by 

scale require new solution approaches and new concepts of system design, 

development, operation, and evolution. In short, scale changes everything.

ULS systems will have some characteristics in common with today’s systems 

of systems (SoSs). Mark Maier9 has developed a list of characteristics that 

distinguish large monolithic systems from systems of systems: 

• operational independence of the elements: Component systems are 

independently useful.

• managerial independence of the elements: Component systems are 

acquired and operated independently; they maintain their existence 

independent of the SoS.

• evolutionary development: The SoS is not created fully formed but 

comes into existence gradually.

9   Maier, Mark W. Architecting Principles for Systems-of-Systems.  

http://www.infoed.com/Open/PAPERS/systems.htm, 1996.
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• emergent behavior: Behaviors of the SoS are not localized to any 

component system. The principal purposes of the SoS are fulfilled by 

these behaviors.

• geographic distribution: Components are so geographically distributed 

that their interactions are limited primarily to information exchange 

rather than exchanges of mass or energy.

Maier goes on to define different classes of systems of systems based on the 

amount of management control that is possible. The class he calls “virtual” 

systems of systems is closest to ULS systems:

Virtual systems lack a central management authority.  

Indeed, they lack a centrally agreed upon purpose for  

the system-of-systems. Large scale behavior emerges,  

and may be desirable, but the supersystem must rely  

upon relatively invisible mechanisms to maintain it. 

Maier then cites the Web and national economies as examples  

of virtual SoSs. 

Maier’s definitions are useful for classifying systems but are not so useful  

for understanding the underlying technical problems of ULS systems.  

The characteristics of ULS systems that will arise because of their scale  

are much more revealing. These characteristics are as follows:

• decentralization: The scale of ULS systems means that they will 

necessarily be decentralized in a variety of ways—decentralized data, 

development, evolution, and operational control. 

• inherently conflicting, unknowable, and diverse requirements: ULS 

systems will be developed and used by a wide variety of stakeholders 

with unavoidably different, conflicting, complex, and changing needs. 

• continuous evolution and deployment: There will be an increasing need 

to integrate new capabilities into a ULS system while it is operating. New 

and different capabilities will be deployed, and unused capabilities will 

be dropped; the system will be evolving not in phases, but continuously. 

• heterogeneous, inconsistent, and changing elements: A ULS system 

will not be constructed from uniform parts: there will be some misfits, 

especially as the system is extended and repaired. 
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• erosion of the people/system boundary: People will not just be users of 

a ULS system; they will be elements of the system, affecting its overall 

emergent behavior.

• normal failures: Software and hardware failures will be the norm rather 

than the exception. 

• new paradigms for acquisition and policy: The acquisition of a ULS 

system will be simultaneous with the operation of the system and require 

new methods for control. 

Although these characteristics are not all independent and are already 

evident in some of today’s largest systems, each implies a change in the 

fundamental assumptions that underlie today’s software engineering 

approaches. Each contributes to the complexity of bringing ULS systems 

into existence, validating their behavior, and evolving their capabilities. 

Each derives from the consequences of scale changing everything. In the 

remainder of this section, we discuss each characteristic and the assumptions 

that the characteristic undermines. Understanding how these assumptions 

are undermined helps in understanding why ULS systems present new 

challenges and underscores the need for new research. 

2.1  

Decentralized 

Control

  The scale of ULS systems will allow only limited possibilities for centralized 

or hierarchical control of data, development, evolution, and operation. Even 

the limited amount of hierarchical control that is possible today for very 

large systems will be challenged at the scale of ULS systems and likely 

require different control models.

One of today’s assumptions undermined by this characteristic is the following:

All conflicts must be resolved and must be resolved uniformly. Today’s 

systems are predicated on the idea that conflicts must be addressed and 

resolved. We assume that there is a conflict-resolution process and an organi-

zation that makes decisions to be followed by other elements of the system. 

The scale of ULS systems will make it impossible to resolve all conflicts and 

to resolve conflicts centrally. In an ecosystem, there is no central authority 

for resolving conflicts; other mechanisms serve this purpose. An ecosystem 

characterization of ULS systems suggests that mechanisms will be in place 

to resolve conflicts locally among those who have an immediate interest in 

the issue. Moreover, if the same conflict arises elsewhere in the system, it 

might be resolved differently. Today’s designers of large systems generally 

do not consider the idea that they should tolerate conflicts or resolve the 

same conflict differently at different times and places. They also do not 

typically include procedures for determining which conflicts are of greatest 

importance to global system viability; we have little understanding of what 

organizational processes work best for this purpose.
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2.2  

Inherently Conflicting, 

Unknowable, and 

Diverse Requirements

 The scale and complexity of problems to be solved by ULS systems mean 

that, in many cases, the requirements to be satisfied by the systems will not 

be adequately known until the systems are in use. Even then, as the system is 

put into operation, perceptions of the problem it is solving will change. Each 

attempt at a solution will give a deeper understanding of what the problem 

really is, leading to yet another attempt at a solution. Some problems ad-

dressed by ULS systems are likely to be so complex that there can be no fully 

satisfactory solution; requirements will never really converge. 

ULS systems, by their very size and nature, will be able to serve a wide 

spectrum of purposes. The more a ULS system does, the more diversity and 

conflict it is likely to engender. Moreover, integrating solutions across this 

spectrum will likely require knowledge from several domains, and making 

use of relevant cross-domain knowledge is difficult today.

Among today’s assumptions undermined by this characteristic  

are the following:

• Requirements can be known in advance and change slowly as  

experience with a system grows. We know that requirements for systems 

today are never completely understood in advance of building and using 

a system. Even so, most systems today are developed on the assumption 

that key requirements are sufficiently well understood that if a system is 

built to meet these requirements, it will be useful. But ULS systems are 

likely to encounter so-called wicked problems10 in which requirements 

are neither knowable in advance (because there is no agreement about 

what the problem is) nor stable (because each solution changes the 

problem, and no solution is considered to have “solved” the problem11). 

In ULS systems, even more so than today, system development, opera-

tion, and usage will have to be based on a premise of continual change 

and (re)negotiation of user needs.

• Tradeoff decisions will be stable. Because of the large number of ULS 

system users, each having different goals, different tradeoffs in system 

behavior may be appropriate for different groups of users, and even these 

tradeoffs will change over time. For example, one group may place a 

high value on fast response to certain types of queries, at a cost of having 

an increased error rate; another group may value accuracy more than 

responsiveness. It must be possible to configure the system as it appears 

to specific groups of users so that both requirements can be met simul-

taneously. Although we sometimes give attention to the idea that certain 

tradeoff decisions will have to be revised over the life of the system, we 

10   Rittel, H. & Webber, M. “Dilemmas in a General Theory of Planning,” pp 155-169, Policy Sciences, Vol. 4, Elsevier 

Scientific Publishing Company, Inc., Amsterdam, 1973; also http://en.wikipedia.org/wiki/Wicked_problems

11   “Wicked problems have incomplete, contradictory, and changing requirements; and solutions to them are often difficult 

to recognize as such because of complex interdependencies.” http://en.wikipedia.org/wiki/Wicked_problems
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do not generally build systems today with the idea that the system can be 

readily reconfigured to support different tradeoffs for different users.

2.3  

Continuous 

Evolution and 

Deployment

 Another consequence of size is that ULS systems will be in service for 

a long time. Their size will make it impractical to replace or retire them. 

Instead, like very large systems today, they will continuously evolve to meet 

new and modified requirements and to incorporate new technologies. But 

we envision a different type of evolution than is typical of today’s very large 

systems. By evolution, we mean change that is guided and constrained by 

rules and policies that allow local needs to be satisfied in local ways without 

destroying the integrity and value of the overall system. The evolution of a 

ULS system will be supported by different subgroups of stakeholders, each 

subgroup seeking to achieve a solution that fits its own needs, but under the 

guidance of general economic, technical, and political rules that limit the 

impact (both positive and negative) of any given change. 

One of today’s assumptions undermined by this characteristic  

is the following:

System improvements are introduced at discrete intervals (build-use-

build). As with cities, ULS systems must continue to function despite 

ongoing, simultaneous construction, repairs, improvements, and demolitions. 

For cities, we have considerable experience in determining  

how to make improvements without catastrophically interfering with the 

needs of the inhabitants. For most systems today, we do not typically  

allow different subgroups to make changes simultaneously. In ULS systems, 

however, the introduction of concurrent changes will generally be neces-

sary because waiting to sequence all changes will unacceptably delay the 

introduction of needed capabilities and problem fixes. A key issue will 

be to know which changes can be made concurrently and which must be 

coordinated. 
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2.4  

Heterogeneous, 

Inconsistent, and 

Changing Elements

 The size of a ULS system also means that its elements (i.e., its hardware, its 

software, its procedures and rules, its people, etc.) will be heterogeneous, 

inconsistent, and changing. 

Heterogeneous: Software elements will be heterogeneous in part because 

they will come from a variety of sources. Parts of the system will be written 

in different languages, tuned for different hardware/software platforms, 

and designed according to different philosophies and methodologies. Many 

software elements will originate in legacy systems, written long before the 

first ULS system comes into existence. Some will be dynamically supplied 

and assimilated. Many will be services that will be provided over the Internet. 

A key aspect of ULS system design, construction, and evolution will entail 

integrating and compensating for such heterogeneous elements and engineer-

ing perspectives. 

Heterogeneity can also be a benefit. In heterogeneous systems, not all ele-

ments are equally vulnerable to failures or attacks.

Inconsistent: With software originating in different places and being created 

and modified by dispersed teams with different schedules, processes, goals, 

and stakeholders, a ULS system will necessarily be composed of different 

versions of the same software elements, possibly with inconsistencies in their 

design, implementation, and usage. The system will be used in unanticipated 

ways, giving rise to conditions that were not considered when some of its 

constituent parts were designed. Changes in usage patterns will stress the 

system, leading to clashes of assumptions about how long operations take, 

how much storage is available, or how much data can be processed by a 

particular algorithm. Different stakeholders will have different expectations 

of how the system is to perform.

Changing: Parts of the system will always be changing. The operating 

environments will be changing as failed hardware is replaced, hardware and 

software are upgraded (and sometimes downgraded), and configurations of 

components are modified. Many changes in ULS systems will be dynamic to 

adapt to evolving mission requirements and operating conditions. As a result, 

the exact composition of a ULS system cannot be known when it is being 

designed and may vary from moment to moment. 
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Among today’s assumptions undermined by this characteristic  

are the following:

• The effect of a change can be predicted sufficiently well. When replac-

ing an element, we assume that we understand sufficiently well which 

characteristics of the element are essential to the adequate functioning of 

the system and which are inessential. Because of this knowledge, we can 

make replacements that are not exactly identical (e.g., different vendor, 

different code, different performance). The scale of a ULS system 

increases the likelihood that some seemingly inessential difference 

between the original and the replaced units will, at least occasionally, 

have significant consequences. The system must be designed to limit the 

effect of such unexpected consequences, at least when they are consid-

ered harmful. 

• Configuration information is accurate and can be tightly controlled. 

When considering the effect of changes on a system, today’s change 

processes for smaller systems make the (mostly reasonable) assumption 

that the configuration of the system is both known and knowable. In ULS 

systems, configuration information will never be completely accurate, 

and yet, despite the inaccuracies, changes must be installed effectively. 

• Components and users are fairly homogeneous. In architecting and 

implementing today’s systems, we begin by believing that we understand 

the capabilities of users and how they will use the system. In ULS 

systems, actual usage will drift from what was anticipated not just 

because of normal human tendencies, but because of the scale and variety 

of people involved with the system. Today we often start with the premise 

that we can control the range of hardware and software components that 

are employed over the life of the system. The scale of ULS systems will 

make it more difficult to ensure that each element of the system is reason-

ably up to date in its software versions, hardware capabilities, etc. The 

system design will have to take into account these kinds of disparities, 

which are normally not considered today.

2.5  

Erosion of the 

People/System 

Boundary

 People will not just be users of a ULS system: they will be part of its overall 

behavior. In addition, the boundary between the system and user/developer 

roles will blur. Just as people who maintain and modify a city sometimes also 

live within the city, in a ULS system, sometimes a person will act in the role 

of a traditional user, sometimes in a supporting role as a maintainer of system 

health, and sometimes as a change agent adding and repairing the system’s 

functions. 

Considering people to be part of the ULS system means that as the system’s 

configuration and computational capabilities change, processes and proce-

dures must be in place to help people understand how to accomplish their 
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current objectives and become aware of new possibilities. Equally, as the 

pattern of usage by people changes (for example, if a large number of people 

attempt some action more or less simultaneously), the system must have 

procedures in place to adapt to the changed demand. This kind of interplay 

will be needed because the size of the system and the number of changes 

will require the provision of methods for adapting quickly to changes in 

expectations and capabilities, whether these changes are on the people side 

or the hardware/software side. Increasing reliance on machine learning for 

adaptation could be exploited by adversaries. Therefore a ULS system must 

also be skeptical as it learns how to adapt to new situations.

The law of large numbers and the size of ULS systems potentially allow for 

analyses leading to types of improvement and adaptation that are not feasible 

in smaller systems. For example, with a sufficiently large number of interac-

tions, the system can begin to gather data on observed regularities in people’s 

behavior and begin to build statistically reliable models of what types of 

services will be required. These opportunities arise from considering people 

as integral elements of the overall system’s behavior. Although the behavior 

of individuals can be difficult to predict in isolation, the behavior of large 

groups is more amenable to analysis. 

Among today’s assumptions undermined by this characteristic  

are the following:

• People are just users of the system. For some aspects of a ULS system, 

it will be impossible to understand or analyze the effects of the system 

without giving full consideration to the behavior of people as elements 

of it. The inclusion of human behavior in the analysis of overall system 

function is not new, but, in ULS systems, it will become more imperative 

than for today’s systems. 

• The collective behavior of people is not of interest. When designing 

and analyzing ULS systems, their scale means that the collective behavior 

of groups of users and developers will be a significant factor in how the 

system is used, viewed, and accepted. 

• Social interactions are not relevant. Today’s emphasis in designing 

information systems is on the technology—how to make the system 

sufficiently fast, reliable, functional, etc. It is not often the case that a 

socio-technical perspective is taken. In ULS systems, desirable emergent 

behaviors will partly be a function of how groups of people make use of 

the technology and how the technology supports group needs. Failure to 

take into account the conventions that govern people’s behaviors, failure 

to take into account the benefits and problems associated with the actions 

of masses of people, and failure to treat people as a part of the system 

would be a mistake. 
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2.6  

Normal Failures 

 Because the physical underpinnings of a ULS system will be vast, hardware 

failures will no longer be an exception. And because software components 

will be stressed beyond their designed-for capabilities, software may also 

behave in undesirable ways. Moreover, even when defects are low, frequency 

of use may result in a continuing, low-level occurrence of failure events 

somewhere in the system. For example, if a file transfer protocol fails once in 

a million uses but the transfer protocol is used a million times a day, a failure 

will occur, on average, once a day. We can expect that, with ULS systems, 

unusual situations and boundary conditions will occur often enough that 

something will always be failing. 

Because of the scale of ULS systems, they must be designed to cope with 

failures (of various kinds) as a continuous problem. This realization may 

sound daunting or pessimistic, but we are familiar with this effect in our 

everyday lives. In a large city, there will be an occasional fire, crime, or 

accident often enough that it is worth having fire, police, and ambulance ser-

vices. But the occurrence of fires, crimes, or accidents in any given building 

is sufficiently rare that we don’t have these services for each building. We 

know that these problems are inevitable, so we can make them a part of the 

community infrastructure. Similarly, in ULS systems, the types of failures 

that occur infrequently in smaller scale systems will occur frequently enough 

that the ULS system will have to support special capabilities for dealing with 

them on a regular basis. This means not just designing systems to cope with 

the consequences of such failures, but designing them to contain the effects 

of failures and, to the extent possible, to give warnings before the failures 

occur or have a widespread impact.

Among today’s assumptions undermined by this characteristic are the 

following:

• Failures will occur infrequently. The scale of ULS systems can increase 

the number of failures per unit of time—as system usage and size 

increase, certain types of failure will be “normal.” ULS systems must be 

designed to limit how much of the ULS system’s behavior is affected by 

failure.

• Defects can be removed. Much of software engineering is devoted to 

the prevention and detection of defects; yet in very large systems, it is 

impossible to be sure that all defects have been removed, and, in practice, 

more often than not, systems are shipped and used despite the presence 

of defects. ULS system design must pay more attention to fault tolerance 

than is typically paid (except for high-assurance systems). In addition, 

ULS systems, because of their scale, will almost certainly introduce new 

types of faults that will require new fault-tolerance strategies.
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Introduction Characteristics Challenges Research Areas Recommendations

2.7  

New Paradigms 

for Acquisition and 

Policy 

 Because of its size, those responsible for making a ULS system possible 

(managers, acquirers, developers, suppliers, legislators, etc.) will be unable to 

comprehensively define and control uncertain and ever-changing stakeholder 

requirements. Any requirement for centralized, global control over changes 

cannot possibly take all these different purposes into account, manage them 

efficiently, or allow for rapid changes in response to immediate needs. A 

successful ULS system must have the ability to develop organically. Our 

vision is not unbridled anarchy: as in cities, there will be rules, regulations, 

zoning laws, governing officials, and enforcement personnel to keep things 

going, allowing citizens to adapt to meet local needs while maintaining a 

viable overall structure. 

The size of ULS systems will present a challenge to managers. If the actual 

needs of system stakeholders can never be fully anticipated, the entire 

contracting, design, and construction process—no matter how closely man-

aged for quality control—will all too often result in systems that fail to meet 

users’ expectations and needs. 

One of today’s assumptions undermined by this characteristic  

is the following:

A prime contractor is responsible for system development, operation, 

and evolution. The centralized control implied by the usual prime-contractor 

model is incompatible with ULS systems. For example, there is no prime 

contractor in charge of the development, operation, and evolution of the 

Internet, although there are organizations that have responsibility for some 

portions of Internet capability. Despite this decentralized approach, the 

Internet has evolved successfully. Of course, there is a certain amount of 

centralization with respect to the development and evolution of interface 

standards, but much of the development, operation, and evolution of Internet 

services and core capabilities does not follow a prime-contractor model. 

2.8  

Summary 

 Although today’s systems have some of the characteristics identified in 

this section, what will distinguish ULS systems is that they will have all 

of these characteristics. Consequently, as we have noted above, many key 

assumptions we make today will be undermined: these systems will surpass 

the thresholds at which today’s approaches will work even nominally. 

To understand the challenges posed by ULS systems, we will need to 

look at them differently, not just as systems or systems of systems, but as 

socio-technical ecosystems: socio-technical because they are composed of 

people and technology interacting in complex ways, and ecosystem because 

characterizing them in this way will give us the richest understanding of the 

technical and management problems that will be encountered when building, 

operating, and developing them.
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3  
Challenges In  
ULS Systems

Section 2 described how the characteristics of ULS systems challenge the 

fundamental assumptions of today’s software developers and acquirers. It is 

clear that today’s approaches to defining, developing, deploying, operating, 

acquiring, and evolving software-intensive systems will not suffice. The 

success of ULS systems and the achievement of the missions that they are 

intended to support depend on the development of new capabilities. If we 

characterize ULS systems as cities or socio-technical ecosystems, we find 

that current knowledge and practices are geared toward creating individual 

buildings or species. What we lack is a scientific understanding of, and 

adequate methods and technologies for, effectively developing software-

intensive systems on the scale of whole cities or ecosystems. These gaps in 

knowledge and capability are strategic, not tactical. They are unlikely to be 

addressed adequately by incremental research within established categories. 

Rather, we need to develop a broad new conception of both the nature of 

such systems and new ideas for how to develop them. Understanding the 

demands that ULS systems will make is key to defining the research that is 

needed for new solutions. 

The challenges that we will face in developing ULS systems are organized in 

three broad areas:

1. Design and Evolution

2. Orchestration and Control 

3. Monitoring and Assessment
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Introduction Characteristics Challenges Research Areas Recommendations

3.1  

Design and 

Evolution

 How do we systematically address the socio-

technical ecosystem characteristics of ULS 

systems? How do we design the ecosystem 

infrastructure, which includes the services 

provided by and to the participants in the 

system, the rules (both formal and social) 

guiding their behavior, the acquisition 

practices, the supply-chain infrastructure, 

economic issues, etc.? How do we design the organizational processes 

responsible for producing and continually updating the designs of ULS 

system components and integration schemes?

The scale of complexity and uncertainty in ULS system design will be so 

great as to resist treatment by traditional development methods, which are 

characterized by centralized control (true even of decentralized methods 

such as open-source development) and by the testing of a small number 

of hypotheses about what constitutes a good solution. The challenge will 

be to find new ways to harness and coordinate the design capabilities and 

motivations not just of individual companies, prime contractors, and supply 

chains, but of whole industries, within which competition for value will 

drive much richer and more economical exploration of complex design 

spaces. Developing and evolving architectures around which industries will 

organize presents challenges that we are not equipped to understand today. 

Maintaining the conceptual integrity of system designs in the context of 

such decentralized design activities spread across the economy will present 

challenges to current knowledge, tools, and methods. The design of the 

industrial ecosystems, including incentive structures and sources of value 

(including procurement practices) that drive them, requires new thinking and 

integrative research across numerous disciplines. We need a new science to 

support the design of all levels of the systems that will eventually produce 

the ULS systems we can envision, but not implement effectively, today. 

ULS systems will be deeply embedded in the real world. These systems  

will comprise not only information technology (IT) components, but  

also machines of many kinds, individuals and teams, diverse sensors, 

information streams and stores (including verbal and non-verbal human 

communications), and so forth. We have traditionally viewed software  

as programming the computer components of such systems. We face a 

challenge in understanding and designing software in a new way: as the  

programming of all of the information-processing mechanisms and 

behaviors of complex ULS systems. 
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The characterization of systems as information-processing mechanisms  

is not new; it dates back at least to Wiener’s concept of cybernetics. 12 

However, recent developments in areas such as computer science and 

distributed cognition put us in a position to reconsider how information  

is processed in truly complex systems and to design their underlying 

information processes to make them sentient, adaptive, and effective in 

performing complex missions.

Finally, adding new capabilities to our systems today is a laborious process 

of redesign and reengineering. ULS systems will require internal infrastruc-

ture and mechanisms to facilitate the development and introduction of such 

improvements whether they are initiated by system designers, implementers, 

and operators or the users and computational elements interior to the ULS 

system. New theories of ULS system evolution will help to provide the rules 

and mechanisms needed to facilitate effective evolution of these systems, but 

the challenges in accomplishing this exceed our current change-management 

research and practice. 

Listed below is a sample of specific challenges in ULS system design 

and evolution. Each one can be mapped to the characteristics described in 

Section 2. For example, economics and industry structure deals with how to 

align the structure of systems with industry elements and economic forces to 

discover and meet key ULS requirements. This challenge relates to the de-

centralization and new paradigms for acquisition and policy characteristics; 

the issue is how to engage industrial partners in developing and evolving 

ULS systems when a different acquisition and management control model is 

needed. It relates to the characteristics of inherently conflicting, unknowable, 

and diverse requirements and heterogeneous, inconsistent, and changing ele-

ments because these factors affect how the contractual mechanisms will have 

to work. The normal failures characteristic affects the acceptance criteria for 

contractor work.

• economics and industry structure: How do we align design architec-

tures13 and industry structures to harness economic forces in the service 

of discovering and meeting key requirements? 

• social activity for constructing computational environments:  

How do we model interaction with a social context in a way that offers 

guidance for how to design and support ULS systems?

12   Norbert Wiener (1894-1964): Wiener’s work before and during World War II led to the publishing of Cybernetics, or 

Control and Communication in the Animal and Machine in 1948. In it, he described a new way of looking at how the 

world functioned based on his research on the way in which information is transmitted and processed. He saw a world 

that focused on information, not energy and on digital or numeric processes, not machine or analog processes. 

13   By design architecture we mean a set of decisions that partitions the task of producing the complete design for a 

system into a set of largely separable subtasks.
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• legal issues: How will we resolve the legal issues that would today 

prevent a ULS system from achieving its full potential? These issues 

include licensing, intellectual property, and liability concerns that 

arise due to the size and complexity of a ULS system that is developed 

under multiple authorities. How will legal policies (e.g., regarding the 

certification of security- and safety-critical components) adapt (if at all) 

to the characteristics of ULS systems (e.g., to self-reconfigurability as a 

pervasive technical characteristic)?

• enforcement mechanisms and processes: How do we create enforce-

ment mechanisms for the set of (legal, design, and process) rules that 

support and maintain the integrity of the system? What structures are 

required to negotiate exceptions to the rules so that the ULS system can 

be adaptable without affecting its long-term sustainment?

• definition of common services supporting the ULS system: How 

do we define an infrastructure (a set of technological, legal, and social 

services) that will be common to many elements of the ULS system? 

• rules and regulations: How will whole industries come together to 

agree on rules and regulations to ensure overall coherence and quality 

while still being sufficiently flexible to permit stakeholders to explore and 

compete within rich design spaces?

• agility: How can the groups responsible for ULS development, mainte-

nance, and evolution be kept sufficiently agile to respond effectively to 

changes in requirements, system configuration, system environment, etc.?

• handling of change: How can the processes for developing, maintaining, 

and evolving a ULS system be adapted to handle in situ design change 

and evolution rather than relying on static requirements preceding design 

and implementation?

• integration: How can we minimize the effort needed to integrate 

components built independently by different teams, with different goals, 

and at different times to create the current system?

• user-controlled evolution: How do we provide components and  

composition rules that give users the ability to create new, unplanned 

capabilities?

• computer-supported evolution: How do we provide automated  

methods to evolve ULS systems?

• adaptable structure: How do we create designs that are effective even as 

requirements and the ULS environment change continually?

• emergent quality: How do we organize processes for producing ULS 

systems so that they converge on high-quality designs? 
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3.2  

Orchestration and 

Control

 By orchestration we mean the set of activities needed to make the ele-

ments of a ULS system work in reasonable harmony to ensure continuous 

satisfaction of the mission objectives. Orchestration involves management 

and administration but at a scale well beyond that of traditional, centralized, 

relatively fine-grained controls. Orchestration requires a combination of 

up-front design, overall policy promulgation and enforcement, and real-time 

adjustment of operating parameters.

Orchestrating a ULS system requires supporting interdependencies and 

controlling the consequences of local actions with respect to their effect on 

the emergent whole, even though each part of a system might be acting to 

maximize its local utility. In a city, for example, when different groups want 

more services than can be provided, there are procedures for deciding what 

gets provided and to whom. The city governance authorities do not control the 

actions of individual citizens, but they do specify general rules of behavior 

that are intended to minimize unnecessary conflict, disruption, or uneconomic 

use of city resources. Similarly, the policies and inherent capabilities that 

constrain the interactions of the participants in a ULS ecosystem create a 

framework for the long-term viability and adaptability of a ULS system in a 

world of changing missions, deployments, and required functionality.

Orchestration is needed at all levels of ULS systems. At one level, the 

activities of otherwise autonomous companies developing key technologies 

for ULS systems will need to be orchestrated. At another level, the behaviors 

of a ULS system in operation will need to allocate resources in real time to 

satisfy real-time mission objectives. At the highest level, orchestration could 

both affect and be driven by doctrine, policy, appropriations, and procure-

ment practices.

This style of system management is fundamentally different from the way 

we manage systems today. To succeed in developing and operating ULS 

systems, we thus need new knowledge, technologies, and methods in the 

following areas:

• online modification: How can necessary adjustments to a system be 

made while the system is running, with minimal disturbance to user 

services; how can the changes be propagated throughout the system when 

necessary? 

• maintenance of quality of service: How can the overall quality of 

service be maintained while enabling the flexibility to provide different 

levels of service to different groups?

• creation and execution of policies and rules: What policies and rules 

lead to effective solutions despite divergent viewpoints of stakeholders? 

How are such rules and policies created? How are they executed?
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• adaptation to users and contexts: How can the needs of users and 

stakeholders be discovered and understood; how can those needs be 

translated into execution-time modifications and adaptations? How can 

the context—both the user’s context and the physical context—be sensed, 

captured, and translated into adaptations?

• enabling of user-controlled orchestration: How do we provide com-

ponents and composition rules that give users the ability to adapt and 

customize portions of the system in the field?

 3.3  

Monitoring and 

Assessment

 The effectiveness of ULS system design, evolution, and orchestration 

has to be evaluated. There must be an ability to monitor and assess ULS 

system state, behavior, and overall health and well being. The monitoring 

and assessment of complex systems, and subsequent adjustment of system 

parameters, is not a new idea. In a city, for example, sensors collect informa-

tion about traffic conditions, and this information is then distributed to those 

to whom it is relevant, allowing people to select alternate routes around 

traffic jams, for example. In complex telecommunication, transportation, 

and electrical distribution networks, continuous measurements are made of 

system configuration, resource usage and demand, system and component 

failure status, etc. Measurements are taken by monitoring embedded sensors. 

Assessment activities then determine what the measurements mean, such 

as by simulating the future health of the system or determining the need for 

control or orchestration actions.

The criteria for success or overall health are different for ULS systems than 

for smaller systems designed to accomplish a task that does not change as 

the system is used. For example, consider criteria for the success of a city. 

Different criteria are used by the governing bodies, different groups of 

citizens, etc. If the power fails in one part of the city, the rest of the city may 

not be overly inconvenienced, at least as long as the power failure does not 

last too long, impair some critical facility, or happen too often. Because a 

city provides distributed services to different groups of people, its success in 

delivering services will depend in part on the expectations and needs of each 

group and in part on the qualities of the delivered service. Understanding 

such criteria is a critical aspect of the monitoring and assessment of a ULS 

system.

The primary approach today to system monitoring and assessment is through 

the use of metrics. We characterize the quality or functionality of a system 

by a set of metrics captured at critical probe points defined for the system’s 

constituent components and networks. This is far from adequate for ULS 

systems. Our current measurement science is analogous to a small set of tests, 

each like a specific X-ray or MRI scan for a broken bone, whereas we need 

ensemble indicators of a ULS system’s overall health, fitness, and well being. 
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The scale, decentralization, distribution, and heterogeneity of ULS systems 

will present challenges to effective monitoring and assessment. Among other 

things, it is likely that some ULS system indicators should be statistical, 

composite measures of a system’s overall state—akin to the gross domestic 

product or to measuring climate change by estimates such as the net loss or 

gain of ice mass. To maintain a ULS system at a set of reasonable expecta-

tions, to influence the direction of its evolution, and to assess and predict its 

overall quality and effective functionality, we will need to augment current 

measurement approaches with additional new theories and practices. Finally, 

because ULS systems are socio-technical systems with people as partici-

pants, ULS system indicators must reflect the conditions not only of the 

technological but also the human, organizational, economic, and business 

elements of the system.

Examples of challenges associated with monitoring and assessment are the 

following:

• defining the indicators: What system-wide, end-to-end, and local qual-

ity-of-service indicators are relevant to meeting user needs and ensuring 

the long-term viability of the ULS system?

• understanding why indicators change: What adjustments or changes 

to system elements and interconnections will improve or degrade these 

indicators?

• prioritizing the indicators: Which indicators should be examined under 

what conditions? Are indicators ordered by generality, so that some give 

an overall health reading of the system while others are specialized to 

particular diagnostics? 

• handling change and imperfect information: How do the monitoring 

and assessment processes handle continual changes to components, 

services, usage, connectivity, etc? Note that imperfect information can be 

inaccurate, stale, or imprecise.

• gauging the human elements: What are the indicators of the health and 

performance of the people, business, and organizational elements of the 

ULS system?
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4   
Overview of  
Research Areas

We introduce an interdisciplinary portfolio of seven research areas that 

address the three challenge categories of ULS system design evolution, 

orchestration and control, and monitoring and assessment. Because the 

characteristics of ULS systems fundamentally undermine the assumptions of 

today’s approaches, breakthrough research is necessary in all three areas to 

meet the current, near-term, and long-term needs of ULS systems. Because 

of the ecosystem nature of ULS systems, we must take a more expansive 

view of software research and include its interactions with associated 

research in the physical and social sciences. The seven research areas are the 

following:

Human Interaction: Understanding ULS system behavior will depend on 

the view that humans are elements of a socially constituted computational 

process. This research involves anthropologists, sociologists, and social 

scientists conducting detailed socio-technical analyses of user interactions 

in the field, with the goal of understanding how to construct and evolve such 

socio-technical systems effectively.

Computational Emergence: Some aspects of ULS systems will be 

“programmed” by properly incentivizing and constraining behavior rather 

than by explicitly prescribing. This research area explores the use of methods 

and tools based on economics and game theory (e.g., mechanism design) 

to ensure globally optimal ULS system behavior by exploiting the strategic 

self-interests of the system’s constituencies. This research area also includes 

exploring metaheuristics and digital evolution to augment the cognitive 

limits of human designers, so they can manage ongoing ULS system adapta-

tion more effectively.
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Design: This research area broadens the traditional technology-centric 

definition of design to include people and organizations; social, cognitive, 

and economic considerations; and design structures such as design rules 

and government policies. It involves research in support of designing ULS 

systems from all of these points of view and at many levels of abstraction, 

from the hardware to the software to the people and organizations in which 

they work.

Computational Engineering: ULS systems will be defined in many 

languages, each with its own abstractions and semantic structures. This 

research area focuses on evolving the expressiveness of representations 

to accommodate this semantic diversity. Because the complexity of ULS 

systems will challenge human comprehension, this area also focuses on 

providing automated support for computing the behavior of components and 

their compositions in systems and for maintaining desired properties as ULS 

systems evolve.

Adaptive System Infrastructure: This research area investigates integrated 

development environments and runtime platforms that support the decen-

tralized nature of ULS systems. This research also focuses on technologies, 

methods, and theories that will enable ULS systems to be developed in their 

deployment environments.

Adaptable and Predictable System Quality: Managing traditional 

qualities such as security, performance, reliability, and usability is necessary 

but not sufficient to meet the challenges of ULS systems. This research 

area focuses on how to maintain quality in a ULS system in the face of 

continuous change, ongoing failures, and attacks. It also includes identify-

ing, predicting, and controlling new indicators of system health (akin to the 

U. S. gross domestic product) that are needed because of the scale of ULS 

systems.

Policy, Acquisition, and Management: This research area focuses on 

transforming acquisition policies and processes to accommodate the rapid 

and continuous evolution of ULS systems by treating suppliers and supply 

chains as intrinsic and essential components of a ULS system.
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While this collection of research areas is not exhaustive, it represents the 

spectrum of research that is needed for designing, deploying, and manag-

ing systems as they evolve toward ultra-large scale. Table 1 shows the 

relationship between the seven research areas described and the challenges 

described in Section 3. Meeting these challenges requires a wide spectrum 

of research in a variety of disciplines beyond computer science and software 

engineering, an expansion of our computational foundations, and perhaps 

even new foundations. A dot in the following table indicates that the research 

area addresses a portion of the indicated challenge.

Table 1: Relationship Between Research Areas and Challenges

Research Areas
Design and  
Evolution

Orchestration and  
Control

Monitoring and  
Assessment

Human Interaction

Computational 
Emergence

Design

Computational 
Engineering

Adaptive System 
Infrastructure

Adaptable and Predictable 
System Quality

Policy, Acquisition, and 
Management

The remainder of this section elaborates on Table 1 by explaining how  

each research area addresses one or more of the challenges presented in 

Section 3. Detailed descriptions of the research areas as well as their  

associated research topics are presented in Part II of this report.

4.1  

Human Interaction

 Research in the area of Human Interaction addresses some of the  

challenges in Design and Evolution and Orchestration and Control.

Relevance to Design and Evolution. People are key participants in ULS 

systems. Many problems in complex systems today stem from failures at the 

individual and organizational level. We therefore need research on user-

centered specifications and on Modeling Users and User Communities.14 

At the heart of this research are empirical methods, such as those used in 

ethnography, sociology, cognitive and brain science, and anthropology. 

14   Bold formatting indicates that this research topic is described in detail in Part II, Section 6 and referred  

to in the tables in Section 5. 
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While some models of human interaction are inspired primarily by economic 

factors and competitive forces to drive improvements, research is needed 

to understand other models, such as open source, that involve Fostering 

Non-Competitive Social Collaboration. In these models, pure self-interest 

is supplanted by altruistic motivations and the desire to be perceived as pro-

ductive and intelligent. Since ULS systems will outlast specific people and 

organizations, ULS system Longevity requires research in the organizational 

structures needed to ensure consistency and robustness as management, 

personnel, and strategies change over time.

Relevance to Orchestration and Control. Research is also needed in 

Context-Aware Assistive Computing to model and develop accurate and 

robust sensing, filtering, aggregation, and visualization capabilities directed 

at operating ULS systems. These models will help people by significantly 

reducing inessential distractions and demands on their attention and 

anticipating their needs while they orchestrate and use ULS systems. 

Research in these areas also involves Understanding Users and Their 

Contexts to develop models of human expectations in varying contexts and 

create techniques to represent and automatically adjust those models based 

on experience. 

4.2  

Computational 

Emergence

 Research in the area of Computational Emergence addresses some of the 

challenges in Design and Evolution and Orchestration and Control.

Relevance to Design and Evolution. ULS systems will often lack a central 

locus of operational or institutional control. They must therefore satisfy the 

needs of participants at multiple levels of organization (i.e., from individual 

components and users to whole institutions). It cannot always be assumed 

that all participants will participate altruistically for the good of the entire 

system. In many cases, participants will instead behave opportunistically to 

meet their own mission requirements, irrespective of the goals and objectives 

of other participants. Economic and game-theoretic mechanism designs and 

related approaches may play an important role in achieving globally optimal 

behavior precisely because they assume the strategic self-interested behavior 

of key stakeholders and constituencies. Algorithmic Mechanism Design 

puts mechanism design into a computational setting by using computers 

to design mechanisms and using mechanisms to control computing. As the 

design challenges of ULS systems exceed the capabilities of human design-

ers, we will increasingly depend on computational support for software and 

system design in much the same way as we employ model checking and 

automated layout packages to aid hardware design. While mechanism design 

is a well-established field in its own right, we need fundamental research  

to apply the theory to ULS systems (e.g., to steer emergent behavior in 

desired directions).
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While mechanism designs provide optimal solutions at particular instants, 

they do not address the needs of their users at all times across the lifespan of 

these systems. Breakthroughs in Metaheuristics in Software Engineering 

and Digital Evolution would offer promising means to cope with pressures 

that inevitably require ULS systems to adapt to new environments and 

circumstances, including new policies, missions, and mechanisms. Mapping 

software engineering problems into metaheuristic problems and creating 

objective functions and mutator functions for metaheuristic approaches 

are research topics in this area. Judiciously used, digital evolution can 

substantially augment the cognitive limits of human designers and can find 

novel (possibly counterintuitive) solutions to complex ULS system design 

problems. 

While mechanism designs, digital evolution, and adaptive systems may  

be constrained to relatively narrow scopes in early phases of ULS systems 

research, they all enlist the use of computational resources to solve 

important ULS system-design and evolution challenges. They also highlight 

a future in which synergy is achieved between digital and human participants 

in ULS systems. 

Relevance to Orchestration and Control. Evolution in ULS systems  

will rarely occur in discrete, planned steps in a closed environment; instead 

it will be continuous and dynamic. The rules for continuous evolution 

must therefore be built into ULS systems and their supporting platforms, 

processes, and tools so that they will be largely self-reliant and able to cope 

with dynamically changing environments without constant human interven-

tion. Achieving this goal requires research on in situ control, reflection, 

and adaptation to ensure continuous adherence to system functional and 

quality-of-service policies in the context of rapidly changing operational 

demands and resource availability. 

4.3  

Design

 Research in the area of Design addresses some of the challenges in  

Design and Evolution.

Relevance to Design and Evolution. Fundamental to the design and 

evolution of ULS systems will be explicit attention to design across logical, 

spatial, physical, organizational, social, cognitive, economic, and other 

aspects of the system. Attention to design is also needed across levels 

of abstraction involving hardware and software and involving procurers, 

acquirers, producers, integrators, trainers, and users. A key area of research 

in design is therefore the need for Design of All Levels of ULS systems. 

Research in design includes formulating the architectural designs of ULS 

systems in terms of Design Spaces and Design Rules: design rules that 
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structure design artifacts and design spaces around which decentralized 

design activities—and even whole industry structures—may come to be 

organized. Design rules generalize from traditional interface specifications 

to structure design artifacts using a much broader concept of constraints 

that serve to regulate decentralized design processes, largely to assure that 

component parts will integrate into systems having specified properties.  

We need research on designing, representing, and analyzing design spaces 

and on the means by which design rules are created, validated, and changed.

The overall design activity—in some cases carried out across entire industry 

sectors, including open-source projects, university projects, and individual 

contributions—then acts as a complex adaptive system, strongly driven to 

converge economically15 on, and to maintain, good designs. Today we have 

few tested theories or practices of designing ULS systems for economic 

value or of how to establish economic forces that promote good design, such 

as through new contracting and acquisition structures. We therefore need 

research on Harnessing Economics to Promote Good Design leading to 

a deeper understanding of how to organize designs and design activities to 

maximize value and on how to create economic conditions that predictably 

provide incentives to create and sustain valuable designs. 

Operational ULS systems will also behave as complex adaptive systems in 

which feedback and control are essential to meet user and mission objectives. 

We therefore need research to understand how to decentralize design activi-

ties so that they are responsive to feedback from deployed running systems. 

Since ULS systems will serve different classes of users with distinct and 

often conflicting interests, research is needed on Design Representation and 

Analysis and reconciliation of distinct and competing interests, both offline 

and online and at various levels up and down echelons. 

Today’s large-scale systems are often characterized by attempts to leverage 

components that were not designed to work together or that are inconsistent 

with the design rules of the system architecture in which they are inserted. 

The success of ULS systems will depend on significant progress being made 

on ULS system Assimilation, where nonconformant components (often with 

less than adequate reliability) are assimilated into architecturally coherent and 

robust ULS systems. This research will focus on developing techniques that 

enable analyzing, modeling, fortifying, and evolving large legacy code bases; 

working with diverse data; and integrating diverse, uncertain, and unreliable 

information sources into a coherent operational picture. 

15  Economic concerns also include the systems of value used by open-source communities, university projects, and 

individual efforts. These concerns might not all be monetary value systems, but they all result in forces that promote 

improvement of the designs.
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ULS systems will exacerbate today’s problems in Determining and 

Managing Requirements due to the scope of application domains that 

exceed limits of human intellectual capabilities, the complexity and 

fragmentation of socio-economic processes and organizations that are highly 

decentralized and autonomous, and the sheer complexity of the problems 

being addressed. Analysis and design methods must accommodate pervasive 

incompleteness, imperfection, uncertainty, and nondeterminacy in the 

products and processes that arise throughout the system’s development and 

evolution. We need research on ULS system-requirements topics, such as the 

basics of requirements gathering, conflict management, ambiguity tolerance, 

and requirements phaseout.

4.4  

Computational 

Engineering

 Research in the area of Computational Engineering addresses some of the 

challenges in Design and Evolution.

Relevance to Design and Evolution. ULS systems will require new 

approaches to intellectual control for developers and users with different 

backgrounds and objectives. Research on Expressive Representation 

Languages, more comprehensive programming and abstraction mecha-

nisms, and more powerful capabilities for modularity and composition 

will be required. In addition, we need new techniques to support the rich 

semantic web that exists among artifacts that will make up ULS systems, 

including policies, specifications, designs, implementations, documentation, 

legacy code, and many others. 

Because ULS systems will be highly decentralized, they will depend heavily 

on trusted core components and standards throughout their architectures. 

While complete upfront specification of ULS systems will be impractical, an 

important subset of trusted components and standards will require compre-

hensive specification to support extremely rigorous validation, verification, 

and certification. We need research to define ULS-capable Scaled-Up 

Specification, Verification, and Certification technologies. Research is 

also needed to understand how model-based, aspect-oriented, and other 

generative methods can help satisfy stringent certifiability and reliability 

requirements. 

The design and construction of ULS systems will benefit from scaling up the 

granularity of reliable engineering artifacts. A billion-line system becomes 

a million-unit system if the reliable unit of construction is a component of 

a thousand lines and becomes a ten-unit or hundred-unit system if hundred-

thousand-line or ten-thousand-line subsystems, respectively, can be reliably 

built from reliable thousand-line components. Fast and correct development 

of such large components will require automation of the computational anal-
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ysis and verification of ULS system specifications, architectures, designs, 

and implementations at a level of precision not possible today. We therefore 

need research on scientific foundations in support of Computational 

Engineering for Analysis and Design to compute the behavior and quality 

attributes defined by programs and their associated specification and design 

artifacts. This research is also required for automated composition of compo-

nents in highly decentralized and distributed architectures. In addition, as 

ULS systems evolve and adapt to changing operating conditions, we must 

develop methods for automated computation and maintenance of correct 

definitions of system behavior.  

4.5  

Adaptive System 

Infrastructure 

 Research in the area of Adaptive System Infrastructure addresses some 

of the challenges in Orchestration and Control and Monitoring and 

Assessment.

Relevance to Orchestration and Control. Today’s software-development 

and deployment environments are oriented toward traditional software-devel-

opment practices that produce and execute software artifacts and centralize 

activities in a single organization or with central points of control, as in 

traditional prime/subcontractor structures and open-source development. 

ULS systems, in contrast, face a broader set of issues:

• Development, deployment, and operational activities will be more 

integrated and overlapping in ULS systems.

• ULS systems will have many concurrent information flows and will be 

produced by decentralized design processes.

• Deployment environments that span organizational boundaries will 

require development environments to assure security and privacy.

• Because of the blurring of the distinction between design time and 

runtime, ULS systems will increasingly be developed in situ. 

These characteristics of ULS systems imply the need for research in 

Decentralized Production Management, including 

• investigation of multi-team, multi-organization interoperability;

• new approaches to multi-institution security; and 

• coordinated system testing throughout all the software life-cycle phases 

(as opposed to waiting until system integration). 
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Since ULS systems will increasingly be developed in situ in the deployment 

environment, research is needed on Evolutionary Configuration and 

Deployment, which entails 

• investigating mechanisms for maintaining the desired degree of trustworthi-

ness in deployment configurations when applications use both trusted and 

untrusted components; 

• analyzing the effects of intended changes and propagating changes auto-

matically and robustly into the set of known alternatives without negatively 

affecting the system’s quality of service; 

• supporting the coexistence and interoperability between different deploy-

ment configurations; and 

• automatic rollover to new configurations, monitoring of the operations 

of these new configurations against expectations, and rollback to proven 

configurations. 

ULS systems will have to respond to emergent behavior on the part of the users 

and the environments in which the system is situated. As a consequence, ULS 

systems must be able to observe their own operations, recognize acceptable and 

unacceptable behaviors, and take corrective action with little or no operator 

intervention. These adaptations must occur dependably to achieve a balanced 

level of quality for ULS system participants. Achieving these goals requires 

research in In Situ Control and Adaptation, which focuses on control-theo-

retic techniques, decentralized resource-management algorithms, predictable 

reconfiguration, and reflection mechanisms with predictable effects on quality 

of service and mechanisms for policy-driven configuration migration.

Relevance to Monitoring and Assessment. To enable automated analysis of 

system properties and synthesis of many implementation details, new tools 

and platforms are needed to specify modifications at the appropriate level of 

abstraction. We therefore need research on View-Based Evolution, which 

involves instrumenting the system to update views automatically, navigating 

among views, controlling execution instrumentation and monitoring, and 

combining human state with computational state. 



38 Ultra-Large-Scale Systems     

The Software Challenge of the Future   

4   Overview of Research Areas

Introduction Characteristics Challenges Research Areas Recommendations

4.6  

Adaptable and 

Predictable System 

Quality

 Research in the area of Adaptable and Predictable System Quality  

addresses some of the challenges in Orchestration and Control, 

Monitoring and Assessment, and Design and Evolution.

Relevance to Orchestration and Control. ULS systems will be long 

running and must operate robustly in environments fraught with failures, 

overloads, and attacks. Moreover, ULS systems must maintain robustness in 

the presence of adaptations that are not centrally controlled or authorized, 

and which in some cases may be initiated by the systems themselves 

rather than by human operators. Research is needed to develop theories of 

Robustness, Adaptation, and Quality Attributes, along with supporting 

mechanisms that accommodate both the traditional concepts of instantaneous 

robustness and the time-sequenced concept of robustness that arises from the 

decentralized, adaptive, and long-lived nature of ULS systems. This research 

includes seeking to uncover signals in development processes (e.g., numbers 

of reported adaptations) and runtime processes (e.g., system dynamics) that 

predict impending points of instability and studying robustness mechanisms 

arising in naturally robust systems.

Some degree of system failures (hardware and software) will be intrinsic 

to ULS systems. For example, at any given moment, some portion of the 

Internet is in failure mode. It is inevitable that ULS systems will be tempting 

targets of attack for capable and motivated adversaries seeking tactical and 

strategic advantages. We have difficulty achieving high levels of security 

even for the state-of-the-art systems of systems today. To ensure acceptably 

high, measurable levels of Security, Trust, and Resiliency for ULS systems, 

research is required in the following topics: security, trust, and resiliency 

measures and metrics; attack detection; attack containment; graceful 

degradation under attack; recovery from attacks; and attack diagnostics and 

forensics. 

Engineering Management at Ultra-Large Scales is another topic that must 

be addressed for ULS systems. Developing practices that foster continuous 

product and process improvement across organizational boundaries is just 

one of many issues confronting engineering management at ultra-large 

scales. Moreover, new product and process measures and new technical 

infrastructures will be required to support management decision making. 

Research is needed on how to motivate and manage ULS system knowledge 

workers and how to develop measurements of system and process, product, 

and project health.
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Relevance to Monitoring and Assessment. In addition to defining entirely 

new quality attributes, there will also be changes in the way developers and 

operators of ULS systems specify, analyze, and control quality attributes. 

Increasing scale requires increasing aggregation and abstraction, which in 

turn suggests increasing reliance on stochastic theories of behavior and the 

need to understand how theories at different levels of abstraction interact 

with one another. For example, Internet storms arise at the massive scale 

of the Internet but do not appear in smaller scale settings. Predicting and 

averting these types of phenomena require novel theories and applications 

of approaches inspired by such fields as statistical mechanics and pos-

sibility theory. In general, research on Scale and Composition of Quality 

Attributes is needed to identify new measures; complementary stochastic 

and deterministic theories of quality; and verification techniques that ac-

commodate uncertainty arising from non determinism, measurement error, 

and lack of knowledge.

Relevance to Design and Evolution. Predicting and preserving system-

wide qualities require establishing and sustaining the system invariants 

on which these qualities depend. A variety of enforcement mechanisms 

have been developed over many years of practice—transaction monitors, 

security monitors, sandboxes, and schedulers, to name a few. In some cases, 

we need new research on scaling these mechanisms to ULS system scale; 

in other cases, completely new mechanisms are needed. In all cases, the 

enforcement mechanisms must be linked explicitly with the complementary 

quality theories. Topics of particular research interest for Enforcing Quality 

Requirements include enforcement mechanisms for shared resources and 

robust recovery mechanisms and mechanisms for ensuring acceptable levels 

of computing when operating in suboptimal conditions.

People will be a key part of a ULS system, and the overall quality attributes 

of the system include quality attributes of humans as well as the technol-

ogy and the interactions between the two. We therefore need research 

on Understanding People-Centric Quality Attributes, which includes 

trustworthy human-comprehensible models of system state; modeling 

human-human interactions, human quality attributes, and crowd behavior; 

and blending human and system quality attributes.
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4.7  

Policy, Acquisition, 

and Management

 Research in the area of Policy, Acquisition, and Management addresses 

some of the challenges in Design and Evolution and Orchestration  

and Control.

Relevance to Design and Evolution. Just as computational elements of a 

ULS system will be interdependent, so too will human elements. Not only 

will the actions of human participants affect other users, but successful op-

eration may depend on appropriate action by other users. The systems must 

be explicitly designed to accommodate change at all levels, and consequently 

their acquisition processes must be designed to support dynamic changes in 

system capabilities. Organizational, technical, and operational policies must 

be developed and largely automated to enable fast and effective local actions 

while preserving global capabilities. 

Given the scope and scale of ULS systems, technical, organizational, and op-

erational policies will emerge as principal vehicles for ensuring harmonious 

operations. Therefore Policy Definition for ULS Systems must support both 

local and global operations in such a way that people and the computational 

actions they initiate can achieve cooperative and even competing objectives 

without impairing the viability of the system as a whole. Such considerations 

require definition of policies whose effect on system operations, stability, 

and long-term viability is well-defined and widely understood. Research is 

needed in policy definition that allows for flexible collaboration, effective 

governance and local adaptation, and automated support for making and 

assessing policy decisions.

Relevance to Orchestration and Control. Given their pervasive application 

to support global operations in many simultaneous strategic and tactical 

situations, Fast Acquisition for ULS Systems will be required to meet 

changing threats and environments. Research will be needed in developing 

new acquisition processes for fast response, integrating supply chains for 

operational readiness, capitalizing on ad hoc acquisition, and automating for 

fast acquisition.

Since ULS systems will be designed to support dynamic coalitions and 

management of tactical and strategic operations in a highly distributed 

setting, decentralized Management of ULS Systems within an overall 

policy framework will be critical. Research is required in managing ULS 

systems for operational readiness and organizing supply chains of vendors 

and integrators for fast system evolution.
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5   
Summary and 
Recommendations

The research areas introduced in Section 4 provide an initial research 

agenda for ULS systems based on the results of our one-year study. Our 

experience from this study underscored the need for fundamental research 

breakthroughs across multiple, multi-disciplinary areas in order to solve 

ULS system challenges. We therefore intend that research and development 

(R&D) communities be active on numerous fronts. We also intend that as 

R&D communities increasingly understand the nature of ULS systems,  

they will identify promising research in areas and topics that are not covered 

in this report. 

Moreover, we have purposely avoided couching our descriptions in terms 

of today’s technology. We are focused on systems of the future, namely 

ULS systems. The research that will lead us to that future is long term 

and fundamental. We are aware that some of today’s successful software 

technologies and methodologies are perceived as panaceas for future DoD 

system development, such as the following:

• service-oriented architecture (SOA) platforms (such as web services, 

.NET, Enterprise JavaBeans, and CORBA), which have introduced 

advanced capabilities to the mainstream IT community and which 

incorporate various levels of middleware as part of the overall  

development process

• the World Wide Web Consortium (WC3), where information- 

management standards have enabled us to connect independently 

developed browsers and web pages easily

• model-driven architecture (MDA), which defines an approach to  

software development that separates the specification of system function-

ality from the specification of its implementation on specific platforms 

by structuring specifications expressed as high-level models rather than 

platform-specific code 

• the High-Performance Computing (HPC) Grid, which is enabling scien-

tists and researchers to collaborate on grand challenge problems such as 

global climate change modeling and high-energy physics experiments 
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• the Global Command and Control System (GCCS), which integrated  

a series of commercially available products into a defined standard suite 

to provide interoperability among a variety of services and functions in 

the DoD

• the Global Information Grid (GIG), a net-centric system operating in a 

global context expected to provide processing, storage, management,  

and transport of information to support all DoD, national-security, and 

related intelligence-community missions and functions

These technologies and methodologies and others not cited herald technical 

progress and will undoubtedly have some bearing on success with ULS 

systems. In key ways, however, each is deficient in meeting the challenges 

associated with ULS systems of the future. None addresses the set of root 

characteristics of ULS systems or the complexity stemming from the scale 

and the ecosystem nature of ULS systems. Dealing with these character-

istics, challenges, and complexity at the fidelity needed for ULS systems 

requires a new generation of research areas that are informed by—but not 

necessarily constrained by—the existing technology base.  

5.1  

Toward a Roadmap 

for a ULS Systems 

Research Program

 Though our catalog of research areas and topics is a solid beginning, it is 

insufficient to structure a dedicated research program for ULS systems. 

Given the scope of the ULS systems problem space, there are many possible 

approaches to structuring a research program. Since different agencies and 

organizations have different missions and needs, no single research program 

is likely to be suitable for all sponsors. As a result, we do not present or 

prescribe a single roadmap, but instead offer three structures16 that suggest 

ways to cluster and prioritize groups of research areas. These structures can 

then be used to define one or more roadmaps that could lay out one or more 

ULS systems research programs or projects. 

The first structure, described in Sections 5.1.1 and 5.1.2 and summarized 

in Table 2, maps specific DoD missions and required capabilities to the 

ULS system research areas and topics in which research is needed to enable 

achievement of the missions and delivery of the capabilities. The second 

structure, described in Section 5.1.3 and summarized in Table 3, maps our 

research areas and topics to the DoD research funding types required to  

support them. The third structure, presented in Section 5.1.4 and summa-

rized in Table 4, estimates the associated risks and rewards of the research 

topics in each of the identified research areas. 

16   We have defined these structures as illustrated in Tables 2, 3, and 4 to the best of our current understanding. Our 

categorization of research topics according to mission/capabilities (Table 2), research-funding types (Table 3), and 

associated risks and rewards (Table 4) is admittedly subjective and is intended as a starting position.
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5.1.1  

DoD Missions and 

Capabilities

 To tie the research areas to specific DoD capabilities, the following three 

important missions have been extracted from the 2006 DoD Quadrennial 

Defense Review (QDR):17

Mission 1: Information management of net-centric tactical operations

Mission 2: Tailored, flexible forces

Mission 3: Leverage information technology and innovative concepts to 

develop interoperable joint C4ISR

Although software was not singled out as an explicit challenge area in the 

QDR, these three missions rely heavily on software systems that are much 

larger, more sophisticated, and more complex than those currently avail-

able—systems that match the characteristics of ULS systems as we have 

described them. Below, we describe the goals of each mission and present 

a pair of associated and required capabilities. These capabilities directly 

establish the need for breakthroughs and innovations in the research areas 

that we have identified. For each capability, we then construct a research 

track consisting of the set of pertinent research topics. The research topics 

are designated by number as they appear in Part II, Section 6 of this report. 

Those topics in bold constitute research that is essential to achieving the 

capability, while those in plain text will provide support in achieving that 

capability. All of this information is summarized in Table 2. Our association, 

though admittedly subjective, forms an initial basis for structuring ULS 

system research roadmaps.

Mission 1: Information management of net-centric tactical operations. 

This mission focuses on using connectivity to help joint forces gain greater 

situational awareness to attack the enemy and avoid fratricide. The QDR 

illustrates how important it has become to build our joint DoD systems of 

the future to assure information dominance over all adversaries, conventional 

nation states, and asymmetric group threats: 

Achieving the full potential of net-centricity requires viewing information 

as an enterprise asset to be shared and as a weapon system to be 

protected. As an enterprise asset, the collection and dissemination of 

information should be managed by portfolios of capabilities that cut 

across legacy stove-piped systems. These capability portfolios would 

include network-based command and control, communications on the 

move and information fusion. Current and evolving threats highlight the 

need to design, operate and defend the network to ensure continuity of 

joint operations. [QDR, page 58] 

17  Quadrennial Defense Review Report, February 2006, http://www.defenselink.mil/qdr/report/Report20060203.pdf
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Tactical operational systems designed to support the warfighter anywhere 

and anytime against any adversary must include capabilities that provide 

timely information to all levels of the theater during tactical operations. 

Below, we describe two important required capabilities for information 

management of net-centric tactical operations, along with the research tracks 

needed to technically enable these capabilities.

• Capability 1 (C1): Maintain coherent common operating picture 

by rapidly collecting, processing, disseminating, and protecting 

information spanning echelons, services, and coalitions across a mix 

of ultra-large-scale environments. The needed information will come 

from an expanding set of information sources, some operated by the 

DoD, some by our coalition partners, and others in the private sector. 

Without a capability to manage this information and present a coherent, 

common, timely, and reliable operating picture to warfighters, we risk 

either information overload during critical decision-making processes or 

missing information resulting in wrong decisions.

Research track 1 (RT1): 

Essential  Support  

6.1.1, 6.1.4, 6.2.1, 6.4.3, 6.5.1, 6.5.3, 
6.5.4, 6.6.3, 6.6.4, 6.7.3

6.1.2, 6.1.3, 6.3.3, 6.3.5, 6.6.1, 6.6.5, 
6.7.2

• Capability 2 (C2): Assure ULS system operation in the presence  

of attack and conduct effective information operations, while denying 

these capabilities to adversaries. In addition to getting the right 

information at the right time to warfighters, we must also prepare for 

adversaries who will use our reliance on technology to deny our use of 

that technology in tactical operations. Our ULS systems must therefore 

incorporate capabilities to assure that they continue to operate while 

under assault by our adversaries. Likewise, to maintain information 

dominance during all phases of an operation, our ULS systems must  

deny the information critical to our adversaries.

Research track 2 (RT2): 

Essential  Support  

6.1.4, 6.1.5, 6.3.6, 6.4.2, 6.5.4, 6.6.1, 
6.6.3, 6.6.4, 6.6.5, 6.7.2

6.1.2, 6.1.3, 6.3.2, 6.3.3, 6.3.4,  
6.5.2, 6.6.6, 6.7.1
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Mission 2: Tailored, flexible forces. The focus of this mission is on rapid 

joint mobility and effects-based operations. The QDR articulates the need 

for a future force that can adapt quickly to changing conditions, incorporate 

new technology and functions without halting a mission, and smoothly 

integrate these changes and adaptations without losing any of the previous 

gains in quality of service or operational capabilities: 

Rapid global mobility is central to the effectiveness of the future force. 

The joint force will balance speed of deployment with desired  

warfighter effects to deliver the right capabilities at the right time and 

at the right place. Effectiveness of mobility forces will be measured not 

only by the quantity of material they move, but also by the operational 

effects they help to achieve. Mobility capabilities will be fully integrated 

across geographic theaters and between warfighting components and 

force providers, with response times measured in hours and days rather 

than weeks. They will enable the Department’s move from a large 

institutional force to a future force that concentrates more operational 

capabilities at the front line. They will underpin the transition from 

a Cold War-era garrisoned force to a future force that is tailored for 

expeditionary operations. [QDR, page 53] 

Future ULS systems that support DoD operations must be as flexible as 

the forces they support. This flexibility must go beyond current system 

configuration capabilities to an integrated and continuous improvement 

capability that rolls out new technology and system capabilities when and as 

they are needed by commanders and planners. The capabilities required for 

this mission and their respective research tracks are described below.  

• Capability 3 (C3): Support seamless ULS system operation by 

rapidly fielding new capabilities in response to new needs and cus-

tomized deployment environments. This capability requires an entirely 

new approach to systems acquisition that can support dynamic changes to 

operational systems at an ultra-large scale without replacing the system. 

The ability to field new functions properly is the subject of this capability 

and research track. Only through a thoroughly different approach will we 

achieve systems that will support the mobility vision in the QDR.

Research track 3 (RT3): 

Essential  Support  

6.1.5, 6.2.1, 6.2.3, 6.3.1, 6.3.2, 6.3.3, 
6.3.5, 6.3.6, 6.4.1, 6.4.3, 6.5.2, 6.5.3, 
6.6.6, 6.7.3

6.1.2, 6.4.2, 6.6.3, 6.6.4,
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• Capability 4 (C4): Dynamic adaptation of a ULS system to ensure 

mission success in a rapidly changing environment. This capability 

requires rapid adaptation of a ULS system to a rapidly changing environ-

ment. Whether it is deploying to a new theater with entirely different 

characteristics under carefully planned circumstances or adapting to a 

surprising new adversarial tactic, the ULS system must support dynamic 

adaptation that aligns the systems and their functions with the current 

needs of warfighters in the environment. While this is a manually intensive 

process today, the future ULS system should automatically adapt to a 

changing environment, providing warfighters with the necessary informa-

tion, services, and actions to carry out any mission, anytime, anywhere.

Research track 4 (RT4): 

Essential  Support  

6.1.1, 6.2.1, 6.2.2, 6.2.3, 6.3.2, 6.3.5, 
6.4.2, 6.4.3, 6.5.2, 6.5.3, 6.5.4, 6.6.1, 
6.6.5, 6.6.6

6.1.4, 6.1.5, 6.3.3, 6.3.4, 6.6.4

Mission 3: Leverage information technology and innovative concepts 

to develop interoperable joint Command Control Communications 

Intelligence Surveillance, and Reconnaissance (C4ISR). The focus of 

this mission is on supporting the global war on terrorism. At its center 

is a requirement for the global coordination of information from widely 

diverse sensors to an equally wide variety of analysts’ workstations. Both 

the sensors and analysts will be geographically and politically distributed 

around the globe, yet must all be coordinated and cooperative. Unlike our 

current Internet systems, the security requirements and differing policies on 

information sharing will need a system that can understand and resolve the 

complex landscape of information-sharing constraints while enabling all of 

the information sharing that is possible. Current software approaches are 

adequate for a limited and fixed set of sensors, but are inadequate for the 

many-to-many information systems that will be needed to support this  

C4ISR mission as described below by the QDR: 

The ability of the future force to establish an “unblinking eye” over the 

battle-space through persistent surveillance will be key to conducting 

effective joint operations. Future capabilities in ISR, including those 

operating in space, will support operations against any target, day or night, 

in any weather, and in denied or contested areas. The aim is to integrate 

global awareness with local precision. Intelligence functions will be fully 

integrated with operations down to the tactical level, with far greater ability 

to reach back to intelligence collection systems and analytic capabilities 

outside the theater. Supporting this vision will require an architecture that 

moves intelligence data collected in the theater to the users, rather than 
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deploying users to the theater. Future ISR capabilities will be designed to 

collect information that will help decision-makers mitigate surprise and 

anticipate potential adversaries’ actions. An essential part of the future 

ISR architecture is a robust missile warning capability. [QDR, page 55] 

The joint force of the future will have more robust and coherent joint 

command and control capabilities. Rapidly deployable, standing joint 

task force headquarters will be available to the Combatant Commanders 

in greater numbers to meet the range of potential contingencies. These 

headquarters will enable the real-time synthesis of operations and 

intelligence functions and processes, increasing joint force adaptability 

and speed of action. The joint headquarters will have better information, 

processes and tools to design and conduct network-enabled operations 

with other agencies and with international partners. Implementation of 

Adaptive Planning in the Department will further enhance the lethality of 

both subordinate standing joint task force headquarters and their parent 

Combatant Commands by enabling them to produce high-quality, relevant 

plans in as little as six months. Adaptive Planning is the catalyst that will 

transform the Department’s operational planning processes and systems. 

Furthermore, Global Force Management, the Department’s model for 

force management, reporting and analysis, will provide Commanders with 

an unprecedented depth of up-to-date and decision-quality information on 

unit readiness, personnel and equipment availability. [QDR, page 59]  

Unlike the Cold War or any previous military engagements, meeting future 

DoD operations will require ULS systems to integrate information from 

everywhere around the globe. In particular, this mission requires systems 

of the future to fuse, compute, relay, store, and display significantly more 

information than ever before. The capabilities indicated by this mission are 

described below, along with their respective research tracks. 

• Capability 5 (C5): Transparent, effective, and secure use of informa-

tion across commands, allies, and private industry to achieve unity 

of effort. This defense capability in turn requires a software capability 

to manage data on an ultra-large scale as well as to provide information 

to every participant according to their legitimate access rights, while 

assuring that the same data cannot be stolen or modified by an adversary.

Research track 5 (RT5): 

Essential  Support  

6.1.1, 6.1.2, 6.2.1, 6.2.2, 6.3.1, 6.3.6, 
6.4.1, 6.4.2, 6.4.3, 6.5.1, 6.6.3, 6.6.5, 
6.7.1, 6.7.2

6.1.4, 6.2.3, 6.3.2, 6.3.4, 6.3.5, 
6.5.3, 6.6.1, 6.6.6
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• Capability 6 (C6): Application of local context to global information 

sources to ensure use of the right data anytime, anyplace, for any 

mission. The local context can greatly change the interpretation of 

information. In addition to simply moving the data to the right place at 

the right time, the ULS system must have the technical capability to turn 

received information into knowledge that leads to action—by integrating 

all available data and local context to provide a view that each local user 

can act upon according to his or her role and access. 

    Research track 6 (RT6): 

Essential  Support  

6.1.1, 6.1.2, 6.1.3, 6.1.4, 6.1.5, 6.2.1, 
6.2.3, 6.3.1, 6.3.2, 6.3.4, 6.3.5, 6.4.1, 
6.5.1, 6.5.4, 6.6.2, 6.6.4, 6.7.1, 6.7.3

6.3.3, 6.5.2, 6.6.3, 6.6.5

5.1.2  

Research Tracks 

Associated with 

Missions and 

Capabilities

 Table 2 illustrates the research tracks RT1–RT6 by summarizing the topics 

associated with each research area and mapping each to the related missions 

and capabilities (denoted C1–C6) described above. A full circle  indicates 

that the research is necessary to provide this capability (corresponding to 

the bold numbers in the research tracks), while a half circle   indicates that 

the research will provide important support for developing the capability 

(corresponding to the plain-text numbers in the research tracks). 

Columns C1/RT1 through C6/RT6 represent research tracks that are 

necessary (but possibly not sufficient18) to achieve the capability indicated. 

Some topics span a number of research tracks. This crosscutting indicates 

that results from such topics support multiple capabilities; we advocate an 

integrated approach to using those results across multiple tracks.

Table 2 can be used to identify and establish priorities for specific research 

projects either by mission, individual capability, or research topic. These 

multiple dimensions reflect the various goals and interests of different 

agencies and individual program managers. They also directly demonstrate 

the contribution of the research topics to DoD stakeholders.

18   The research track as described lists the research topics deemed essential by the authors of this report. As a particular 

research track is executed, results of early research in the track may indicate other research that would be necessary to 

achieve the intended outcome.
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Table 2: Research Topics Needed for Specific DoD Missions and Related Capabilities

Research Areas and Topics Mission 1 Mission 2 Mission 3

C
1

R
T

1

C
2

R
T

2

C
3

R
T

3

C
4

R
T

4

C
5

R
T

5

C
6

R
T

6

Human Interaction

6.1.1 Context-Aware Assistive Computing

6.1.2 Understanding Users and Their Contexts

6.1.3 Modeling Users and User Communities

6.1.4 Fostering Non-Competitive Social Collaboration

6.1.5 Longevity

Computational Emergence

6.2.1 Algorithmic Mechanism Design

6.2.2 Metaheuristics in Software Engineering

6.2.3 Digital Evolution

Design

6.3.1 Design of All Levels

6.3.2 Design Spaces and Design Rules

6.3.3 Harnessing Economics to Promote Good Design

6.3.4 Design Representation and Analysis

6.3.5 Assimilation

6.3.6 Determining and Managing Requirements

Computational Engineering

6.4.1 Expressive Representation Languages

6.4.2 Scaled-Up Specification, Verification, and Certification

6.4.3 Computational Engineering for Analysis and Design

Adaptive System Infrastructure

6.5.1 Decentralized Production Management

6.5.2 View-Based Evolution

6.5.3 Evolutionary Configuration and Deployment

6.5.4 In Situ Control and Adaptation

Adaptable and Predictable System Quality

6.6.1 Robustness, Adaptation, and Quality Attributes

6.6.2 Scale and Composition of Quality Attributes

6.6.3 Understanding People-Centric Quality Attributes

6.6.4 Enforcing Quality Requirements

6.6.5 Security, Trust, and Resiliency

6.6.6 Engineering Management at Ultra-Large Scales

Policy, Acquisition, and Management

6.7.1 Policy Definition for ULS Systems

6.7.2 Fast Acquisition for ULS Systems

6.7.3 Management of ULS Systems
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5.1.3  

Research Areas by 

Funding Types

 Table 3 groups the seven research areas and topics according to their need for 

funding at the 6.1 (basic research), 6.2 (applied research), or 6.3 (advanced 

technology development) levels.19 In many cases, the areas are sufficiently 

rich to contain subareas that are at different states of readiness and thus 

could benefit from multiple levels of funding. In addition, there are other 

R&D programs under development, such as the Office of the Secretary of 

Defense’s (OSD’s) Software-Intensive Systems Producibility Initiative, that 

will greatly benefit from the 6.1 and 6.2 research of a ULS Systems Research 

Program, which in turn could reduce the need for extensive 6.3 funding in 

these programs. The infrastructure to produce experiments and demonstra-

tions of research results can be funded through existing systems-of-systems 

acquisitions. In turn, these activities will be leveraged by the 6.2 research of 

a ULS Systems Research Program to produce more rigorous and substantial 

demonstrations of systems at the scale required to take the results out of 

laboratory settings to a realistically large and complex DoD environment.

19 For a description of research funding levels, see http://www.cnsronline.org/dodsntfaq.php.
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Table 3: Research Topics Categorized by DoD Research Funding Type  

Research Areas and Topics Research Level

6.1 6.2 6.3

Human Interaction

6.1.1   Context-Aware Assistive Computing

6.1.2   Understanding Users and Their Contexts

6.1.3   Modeling Users and User Communities

6.1.4   Fostering Non-Competitive Social Collaboration

6.1.5   Longevity

Computational Emergence

6.2.1   Algorithmic Mechanism Design

6.2.2   Metaheuristics in Software Engineering

6.2.3   Digital Evolution

Design

6.3.1   Design of All Levels

6.3.2   Design Spaces and Design Rules

6.3.3   Harnessing Economics to Promote Good Design

6.3.4   Design Representation and Analysis

6.3.5   Assimilation

6.3.6   Determining and Managing Requirements

Computational Engineering

6.4.1   Expressive Representation Languages

6.4.2   Scaled-Up Specification, Verification, and Certification

6.4.3   Computational Engineering for Analysis and Design

Adaptive System Infrastructure

6.5.1   Decentralized Production Management

6.5.2   View-Based Evolution

6.5.3   Evolutionary Configuration and Deployment

6.5.4   In Situ Control and Adaptation

Adaptable and Predictable System Quality

6.6.1   Robustness, Adaptation, and Quality Attributes

6.6.2   Scale and Composition of Quality Attributes

6.6.3   Understanding People-Centric Quality Attributes

6.6.4   Enforcing Quality Requirements

6.6.5   Security, Trust, and Resiliency

6.6.6   Engineering Management at Ultra-Large Scales

Policy, Acquisition, and Management

6.7.1   Policy Definition for ULS Systems

6.7.2   Fast Acquisition for ULS Systems

6.7.3   Management of ULS Systems
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5.1.4  

Research 

Risk/Reward

 The research agenda we are proposing is a mixture of research that builds on 

some existing groundwork, research that breaks new ground in established 

areas, and research that is in an entirely new direction. Table 4 provides an 

initial characterization of the primary topics in each of the seven research 

areas. As is the purpose of the other tables in this section, Table 4 is intended 

to help structure a ULS system research project or program by indicating the 

range of research risk/reward that we are proposing. It can also serve as a 

companion to Part II, in which we discuss the research details. 

Each row in the table is a research area or topic in our proposed agenda. 

The first column gives the name, and the remaining three columns indicate 

whether the area already has existing groundwork, whether it is breaking 

ground in an established area, or whether it represents a new direction. 

These three categories are not mutually exclusive. We use a blank plus two 

marks to indicate three levels: a blank cell means that we are not proposing 

work in this category; a half circle   in a cell means that we are proposing 

some new work; and a full circle  in a cell means that we are proposing 

substantial new work. The marks in this table are substantiated by the 

detailed descriptions of the research areas and topics found in Section 6. 
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Table 4: Research Areas and Range of Risk/Reward

Research Areas and Topics
Existing 

Groundwork
Breaking 
Ground

New 
Direction

Human Interaction

6.1.1   Context-Aware Assistive Computing

6.1.2   Understanding Users and Their Contexts

6.1.3   Modeling Users and User Communities

6.1.4   Fostering Non-Competitive Social Collaboration

6.1.5   Longevity

Computational Emergence

6.2.1   Algorithmic Mechanism Design

6.2.2   Metaheuristics in Software Engineering

6.2.3   Digital Evolution

Design

6.3.1   Design of All Levels

6.3.2   Design Spaces and Design Rules

6.3.3   Harnessing Economics to Promote Good Design

6.3.4   Design Representation and Analysis

6.3.5   Assimilation

6.3.6   Determining and Managing Requirements

Computational Engineering

6.4.1   Expressive Representation Languages

6.4.2    Scaled-Up Specification, Verification, and Certification

6.4.3    Computational Engineering for Analysis and Design

Adaptive System Infrastructure

6.5.1   Decentralized Production Management

6.5.2   View-Based Evolution

6.5.3   Evolutionary Configuration and Deployment

6.5.4   In Situ Control and Adaptation

Adaptable and Predictable System Quality

6.6.1   Robustness, Adaptation, and Quality Attributes

6.6.2   Scale and Composition of Quality Attributes

6.6.3   Understanding People-Centric Quality Attributes

6.6.4   Enforcing Quality Requirements

6.6.5   Security, Trust, and Resiliency

6.6.6   Engineering Management at Ultra-Large Scales

Policy, Acquisition, and Management

6.7.1   Policy Definition for ULS Systems

6.7.2   Fast Acquisition for ULS Systems

6.7.3   Management of ULS Systems
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5.2 

Recommendations

 The goal of the above three structures is to both justify and support the 

development of a plan for a substantive, long-term, funded ULS System 

Research Program—a program that will marshal the talent of researchers 

who are experts in the diverse set of disciplines needed to conduct the 

proposed research. Although it is premature to prescribe a definitive roadmap 

for ULS system research, Tables 2–4 suggest possible ways to set priorities. 

We expect that sponsors with different needs will likely choose to support 

different combinations of research and perhaps different paths through  

(or projects within) the research program.

As a first step, we recommend the funding and establishment of a ULS 

System Research Startup Initiative, which would consist of a subset of the 

contributors to this report as well as other experts with a history of success 

in the proposed research areas. Over the course of the next two years, this 

initiative will take the following actions:

• Begin to work with others in the community to conduct new basic re-

search in the areas of Human Interaction, Computational Emergence, 

and Design. Work in the other areas should follow as soon thereafter as 

practical.

• Build on existing research efforts and capabilities in the identified 

research areas to apply them to ULS system challenges.

• Take the ULS system research agenda to a greater level of fidelity and 

develop a definitive roadmap based on the objectives of the key sponsors.

• Foster the growth of a community of informed stakeholders and 

researchers.

• Formulate and issue an initial Broad Agency Announcement (BAA)  

to attract researchers with proven expertise in the diverse set of disci-

plines (e.g., software engineering, economics, human factors, cognitive 

psychology, sociology, systems engineering, and business policy) that  

are collectively required to conduct the proposed research. 

As a result of this study, a community of interest in ULS systems and the 

needed research is already beginning to grow. Contributors to this study 

have begun to describe and advocate ULS system challenges and potential 

research. Over the course of the past year, keynote presentations and 

invited talks related to this study have been given at a diverse set of forums. 

Workshops and panel discussions are being organized, and the term “ultra-

large-scale systems” is gaining traction with others outside the original 

group charged to conduct the study. As others in the research community 

become familiar with the ULS system characteristics and challenges, we 

expect that new research topics and research areas will be proposed.  

We welcome the community’s ideas and contributions.
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5.3 

Study Conclusion

 We have described the characteristics of ULS systems, the associated techni-

cal challenges, and the need for a bold, new perspective. We have defined 

promising research areas and structures that can bolster the definition of a 

ULS System Research Program. After one year of study, we are certain that 

new long-term research is required to fulfill the DoD’s vision of the future. 

The challenges described in this report are not science fiction; they are com-

ing, and much more rapidly than this report’s research-oriented charter might 

suggest. The Internet is a precursor ULS system that is already in widespread 

use, and the U. S. power, communication, and transport grids currently 

exhibit many ULS characteristics. Other such systems will doubtless follow. 

The fact that the worldwide Internet was constructed without any massive 

research and development program might suggest that future systems will be 

produced with similar ease. The problem, however, is that, with the current 

state of software technology and practice, such systems cannot be built to 

accomplish specific objectives—much less future DoD missions—on predict-

able schedules or for affordable budgets. To have any chance of meeting the 

future needs for such systems, a research program like that described in this 

report must be initiated now.

It is no exaggeration to say that the operational capabilities of the DoD will 

increasingly depend on software capabilities equal to the challenges of ULS 

systems. Software capability cannot be taken for granted in the DoD vision of 

the future. In the absence of new scientific knowledge and engineering know-

how, were a ULS system needed to meet a perceived need, it would now have 

to be designed and built with current software technology and the traditional 

acquisition-and-contracting model. While these may be the best-known 

approaches, they have consistently been proven inadequate. 

The proposed ULS system research is broader and deeper than software 

research that is currently being conducted, because the problems addressed 

are inherently broader and deeper. The proposed research does not supplant 

current, important software research but rather significantly expands its 

horizons. We believe this research could result in operational capabilities to 

develop and evolve the ULS systems of the future. The envisioned outcome 

of the proposed research is a spectrum of technologies and methods for 

developing these systems of the future, with national-security, economic, and 

societal benefits that extend far beyond ULS systems themselves.
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Our conclusion is that with appropriate investments, capable, reliable, and 

responsive ULS systems could be developed, validated, deployed, operated, 

and evolved. The United States needs to establish a program that will fund 

the software research needed to support the ongoing transformations in 

national defense and global interdependence. The key challenge is the 

decision to move forward. The ULS System Research Agenda presented in 

this report provides the starting point for the path ahead.
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6  
Detailed Description  
of Research Areas

In this section of the report, we describe more fully the research areas 

and topics that were introduced in Section 4. For each research area, we 

summarize why ULS systems require research in the area, briefly discuss 

related research topics, and recommend references for further reading about 

the topics.21

This collection of research areas and topics is not meant to be exhaustive. 

Rather it is representative of—and highlights promising directions for—the 

spectrum of research needed to address the current, imminent, and long-term 

challenges posed by ULS systems. Our goal in this section is to convey 

a sense of the breadth of research needed to develop ULS systems and to 

define opportunities for building a research program for ULS systems. 

We present a diverse range of research areas and topics, some relatively 

conservative with benefits likely in the short term and some of greater risk 

but promising more substantial benefits if successful.

6.1  

Human Interaction

 People and their organizations are essential components of ULS systems, 

which we have already characterized as socio-technical ecosystems. Many 

of the failures in complex systems today stem from failures at the individual 

and organizational level. ULS systems will present even greater challenges 

due to their inherently vast distribution and the expected absence of a single 

central administrative authority. Computer science and related engineer-

ing fields are not well equipped to address the interaction of technology 

with people, even in single, unconnected systems. When approaching the 

challenges associated with ULS systems, we must collaborate with and learn 

from anthropologists, sociologists, and social scientists. 

21   The references we discuss in the “Further Reading” sections are not intended to be exhaustive or pose as a scholarly 

bibliography, but rather give a sample set of authoritative offerings that provide more information.
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Behavioral analysis that is based on an economic model (for example, see 

Section 6.2.1 on algorithmic mechanism design) has the advantage of isolat-

ing one crucial factor: how the selfish pursuit of individual interest influences 

collective outcomes. But human behavior can also be studied to advantage us-

ing a cultural approach, focusing on the shared practices (and the beliefs that 

support them) used by members of work groups to organize their activities, 

whether mundane or exceptional. Indeed, a group’s culture can be thought of 

as an evolving set of practices for accomplishing various activities. Practices 

are how things really get done in everyday life; in this sense, they must be 

distinguished from a group’s rule-like laws and norms, which are intended 

to proscribe and regulate the everyday through formal, necessarily abstract 

statements about how things should ideally or authoritatively get done.

Moreover, groundbreaking interdisciplinary research by Hutchins (among 

others) demonstrates that many social processes are, in fact, computational 

processes, which yields an important insight in the opposite direction: com-

putational processes, at least at the scale of a ULS system, are actually social 

processes. Hutchins’ detailed description of navigation on a Navy vessel22 

demonstrates a view of computation that goes far beyond the digital com-

puter. In this view, humans can be intrinsic elements of a socially constituted 

computational process. Computational processes are governed by protocols 

that are derived from and deeply embedded in specific cultures. In fact, these 

protocols are so deeply embedded as to be effectively invisible to the human 

actors. These culture-embedded protocols must be understood before they can 

be made explicit and must be made explicit before their digital elements can 

be made transparent to the human actors. 

For example, every firm (and every family) performs a computational process 

of receiving and spending money every month. Society places constraints on 

these computations: firms (and families) that “fail” are deemed “bankrupt,” 

and are subject to constraints and reorganization. “Balancing our books” is a 

very mundane but ubiquitous, socially constructed computational process.

We cannot fully anticipate the context within which ULS systems will operate 

and necessarily evolve, as the socio-cultural practices of many different groups 

(stakeholders, users) will, in fact, be constructing this real-world compu-

tational environment. The challenge is thus to design and support systems 

using an accurate model (scientific understanding) of this ULS/social-context 

interaction. What is needed, then, are detailed socio-technical analyses of user 

interactions, in the field, with complex sources of information that current 

large-scale systems make possible. Analyses of actual situations of decision 

making will help us to develop a more sophisticated understanding of the ways 

that computational environments with such systems are truly constructed.

Research into the human aspects of ULS systems is needed on the topics 

described below. 

22  Hutchins, Edwin. Cognition in the Wild. Boston, MA: The MIT Press, 1995.
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6.1.1  

Context-Aware 

Assistive Computing

 A defining characteristic of a ULS system is an intentional blurring of the 

division between the physical and digital worlds. In particular, new input and 

output technologies create opportunities for computers to be more helpful 

to people doing complex tasks. Context-aware computing describes the 

situation in which a (possibly mobile) computer is aware of its users’ state 

and surroundings and modifies its behavior based on this information. 

A user’s context can be quite rich, consisting of attributes such as physical 

location, physiological state (such as body temperature and heart rate), 

emotional state (such as angry, distraught, or calm), personal history, daily 

behavioral patterns, and so on. A human assistant given such context would 

make decisions proactively, anticipating users’ needs. In making these 

decisions, the assistant would typically not disturb the user at inopportune 

moments except in an emergency. Similarly this assistant would filter, 

abstract, and visualize information to aid the user’s decision making. 

The goal of context-aware assistive computing is to enable (mobile)  

computers or intelligent environments to exploit context information to 

assist people by 

• significantly reducing demands on their attention through adaptive 

automation, and 

• providing them with the right information and easy-to-access control 

capabilities at the right time, for more effective manual task execution. 

Combined with inferences about users’ intentions, context-aware computing 

would enable improvement in user-perceived network and application perfor-

mance and reliability. Context-aware applications are built on fundamental 

sensing services such as spatial and temporal awareness. Spatial awareness 

includes the relative and absolute position and orientation of a user. Temporal 

awareness includes the scheduled time of public and private events. Research 

in context-aware assistive computing should include the following subtopics:

Research Tracks

Essential  
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Adapting to Changing User-Resource Needs. Many of the capabilities 

in ULS systems require adaptive behavior to meet user expectations and 

smooth the imbalances between demands and changing environments. There 

are two fundamental types of adaptation required: (1) changes beneath the 

applications to continue to meet the required service levels despite changes 

in resource availability and (2) changes at the application level to either react 

to currently available levels of service or request new levels under modified 

circumstances. In both, a ULS system must determine whether it needs to (or 

can) reallocate resources or change strategies to achieve the desired quality 

of service. We therefore need research to develop context-aware applications, 

middleware, operating systems, and networks that can change their qual-

ity-of-service demands as the conditions under which they operate change. 

Mechanisms for reconfiguration must be put into place to implement new 

levels of quality of service as required, with attention to both the individual 

and the aggregate points of view and the conflicts that they may represent. 

Adapting to Changing User Tasks. Just as user-resource needs will  

vary over time, so too will user tasks vary. In many cases, the ULS system 

will need to take the initiative to help the user work effectively. This 

transcends traditional system adaptation, which is typically a matter of 

resource allocation. Runtime reconfiguration may have the effect of altering 

parts of the system that are directly or indirectly visible to people and could 

therefore cause confusion. We therefore need research on mechanisms that 

moderate the effects of people-visible changes to the ULS system, or that 

adapt existing user views to the new system states. Research is also needed  

in context-aware technologies that can semantically model user tasks 

and goals and automatically provide or suggest alternative forms of data 

presentation, visualization, aggregation, and filtering. In addition, research 

is needed on modifying the task model itself, to take into account the users’ 

needs and state. 

6.1.2 

Understanding 

Users and Their 

Contexts

 The designers and developers of ULS system software cannot be expected 

to anticipate fully the context within which ULS systems will be built and 

operated and how they will evolve. This context will be continually changing, 

and there will be many different groups of stakeholders (such as users, 

application developers, acquirers, policy makers, tool and infrastructure 

makers, etc.), each of whom will have their own community and associated 

socio-cultural practices and expectations. Accurately understanding and cap-

turing the user’s context is already a difficult and error-prone task for existing 

systems, many of which fail because they are deemed unusable by their 

stakeholders. In the ULS context, the ever-changing nature of the system, 

its users, and its environment make this a far greater challenge. Meeting this 

challenge will require research to enable better integration of user modeling 

and ethnographic elicitation techniques, as discussed below.

Research Tracks

Essential Support  
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Ethnographic Foundations for User-Centered Specifications.  

Individual users pursue their own objectives, and users are often unable to 

express or generalize these objectives outside the context of actual system 

use. Different users place their own values on specific services and have 

different expectations, which may be more or less stringent than the system’s 

developers intended. Research on specification and evaluation methods and 

tools that help us consider the context and expectations of specific users 

and that build on existing techniques for questionnaires, interviews, and 

contextual inquiry can address this challenge. Research is needed to elicit 

and understand the users’ needs and expectations, and to determine how to 

structure the elicitation of those expectations in a form that the user will find 

manageable. 

Representing User Beliefs and Expectations. Because the set of user 

expectations will be far more complex in a ULS system than in a traditional 

system, we also need research in representing user knowledge and belief sys-

tems. This information must be represented in a way that is both comprehen-

sible and capable of analysis, which is a further facet of the needed research. 

Last, we will need tools to model and predict whether a ULS system can 

meet its stakeholders’ expectations, before the system is built or fielded. 

Runtime Mechanisms for Assessing and Moderating User Beliefs and 

Expectations. In addition, context-dependent runtime mechanisms will be 

needed to determine whether the modeled expectations are being met by the 

running system and, if not, how to rectify the situation. Because these models 

will profoundly affect the operation of the system, research must validate 

that the models are usable and complete and that they faithfully represent the 

users’ expectations. 

6.1.3  

Modeling Users and 

User Communities

 To develop more sophisticated insights into how ULS systems are actually 

constructed and how they evolve, research is needed to construct user models 

and context models based on detailed socio-technical analyses of user 

interactions in the field: 

Modeling Communities of Users Rather Than Individuals.  

While existing systems occasionally contain user models—for example, 

GOMS (goals, operators, methods, and selection rules) models—they do 

not contain explicit models of groups or communities of users and their 

behaviors. Research would help us know how to make ULS systems serve 

such communities effectively. 

Research Tracks

Essential  Support  
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Continuous User Modeling. The needs and preferences of users change as 

they use a software system. If the system is itself evolving as the users and 

their needs evolve, user modeling must be repeated. In particular it cannot 

succeed if it is solely a design-time activity. More research is therefore 

needed on the topic of universal usability: how to collect data about users 

with a wide variety of expertise and knowledge that is continuously and 

autonomously updated. And these models of users and their groups must be 

regularly updated without constant human intervention. 

Representing the User and the Context. A ULS system will have to 

explicitly model the user’s intention and context as well as organizational 

or enterprise goals and context. We therefore need research on the topic 

of contextual inquiry to improve our abilities to conduct and validate user 

studies, ethnographic studies, and system evaluations in real ULS systems. 

Inferring Diverse User Needs and Utility. ULS systems should adapt their 

behaviors to the needs of users and their circumstances. Rules of engagement 

must be considered as part of the user’s context, and policies governing sys-

tem operation must be dynamically changeable. ULS systems serve diverse 

users with different needs at different times and with different fundamental 

relations to the system. These needs are independent and possibly at variance 

with those of other users. We therefore need research on topics such as 

universal access: accessibility guidelines, adaptive and augmented interac-

tion, alternative input/output techniques, designing for diversity, modality-

independent interaction, multi-sensory interfaces, and personalization. 

6.1.4  

Fostering Non-

Competitive Social 

Collaboration

 The motivations for individuals (and even firms) to engage in open-source 

projects are not exactly based on pure self-interests: included in the basis 

are human characteristics such as the need to share, to give and receive gifts, 

and to act altruistically.23 Even in this arena, self-interests do have a place. 

They take the form of an interest in becoming well regarded, being thought 

of as productive and intelligent, and becoming known rather than in simply 

accumulating wealth. The open-source community participates in the larger 

software- and systems-production realm, and, in many cases, open-source 

code forms some of the best foundations for our computing infrastructure. 

This software is produced without explicit cost, in a distributed fashion, and 

with high quality.

23   See Raymond, E. The Cathedral & the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary. 

O’Reilly, 2001. 

Research Tracks

Essential  Support  



63Ultra-Large-Scale Systems     

The Software Challenge of the Future  

As a research topic, open-source software development brings up many 

interesting issues that have not been extensively explored in the past:

Social Foundations for Non-Competitive Social Collaboration. What are 

the social foundations for non-competitive collaboration? How is it possible 

to collaborate in a way that is almost entirely virtual, and how does this form 

of collaboration compare with face-to-face interaction? How does one build 

trust and negotiate conflicts in such a community? The extended nature of the 

open-source community also brings up questions of multi-cultural bridging. 

Economic Foundations for Non-Competitive Social Collaboration. 

Given that the open-source community does not operate primarily from a 

financial motive, is there any place for value-based approaches to software 

development? How are priorities established? How are tradeoffs and schedule 

decisions made, particularly when they affect potentially vast (largely unpaid) 

resources? What is the comparable role for risk-seeking or risk-averse 

behavior that we see in financially motivated markets? What are the incentive 

structures for cooperative organizations?

6.1.5  

Longevity

 One of the consequences of scale in ULS systems is that they will exist for a 

very long time—decades at least. This longevity affects aspects of the system 

having to do with people. It means that organizations will need to be able 

to work on and with the ULS system for many years. Moreover, people and 

organizations will be coming and going constantly within the ULS ecosystem. 

Key research questions include the following:

Stability of Requirements. How will requirements reflect the changing 

nature of people within the ULS system over decades-long durations? While 

it is inevitable that requirements will change over time, requirements must 

be monitored and managed to ensure that no individual or organization can 

appreciably change the system without understanding, and perhaps getting 

approval from, the other participants. This implies the need for research into 

the archiving and retrieval of requirements (which will become enormous 

repositories over time), and more important, for research into automated 

support for analyzing these requirements so that the implications of new 

requirements can be assessed and requirements trends can be tracked.

Research Tracks

Essential  Support  
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Stable Organizational Structures. Given that organizations evolve and that 

organizations are composed of individuals, how can we define structures that 

will ensure that an organization’s involvement with a ULS system is consistent 

in management, personnel, and strategic changes over time? Conversely, if it 

is determined that some organizational change is necessary (even though it 

creates a discontinuity with some aspects of the existing system), what are the 

principles for how the ULS system will adapt to these changes?

Maintenance of Design Information. How can a ULS system remain fresh 

as different generations of users, designers, and others join it?

Ease of Learning. Given its ecosystem nature, how will new people in a 

ULS system learn about the parts of the ULS system relevant to them?

6.1.6 

Further Reading

 Paul Dourish’s book Where the Action Is: The Foundations of Embodied 

Interaction [Dourish 01a] is one of the most important recent writings on 

human-centered design. Dourish argues that design should not be about 

tasks and their requirements or about applications, or computing; but rather, 

it should be about (human) embodied interaction and thus be especially 

concerned with the problem of shared awareness, with the organization of 

social relationships, and with human emotions as socio-cultural products 

(rather than individual internal states). Dourish has also written useful papers 

on context-aware computing and, more generally, the entire concept of 

context (not what parameters define it, but rather what kind of entity it is and 

where it comes from) [Dourish 01b] and the problem of context and shared 

awareness in human-computer interaction [Dourish 98].

For field studies of human behavior, especially work activities and how 

they can inform computer system design (focusing here on the idea of work 

practices rather than processes), an essential volume is Workplace Studies: 

Recovering Work Practice and Informing Systems Design by Luff and 

colleagues [Luff 00a]. Christian Heath and Paul Luff’s Technology in Action 

[Luff 00b] provides useful studies of the relationship between humans and 

technology.

Finally, Edwin Hutchins’ Cognition in the Wild [Hutchins 95] is essential 

reading for anyone interested in a thoroughly social (rather than largely 

psychological) account of human cognition and reasoning, written from 

an anthropological perspective and drawing extensively on field studies of 

decision making and reasoning where technology plays an important role.

[Dourish 98] Dourish, P. & Button, G. “On ‘Technomethodology’: 

Foundational Relationships between Ethnomethodology and System 

Design.” Human-Computer Interaction 13 (1998): 395-432.
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6.2  

Computational 

Emergence

 ULS systems must satisfy the needs of participants at multiple levels of 

organization (i.e., from individual components and users to whole institu-

tions). These participants will often behave opportunistically to meet their 

own mission requirements, irrespective of the goals and objectives of other 

participants. In such cases, methods and tools based on economics and game 

theory (e.g., mechanism design) are likely to play an important role in ensur-

ing the achievement of globally optimal behavior even when the participants 

are concerned only with achieving their own goals. 

ULS systems must satisfy the needs of their users not only at any instant 

in time, but also across the lifespan of these systems as they evolve. 

Metaheuristics and digital evolution offer promising means to cope with 

pressures that require ULS systems to adapt to new environments, new poli-

cies, missions, and mechanisms. These techniques appear to have the potential 

to augment the cognitive limits of human designers and to find novel design 

solutions to complex design problems. Research can determine whether it will 

be possible for rules for continuous evolution to be built into ULS systems and 

their supporting platforms so that they can become more self-reliant and cope 

with dynamically changing environments without constant human interven-

tion. These ideas suggest the need for research on in situ control, reflection, 

and adaptation to ensure continuous adherence to system policies despite 

rapidly changing operational demands and resource availability. 

The technologies described here represent some of the more speculative 

research in this report. As a result, they may be constrained to relatively 

narrow domains of application in the early phases of ULS system research.  

They all, however, enlist the use of computational resources to solve 

important challenges in ULS system design and evolution, and they highlight 

a future state in which a synergy is achieved between digital and human 

participants in ULS systems. 
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6.2.1  

Algorithmic 

Mechanism Design 

 ULS systems will, in many cases, lack a central locus of operational or 

institutional control, and the participants in the system at any time (including 

users and institutions) will have disjointed and competing interests. A key 

challenge in this context is to provide a basis for simultaneously satisfying 

system-wide quality goals and satisfying the (competing) goals and expecta-

tions of many diverse actors. It is precisely these scale factors that point to 

a promising avenue of ULS systems research, namely research in applying 

economic theories of decentralized decision making to software systems.  

This research, one variant of which is known as mechanism design and 

another as institution design, lies at the intersection of microeconomics and 

game theory. It involves designing mechanisms, protocols, and institutions 

that are mathematically proven to satisfy certain system-wide objectives 

under the assumption that individuals interacting through such institutions act 

in a self-interested manner and may hold private information that is relevant 

to a required decision. Economic behavior yields the utility of cooperation 

from the discord of competition; mechanism design regards cooperation as 

an emergent property of agents engaging in selfish, competitive economic 

behavior. Algorithmic mechanism design puts mechanism design into a 

 > Mechanism Design:   
 Combining Game Theory, Microeconomics, and Computation 

Relevance to DoD Missions 

ULS systems must support warfighters 

at all echelons who are engaged in 

information-intensive activities and 

who must share critical but finite 

information technology resources. Future 

combat missions will require robust 

and decentralized resource allocation 

mechanisms that are resilient to deception, 

support a diversity of interests, and 

provide fully predictable and near-optimal 

global outcome. 

Key Concepts 

Game theory provides mathematical tools 

to study the outcomes of interactions 

among self-interested, and possibly 

deceptive, players, where the interactions 

are governed by a set of rules. Mechanism 

design is the inverse of game theory: it 

seeks to discover the rules of games that 

will result in a desired outcome despite 

self-interested and deceptive behavior. 

Mechanism design is concerned primarily 

with microeconomics—the economic 

behavior of agents in the face of scarcity.
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computational setting: using computers to design mechanisms and using 

mechanisms to control computing.24

In a ULS system, mechanism design can be applied to problems involving 

the sharing of scarce or exclusive resources (e.g., network bandwidth, power) 

among actors—both human and computational—that may engage in strategic 

behavior marked by a combination of guile and self-interest. Mechanism de-

sign has a mathematical foundation and has seen many practical applications 

in settings ranging from many extremely small-scale transactions (e.g., eBay 

auctions) to a small number of extreme-scale transactions (e.g., allocating the 

U. S. radio spectrum). For these reasons, mechanism design holds promise 

for effecting emergent behavior in ULS systems. While mechanism design is 

a well-established field in its own right, we need the following fundamental 

research to apply the theory to ULS systems:

Computational Complexity of Algorithmic Mechanism Design.  

While mechanism design has a rich history, its embedding in computational 

settings is more recent. The cornerstone revelation principle (that is, the 

principle that a social-choice function can always be designed such that 

actors will truthfully reveal their preferences) may be valid in a strictly 

mathematical sense, but the computational complexity (these are typically 

NP-complete problems) for agents to compute their preferences may lead 

to inaccurate valuations, in turn leading to suboptimal global results. On 

the other hand (and for the same reason), computational complexity can 

be used to defeat strategic behavior (i.e., it affects honest and dishonest 

actors equally). Thus scale can have both positive and negative effects on 

mechanisms, and we need to understand these effects better. For application 

to ULS systems, many of the well-established possibility and impossibility 

results from the theory of mechanism design must be re-examined in light 

of computational complexity. In addition, research is needed to determine 

effective approximate algorithms, since, as systems grow to ultra-large scale, 

we will inevitably encounter situations where an NP-complete algorithm is 

impractical.

Computational Complexity of Automated Mechanism Design.  

Automated mechanism design—allowing the system to determine and 

optimize its own mechanisms—is essential in self-adapting systems but 

hampered by the complexity of design search. More research would help 

us understand the theoretical and practical limits of automated mechanism 

design. While the constrained subject area works to the advantage of design 

automation, computational complexity and the high confidence usually 

required of game-theoretic solutions are countervailing forces. In particular, 

it is important to know which subjects are suitable for automated mechanism 

design and for these subjects to obtain a sound means to estimate the rate 

of convergence of an automated design process to a desired (not necessarily 

optimal) quality goal. In this way, a reasoned tradeoff between the optimality 

and practicality of the designed mechanisms can be determined.

24   These ideas are closely related to the concepts of decentralized and competitive design processes described in 

Section 6.1, but concepts of mechanism design, in particular, make much stronger assumptions about the nature of the 

competing agents and about the game being played than are likely to hold in a world of competing design teams.
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Adaptation as a Mechanism. Algorithmic mechanisms cannot be intro-

duced simultaneously at all points in a ULS system. As a consequence, new 

mechanisms will have to co-exist with more traditional “pre-mechanistic” 

resource-management strategies. An important research question is how 

a ULS system can incorporate mechanisms through which agents will 

adopt new mechanisms. One issue that this research must address is how 

to motivate the adoption of new mechanisms in spite of possibly nontrivial 

switchover costs. A second issue is how to sustain switchover processes over 

time, for example through transition periods where scale limitations of older 

mechanisms diminish due to the adoption of new mechanisms. 

Mechanisms for Acquisition. Online auction systems such as eBay are 

widely known, but they make use of just one class of mechanism—the 

auction. Other classes of mechanism are also being explored, some of which 

may have direct application not just to the control of ULS systems but also 

to their production and acquisition. For example, voting mechanisms enable 

an arbitrary society of agents to agree on actions that bind the entire society 

in virtual enterprises. Bargaining mechanisms allow bilateral agreements 

among agents that have conflicting interests, for example in subcontracting; 

contracts and contract nets are an important application. Market mecha-

nisms enable efficient distribution of goods between two classes of agents: 

producers of software products and consumers of these products. Research is 

therefore needed in both the creation of novel mechanisms and the efficacy 

of mechanisms such as those discussed here.

6.2.2 

Metaheuristics 

in Software 

Engineering

 Although algorithmic mechanism design is promising, it works best in situa-

tions in which the goals of individual participants can be precisely character-

ized. It is less well suited to situations in which participants themselves 

are attempting to satisfy multiple, possibly competing objectives that may 

change from time to time. Of course, this is also an ever-present problem 

in systems that is sometimes characterized as quality-attribute tradeoff. For 

example, while mechanism design might be suitable for providing guarantees 

of optimal allocation of network bandwidth under competing interests, it is 

not (yet) suitable for guaranteeing an optimal bandwidth allocation under 

competing quality requirements for security (e.g., data privacy) or reliability 

(e.g., data redundancy). Moreover, because mechanisms embody a priori 

solutions to design problems, they do not address another significant chal-

lenge posed by ULS systems—their longevity.  

In effect, while mechanism designs provide optimal solutions for the ULS 

system at a particular instant in its evolution, they do not address a search for 

optimality in the (relatively) deep time of the overall life of a ULS system. 

To meet these challenges, research is needed on metaheuristics, which is 

a class of (often biologically inspired) search techniques that iteratively 

Research Tracks

Essential  
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seeks an optimum solution within a landscape of possibilities that may be 

extremely complicated and even discontinuous. Metaheuristics characterize 

a problem as a set of states within a search space, a current state, a mutator 

function (that moves from one state to another), and some objective (goal 

or fitness) function that is to be optimized. Common examples of meta-

heuristic techniques are genetic programming, simulated annealing, greedy 

algorithms, swarm intelligence, and ant-colony optimization. Metaheuristics 

have already found several applications in software engineering research and 

development. The emphasis of metaheuristics is on simple parts that collec-

tively solve a complex problem. For example, ants, slide molds, or individual 

neurons possess little intelligence and little context individually, but they 

react and adapt intelligently en masse over time. These examples suggest that 

metaheuristic techniques may be able to scale to ultra-large problems in a 

way that traditional software engineering techniques cannot. 

Examples of existing uses of metaheuristics are found in software testing, 

algorithm optimization, and program analysis. We need research on the 

following topics associated with metaheuristics:

> Metaheuristics:   
 Search with Ants, Swarms, and Genetics

Relevance to DoD Missions  

War fighting poses many 

optimization problems (e.g., 

in logistics and movement 

control). Future combat 

situations will be ever more 

dynamic, and optimization 

decisions will be based on 

more data and more diverse 

types and sources of data. The 

ability to quickly generate near-

optimal solutions to complex 

optimization problems will 

provide the future warfighter 

with a qualitative edge on the 

battlefield.

Key Concepts  

Many critical optimization 

problems, for example find-

ing the most time-efficient 

route for delivering material 

to a (possibly large) number 

of locations, are known to be 

computationally intractable. 

Rules of thumb—or heuristics—

are search strategies used 

to find reasonable solutions 

with reasonable effort, though 

these solutions may be far 

from optimal. Metaheuristics 

are super-strategies that can 

combine, control, and guide 

the operation of lower level 

heuristics. Many metaheuristic 

strategies are inspired by 

optimization strategies 

found in biological systems 

(ant colonies) and physical 

processes (annealing). 
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Representation of Software Engineering Problems as Metaheuristic 

Problems. Many problems in software engineering are not readily or 

obviously transformed into search problems. Test-data generation is an 

example of a software engineering problem that has been successfully treated 

using metaheuristics: this problem has a large, natural search component 

and an easily definable fitness function. For example, in clear-box testing, 

a natural and easily defined fitness function is the percentage of branches 

that have been covered by the test suite. Research will determine the broad 

class of software engineering problems that can be naturally understood and 

represented as search problems. 

Creating Objective Functions. Can objective functions—the measures that 

metaheuristic algorithms use to direct their searches—be easily and naturally 

specified? One approach is to harness the techniques used in test-driven 

design disciplines in which part or all of a specification is in terms of user-

understandable tests residing in a simple test harness. Can a more adaptable 

approach to objective functions be found? Can we learn from the recent 

research in biology on hypermutation—the mechanism by which the human 

immune system adapts to new attacks—and the regulation of mutations 

under stress?

Creating Mutator Functions. Mutator functions are the engine that moves 

the search from one state in the space to another. Creating such functions is 

currently a handcrafting process. For the metaheuristic approach to be widely 

applicable, research is needed that guides the developer in mapping from the 

problem space to an effective mutator function. 

Harnessing Swarm Intelligence. Ant-colony optimization (and related 

algorithms) and particle swarm optimization are two successful techniques 

using swarm intelligence: the study of collective behavior in decentralized, 

self-organized systems such as swarms, flocks, schools, and herds. Research 

is needed to apply swarm intelligence to ULS resource management, 

quality-attribute maintenance, and robustness in general. Swarm intelligence 

is appropriate in situations where there are large numbers of relatively 

inexpensive, relatively autonomous agents that collectively need to solve 

some search or optimization problem. 
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6.2.3  

Digital Evolution 

 Human cognition constrains designers to consider designs that are elegant, 

understandable, modular, and mostly hierarchical. Good designs for some 

parts of ULS systems, however, might well be found in less-well-structured 

design spaces. In such cases, machines might be able to produce better 

designs than people. The objective of digital software evolution is to use 

the brute power of computers to overcome the constraining limits of human 

cognition to discover optimal or unusual, satisficing engineering solutions, at 

the cost of design-time qualities such as the understandability of a design. 

Digital software evolution uses metaheuristic techniques such as genetic 

programming and simulated annealing to design and implement software that 

exhibits desired emergent behavior. At present, most work on digital software 

evolution is centered on the creation of algorithms or entire programs. The 

results, both theoretical and practical, have been good so far, but the follow-

ing types of research are needed to enable digital software evolution to work 

effectively on the larger, more complex components in ULS systems:

Evolving Designs Through Crossover. Can crossover, which is the process 

of combining traits from two individuals in the population that is being 

evolved, be optimized to better capture good partial designs, perhaps in a 

manner akin to automatically defined functions and speciation but using 

human designs as well as digitally evolved designs? This approach aims 

at automating only part of the design process rather than all of it. Proven 

designs would be the raw material used by digital software evolution to 

essentially compose or combine known designs into larger and more complex 

ones. Moreover, perhaps designs produced by digital software evolution can 

be used as material for higher level (human and nonhuman) designs. We also 

note that metaheuristic concepts might have applications to manual design 

processes. For example, the concept of crossover might well have applica-

tions to iterated competitions between design organizations (as discussed in 

Section 6.1), where at certain points some teams can see what other teams 

have done and adopt successful elements as a starting point for a next round.

Evolvable Resource-Sharing Policies. In deployed ULS systems, unex-

pected interactions between components through resource sharing—includ-

ing such things as power usage on portable, power-poor devices—can lead to 

difficult-to-diagnose problems. It might be possible to treat resource sharing 

as a first-class evolvable entity and apply crossover, mutation, etc. to this 

aspect of the system, either as a resource or as part of a process that boosts 

robustness and stability. 

Evolvable Modularization. People design systems by fixing interfaces 

early and by modularizing based on limiting the number of function points 

in a module. Can better, more robust designs evolve when the definitions 

of modules can vary by allowing functionality to be moved from module to 

Research Tracks
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module or to be replicated entirely? Digital software evolution may be able to 

exploit such situations—in fact, a problem encountered in genetic program-

ming, especially in designing analog circuits, is that accidental functionalities 

are unexpectedly exploited. 

Automatically Evolved Intercomponent Glue. A simple problem in 

producing a working system from a high-level design is producing the glue 

that connects components together. The details of an application program-

ming interface (API) can cause numerous problems, particularly when the 

API evolves. How much of a system’s intercomponent glue can be evolved 

automatically? This problem includes being able to discover proper API 

conventions and protocols as well as scaffolding code. 

Automatically Evolved Implementations. A problem with software 

development as it is practiced today is that, while the overall design of a 

program or component might be fine, the details can be tricky. Is it possible 

to use software evolution to complete the implementation of a design once 

a certain level of detail is achieved? Can features, performance, or other 

characteristics be continuously and automatically improved or refactored 

through a process of slow, conservative software evolution? Can evolutionary 

techniques based on possible refactorings be used to find good, effective 

parallelizations of single-threaded code?

Regulating Digital Evolution. Is it possible to combine approaches to gain 

better overall performance of software evolution by using various regulation 

mechanisms? For example, some researchers have tried combining genetic 

programming with Bayesian techniques to try to quell the tendency for 

genetic programming to create larger and larger programs as the number 

of generations grows. Genetic mechanisms may provide clues for other 

concepts. For example, in nature, the production of a phenotype (an organ-

ism) given a genotype (genetic code) involves a lengthy process controlled by 

several regulatory mechanisms. Can we find and harness similar regulatory 

mechanisms to improve digital software evolution by creating regulated 

distance between the representation that evolution manipulates and the 

resulting program? Current research into type-safe staged computation 

is a preliminary step in this direction. Recently it has been observed that 

mutation rates and the loci of mutations in a genome can be modulated under 

stress (adverse changing environmental conditions). Perhaps our metaheuris-

tic algorithms including digital software evolution can benefit from similar 

mechanisms.

Self-Sustaining Techniques. The work of keeping a system healthy and 

alive is not always the same as the designed operation of that system. Some 

promising approaches are detecting non-self in the behavioral domain 

using immunological techniques, detecting damaged or inconsistent data 
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structures and performing (minimal) repairs, and performing micro-reboots 

of suspected components. To sustain a long-running system, can we use 

continual re-creation techniques, such as autopoiesis and autocatalysis? An 

autopoietic system is one whose network of components and the components 

are continually produced by that network of components; an autocatalytic 

system is a chemical reaction whose required catalyst is produced by the 

reaction itself.

6.2.4  

Further Reading

 Nisan and Ronen’s “Algorithmic Mechanism Design” [Nisan 99] is the 

seminal paper on computational mechanisms. Although this paper appeared 

several years after various prototypical applications of mechanisms in 

computing settings, it provided a definite structure for further research. 

Sandholm’s “Distributed Rational Decision Making” [Sandholm 99] is an 

accessible survey of computational mechanisms, covering voting, auctions, 

bargaining, markets, and contract nets. Schneidman and Parkes [Schneidman 

03] explain the use of mechanisms to overcome naturally occurring strategic 

behavior in peer-to-peer networks and outline a number of open problems 

that remain to be solved. Blum and Roli provide a concise overview, 

classification, and comparison of research in metaheuristics [Blum 03]. A 

book-level treatment of just one population-based metaheuristic is available 

in Dorigo and Stutzle’s Ant Colony Optimization [Dorigo 04]. 

The de rigueur references on genetic programming and genetic algorithm 

are the books by John Koza and his colleagues [Koza 92, Koza 94, Koza 99, 

Koza 03]. Papers indicative of the practical application of digital evolu-

tion and the range of nonhuman design are by Adrian Thompson and his 

colleagues [Thompson 99, Thompson 02].

[Blum 03] Blum, C. & Roli, A. “Metaheuristics in Combinatorial 

Optimization: Overview and Conceptual Comparison.” ACM Computing 

Surveys 35, 3 (September 2003): 268-308. 

[Dorigo 04] Dorigo, M. & Stutzle, T. Ant Colony Optimization. Cambridge, 

MA: MIT Press, 2004.

[Koza 92] Koza, J. Genetic Programming: On the Programming of Computers 

by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[Koza 94] Koza, J. Genetic Programming II: Automatic Discovery of 

Reusable Programs. Cambridge, MA: MIT Press, 1994.

[Koza 99] Koza, J.; Bennett, F.; Andre, D.; & Keane, M. Genetic 

Programming III: Darwinian Invention and Problem Solving. San Francisco, 

CA: Morgan Kaufmann, 1999. 

[Koza 03] Koza, J.; Keane, M.; Streeter, M.; Mydlowec, W.; Yu, J.; & 

Lanza, G. Genetic Programming IV: Routine Human-Competitive Machine 

Intelligence. Norwell, MA: Kluwer Academic Publishers, 2003.
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6.3 

Design

 Designing software for ULS systems involves activities such as the 

following: 

• participating in the formulation of the problems that the systems will 

address as they relate to the software elements; 

• defining the capabilities required in the software to address such needs; 

• structuring and developing plans (or designs in the narrow sense of the 

word25) for producing such software; and

• regulating the production of the software, evaluating it, and making 

changes as information and conditions change. 

Current design theory, methods, notations, tools and practices, and the 

acquisition methods that support them are inadequate to design ULS systems 

effectively. Some of the most important shortcomings are the following:

• Typical traditional design approaches are relatively centralized,26 but 

centralized processes perform poorly at the complexity scale of ULS 

systems. This characterization is likely to be true for many aspects of 

ULS system software development, from determining requirements to 

detailed programming to support, maintenance, and evolution.

25   For ULS systems, designing encompasses producing the code for the system, not only making a plan for that code.

26   Although open source is not centralized and agile methodologies are not as centralized as many other  

methodologies, these approaches are usually considered outside the mainstream; however, there is a lot to  

learn from them for ULS systems.
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• Much traditional software research and practice seeks methods enabling 

individual projects to produce good designs reliably on time and under 

budget—and, in some cases, projects succeed when measured this way. 

ULS system design, however, will be characterized by inherent uncer-

tainty and incomplete knowledge of requirements and the consequences 

of design decisions. Design risk is inherent. Therefore nearly every 

project—even competently executed projects—will exhibit significant 

variation (i.e., unpredictability) in costs, duration, and quality of results. 

• Although traditional design methods are formulated to facilitate design 

evolution, the impact of change in many dimensions and across many 

time scales without the control of centralized design processes will pose 

particular problems for ULS systems. Moreover, although current design 

methods do emphasize design for change, they provide little guidance on 

how to invest in flexibility and generality in design. 

• Today we have a poor understanding of the influence of economic condi-

tions on design activities and thus in particular on how to establish eco-

nomic conditions (e.g., through the organization of acquisition processes, 

incentives, and industry structures) conducive to producing good designs. 

We especially lack a clear understanding of how to fund design in the 

context of emergent requirements and the need for decentralized design 

processes. Similarly, we don’t understand how to enlist the open-source, 

university and other software- and system-producing communities by 

means of their fundamental motivations to produce good designs.

• ULS system designs must satisfy combinations of demanding technical 

constraints that are difficult to satisfy even in today’s relatively simple 

systems and for which, in some cases, requisite supporting infrastructure 

and mechanisms do not yet exist. Examples include simultaneous 

dependability, significant self-reconfigurability, and economic value. 

Reconfigurability greatly expands behavioral complexity, making static 

analysis and testing for high-assurance dependability costly at best, and 

infeasible in some cases.

• ULS systems will be both software intensive and human intensive, so the 

software elements must be designed with attention to issues ranging from 

technology to information processing by individual people, human teams, 

and organizations. Current software-design theories assume that the 

target environment is a network of computers and devices. Yet teams and 

human organizations within larger systems are also information-process-

ing mechanisms, engendering new opportunities and complexities. We 

have little in the way of a theory for or practice of “engineering” human 

organizations.



76 Ultra-Large-Scale Systems     

The Software Challenge of the Future  

6   Detailed Description of Research Areas

Successful ULS systems will require substantial advances in theories, 

models, concepts, tools, technologies, methods, and applications of software 

design to address the challenges described above. The following research 

topics emerge from the need for these advances. 

6.3.1  

Design of All Levels

 The successful design of ULS systems appears to depend to a significant 

extent on the design of all levels: not only of the software artifacts but of 

entire socio-technical ecosystems—both those that produce the systems and 

those in which they are employed—and of the linkages that integrate them 

into an even larger system. Design at all levels means designing the software 

artifacts, the development and acquisition infrastructure, and the rules and 

policies as a unit. Moreover, the complexity of ULS system design dictates 

the need for significant decentralization of design-production activities. 

For example, multiple industry sectors, each driven by competition and 

coordinated with each other by architectural agreements and other rules, 

constraints, and incentives, might be more effective in producing ULS 

system designs and improving them than traditional prime/subcontractor 

structures. The personal computer (PC) industry provides an example of 

such a decentralized design process. Multiple competitors within subsectors 

develop competing designs at the component level: for CPUs, operating 

systems, networks, and applications. The complexity of the PC is such that no 

single company could have advanced its design to the point at which it exists 

today. Monolithic PC designs could have been produced and were produced. 

However, it seems unlikely that any single company could have achieved the 

rapid, simultaneous advances we have seen in quality, cost, and performance 

in so many dimensions. The competition between Intel and AMD has 

produced tremendous advances in processor technology. A company the 

size of Microsoft has succeeded with just a few key system components: an 

operating system and an application suite. Another industry sector focuses on 

graphics hardware, another on sound cards, and so forth. The key idea is that 

a massive, decentralized industry structure, coordinated by architectural and 

other agreements and by other means but without a commanding centralized 

controller, now drives an extraordinary design process that continues to 

improve the PC. The PC, of course, is but one component type in a ULS 

system. We foresee the need for research on whether comparable industry 

structures and design processes could be harnessed to design ULS systems 

and components and on how to design them. 

In addition to the design of ULS system artifacts and architectures, we would 

have to give attention to the design of the decentralized industrial and other 

organizations27 that would develop and continually enhance these designs 

as well as to the design of the surrounding economic and other motivational 

27   Such organizations include open-source communities, university and industrial research laboratories, and even 

individuals who produce high-quality designs and software based on motivations that are not purely monetary or  

even economic.

Research Tracks

Essential  
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conditions; these include but are not limited to acquisition structures and 

methods. We therefore need research on theories and methods of design that 

relate detailed designs, architectural designs, decentralized organizations, 

and driving economic and other motivational forces. For example, we need 

new methods for developing and assessing the designs of end-to-end system 

architectures that will produce and continually improve ULS system designs. 

6.3.2  

Design Spaces and 

Design Rules 

 The architecture of a ULS system will consist of design rules (such as 

agreements on conventions, presuppositions, and constraints in the form of 

interfaces, standards, service-level agreements, etc.) that serve to decompose 

a system into component parts by decoupling design decisions that would 

otherwise be coupled. Design rules thereby also define the structure of the 

design spaces that will be explored by organizations working to design 

individual parts. The design process emerges as a search for valuable designs 

for both individual parts and combinations of parts, augmented by additional 

processes that occasionally select best-of-breed designs for parts and 

combinations thereof for testing and actual production. The architecture both 

divides the design work into simpler tasks and structures the design spaces 

that the competing organizations explore.

> Design Rules:
  Combining Software and  

Engineering Systems Design,  

Financial Economics, and  

Complex Adaptive Systems

Relevance to DoD Missions  

Mission-critical ULS systems will necessarily 

be developed and maintained over 

long periods of time by collections of 

organizations from various industry sectors. 

Today we lack a testable and validated theory 

of how to create incentives for development 

of an optimal or even viable allocation 

of design parts and processes to various 

industry and DoD constituents so that 

feasible ULS systems are produced. 

Key Concepts 

Modularity in design is a key to managing 

the complexity of software and to producing 

software systems amenable to change 

and to concurrent development. We are 

now learning that modularity also creates 

economic forces that shape and constrain 

large-scale design activities. Modules appear 

to create real options, capital investment 

analogs of financial options. Baldwin and 

Clark’s  concept of design rules provides a 

generalized account of what it means for a 

design to be modular and of the conditions 

under which such modularity generates 

significant economic potential. Design 

rules impose structure on design space to 

be searched for good solutions, allowing 

separate industry participants to seek good 

solutions independently within modules. 

As improved solutions are found, design 

transformations are made. The overall result 

is to organize the search for good system 

designs as a decentralized, complex adaptive 

system. Key research needs in this area are to 

develop, test, and apply descriptive theories 

to advance actual ULS system and software 

engineering capabilities.

Research Tracks

Essential  Support  
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This is a new perspective: architecture is not purely a technical plan for 

producing a single system or closely related family of systems, but a 

structuring of the design spaces that a complex design process at an industrial 

scale will explore over time. Note that although breaking up an architecture 

into design spaces and striving for a set of coherent and effective design rules 

would seem to imply a significant degree of control of the overall design and 

production process, the design spaces, design rules, and the organizations will 

be continually adjusting and adapting to both internal and external forces.

We need research on the methods and processes for devising ULS archi-

tectures in terms of design spaces and design rules. In particular, we need 

research on designing, representing, and analyzing design spaces. The design 

process is to explore the design space using parallel, decentralized processes 

regulated by design rules, which are architectural agreements and other 

constraints (such as security and performance) and incentives. Design rules 

must operate at many levels of abstraction—ranging from the outermost, 

most general shape of the architecture down to some level of detail below 

which possibly independent designers or design groups are permitted to 

make their own decisions. 

Key research questions include the following:

Design Spaces. How do we support a design-space view of architecture with 

new representations, tools, and environments? How do we map, represent, 

and analyze the architectures of ULS systems to predict economic and tech-

nical properties of the resulting processes and products? How and to what 

extent do demanding performance requirements and other constraints limit 

the possibilities for modularization of architectures for ULS system designs? 

How can organizations leverage architecture for competitive advantage?

Design Rules. What are the means by which design rules for ULS systems 

are created and changed? How are design rules validated with respect 

to system-level properties that they are meant to assure, and how are the 

products produced by individual organizations during the process verified 

against prevailing design rules? How are design dependencies managed 

across component and organizational boundaries? How do we make design 

rules flexible enough to permit effective exploration of the design space 

over competing architectures (competing design rules)? How do we design 

attribute-specific design rules, such as rules that lead to components that are 

not only secure in themselves but that remain secure when composed?
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6.3.3 

Harnessing 

Economics to 

Promote Good 

Design

 Today we have few tested theories or practices of how to design ULS systems 

for economic value or of how to establish economic forces that promote 

good design, such as through new contracting structures. For example, we 

have no tested theory describing how modular architectures create economic 

value, and thus we have little scientific basis for designing modular industry 

structures that are likely to produce good designs for ULS systems and their 

parts. We therefore need research leading to a deeper understanding of how 

to organize designs and design activities to maximize value and of how to 

create economic conditions that predictably provide incentives to create 

valuable designs (net of the cost and time to produce them). 

The decomposition of a ULS system into parts is likely to be of little use 

if there is no company that can profit by producing key parts; nor are 

high-quality parts likely to be produced with great economic efficiency in 

the absence of competition.28 We lack a theory and practice of competitive 

software design—i.e., of design processes in which competition is intention-

ally introduced at many levels. Likewise, we have little tested theory or 

practice of design risk management. If the outcome of a design attempt is 

uncertain, diversification over multiple independent attempts is an obvious 

strategy for risk management (as well as being consistent with the introduc-

tion of competition systematically into design processes). Indeed bakeoffs 

and other competitions are used today. We need research on how much 

diversity maximizes expected returns, how to promote design diversity in 

competitions, and how to use competition in detailed design. 

Example research questions include the following:

Design Risk Management. When is diversification through parallel, 

competitive design-space exploration a better strategy for achieving goals in 

scope, cost, timeliness, and quality than previous attempts to develop repeat-

able design methods that reliably produce good outcomes? To what extent 

can we assume that multiple versions are independent in dimensions that 

matter (a question related to earlier work on assumptions of independence 

in the use of n-version programming to improve software reliability)? How 

can we quickly tell when designs are unlikely to succeed, and how can we 

organize our design processes to enable effective value-creating cancellation 

of unsuccessful designs?

Value Assessment. How do we model and use the value propositions of 

system users, producers, and others in formulating designs and design 

processes for economic viability? How can we assess the economic viability 

of proposed modules or system architectures? By what means can we design 

ULS systems when market forces are simply inadequate to provide an incen-

tive for efficient design processes?29 

28   Note that this discussion is solely in the context of commercial interests. Open-source projects, for example, produce 

high-quality software through a different process. In this report, we assume that open source will be part of the overall 

marketplace of software components and that the effects of competition between commercial and open-source 

projects will be similar to those described here in purely economic terms. 

29   This can happen when a potential market for a system, part of a system, or component is too small or nonexistent.  

On the other hand, there is no requirement that design processes be efficient.

Research Tracks

Essential Support  
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6.3.4  

Design 

Representation and 

Analysis 

 Today’s design representations do not support the kinds of design-theory 

development or practical analysis needed to support ULS system design.  

Key research questions include the following:

Design Rule Representation. How do we represent architectural designs 

based on generalized concepts of design rules and design spaces, rather than 

on the much more limited special case of APIs, which dominate in architec-

tural design today?

Design Rule Properties. How do we analyze such new representations to 

ascertain likely technical and economic properties of designs and design 

processes? 

Role Representation. How do we represent the information-processing, 

storage, and communications roles that people play in complex systems, 

perhaps in a manner that unifies modeling of human and information-tech-

nology elements? 

Temporal Representation. How do we represent and validate temporal 

properties of design processes such as synchronization rules pertaining to 

separate companies and organizations? 

Representing Diverse Parts. How can we construct detailed repre-

sentations of designs whose parts are developed by separate—often 

competing—organizations? 

Evaluating Representations for People. How can we evaluate tradeoffs 

among representation expressiveness, human comprehensibility, and the 

propensity for human error?

Today’s design representations, which are based mostly on computational 

processes communicating through APIs, are far from sufficient to support the 

needs of ULS systems. For example, they do not readily admit representation 

of the design rules that have to be followed to enable secure interoperability.

Research Tracks

Essential Support  
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6.3.5 

Assimilation

 Today’s large-scale systems are often characterized by attempts to leverage 

components that were not designed to work together or that are inconsistent 

with the design rules of the architecture in which they are being inserted. It is 

doubtful, however, that force fitting uncoordinated components will scale up 

reliably to meet the demanding technical and economic requirements of ULS 

systems. Experience with today’s systems-of-systems programs suggests 

that ULS systems will continue to face many similar problems, including the 

need to include legacy systems and the need to integrate and interact with 

off-the-shelf parts. Moreover, as ULS systems come to depend on third-

party-provider network-based services, entirely new forms of old problems 

will emerge. Past research on techniques for dealing with such problems 

has not been commensurate with the magnitude of the problems, and the 

success of ULS systems likely depends on significant progress being made 

on ULS system assimilation, where nonconformant parts are assimilated into 

architecturally coherent ULS systems. To achieve this progress, the following 

research is needed:

6.3.5.1 

Legacy-System 

Assimilation

 Much of the work in developing and maintaining ULS systems will involve 

assimilating large legacy code bases—for example, by adding to those 

systems to create the basis for a ULS system, by reconfiguring the legacy 

system before insertion in a ULS system, and by redeploying legacy systems 

in contexts for which they were not designed as part of a ULS system. 

Significant changes will have to be made to existing legacy systems (for 

example, to change basic aspects of the system’s functionality or design 

assumptions) in order to bring them into conformance with design rules 

sufficient to enable integration into a ULS system with reasonable assurance 

that required system properties will be attained or preserved. It is essential 

to find ways to exploit new technologies and social practices so that legacy 

systems describe their own structure and behavior more fully than they do 

today, with little additional burden on developers, so that they do not become 

ossified and incapable of evolution. 

Each ULS system will exist for so long that some parts of it will become  

like legacy systems with respect to the emerging and evolving ULS system 

over time. The Y2K crisis is an apt, if perhaps overused, example of the 

problem. In the 1960s and 1970s (and even through the 1980s), many 

large-system developers believed that years (as dates) could be represented 

with two digits, reasoning that those systems would be replaced before any 

effects of the change of century resulted. No precautions were taken to make 

a simple conversion to a new or expanded representation when the time came. 

The result was that billions of dollars were spent to bring these systems up to 

date or to replace them when such replacements were not strictly necessary. 

This example raises numerous issues for ULS systems requiring research.  

It is not that the designers of the two-digit systems were irresponsible or  

Research Tracks

Essential  Support  
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poor designers; they chose the designs with deliberate thought and with 

knowledge of the limitations of the design decision, but made a tradeoff 

that was later to be regretted. Even today, excellent designers design with 

data-size limits when there are (computationally expensive) means to avoid 

these issues. We therefore need new research in the following topics:

Working with Legacy Code. We should develop techniques that enable 

analyzing, modeling, and evolving legacy code bases. The goals of such 

research include making it possible to model legacy code in various ways, to 

overlay models onto code, and to manipulate code by way of such models.

Working with Diverse Data. We must be able to exploit rich new capabili-

ties in areas of metadata, loosely structured data, multimedia, information 

search and synthesis, etc., to produce systems that have understandable, 

built-in design and operational diagrams and other documentation, produced 

without undue effort, and that are sufficient to help reduce the decay  

of structure and knowledge that cripples so many engineers of large systems 

today.

Working with Code Maturing into Legacy. We need to develop  

techniques to treat older parts of a ULS system as legacy, including  

how to handle unforeseen requirements, changing data characteristics, 

 new technologies, etc.

6.3.5.2  

Integrating Diverse 

and Uncertain 

Information Sources

 ULS systems will often use information from diverse sources that varies 

in reliability and trustworthiness. The resulting aggregate information may 

therefore be inconsistent and it may be non-monotonic: values may  

change and reliability may decrease as new information is integrated. 

Moreover, since the sources of information will be independent, the content, 

format, and other properties of the data will be subject to unpredictable 

change over time.

Some information sources must be integrated immediately, based on 

metadata and other formal descriptions. In some cases, rule sets will be 

integrated, and if they are proven unreliable, the conclusions reached and 

actions taken based on them must be addressed.

We need research on Techniques for Integrating Diverse Information 

Sources. We must be able to integrate information from multiple, diverse, 

and possibly unreliable or untrustworthy services, possibly immediately; 

determine the quality of the result; and adapt to variations in quality and  

to other changes over time. 
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Possible approaches to this requirement include the following:

• Defining Standards for Information Sources. We could define 

standards for describing information sources that include sufficient meta-

information to set expectations about format, semantics, and availability. 

• Composing Information Sources. We could create smart glue that 

monitors information sources to ensure that they behave as expected, 

taking remedial action if they do not. 

• Estimating Reliability of Information Sources. We need to develop 

techniques for estimating the reliability of an integrated body of informa-

tion that reflects the reliability of its individual sources.

• Measuring Capabilities. We need to generate measures of ULS system 

creation, evolution, operation, and support that reflect overall capability 

and permit identification of significant deviations at any system level.

6.3.5.3  

Off-the-Shelf 

Components

 As noted, for economic and technical reasons, ULS systems will be subject 

to pressures to incorporate off-the-shelf (OTS) components30  (which may be 

packaged as commercial, open source, government rights, etc.). A compo-

nent is considered OTS if it was not designed, produced, and changed under 

the design rules that govern the system in which it is inserted. Components 

often include the teams/firms that developed them (through maintenance and 

service relationships, business acquisitions, etc). Models of assimilation in 

socio-technical ecosystems thus include not just technical means of assimila-

tion such as software wrappers, but also business means, such as mergers and 

acquisitions, that provide new levels of design control. 

Research questions include the following:

Effective Technical and Economic Decisions for OTS components. 

What tools, methods, theories, and technical and business practices can 

better enable designers to make technically and economically effective 

decisions regarding the use of OTS components in ULS systems and system 

components? 

Assessing Quality Tradeoffs for OTS Components. What kinds of tools 

and practices are needed to assess quality tradeoffs and implications in all 

relevant dimensions, including reliability, availability, safety, security, risk of 

obsolescence, and life-cycle costs and benefits, especially concerning cost of 

change and of refreshing technology? 

Assimilating OTS Components. How can OTS components be better 

assimilated into ULS systems when they are judged to be the best options? 

30   The term “component” here is intended to mean a constituent part of the ULS system, which could be a web service 

or a piece of hardware.
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Understanding Long-Term Value of OTS Components. How can 

situations in which the short-term benefits of using OTS components are 

outweighed by the present value of downstream costs under reasonable 

assumptions about the future be easily be recognized?

6.3.5.4  

Component-

Integration 

Technologies

 Because not much can be done in the short term to change the direction 

of the installed base of hardware and software components, a reasonable 

approach is to provide the needed services at higher levels of ULS compo-

nent-integration technologies, such as middleware platforms. A crucial issue 

is how to go beyond building component technologies for ULS systems that 

simply provide a better network, operating system, resource manager, or 

security service in isolation. We therefore need research on the following 

topics:

Integrating Components. We need techniques for integrating capabilities 

and delivering them to applications in ways that enable them to realize 

a model of adaptive behavior with tradeoffs among the various quality 

attributes. A promising approach is middleware that can be placed on top  

of legacy systems to take advantage of redundancy and diversity, acting  

as a coordinator for a variety of previously uncoordinated components— 

perhaps components that were never conceived of as being part of the  

same ULS system.

Hardware for ULS Component Integration. We need to look at new 

hardware and software platforms (computer systems, memory structures, 

specialized processors, frameworks, etc.) to support ULS system develop-

ment and deployment.

6.3.5.5  

Design for 

Assimilation

 Today’s software-design methods are largely based on the idea of composi-

tion of black-box abstractions: components characterized by minimal 

external interfaces and implemented by hidden inner mechanisms. Some 

recent research (for example, on open implementations and aspect-oriented 

programming) suggests that system assimilation might be eased by relaxing 

such strictly enforced abstraction. We need research on the following topics:

Dimensions of Design Assimilation. What tradeoffs are involved (for 

example, for and against ease of change) in the use of such approaches? 

Mechanisms for Assimilation Design. What is the range of software-design 

techniques and mechanisms that can help to assimilate components into 

systems even if such components do not conform to all the design rules nec-

essary for intervention-free integration or interoperation? Which approaches 

are best, and how can they be advanced?



85Ultra-Large-Scale Systems     

The Software Challenge of the Future  

6.3.6 

Determining 

and Managing 

Requirements

 Formulating system requirements is a critical success factor in software 

engineering, and shortcomings in this dimension are one leading cause of 

software project failures. Determining or discovering the requirements is 

also the software engineering activity that is the most domain specific, the 

least capable of being automated and formalized, and the least scalable. ULS 

systems will make these problems worse because of the scope of applica-

tion domains that exceed the limits of human intellectual capabilities, the 

complexity and fragmentation of socio-economic processes and organiza-

tions that are highly decentralized and autonomous, and the sheer complexity 

of the problems being addressed. 

Because of the smaller scope and scale of traditional systems, it was 

sometimes workable for teams first to analyze requirements and write down 

specifications, and then to proceed through detailed design, coding, testing, 

etc.31 For ULS systems, however, such a life cycle is unrealistic. Analysis 

and design methods must accommodate pervasive incompleteness, imperfec-

tion, uncertainty, and non-determinacy in the products and processes that 

arise throughout the system’s development and evolution. The distinction is 

blurred between design time, development time, and runtime (or deployment 

time). We need research on ULS system requirements on such topics as the 

basics of requirements gathering, conflict management, ambiguity tolerance, 

and requirements phaseout.

6.3.6.1  

Basics of 

Requirements 

Gathering

 Because ULS systems comprehend so much functionality and therefore are 

unfathomably complex, requirements gathering takes on a whole new complex-

ion. There will be, in effect, randomness or uncertainty in the requirements, in the 

specifications, and in the system itself—and it may not be possible to determine 

reliably where the problem lies. Further, because ULS systems will be socio-

technical ecosystems, the scope of requirements gathering must expand to include 

people. Therefore we need research on the following:

User-Centered Requirements. We must understand user-centered design in 

the presence of diverse stakeholders including large numbers of diverse users 

with varying abilities and required tasks.

Implementing Partial Requirements. We must figure out how to do 

incremental or fractal design and implementation (perhaps in the mold of 

agile methodologies).

Design Rules and Requirements Feedback. We must figure out how 

to construct design rules that encourage sophisticated feedback paths in 

requirements, specifications, designs, and implementations.

31   The category of a system can influence how feasible it is to gather requirements accurately before design and 

implementation. In some scientific and engineering situations, complete requirements are more likely to be determined 

beforehand than in situations where the deployment of the system alters social, organizational, or business forces in 

an ecosystem or society. In the latter case, requirements will tend to drift, and perhaps the entire ecosystem—the 

deployed system and its social and other components—will converge at some point. 

Research Tracks

Essential  
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6.3.6.2  

Conflict 

Management

 Because ULS systems will serve different classes of users with distinct 

interests, it will be difficult to detect and resolve conflicts in requirements for 

different system parts and stakeholders. We therefore need research on the 

following:

Competing Human Interests. We need to figure out how to represent, 

analyze, and reconcile distinct and competing interests. Examples include 

the following:

• developing logics that support multi-layered representation and 

reasoning; 

• reconciling conflicting security requirements; 

• reconciling requirements arising from users (user-centered design) and 

from those arising from non-user stakeholders; and

• analyzing requirements for compatibility, redundancy, inconsistency, 

emergent properties, and combined behaviors. 

6.3.6.3  

Ambiguity Tolerance 

 In traditional requirements engineering, tolerating ambiguity is a strategic 

measure intended to postpone specification of details until they are fully 

understood. In contrast, we expect uncertainty, ambiguity, and non-deter-

minacy to be permanent characteristics of ULS systems. We therefore need 

research on the following:

Uncertain and Ambiguous Requirements. How do we best analyze, 

transform, and reason about requirements in the presence of uncertainty and 

ambiguity?

Requirements Drift. How do we represent and respond to requirements 

drift in socio-technical ecosystems where the presence of a new system can 

affect human and organizational dynamics, and therefore the requirements?

6.3.6.4 

Requirements 

Phaseout

 Traditional life-cycle models make provisions for a phaseout stage, during 

which a software system is phased out and replaced with a new system. The 

economics of ULS systems will be such that phaseouts will often be far in 

the future. We therefore need research on the following:

Life Cycle of Requirements. How do we provide for longevity by  

representing requirements in a way that accommodates the addition,  

deletion, modification, or recomposition of requirements over long periods  

of time and evolution?



87Ultra-Large-Scale Systems     

The Software Challenge of the Future  

6.3.7  

Further Reading

 Design in general, and the design of software and software-intensive systems 

in particular, is a topic that has received a great deal of study over many 

decades. Herbert Simon’s epochal paper, “The Architecture of Complexity” 

(reprinted in his book, The Sciences of the Artificial [Simon 69]), provides 

a touchstone for significant thinking on the structure of complex systems, 

whether engineered or emergent. The basic idea is that for systems to be 

robust in the face of change, they must have a structure that is hierarchical 

or nearly so. Parnas’s notion of information-hiding design modularity, first 

presented in his paper, “On the Criteria for Decomposing Systems into 

Modules” [Parnas 72], is an important prescriptive guideline to help develop-

ers design software that is robust to change. This idea reduces Simon’s notion 

to an operational guideline for software engineers. 

A separate but related stream of thinking emerged in the social sciences. 

Coase’s famous paper, “The Nature of the Firm” [Coase 52], attempted to 

explain why the emergent structure of the capitalist economy is a collection 

of firms, not just one large firm. The question he tried to answer was roughly, 

“Why doesn’t competition drive out all firms but one?” His answer revolved 

around concepts of transaction and organization costs driving the economy 

to a decentralized rather than a centralized structure. Carliss Baldwin and 

Kim Clark brought together these two lines of thinking in their book, Design 

Rules: The Power of Modularity [Baldwin 99]. In it, they try to account for 

the emergent, modular structure of the modern computer industry based 

on the idea that information-hiding modules in computer design create 

economic value in the form of real options (capital-investment analogs of 

financial options) and that the overall economy drives industry to organize 

itself to pursue this options value. 

Boehm (for example in his book, Software Engineering Economics [Boehm 

81] and in a more recent paper, “Software Economics: A Roadmap” [Boehm 

00]) has pioneered the concept that software producers should optimize for 

value creation rather than merely for technical perfection. 

Sullivan and colleagues [Sullivan 99] and Sullivan and Griswold and their 

students [Sullivan 01] have argued that concepts of real options, including 

the notions of Baldwin and Clark, can be operationalized to advance the 

theory and practice of software engineering. In particular, some recent work 

has shown that Baldwin and Clark’s concept of design rules, as a formulation 

of what it means for a design to be modular, leads naturally to a generalized 

concept of interface. This concept can accommodate both an apparently 

non-hierarchical form of modularity being explored today under the rubric of 

aspect-oriented design [Griswold 06] and to the scaling up of software-based 

forms of modularity to the design of complex activities within firms and 

perhaps even to the structuring of industry sectors. 
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Any serious operationalization of this concept for ULS system design will 

require the precise formulation and validation of critical design rules. The 

work of Jackson [Jackson 06] on practical formal methods appears to hold 

significant promise to advance our capabilities in this dimension.

[Baldwin 99] Baldwin, C. & Clark, K. Design Rules: The Power of 

Modularity. Cambridge, MA: MIT Press, 1999.

[Boehm 81] Boehm, B. W. Software Engineering Economics.  

Prentice Hall, 1981.

[Boehm 00] Boehm, B. W. & Sullivan, K. “Software Economics:  

A Roadmap.” The Future of Software Engineering. Association for 

Computing Machinery, 2000.

[Coase 52] Coase, R. H. “The Nature of the Firm.” Readings in Price 

Theory. Stigler and Boulding (eds.). Chicago, IL: R. D. Irwin, 1952.

[Griswold 06] Griswold, W. G.; Sullivan, K.; Song, Y.; Shonle, M.;  

Tewari, N.; Cai, Y.; & Rajan, H. “Modular Software Design with 

Crosscutting Interfaces.” IEEE Software 23, 1 (January/February, 2006): 

51-60.

[Jackson 06] Jackson, D. Software Abstractions: Logic, Language, and 

Analysis. Cambridge, MA: MIT Press, 2006.

[Parnas 72] Parnas, D. L. “On the Criteria for Decomposing Systems 

into Modules.” Communications of the ACM 15, 12 (December 

1972):1053–1058. 

[Simon 69] Simon, H. A. “The Architecture of Complexity,” 192-229. The 

Sciences of the Artificial. Cambridge, MA: MIT Press, 1969.

[Sullivan 99] Sullivan, K. J.; Chalasani, P.; Jha, S.; & Sazawal, V.  

“Software Design as an Investment Activity: A Real Options Perspective.” 

Real Options and Business Strategy: Applications to Decision Making.  

L. Trigeorgis (ed.). Risk Books, 1999.

[Sullivan 01] Sullivan, K.; Griswold, W. G.; Cai, Y; & Hallen, B.  

“The Structure and Value of Modularity in Software Design,” 98-101. 

Proceedings of the 8th European Software Engineering Conference, 

held jointly with the 9th ACM SIGSOFT International Symposium on 

Foundations of Software Engineering, 2001.
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6.4  

Computational 

Engineering

 To respond to rapidly changing environments, ULS systems will require 

fast and reliable component development and evolution. In addition, people 

with many different backgrounds and interests will need to understand 

quickly the design and operation of ULS systems and their components. 

To meet these needs, new approaches will be required to enable intellectual 

control at an entirely new level of scope and scale for analysis, design, and 

operation. Moreover, ULS systems will be defined and implemented in many 

languages, each with its own abstractions and semantic structures, creating 

requirements for analysis of artifacts in multiple semantic frameworks. 

Unfortunately, most existing programming languages treat software as an 

isolated, closed-world formal system. Such a view, although not without 

benefits, is not sufficient for the needs of ULS systems. We must evolve the 

capabilities of programming and other representational languages to make 

ULS systems more understandable at all levels of abstraction.

Another requirement is to create ULS systems out of larger and larger 

components. That is, if the granularity of reliable engineering artifacts can 

be scaled up sufficiently, the design, construction, and analysis of ULS 

systems will become more manageable. For example, a billion-line system 

becomes a million-unit system if the reliable unit of construction is a 

component of a thousand lines, and it becomes a ten- or hundred-unit system 

if hundred-thousand-line or ten-thousand-line subsystems, respectively, can 

be reliably built from reliable thousand-line components. Creating such large 

components and subsystems at the requisite level of reliability can be aided 

by computational analysis of software behavior that can be used to model, 

specify, verify, and test components as they are developed and evolved. 
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6.4.1  

Expressive 

Representation 

Languages 

 To address these challenges, ULS systems will require increased language 

expressivity, an expanded view of abstraction, and more powerful capabili-

ties for modularity, composition, verification, and validation. Abstraction 

mechanisms must be capable of spanning larger and more diverse kinds of 

phenomena, for example, very high-level specifications and architectures, 

error and exception propagation, quality-of-service management, nonfunc-

tional characteristics, temporal properties, and crosscutting concerns. More 

expressive domain-specific languages and models of architectural structures 

and computational dynamics will also be needed, as will design and code-

generation capabilities based on these domain-specific models. Research will 

also be required in the areas of expressiveness, semantics, and modularity, 

including human comprehensibility and tradeoffs between expressiveness and 

comprehension, as described in the following subsections.

6.4.1.1  

Improved Language 

Expressiveness 

 Improved languages are required for representing ULS systems and their 

components at all levels of abstraction. Today’s languages focus largely 

on Von Neumann execution models rather than on policies, design rules, 

and specifications against which designs can be checked for conformance. 

Conceptual designs—as opposed to code-level designs—are rarely docu-

mented and not well supported by languages and associated tools. As a result, 

designs and their coded implementations often diverge, resulting in a loss of 

the semantic information and design rationale vital to their future evolution. 

Many implementation faults originate from the difficulty of coding concepts 

that are clear and simple in the domain of the problem but unclear and 

complex when mapped to the domain of programming-language constructs. 

Today’s languages are insufficient for ULS systems—they separate concerns 

poorly, are full of accidental complexities, are difficult to implement reliably, 

do not lend themselves adequately to analysis and optimization, and represent 

information in the solution domain rather than in the problem domain. 

Promising research topics on language expressiveness include the following:

Domain-Specific Languages. Research is required to develop domain-

specific language (DSL) semantics and syntax at all levels, from specification 

and architecture to design and implementation. This work will address new 

mechanisms for separating and viewing concerns, superimposition of multiple 

expressive views on code, representation of temporal relationships in domain 

terms rather than implementation terms, architectural and platform support for 

DSLs, automated synthesis of artifacts such as code from DSLs, generation of 

simulations and configuration descriptions from DSL models, and provision 

of language and support-system features that improve human learning and 

comprehension while reducing human errors. 

Research Tracks

Essential  
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Language Technologies for ULS System Development. Research is required 

in foundations of language design, including type-safe approaches to staged 

computation, aspect-oriented composition of functional behavior and quality 

properties, representation of conceptual designs and their integration with 

code, and development environments for integrating nonlocal and legacy 

semantics and domain models with the semantics of newly developed artifacts. 

Technology development is also required to support loosely coupled interfaces 

between components (Jaron Lanier’s phenotropics32 provide a good example) 

to simplify component composition. This work will also include exploration 

of new computational models and investigation of other disciplines such as 

biology for expressive models applicable to ULS systems. 

Language Technologies for Human Communication. Research in language 

expressiveness will not be limited to the artificial elements of ULS systems, 

but will extend to people as well. This work will develop means for more 

effective human communication than is possible with today’s graphical 

interfaces, including methods for sustained multi-party cross-organizational 

conversations during development and operation of ULS systems. Key objec-

tives include language forms for reliable communication and understanding 

of policies, designs, and implementations, as well as real-time communication 

during system operation and evolution, all across widely varying stakeholder 

groups and environments.

6.4.1.2 

Comprehensive 

Language Semantics 

 To enable computational methods for assessing behavior and quality attributes, 

ULS software engineering technologies can benefit from complete and correct 

definitions of the semantics of engineering languages and representations at 

all levels of exposition, from specifications and architectures to designs and 

implementations. Many important semantic relationships in software cross 

the program/non-program boundary. For example, identifiers in code relate to 

entities outside the code, and artifacts other than code define aspects of ULS 

systems at all levels of abstraction, including semantic references to code. 

These relationships may reference, for example, specifications, configuration 

files, build scripts, error databases, email archives of design discussions, etc. 

Research is thus needed in the following areas:

Foundations for ULS System Semantic Webs. Research will be required 

on technologies to support the rich semantic web among the intentional 

artifacts of ULS systems, including new and legacy specifications, designs, 

and code; simulations and models; domain-specific languages and programs; 

and many others. To keep pace with the perpetual evolution of ULS systems, 

these technologies will permit developers to reason about semantic webs to 

better understand the often nonlocal meaning of programs and other system 

representations. 

32  See Brockman, John. The Next Fifty Years: Science in the First Half of the Twenty-first Century. Vintage, 2002.
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Foundations for High-Level ULS System Abstractions. Research will be 

needed to develop frameworks and structures for abstract but precise repre-

sentations of large-scale ULS system artifacts and to understand and support 

corresponding human methods of reasoning and analysis. Breakthroughs will 

be required in mathematical foundations for very high-level representations 

capable of supporting abstraction and refinement while preserving behavioral 

equivalence across widely varying levels of expression. Such abstractions 

must be mathematically sound, referentially transparent down to details, and 

low in complexity to enable intellectual control. 

6.4.1.3  

New Forms of 

Modularity

 ULS systems will include many different stakeholders involved in defining 

and understanding both the modularity of ULS systems and the component 

compositions that the modularization implies. Research is needed in the 

following areas to support these objectives:

Modularization Views for Human Understanding. Research is required 

on foundations for view correspondence that will support multiple perspec-

tives on ULS system modularizations and the relationships they imply. A 

promising approach is to develop a correspondence calculus that provides 

methods for assessing the difference between views and the abstractions 

they embody—for example, to determine if changing a view changes the sys-

tem—and between different structural properties of views—for example, in 

assessing the hierarchical or crosscutting properties of various modulariza-

tions. Techniques will also be required to express and manipulate behaviors 

that do not modularize and compose along typical functional lines.

New Methods for Improved Modularization. Recent research has shown 

that it is possible to isolate and compose systems out of not just traditional 

block and hierarchical but also crosscutting structures. Moreover, work in 

biology and other disciplines suggests meaningful concepts of modularity 

that do not align with spatial co-location. To understand how functional and 

other requirements can be better allocated across components, this work 

will include investigation of artificially designed software and systems, 

such as digitally evolved analog circuits; robots and other devices designed 

by neuro-evolution; and robots that employ probabilistic techniques and 

machine learning. Biological systems such as the human immune system 

will be investigated to explore examples of non-monolithic modularity. In 

addition, generalized concepts of modularity based on design rules may 

transcend some limitations of traditional modularization concepts and permit 

a level of expressiveness required to accommodate crosscutting modularity. 
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6.4.2  

Scaled-Up Specifica-

tion, Verification, and 

Certification

 As computational power increases, formal methods that might have once 

seemed intractable are becoming practical. Moreover, the engineering 

implications of formal foundations are becoming better understood. These 

trends provide an opportunity to harness computational power to help 

automate fundamental engineering operations in a next generation of more 

capable tools to support ULS system development. 

6.4.2.1  

Trusted Core 

Components

 Because ULS systems will be highly decentralized and distributed, they will 

depend heavily on trusted core components throughout their architectures. 

These components include key operating system, middleware, and data-

management components; communication protocols; and cryptographic 

implementations, all of which will participate in maintaining operational 

integrity across and within widely varying domains. These trusted core 

components, envisioned as small but essential portions of ULS systems, 

will participate in the coordination and integration of the majority of system 

components that may or may not be trusted. While complete specifications 

of ULS systems will likely be difficult to achieve, complete specifications of 

trusted components will be possible and necessary. Trusted cores will require 

complete specification to support correctness verification and certification. 

Moreover, ULS systems will require trusted elements such as self-modifying 

and self-sustaining subsystems, adaptive control functions, and interacting 

autonomous agents. Developing technologies for achieving a sufficient level 

of trust in these elements will require research in the following area:

Specification, Verification, and Certification for Trustworthy ULS 

Systems. Research is needed for extending and scaling up theoretical 

foundations and engineering methods of existing specification techniques 

(for example, sequence-based specification and flow-structure analysis); 

for defining precise semantics of specification languages, both for effective 

use and for development of automated support; and for verifying designs 

and implementations of trusted core components for correctness with respect 

to their specifications. Practical application of correctness verification on a 

broad scale requires research to scale up and automate existing methods (for 

example, function-theoretic verification, proof-carrying code, and model 

checking). Research will also be required for certifying trusted compo-

nents for fitness for use with scientific methods—for example, statistical, 

usage-based testing—to provide confidence that their implementations can 

be depended on to provide correct functionality in operational environ-

ments. Research is required to scale up these methods to certify the trusted 

components as well as to develop new methods for verifying and validating 

autonomous software components of ULS systems.

Research Tracks

Essential  Support  
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6.4.2.2  

Cost-Effective 

Specification and 

Analysis

 Complete, correct specifications of entire ULS systems and their subsystems 

may be difficult to achieve in practice. The properties on which participants 

depend, and which therefore must be specified, are open ended, and the cost 

of establishing required properties for every element of a ULS system may 

be prohibitive. What can be achieved in practice is a partial specification that 

grows as more information becomes available. The reliability of information 

in such partial specifications will vary; for example, it may arise from formal 

analysis, empirical data, or subjective judgment. 

A key research question is thus how to validate ULS systems under these 

circumstances. If complete verification is impractical, how do participants 

decide how much of which validation activities are cost effective, and how  

do they determine whether the qualities of a ULS system are sufficient  

for its intended purpose? One approach is to develop an integrated frame-

work for evolving specifications that supports partial and approximate 

knowledge, including 

• specification of an open-ended set of properties; 

• information about the level of trust in property values; 

• analysis and validation techniques to assess the level of trust; 

• estimation of the cost and value of analyses that produce new  

information; and 

• propagation of new information for further analysis. 

Research is thus required in the following area:

Sufficient Correctness for ULS Systems. New methods are required for 

drawing acceptably valid conclusions from incomplete, inconsistent, and 

changing knowledge about the system, its constituent parts, and the needs  

of its users. These methods involve both assessing the level of confidence  

in particular qualities for a class of tasks for a specific participant group  

and cost-effectively determining whether a ULS system in fact meets  

those qualities. 

6.4.2.3  

Model-Based 

Validation 

 Conventional development processes are based on assumptions of long life 

cycles with minimal requirements change and exhaustive test-case analyses. 

These processes are inadequate for ULS systems, particularly for the parts of 

the system that incur stringent quality-of-service requirements. We therefore 

need research in the following area:
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Model-Based Validation for ULS Systems. Research is required on model-

based methods to better understand their application to stringent certifiability 

and reliability requirements of ULS systems. For example, model-based 

formalisms are often amenable to verification for system correctness, and 

empirical benchmark generation enables certain performance properties to 

be verified. In addition, incorporating the models generated by requirements 

and specification languages into engineered development environments with 

improved human-computer interaction can facilitate use of formal methods 

while accounting for ease-of-use requirements.

6.4.3 

Computational 

Engineering for 

Analysis and Design

 Software developers today lack practical means to determine and validate 

the full functional behavior of programs and their corresponding specifica-

tions, architectures, and designs. This shortcoming in present-day software 

engineering drives cost and complexity and will substantially inhibit 

development of ULS systems. Although computation of program behavior is 

a significant problem subject to theoretical limitations, engineering solutions 

are emerging—for example, in function-extraction technology—and we 

need to make progress in this area. Routine availability of computed behavior 

will substantially reduce the complexity and cost of software and system 

development, verification, and evolution. 

Research Tracks

Essential  

Research Tracks

Essential  

> Computational  
 Engineering for  
 ULS System  
 Analysis and Design 

Relevance to DoD Missions 

ULS systems must provide reliable mission 

capabilities to warfighters under adverse and 

unpredictable circumstances. The software 

will be depended on by many people, 

and so must be dependable. The task of 

developing dependable software at the scope 

and scale of ULS systems will exceed the 

capabilities of current software engineering 

methods that have evolved in the first 50 

years of computing. A transformation to 

next-generation software engineering as a 

computational discipline will help augment 

human capabilities for fast and reliable 

development. 

Key Concepts 

Computational Engineering will encompass 

many technologies. For example, it will 

require automation to compute the behavior 

of software and other engineering artifacts, 

such as specifications and architectures, to 

the maximum extent possible for human 

intellectual control. This is an extremely 

difficult problem that will require innovative 

research. Function-theoretic foundations  

of software illuminate strategies for behavior 

computation based on the semantic structures 

of programming and other representation 

languages. The availability of computed 

behavior during system development and 

operation will help address problems of 

correctness verification, security analysis,  

and component composition as well. 

ULS
Systems

Human
Intellectual

Control

Computational
Engineering
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We need the following research to enable computational automation for  

ULS system development and analysis:

Computation of Component Behavior in Development and Analysis. 

Component reliability requires that full functional behavior and quality 

attributes be known for validation against requirements and verification 

of correctness. Research is required on how to compute the behavior of 

software to the maximum extent possible. The objective is to replace current 

labor-intensive and error-prone analysis of program behavior in human-time 

scale with fast and correct computation of program behavior in CPU-time 

scale. This research can build on function-theoretic foundations—for 

example, as found in cleanroom software engineering and function-extrac-

tion technology—that treat programs as rules for mathematical functions and 

relations. These foundations define procedure-free functional representations 

of program structures and algebraic methods for their derivation. Research 

will be needed in organizing and simplifying computed behavior expres-

sions, as well as in the human factors of behavior presentation and analysis. 

Behavior computation can be expected to increase the span of human 

intellectual control and increase confidence in the correctness of software.

Computation of Component Compositions in Network Architectures. 

The overall behavior of compositions of components combined into network 

architectures must be calculated for fast and reliable system development and 

evolution. Composition computations must generate correct abstractions of 

the net behavior of combined components and further scale up the reliable 

unit of construction for ULS systems. Such a capability is important for 

developing and verifying the flow structures of enterprise tasks implemented 

through component compositions across distributed network architectures. 

Research can expand theoretical foundations and develop engineering au-

tomation for defining components in composable form and computing their 

composite behavior. This work can build on function-theoretic mathematical 

foundations that prescribe compositional methods for calculating the net 

behavior of combined components. We will also need research in specifying 

intercomponent domain representations suitable for compositional analysis. 

Truth-Preserving Computation. ULS systems will require maintenance 

of correct self-descriptions of the structure and function of systems and 

components for both computational analysis and human intellectual 

control. Automated truth-maintenance capabilities can initially derive and 

subsequently preserve the correctness and completeness of these semantic 

descriptions as systems and their components change. We will need research 

to define semantics-based descriptions of systems and components and to 

develop computational methods both to preserve the truth of such descrip-

tions under system evolution and to reveal violations of required behavioral 

invariances. Research will also be required to create a semantic calculus as a 

basis for truth-preservation computations.
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6.4.4 

Further Reading

 A survey of methods and issues in developing domain-specific languages 

can be found in “When and how to develop domain-specific languages” by 

Mernik and colleagues [Mernik 05]. Neumann discusses development of 

trustworthy components and systems [Neumann 03] in terms of disciplined 

development processes, principle-driven architectures, and composable com-

ponents. Prowell and colleagues provide background in function-theoretic 

methods for specification, verification, and certification [Prowell 99], and 

Pleszkoch and Linger [Pleszkoch 04] discuss technology for computational 

analysis of software behavior. 

[Mernik 05] Mernik, M.; Heering, J.; & Sloane, A. “When and how to 

develop domain-specific languages.” ACM Computing Surveys 37, 4 (2005): 

316–344. 

[Neumann 03] Neumann, P. Principled Assuredly Trustworthy Composable 

Architectures (SRI Project 11459, Final Report). Menlo Park, CA: Computer 

Science Laboratory, SRI International, June 28, 2003. http://www.csl.sri.

com/neumann/chats4.html; also chats4.ps and chats4.pdf.

[Pleszkoch 04] Pleszkoch, M. & Linger, R. “Improving Network System 

Security with Function Extraction Technology for Automated Computation 

of Program Behavior.” Proceedings of the 37th Hawaii International 

Conference on System Sciences (HICSS-37), Kona, HI. IEEE Computer 

Society Press, 2004. 

[Prowell 99] Prowell, S.; Trammell, C. J.; Linger, R.; & Poore, J. H. 

Cleanroom Software Engineering: Technology and Process. SEI Series in 

Software Engineering. Reading, MA: Addison-Wesley Longman, 1999.

6.5  

Adaptive System 

Infrastructure

 Development environments provide an integrated set of languages and tools 

that aid the construction, integration, and validation of software artifacts and 

applications. The runtime infrastructure for executing applications is pro-

vided by deployment environments, such as networks, operating systems, and 

middleware. Today’s software-development environments and deployment 

environments are heavily oriented toward traditional software-development 

practices that focus on the production and execution of software artifacts. 

They centralize activities in a single organization or with central points of 

control, as in traditional prime/subcontractor structures and open-source 

development. 

ULS systems, in contrast, require an adaptive system infrastructure that 

supports the following: 
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• Integrated operation and evolution: Development, deployment, and 

operational activities will be more integrated and overlapping in ULS 

systems than in current practices, which are typically characterized by 

distinctions, such as the requirements phase, the design phase, and the 

testing phase. These distinctions between phases will be blurred or even 

lost in a ULS system.

• Decentralization: ULS systems will have many concurrent information 

flows among development, deployment, and operational activities and 

will be produced by decentralized design processes involving many par-

ticipating organizations and be coordinated by architectural agreements. 

• Design of all levels: ULS systems will require attention to production 

and operation as well as to engineering and management, which must be 

supported by an integrated development and operational environment. 

Engineering of ULS systems requires support for abstractions and views 

in order to manage the inherent complexity.

• Security and trust: Development and deployment that span organizational 

boundaries will require a system infrastructure that ensures the security 

and privacy of sensitive information and that manages continuously 

changing organizational boundaries. 

• Continuous in situ evolution: Because of the blurring of the distinction 

between design time and runtime, ULS systems will increasingly be 

developed in situ, piecewise, in the operational environment. The number 

of changes will be so large that the ULS system cannot be treated as a 

monolithic system. Instead, deployment configurations will evolve, and 

changes will migrate through the ULS system.

The need to support an adaptive system infrastructure creates a need for 

research on decentralized production management, on view-based evolution 

of the system design, on evolutionary configuration and deployment in 

the operational environment, and on in situ control and adaptation of the 

operational system.

6.5.1  

Decentralized 

Production 

Management

 With a ULS architecture in place, companies and other organizations will 

be able to work in parallel to develop, select, deploy, and maintain system 

components. Environment support for system production and runtime man-

agement will, in many ways, resemble the support for software development 

provided by today’s best software engineering tools and environments. 

The production of ULS systems must be managed in a decentralized fashion 

across major boundaries (e.g., companies, countries, and even cultures). 

Because of legacy commitments and the wish to leverage technology 

advances, it is inevitable that a variety of development subenvironments 

and heterogeneous operational platforms will be used. Different firms and 

Research Tracks

Essential   
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organizations will make different choices, and, in some cases, technology 

(e.g., specialized embedded processors, secure operating systems, and fault-

tolerant middleware) will constrain developers’ choices of language and tool 

environments as well as runtime platforms. Multi-team, multi-organization 

interoperability is critical to allow for the formation of ad hoc coalitions of 

companies into design teams. 

The large-scale, distributed, decentralized—yet tightly coordinated— 

engineering activities that will be needed to develop and maintain ULS 

systems will require new approaches to multi-institution security. 

Today’s perimeter security paradigm dictates that integration across organiza-

tions generally happens outside of those organizations’ firewalls, through the 

use of such mechanisms as demilitarized zones. Such methods will not scale 

economically to enable multi-organization development activities. In another 

dimension, development environments for ULS systems will themselves 

have to provide strict security control over the viewing of and access to 

design information and capabilities of running systems. In other words, as 

design information comes to be shared across teams and organizations while 

boundaries continually change, we will have to address trust and security of 

the intellectual properties as well as corporate and national security. 

Without coordinated system integration and testing in otherwise desyn-

chronized and decentralized design processes, users of ULS systems will 

have little confidence that their deployment configurations will operate as 

expected. To achieve such confidence, the following research is needed:

Multi-Team, Multi-Organization Interoperability. We will need research 

into an adaptive system infrastructure that combines development, deploy-

ment, and operational support for interoperability between deployment 

configurations and development and operational teams as well as between 

organizations to manage the development and operation of ULS systems. 

This interoperability research must address

• change control when design dependences span organizational boundaries; 

• global analysis of systems under development when the components are 

developed across such boundaries; 

• enforcement of development protocols across administrative domains 

(such as signoffs on software artifacts); 

• contracting and accounting; 

• mining of technical and social data across organizational boundaries 

(e.g., to find emergent or previously undocumented design dependencies 

or to map large-scale design structures); 
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• integrated support for economic analysis, contracting, and manage-

ment-level monitoring and control; 

• support for business intelligence and decision making; 

• support for expressing and enforcing high-level development poli-

cies; and

• environment interfaces to regulatory/certification authorities.

Security and Trust. We need research to develop new models of security 

consistent with the need for much deeper, yet still secure, integration of 

information and activities across continually changing organizational 

boundaries. We also must be able to track the provenance of software and 

other design elements (for example, to track down all software produced by 

persons/organizations later found to have been tainted). Advances in security 

for development environments are likely to be applicable across many parts 

of ULS systems.

Coordinated System Integration and Testing. To ensure predictable 

operation of deployment configurations of ULS applications, the following 

issues must be addressed:

• supporting system integrators in their selection of components that 

emerge from ongoing competitions among suppliers; 

• virtually integrated views of development activities that are distributed 

over many organizations, for purposes of early verification, problem 

detection, etc.

• system integration/build mechanisms taking inputs from across such 

boundaries; and

• support for automated and authenticated validation within and between 

domains and coalition partners.

6.5.2 

View-Based 

Evolution 

 ULS systems and their designs will be extraordinarily complex and will thus 

be understandable only through abstract views that present the information 

essential to a task while eliding the bulk of irrelevant information and 

unnecessary detail. The concept of software and system views is not new. 

Advances in viewing and visualization technology, however, promise to ease 

software development and evolution tasks. Moreover, the unique charac-

teristics of ULS systems create demanding new challenges, largely due to 

heterogeneity, decentralization, and complexity. 

Research Tracks

Essential  Support  
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ULS systems will be too complex to treat as monolithic systems for purposes 

of system change. Rather, many changes will be made to ULS systems 

through abstract views that isolate those parts that are relevant to a given 

change. Integrated development environments and deployment environments 

could enable developers and operators to specify the applicability criteria 

for view-based modification policies and automatically apply them to all 

data flows, information flows, services, components, or events that satisfy 

the applicability criteria. What the environment does to effect such changes 

might be incomprehensible to the developers or operators, but the changes 

must be coherent and validated. 

The following research is needed:

Abstract Views and Visualization. We need research leading to new 

development environments and deployment environments to enable develop-

ers to explore and visualize all manner of software artifacts and behaviors of 

ULS systems. Example artifacts and behaviors include requirements, design 

rules, code, executing behavior, hardware and network configurations, and 

load and performance characteristics. Development tools should be able 

to extract information from—and integrate across—artifacts in different 

languages, managed by different development and deployment environments, 

coming from separate hardware and software components, across company 

boundaries, from systems with dynamically changing network topologies, 

etc. Although much work has been and is going on in these areas, we need 

advances to address systems of immense scale that enable us to

• automatically produce views and the instrumentation required to update 

the set of defined views;

• include human state and behavior in technical system views; 

• present parts of the system that are not designed by people to people in a 

comprehensible and usable form; 

• visualize dependence structures among decisions in conceptual designs 

for the purposes of evaluating such properties as the likely cost of change 

or economic costs and benefits; 

• determine the sorts of views that enable people to make good develop-

ment/operation decisions; and

• determine how best to display or visualize the health of a ULS system to 

people (users, designers, and orchestrators) who are unable to compre-

hend the entire system.
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Policy-Based Modifications. Research is needed to enable developers 

and operators to specify policies or criteria that future modifications of 

the system must satisfy and then support the enforcement of such policies. 

Enforcing policies can be difficult, perhaps requiring automated design and 

validation. Key research questions include the following: 

• How are policies generated, specified, represented, enforced, and adapted 

over time?

• Are there changes to programming languages, computational models, 

development environments, or deployment environments that enable 

policy-based modifications? 

• How is policy-based modification related to refactoring? 

• Can automated refactoring be used to accomplish some policy-based 

modifications?

6.5.3  

Evolutionary 

Configuration and 

Deployment

 Software engineers have traditionally created and configured entire applica-

tions internally and tested/released them into their deployment environments. 

In contrast, because of the blurring of the distinction between design time 

and runtime, ULS systems will increasingly be developed in situ in the 

deployment environment. This trend creates the need for synergistic develop-

ment and deployment environments for deploying and configuring the 

behavior of reusable components to meet quality-of-service requirements in 

the context in which they execute. It also requires in situ systems, processes, 

and techniques for measurement, analysis, and modeling of the interactions 

among configuration choices and the achievement of desired functional and 

performance qualities.

Deployment configurations of ULS applications will use both trusted and 

untrusted components of the ULS system and operate in an environment that 

may include hostile components. Many such deployment configurations will 

be used in life-critical situations and require full trust of their users.

Development and deployment environments for ULS systems must support 

the capability for developers and operators to modify existing systems 

with new components, new versions of existing components, or alternative 

choices for configurable interfaces. Those modifications must be propagated 

consistently throughout deployment configurations.

Different deployment configurations will execute concurrently in the same 

operational ULS system. Component-version separation of co-resident 

deployment configurations, as well as stability of those configurations in 

light of the evolving ULS, will be critical to the robust operation of each 

deployment configuration.

Research Tracks
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Multiple component versions or deployment configurations will run 

simultaneously. Different deployment configurations must interoperate across 

different component versions to facilitate information interchange and to 

ensure robust operation through comparison of their outputs and effects. 

Instrumentation of the system to provide inputs to the multiple versions and 

monitor their outputs and effects must be automatically installed and inferred 

from the versions being monitored. These problems will be especially 

complicated because people and organizations will be parts of the ULS 

system. As a result, there is likely to be little chance for duplicating behavior 

from instance to instance. 

Automatic rollover to new configurations, monitoring of the operations 

of these new configurations against expectations, and rollback to proven 

configurations are essential to a predictable operational environment. 

We need research in the following topics for evolutionary configuration and 

deployment:

Trusted Deployment Configurations. Research is needed into mechanisms 

that maintain a desired degree of trustworthiness in deployment configura-

tions during operation of the deployed configuration. Such mechanisms 

must exhibit a degree of resilience that is considerably higher than today’s 

techniques deployed in today’s Internet environment. Advances in security-

and-trust technology for production management can be leveraged in this 

context.

Change Propagation in Deployment Configurations. Research is needed 

on how to analyze the effects of intended changes and how to propagate 

changes automatically and robustly into the set of known alternatives without 

negatively affecting system quality of service. 

Deployment Configuration Co-Residence. Research is needed into 

mechanisms to enable developers and operators to isolate deployment 

configurations and detect interference between them. 

Interoperability of Deployment Configurations. Research is needed into 

mechanisms to support interoperability in a multi-version environment and 

to enable developers and operators to detect, highlight, and comprehend 

functional and quality differences between simultaneous executions in the 

presence of non-artificial components. 

Predictable System Rollover and Rollback. Research is needed into 

techniques to ensure that when rollback is required (e.g., due to a system 

malfunction that cannot be corrected by restarting one or more components), 

an earlier version of one or more components can be made available and 

a minimally disruptive consistent configuration can be deployed without 

negatively affecting system functionality and qualities.
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6.5.4  

In Situ Control and 

Adaptation

 ULS systems will have to respond to emergent behavior on the part of the 

users and the environment in which the system is situated. Consequently, 

the behavior of the system itself will be emergent. Existing systems use a 

manufacturing model: software is designed and constructed in a factory,  

and the completed software is deployed elsewhere. The design loop connects 

the field back to the factory—expert designers examine feedback from the 

field to produce subsequent versions. This design loop is too distant in time 

and space for ULS systems, which must provide continuous on-demand 

situational awareness and actuation capabilities to respond to emergent 

behaviors. These requirements create the need for mechanisms to facilitate 

manageable and safe in situ adaptation of ULS systems, so that ULS  

systems can be responsible for much of their evolution and so that human 

operation of the system, and hence errors caused by operator mistakes, can 

be minimized. 

ULS systems must be able to observe their own operations (i.e., the 

operations of individual components, individual deployment configurations, 

and collections of deployment configurations), recognize acceptable and 

unacceptable behaviors, and take corrective action with little or no operator 

intervention. These adaptations must occur dependably to achieve a balanced 

level of quality for ULS system participants. Achieving these goals requires 

research into new capabilities for

• actively monitoring the activity of components and their environments;

• continually performing self-testing;

• detecting errors and automatically recovering from them;

• automatically configuring components during installation; and 

• protecting the system from damage when patches and updates are 

installed as well as from attacks perpetrated against them during deploy-

ment and runtime. 

Proposed research topics are the following:

Control-Theoretic Foundations for Adaptive Systems. A key challenge 

facing trustworthy adaptive ULS systems will be to develop models of system 

operation at the component, deployment-configuration, and system levels. 

Another key challenge will be to develop control algorithms that can ensure 

essential system-quality attributes while simultaneously handling rapidly 

changing demands and resource-availability profiles as well as varying service 

strategies and policies tuned for different environments. Control-theoretic 

techniques, in particular hybrid systems modeling, involve algorithms and 

control mechanisms that handle rapidly changing demands and resource-avail-

ability profiles and configure these mechanisms with service strategies and 

policies tuned for different environments. Such control-theoretic models may 

have their roots in the control-systems domain or may be based on value-based 

Research Tracks
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quality-of-service models prevalent in the business domain. Research is 

therefore needed in scalable techniques and tools for developing controllers 

that can provide verifiable adaptation for ULS systems under a wide range of 

conditions in an automated manner. Such controllers must handle complex 

issues arising from the composition of adaptable components into collections 

of deployment configurations.

Decentralized Resource Management. Because of the decentralized 

and distributed nature of ULS systems, it will not be feasible to know the 

entire set of application tasks that will run, the loads they will impose on 

system resources in response to dynamically changing environments, or the 

order in which the tasks will execute. This dynamism can occur because 

the number of combinations in which application tasks can be mapped to 

system resources is too large to compute efficiently or because task runtime 

behaviors are simply too variable to predict accurately. Research is therefore 

needed in decentralized resource-management algorithms and mechanisms 

that can robustly optimize system responses to changing environments or 

requirements, such as changing component interconnections, power levels, 

CPU/network bandwidth, latency/jitter, and dependability needs. Such 

algorithms must ensure the operational safety and correct functioning of the 

ULS system viewed as a control system (e.g., control model validation and 

certification) and calibrate the ULS control system to improve performance 

and adjust to changes over time.

Predictable Reconfiguration. We envision that ULS system participants will 

develop, test, and operate new deployment configurations and reconfigura-

tions in operational systems, and that these systems will have to simultane-

ously manage component versions and deployment configurations based on 

automated observations and rules of acceptable behavior. The adaptations 

of ULS systems must be coordinated with the desire of ULS system users 

to evolve and adapt their deployment configurations. Research is therefore 

needed in techniques that coordinate and resolve the conflict between the 

desire for ULS systems to operate and optimize their behavior autonomously 

and the need for users to believe that they are in control of their operating 

environments (i.e., to predictably evolve their system configurations).

Transparent Reflection. Reflection makes the internal organization of 

ULS systems both visible and changeable for system-infrastructure and 

application software to inspect and modify at runtime. Research is therefore 

needed in robust mechanisms for supporting such reflection without unduly 

degrading quality of service or obscuring the application architecture of 

deployment configurations from users. In other words, runtime monitoring, 

feedback, and transition mechanisms (e.g., dynamic reconfiguration or 

online recompilation) are needed to change application and system behavior 

robustly (e.g., while meeting stringent end-to-end robustness requirements) 

without changing the basic implementation structure of applications. 
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Similarly, mechanisms are needed to support decentralized and distributed 

data collection and data fusion based on incomplete and approximate data.

Policy-Driven Migration Management. Different users of the ULS  

system will evolve their deployment configurations according to their own 

needs and interests. In that process, they will utilize components available 

as part of the ULS system infrastructure or provided by the ULS component 

marketplace. They will expect to be in control of the evolution of their 

deployment configurations. However, at times it will be essential that ULS 

system users migrate their deployment configurations to new versions of 

components—in particular, new versions of components that may have been 

compromised, that place undue resource constraints on the ULS system, and 

that critically affect the operation of other components. Research is needed 

into mechanisms that achieve such policy-driven migration without unduly 

restricting the freedom of ULS system users and without becoming a tool 

that can be misused for unauthorized forced migration to vulnerable system-

component variants.

6.5.5  

Further Reading

 Raymond’s The Cathedral & the Bazaar: Musings on Linux and Open Source 

by an Accidental Revolutionary [Raymond 01] is a comprehensive treatment 

of the open-source movement, which is our best example of decentralized 

production management. Kruchten [Kruchten 95] provides an overview of 

architectural views and how each of them can be used to achieve engineering 

control over a different set of system qualities and concerns. Subramonian 

[Subramonian 04] and Mikic-Rakic [Mikic-Rakic 05] and their colleagues 

discuss configuration, deployment, and redeployment considerations. Finally, 

two recent papers by Ye [Ye 05] and Wang [Wang 05] and their colleagues 

address in situ control and adaptation by providing schemes for managing 

reliability and performance via middleware.

[Kruchten 95] Kruchten, P. “The 4+1 View Model of Architecture.”  

IEEE Software 12, 6 (1995): 42–50.

[Mikic-Rakic 05] Mikic-Rakic, M.; Malek, S.; & Medvidovic, N. 

“Improving Availability in Large, Distributed Component-Based Systems 

Via Redeployment.” Proceedings of the 3rd International Working 

Conference on Component Deployment. Grenoble, France, November  

28-29, 2005.

[Raymond 01] Raymond, E. The Cathedral & the Bazaar: Musings on Linux 

and Open Source by an Accidental Revolutionary. O’Reilly, 2001.

[Subramonian 04] Subramonian, V.; Shen, L-J; Gill, C.; & Wang, N.  

“The Design and Performance of Dynamic and Static Configuration 

Mechanisms in Component Middleware for Distributed Real-Time and 

Embedded Systems.” Proceedings of the 25th IEEE International Real-Time 

Systems Symposium. Lisbon, Portugal, December 5-8, 2004.
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[Wang 05] Wang, X.; Lu, C.; & Koutsoukos, X. “Enhancing the Robustness 

of Distributed Real-Time Middleware via End-to-End Utilization Control.” 

IEEE Real-Time Systems Symposium (RTSS ‘05),  December 2005.

[Ye 04] Ye, J.; Loyall, J.; Shapiro, R.; Schantz, R.; Neema, S.; Abdelwahed, 

S.; Mahadevan, N.; Koets, M.; & Varner, D. “A Model-Based Approach to 

Designing QoS Adaptive Applications.” 25th IEEE International Real-Time 

Systems Symposium. Lisbon, Portugal, December 5-8, 2004.

6.6  

Adaptable and 

Predictable System 

Quality

 ULS systems will be long running and must operate robustly in environ-

ments fraught with failures, overloads, and attacks. Moreover, ULS systems 

must maintain robustness in the presence of adaptations that are not centrally 

controlled or authorized and that, in some cases, may be initiated by the 

systems themselves.

At ultra-large scale, new kinds of system behavior, and therefore new quality 

attributes, may arise. For example, Internet storms arise at the massive scale 

of the Internet but do not appear in smaller scale settings. Predicting and 

averting these types of phenomena require novel theories and applications of 

approaches inspired by such fields as statistical mechanics and possibility 

theory.

Predicting and preserving system-wide qualities requires establishing and 

sustaining the system invariants on which these qualities depend. A variety of 

enforcement mechanisms have been developed over many years of practice 

(for example, transaction monitors, security monitors, sandboxes, and 

schedulers, to name a few). We must establish whether these enforcement 

mechanisms are suitable at ultra-large scale and must find new, more suitable 

mechanisms where necessary. Moreover, enforcement mechanisms must be 

designed both to accommodate an incipient level of hardware and software 

failure that is inevitable in ULS systems and to provide graceful behavior 

degradation and recovery in the presence of failures.

Some degree of system failures (hardware and software) will be as intrinsic 

to ULS systems; for example, at any given moment, some portion of the 

Internet is in failure mode. It is inevitable that ULS systems will be inviting 

targets of attack for capable and motivated adversaries seeking tactical and 

strategic advantages. Although attacks do not fall under the purview of 

typical quality-of-service concerns, there is an obvious correlation between 

the treatment of vulnerabilities and the treatment of other system qualities 

that are frequent targets of attack.

Because of the significant human element in ULS systems, quality attributes 

will apply to the human and organizational components as well as to 

hardware and software components. On the one hand, a more comprehensive 
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treatment of human factors in immersive and ubiquitous computing systems 

is required. On the other hand, correlations between human behavior and 

traditional system quality attributes will become more prominent. For 

example, the reliability of one part of a ULS system might depend on human 

coordination among multiple organizations.

Engineering management is another facet of the human element that  

must be revisited for systems at ultra-large scale. Developing practices that 

foster continuous product and process improvement across organizational 

boundaries is just one of many challenges confronting engineering manage-

ment at ultra-large scales. Moreover, new product and process measures 

and new technical infrastructures will be required to support management 

decision making. 

6.6.1  

Robustness, 

Adaptation, and 

Quality Attributes

 Dynamic systems in general are quasi-stable around a defined number of 

system states33 that correspond to (possibly unbounded) regions of observ-

able system behavior. In the systems context, robustness can be thought 

of as the tendency of a system to remain within a specified state space 

(i.e., a region) even in the presence of perturbations of one or more control 

variables. Analogously, systems large and small must maintain quasi-stability 

with respect to required qualities of service, and in these cases, robustness 

can be thought about in terms of traditional quality-attribute specifications. 

For example, reliability, safety, and availability can be specified in terms of 

the probability that a system will be in or remain in a specific state for some 

period of time. This form of requirement specification is widely seen in 

practice, regardless of whether there are sufficiently robust quality-attribute 

theories to ensure such qualities analytically. 

Achieving robustness in ULS systems poses unique challenges not only 

in terms of the quasi-stability of system functions in the sense we have 

described, but also in terms of the system’s quasi-stability under the effects 

of evolutionary pressure. A ULS system will likely have no single point of 

authority for version control and changes in system configuration, includ-

ing the release of new software components or versions of components, 

new hardware and network technology, and new interconnections between 

systems and components. These changes may be individually small and, 

therefore, may not disrupt the quasi-stability of the ULS system. However, 

the accumulating weight of successive evolutionary steps may result in 

fundamental discontinuities (or phase transitions) in system behavior. 

33   This is a result of self-organizing criticality. Open, dissipative systems typically gravitate toward an equilibrium that is 

not a true stable point (quasi-stability or metastability)—because conditions are always changing (the openness of the 

system means that things are being put into it, while the system dissipates those things).
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Analogies to this phenomenon arise frequently in the physical sciences. One 

illustration is the stability of sand piles. Dropping a single grain of sand on 

the sand pile will, in most cases, have little effect. Occasionally, however, a 

single grain of sand will produce an avalanche—a phase transition—from  

the old sand pile that has become unstable under accumulated change to the 

new sand pile. This phenomenon is widely encountered in physical systems 

(e.g., percolation, annealing, and states of matter). 

We need theories of robustness along with supporting mechanisms that 

accommodate both the traditional concepts of instantaneous robustness and 

the time-sequenced concept of robustness that arises from the decentralized, 

adaptive, and long-lived nature of ULS systems. To develop such theories, 

we need research on the following topics:

Signals for Robustness Limits. Is the sand pile less robust just before 

an avalanche than it is immediately after an avalanche? There are results 

from complexity science that suggest that there may be universal laws that 

operate on natural and artificial systems. Research here will seek to uncover 

signals in development processes (e.g., numbers of reported adaptations) 

and runtime processes (e.g., system dynamics) that predict impending 

phase transitions and determine the extent to which these signals depend on 

particular quality attributes.

Natural Systems Robustness. A study of natural robustness is an essential 

adjunct to the characterization of a ULS system as an ecosystem. Naturally 

occurring systems such as the human autonomic system and natural habitats 

achieve robustness in the face of change through feedback, filtering, self-

repair, adaptation, and flexibility at many levels of abstraction. The study of 

mechanisms arising in naturally robust systems, where robustness emerges 

from the interaction of many complementary mechanisms, may suggest new 

mechanisms or combinations of existing, possibly revised mechanisms that 

would help make ULS systems robust.

6.6.2 

Scale and 

Composition of 

Quality Attributes

 Two fundamental strategies for dealing with scale and scale-induced 

complexity are abstraction and (de)composition. Abstraction seeks to hide 

irrelevant details; composition seeks to divide and conquer. 

Not all phenomena readily admit to both strategies; for example, models 

of system behavior governed by shared-resource use (e.g., performance 

governed by shared CPU) typically abstract many details not pertaining to 

time, but these same theories tend not to be strictly compositional. In this 

case, the potentially adverse effect of non-compositionality on the comput-

ability of system quality is moderated by the use of abstraction. On the 

other hand, abstraction may give rise to non-determinacy. Non-determinacy 

is accommodated through the use of statistical techniques; we sacrifice the 

ability to predict a single event in favor of predicting the aggregate behavior 

of many events. 

Research Tracks

Essential  
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This is a recapitulation of an argument in the ULS system context that is well 

established in the physical sciences: more is different. That is, although phe-

nomena at one level of system organization may be able to be (and indeed, 

are expected to be) derived from phenomena at a lower level of organization, 

higher level models are nevertheless appropriate. For example, the ideal gas 

laws are statistical mechanical (stochastic) descriptions of particle-level 

phenomena that can also be described deterministically at a more primitive 

but usually computationally intractable level of description.

Some phenomena, however, are not susceptible to either abstraction or 

composition—for example, high-dimension control theories that exhibit 

chaotic behavior (e.g., atmospheric phenomena and market phenomena). 

New computational theories may be needed to analyze or simulate these 

effects in ULS systems, for example to predict or simulate and control the 

effects of Internet storms or their equivalent in high-demand ad-hoc networks 

in the future battlespace. 

Research is therefore needed on the following topics:

Complementary Stochastic and Deterministic Theories of System 

Quality. The repertoire of complementary—deterministic and stochas-

tic—quality-attribute theories must be expanded and enriched. Such theories 

exist in a limited form for timing but must be extended to other quality 

attributes such as security and availability. This research must address mutual 

quality-attribute dependencies and effects and enable combined quality 

claims across components of the system, overlapping subsystems, and 

enforcement mechanisms. 

Verification with Aleatoric Uncertainty. Verification technology has 

traditionally been reduced to (dis)proving assertions about system behavior, 

or more particularly about the correspondence of an implementation to  

its specification. Recent advances in fully automated verification, for 

example in software model checking, are encouraging but must be extended 

to accommodate aleatoric uncertainty, in particular uncertainty arising  

from non-determinism and measurement error. Possibilities include research 

in verification using multi-valued logics, belief logics, and analogous  

model logics.

Analysis and Verification with Epistemic Uncertainty. Epistemic uncer-

tainty arises due to a lack of knowledge; it is wholly distinct from uncertain-

ty that arises from aleatoric uncertainty, which arises from non-determinism 

and the measurement error. As systems increase in scale, our knowledge 

about the behavior of any of their parts will diminish, and what we may 

know may be out of date and therefore incorrect at the time this information 

will be used. Research on evidence theory (e.g., Dempster-Shafer theory), 

possibility theory (e.g., fuzzy sets), and related fields is needed. 
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6.6.3 

Understanding 

People-Centric 

Quality Attributes

 People are part of a ULS system. The overall quality attributes of the system 

include quality attributes of the human parts as well as the artificial parts, 

and the interactions between the two. Therefore we need research on the 

following topics:

Trustworthy People-Comprehensible Models of System State. We need 

to understand how to develop accurate models of the system that humans 

can trust, so that they can react appropriately. Often human errors in existing 

systems can be traced to the fact that people either are not informed about 

underlying problems in the system (e.g., the Chernobyl disaster, the 2003 

North American blackout); were informed about system state, but it was 

incorrectly reported (e.g., the Three Mile Island disaster); or did not believe 

what the system was reporting to them about its internal state.

Modeling People-People Interactions. Part of the failure of the North 

American power grid in 2003 can be traced to the fact that operators in 

Parma, Ohio did not notify operators in neighboring regions about troubles 

in their own power grid. Similarly, air traffic accidents are often related to 

miscommunications or mishandled interactions among people. Since people 

are an integral part of a ULS system, their mental state and the nature of their 

reactions, particularly in stressful circumstances, must be modeled so that 

the system can be designed appropriately and can react appropriately during 

operation. Thus research is required on creating models of human-human 

interaction. This research is related to the topics discussed in Section 6.1 on 

human interaction. 

Modeling Human Quality Attributes. As integral parts of a ULS system, 

human performance, human reliability, and human security, to name just 

three examples, will affect system performance, availability, and security. 

While the human aspect in security has been long recognized, we seldom 

model human performance or reliability when we design systems. Some 

models of human performance do exist, but they focus on human perfor-

mance in highly structured, repetitive tasks (e.g., operator performance in 

a directory-assistance task). Research is needed to broaden the scope of 

such models and to include other quality attributes such as reliability. This 

research must also integrate system-oriented measures of quality attributes 

with human-oriented measures. In addition, research is needed on designing 

human protocols and interactions within the system so that a desired state of 

performance, reliability, safety, etc. can be achieved. For example, in air traf-

fic control, human redundancy is employed to ensure that no single failure of 

a human is catastrophic for the system’s performance, reliability, or safety.

Modeling Crowd Behavior. While research exists on modeling individual 

people in their interactions with a system, there is a need for research in 

the social psychology of crowds. For example, many web-site crashes have 
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been attributed to the sites being too popular (e.g., a web site selling tickets 

to a popular concert) and not to any nefarious intent by an adversary. Since 

ULS systems are ecosystems, the behaviors of the people within the system 

will greatly affect the state of the system, potentially causing worst-case 

behaviors to emerge. Research is needed, then, to model the use of ULS 

systems crowds in order to determine worst-case usage scenarios for 

performance, reliability, and security. Since people are rational actors, this 

research is related to the discussion of algorithmic mechanism design found 

in Section 6.2.1.

Blending Human and System Quality Attributes. Given that a ULS 

system depends on the behavior of both the human and the computational 

elements, research is needed that blends traditional quality-attribute models 

with human quality-attribute models, discussed above, to determine how 

these elements should be combined. Research questions include

• Should the computational part of the system respond when the human 

components fall below certain thresholds? 

• How should the human part of the system respond when the artificial part 

falls below certain thresholds? 

• Are there ways for each part to compensate for the other or help the other 

maintain good levels?

6.6.4 

Enforcing Quality 

Requirements 

 Every theory makes assumptions about its environment. For quality at-

tributes, some of these assumptions can be discharged by particular runtime 

enforcement mechanisms. There are a number of well-known quality-en-

forcement mechanisms today for timing, reliability, transactions, security, 

and so forth. In some cases, we need research to scale them to ULS system 

scale; in other cases, completely new mechanisms are needed. In all cases, 

the enforcement mechanisms must be linked explicitly with the comple-

mentary quality theories. Topics of particular research interest for enforcing 

quality requirements include the following: 

Enforcement Mechanisms for Shared Resources. Many quality attributes 

are affected by policies for managing scarce, shared resources. Reservation 

and admission-control mechanisms are examples of well-known mechanisms 

that must be enhanced to address issues of scale and trust in ULS systems. 

In addition, these mechanisms must be parameterized to enforce or adapt to 

new attribute-theory-specific invariants. 

Recovery-Oriented Computing. Because system failures and human errors 

are inevitable, we must focus attention on providing ULS systems that can 

recover from errors and operate through attacks rather than shut down com-

pletely. For example, we need robust mechanisms to ensure the necessary 
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degree of replication to guard against partial system failures and attacks or to 

provide guaranteed, best-effort, conditional, or statistical levels of quality of 

service in the face of failure.

Acceptability-Oriented Computing. Reliably providing increasingly complex 

functionality may not be possible in ULS systems because the limitations 

of our abilities to design and implement correctly have been surpassed. In 

these cases, there may be approaches that will enable the construction of 

computer systems that can sustain (potentially self-inflicted) damage, process 

unexpected or illegal inputs, and take incorrect actions, yet nevertheless 

continue to execute productively.

6.6.5  

Security, Trust, and 

Resiliency 

 We currently have difficulty achieving high levels of security even with state-

of-the-art systems of systems. For ULS systems, we will need security, trust, 

and resiliency to be at an acceptably high, measurable level so that users can 

trust that these systems will reliably achieve their objectives. Security is the 

capability of the system to provide confidentiality, integrity, and availability 

on the ULS system data and services both locally and globally. Trust is the 

extent to which users of the ULS system will be able to rely on the data and 

services of the ULS system. Resiliency is the capability of the ULS system 

to maintain an acceptable level of service while under stress from adverse 

environmental conditions such as attacks or cascading failures.

While we have an extensive history of research in the area of system security, 

the results of this research to date apply only to the small-system or compo-

nent level of systems. We will need to apply these qualities to all levels of the 

ULS system including the creation, acquisition, deployment, integration, and 

operation of the system. Significant automation in the detection and response 

to threats to the ULS system will be a necessary component: the system will 

be too complex for any analyst to realize the ultimate effect of the multitude 

of simultaneous attacks and failures continuously experienced by the ULS 

system. As the systems become integrated with a dynamic arrangement of 

coalition partners and participants, the separation between external attackers 

and insider attackers will also be blurred.

Standard enforcement mechanisms and design approaches to achieve a given 

level of service are generally not designed to detect attacks.34 At best, they 

are conceived to deliver certain kinds and levels of functionality in the pres-

ence of disturbances. Unfortunately, many such mechanisms may actually 

provide an attack mechanism with the routes it needs to be able to spread.  

In some cases, the correct approach to an attack is to violate quality guaran-

tees for the sake of preserving other, more important, parts of the system. 

34   The information that these mechanisms and approaches happen to collect in the process of dealing with failures may 

be useful for detecting an attack.

Research Tracks
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Research is required in the following areas:

Security, Trust, and Resiliency Measures and Metrics. We currently have 

no measures or metrics for security, trust, or resiliency that apply to our envi-

sioned ULS systems. It may be possible to obtain useable measures for ULS 

systems using a statistical approach, much like statistical thermodynamics 

provides important measures for particle dynamics in the aggregate.

Attack Detection. Detecting attacks is distinct from detecting failures or 

providing service at some guaranteed levels. Perhaps detecting attacks re-

quires active mechanisms similar to immune systems. We should investigate 

the possibility that machine learning could be used to detect attack-based 

anomalies.

Attack Containment. Containing attacks might involve cordoning off parts 

of the system and permitting only very carefully screened communications 

between the possibly attacked parts and the rest. This would require commu-

nication mechanisms optimized for safety and caution rather than efficiency.

Graceful Degradation Under Attack. Degrading gracefully might require 

dropping below service guarantees. Reflection might be required to pause 

some of the ULS system’s operations while the system assesses itself and 

plans how to proceed.

Recovering from Attacks. How can the system repair itself after an attack 

(or bad failure of some sort)? Is checkpointing practical? Should components 

be required to be able to restart/reinitialize themselves? Can specifications 

play a role?

Attack Diagnostics and Forensics. Diagnosing attacks might require the 

ULS system to have a model of itself against which it can check. Perhaps 

testing code developed during development can be used; perhaps self-de-

scriptions can be created using immunological or statistical means.

6.6.6  

Engineering 

Management at 

Ultra-Large Scales

 Because of the unprecedented scale of ULS systems, quality must be a 

paramount concern. Proper system performance will require the cooperative 

interaction of reasonably large portions of these systems. Therefore, the 

defect content of their parts must be kept low enough so that their testing can 

be completed in a reasonable time period and so that they can be maintained 

in proper operation for reasonably long periods of time. This calls for a 

consistently high level of quality work on the part of the developers, enhanc-

ers, and maintainers of all aspects of ULS systems.

Research Tracks

Essential  Support  
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To ensure high-quality work throughout such systems, quality-management 

guidelines and measurement frameworks are required that can identify poor-

quality work and direct management attention to the sources of problems. 

Quality work is done only by people who strive to produce quality results. 

Because much of the design, development, and maintenance work on ULS 

systems will be knowledge work, and because the quality of knowledge 

work is largely controlled by the knowledge workers themselves, means 

to motivate quality work are needed together with means to measure and 

identify quality deviations without demotivating the knowledge workers. 

Research is needed, therefore, in the following areas:

Motivating and Managing the ULS System Knowledge Worker. 

Significant research at the boundaries of technology, management, and 

psychology is needed to discover methods to track work so that both 

poor- and good-quality work can be attributed to people and organizations 

without demotivating individual knowledge workers or producing perverse 

organizational competition.

Measurements of System and Process, Product, and Project Health.  

The quality of engineering management decisions depends on judgment 

and data. While measures of software quality and program status have 

been developed over many years of painful experience, new orders of scale 

present new challenges. Research is needed in measures for ULS systems 

that are akin to those used at the gross scale of econometrics (for example, 

the discovery of leading indicators for system health) and in techniques to 

sample this data across various organizational, contractual, social, technical, 

and temporal boundaries.

6.6.7 

Further Reading

 The references cited in Section 6.1.6 focus primarily on understanding 

people-centered design, human behavior, and context-aware comput-

ing. In this section, we are more concerned with people as information 

processors—their inputs, outputs, and processing capabilities. Models of 

human performance in human-computer interaction have existed and been 

experimentally validated for decades. Some of the classic works in this area 

are those of Card, Newell, Kieras and others [e.g., Card 83, Elkind 90, Kieras 

88]. Studies on the behavior of crowds can be found in Collective Behavior 

by Turner & Killian [Turner 93].

Although a bit dated with regard to technology, the issues raised in the 

National Research Council report Trust in Cyberspace [Schneider 98] still 

outline the important security characteristics—characteristics that will 

be even more problematic in the context of ULS systems. The work on 

information survivability, started by the Defense Advanced Research Projects 

Agency (DARPA) in 1994 and continuing through 2001 is well represented 
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by Moore and colleagues [Moore 01] and by Kyamakya and colleagues 

[Kyamakya 00]. The latter work extended the security concept to systems 

of systems and, while still not sufficient for ULS systems, provides a base 

on which to build. Finally for attack recognition, the seminal paper by D. 

Denning [Denning 87] is still the best reference available for framing the 

issues involved in distributed attack detection.

Patterson, Fox, and their colleagues have researched techniques for monitor-

ing and correcting execution [Patterson 02, Candea 01, Candea 04]. Rinard 

and his students and colleagues are studying how to make the execution of 

systems more robust by detecting data-structure corruption and repairing 

it [Rinard 03, Rinard 05]. Further, they are investigating when errors and 

failures can be tolerated during execution and exactly how to proceed 

effectively with execution after an error or failure.

[Candea 01] Candea, G. & Fox, A. “Recursive Restartability: Turning the 

Reboot Sledgehammer into a Scalpel.” Proceedings of the 8th Workshop on 

Hot Topics in Operating Systems (HotOS-VIII). Schloss Elmau, Germany, 

May 2001.

[Candea 04] Candea, G.; Brown, A.; Fox, A.; & Patterson, D. “Recovery 

Oriented Computing: Building Multi-Tier Dependability.” IEEE Computer 

37, 11 (Nov. 2004). 

[Card 83] Card, S.; Moran, T.; & Newell, A. The Psychology of Human-

Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates, 1983.

[Denning 87] Denning, D. “An Intrusion-Detection Model.” IEEE 

Transactions on Software Engineering 13, 2 (Feb. 1987): 222-232.

[Elkind 90] Elkind, J.; Card, S.; Hochberg, J.; & Huey, B. (eds.). Human 

Performance Models for Computer Aided Engineering. San Diego, CA: 

Academic Press, Inc., 1990.

[Kieras 88] Kieras, D. E. “Towards a practical GOMS model methodology 

for user interface design.” The Handbook of Human-Computer Interaction. 

Helander, M. (ed.). Amsterdam: North-Holland Elsevier, 1988.

[Kyamakya 00] Kyamakya, K.; Jobmann, K.; & Meincke, M. “Security and 
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6.7  

Policy, Acquisition, 

and Management

 ULS systems will be developed to support national priorities and enable 

the missions they define. The systems will require rapid development and 

evolution to keep pace with changing mission objectives. To achieve this 

requirement, capability for fast and flexible adaptation must be built in as a 

first-class functional property of ULS systems and their supporting ecosys-

tems. The systems must be explicitly designed to accommodate change at all 

levels, and their acquisition processes must be designed to support dynamic 

changes in system capabilities. Slow-paced processes for policy definition, 

system acquisition, and program management will be insufficient for this 

purpose. Fast acquisition will require fundamental changes in processes 

that are not well suited to acquiring software, where the possibility for rapid 

response exists but is largely unrealized. Acquisition for ULS systems will 

be highly distributed, ranging from planned development of strategic system 

capabilities to opportunistic incorporation of components in the field to 

meet immediate tactical needs. It is important to note that the acquisition 

processes and their supply chains should be regarded not as separate entities, 

but rather as first-class components of ULS ecosystems, subject to the same 

attention to design and evolution as operational software components. 

ULS systems will present problems in management and coordination that 

must remain tractable as scale increases. The people and organizations in 

ULS systems will have different, time-varying, and often competitive or even 

adversarial objectives. Moreover, the actions of particular individuals and 

organizations may affect the ability of others to accomplish their goals, and 

the success of one group may depend on appropriate actions by other groups. 

This kind of situation is often referred to as a wicked problem.

More generally, ULS systems will encompass the actions of all system 

participants, including not only computational elements but also human 

developers, administrators, operators, and users. Even if participants operate 

in good faith, it may be difficult for them to understand the full context and 

implications of their actions. Policy and management frameworks for ULS 

systems must therefore address both global constraints and local freedom 

of action. Organizational, technical, and operational policies and rules at all 

levels must be developed and largely automated to enable fast and effective 

local actions while preserving global capabilities. 

6.7.1  

Policy Definition for 

ULS Systems

 Given the scope and scale of ULS systems, technical, organizational, and 

operational policies will emerge as principal vehicles for ensuring harmoni-

ous operations at all levels. Conformance to policies will become the price 

of entry for participation in ULS systems, and fast assessment of policy 

conformance will become critically important. 

Research Tracks

Essential  Support  
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In terms of policy formulation, competition can arise among participants in 

ULS systems even if that is not their intention. Policies must support both 

local and global operations in such a way that people and the computational 

actions they initiate can achieve cooperative and even competing objectives 

without impairing the viability of the system as a whole. For example, 

because some tasks will be more urgent than others and because preserving 

overall functionality may be more important than providing ideal service 

under all circumstances, not everyone will experience the same quality of 

service. Such considerations require definition of policies whose effect on 

system operations, stability, and long-term viability is well defined and 

widely understood. Because of the central role of policy in ULS systems, 

research is required on the following topics:

Policy Definition for Flexible Collaboration. ULS system policies will 

have to reconcile diverse and competing objectives while providing complete 

and unambiguous semantic content sufficient to govern distributed-system 

development, evolution, and operation. Policy makers will have to deal with 

multiple stakeholders whose objectives are often incompatible and poorly 

articulated. Policy definition in such environments would be slow and labori-

ous. Research is required to develop more effective processes for definition 

and use of content-rich policies as a first-class mechanism for achieving 

long-term sustainability of ULS socio-technical ecosystems. These processes 

must address conflict resolution, encourage flexible collaboration, and 

build consensus on an unprecedented scale, as well as provide closed-loop 

feedback mechanisms for incorporating improvements. They must be both 

system-centric for preserving global viability and user-centric for incorporat-

ing local policies, adaptations, and innovations. 

Policy Content for Effective Governance. Research is required in how 

to define ULS system policies that specify organizational, technical, and 

operational constraints for global system integrity and freedoms for flexible 

adaptation. Organizational policies must encompass diverse entities ranging 

from supply-chain participants to nation-state collaborators to military units 

in command centers and in the field. They must define legal, contractual, 

and economic structures and responsibilities for all participants. Technical 

policies must prescribe architectural frameworks, design rules, semantic 

structures, and development environments as the rules of participation and 

the context for freedom of action in evolving and adapting ULS systems. 

And operational policies must define usage authorizations, responsibilities, 

and security processes across a broad spectrum of stakeholders ranging from 

software developers to national governments. A major research challenge is 

to characterize the options available for governing ULS systems, including 

methods derived from principles of democracy, collaborative teaming, 

motivational competition, hierarchical delegation, and economic self-interest. 
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Policy Content for Local Evolution. Because of their scale and longevity, 

ULS systems will experience and should create incentives for substantial 

local adaptation and bottom-up evolution. Studies are needed to understand 

why and how end users make local adaptations to systems. We need research 

on how to develop policies for guiding system evolution when local needs 

must be met but conflict with global policies. Local stakeholders may have 

little choice in addressing urgent needs, for example, in responding to tactical 

situations or isolating failed parts of systems, and ULS system policies must 

accommodate and adapt to such situations. Research in mechanism design 

(described in Section 6.2.1) is an example of a promising approach for 

determining supportive policies in this context.

Computational Automation for Policy Decisions. The scope and scale of 

ULS systems will require that policy mechanisms be automated. Research 

is required in collaborative work environments for policy formulation and 

conflict resolution, techniques for evaluating the semantic consistency of 

policies across cultures and languages, methods for rapid assessment of policy 

conformance and application of permissions or sanctions, and incorporation 

of timely feedback and local policy modifications in response to changing 

tactical needs. 

6.7.2 

Fast Acquisition for 

ULS Systems

 The pervasive application of ULS systems to support global operations 

in many simultaneous strategic and tactical situations will generate many 

requirements for rapid evolution to meet changing threats and environments. 

Research will be needed in the following topics to achieve this level of 

flexibility:

New Acquisition Processes for Fast Response. Current methods of system 

acquisition based on requests for proposals (RFPs) and lengthy vendor evalu-

ations could impose unacceptable delays in the development and evolution of 

ULS systems. Research is required to create new acquisition models that en-

able rapid responses. In particular, much of the evolution of ULS systems will 

occur in situ, thereby imposing requirements to maintain critical operational 

capabilities while adding or improving other capabilities in place. Present 

acquisition methods that assume traditional life-cycle models for development 

and testing prior to deployment are ill suited to such a dynamic environment. 

This research must address contracting, intellectual property, information 

sharing, and security across supply-chain organizations.

Integrating Supply Chains for Operational Readiness. Research is needed 

to understand how supply-chain organizations could be integrated as first-class 

operational components into ULS ecosystems, to enable the continual com-

munication, knowledge acquisition, and training necessary for fast responses 

to changing system requirements. Such a strategy would integrate engineering 

Research Tracks

Essential  Support  



121Ultra-Large-Scale Systems     

The Software Challenge of the Future  

> Integrated Supply Chains for Operational Readiness  

Relevance to DoD Missions.  

ULS systems will be required to adapt 

to changing missions and unanticipated 

circumstances encountered by warfighters. 

Quick reaction to field new capabilities 

will require software-acquisition and 

development processes at all levels capable 

of fast and dependable responses to these 

changing needs.  

Key Concepts.  

Integrated supply chains are an approach to 

operational readiness that treats suppliers 

as intrinsic, first-class components of ULS 

systems. In this model, suppliers ranging 

from established vendors to open-source 

communities to individual entrepreneurs 

are pre-qualified in terms of available 

resources and demonstrated capabilities, 

and are pre-positioned in terms of 

contracting, information sharing, and security 

relationships to enable fast response to 

operational needs as they arise. Readiness 

teams within supply chains monitor ULS 

systems, engage in simulations, and train 

with the forces to prepare for fast evolution of 

software capabilities to meet tactical needs. 

The integrated supply-chain approach can 

benefit from automated systems that support 

fast acquisition as well as from ULS systems 

with designed-in facilities for rapid evolution. 

capabilities for system evolution with DoD capabilities for system use and 

would put developers on the critical path when rapid adaptation is required 

for mission success. In such an environment, supply-chain organizations 

ranging from established vendors to open-source collaborations could 

undergo periodic assessment of capabilities, participate in joint training and 

readiness exercises with the forces, and come and go as needs and capabili-

ties change. 

Capitalizing on Ad Hoc Acquisition. It may often be the case that, to meet 

immediate needs, local users of ULS systems will be forced to engage in 

ad hoc acquisition of components whose functionality and quality proper-

ties are not well understood or trusted. Because these components address 

unforeseen problems, an opportunity will arise to improve and generalize 

their application across similar environments. Research is required on ad hoc 

acquisition to better understand how it can affect global system integrity and 

potentially augment system capabilities. 

Computational Automation for Fast Acquisition. Speed in acquisition 

will depend on automated processing of organizational agreements, system 

requirements, work-product integration, and status tracking and report-

ing. Research is needed to create the information models, computational 

processes, and training that can support this level of automation. 
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6.7.3  

Management of  

ULS Systems

 ULS systems will be designed to support dynamic coalitions and manage-

ment of tactical and strategic operations through linkage of field units with 

command-and-control functions on any scale necessary. At the same time, 

the size and highly distributed nature of ULS systems will limit global 

visibility and decentralize system management within an overall framework 

of organizational, technical, and operational policies. Research is required on 

how to structure ULS system management in the following areas: 

Managing ULS Systems for Operational Readiness. The overarching 

requirement for ULS systems is operational readiness at all times under 

all conditions. While the systems will be subject to persistent failures and 

permanent risks of intrusion and compromise, sufficient resources must 

always be available to meet immediate operational needs. Research is 

required to understand how to plan, acquire, and organize system resources 

under adverse conditions to achieve this goal in a decentralized management 

structure. 

Managing ULS Ecosystems for Fast Evolution. The supply chains 

of vendors and integrators that will populate ULS ecosystems must be 

organized, and incentives must be provided to evolve ULS system capabili-

ties at a rapid pace in response to changing operational needs. Research is 

required to understand how to manage these organizations, ranging from 

large and established contractors to open-source communities and individual 

entrepreneurs, to achieve a level of cooperation and collaboration that can 

satisfy requirements for fast system evolution. 

Managing ULS System Research for New Capabilities. The national 

importance of ULS systems and the demanding problems they pose will 

encourage a rich infrastructure of research and graduate education. This 

infrastructure should be encouraged and supported to develop new capabili-

ties for ULS systems as they grow and evolve over time. Research is required 

to develop management strategies for ensuring that ULS system research 

programs are properly focused and produce results that accumulate into 

significant operational capabilities. At the same time, it is important to foster 

a new generation of ULS system experts and practitioners through graduate 

education programs. 

Managing ULS System Knowledge to Guide Evolution. ULS systems 

engineering development and operational use will generate knowledge that 

can be preserved and analyzed to guide future evolution. Research is required 

to understand how to manage the acquisition, preservation, and analysis of 

this rich body of information. 

Research Tracks

Essential  
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6.7.4 

Further Reading

 The seminal discussion of wicked problems can be found in Rittel and 

Webber’s “Dilemmas in a general theory of planning” [Rittel 73]. Methods 

for interorganizational supply-chain collaboration and cycle-time reduction 

are discussed by Handfield and Nichols [Handfield 02]. Important perspec-

tives for ULS supply-chain management are provided by Baldwin and her 

colleagues [Baldwin 00]: appropriate definition of system modularity is 

identified as a driving force in supply-chain integration, innovation, and 

efficiency; and managing supply chains for speed is discussed as a competi-

tive advantage. A management perspective on how to achieve resiliency in 

large-scale systems and enterprises under adverse conditions is provided by 

Sheffi [Sheffi 05]. 

[Baldwin 00] Baldwin, C.; Clark, K.; Magretta, J.; Dyer, J.; Fisher, M.; & 

Fites, D. Harvard Business Review on Managing the Value Chain. Boston, 

MA: Harvard Business School Publishing, 2000.

[Handfield 02] Handfield. R. & Nichols, E. Supply Chain Redesign: 

Transforming Supply Chains into Integrated Value Systems. Upper Saddle 

River, NJ: Financial Times Prentice Hall, 2002.

[Rittel 73] Rittel, H. & Webber, M. “Dilemmas in a general theory of plan-

ning.” Policy Sciences 4 (1973): 155–169.

[Sheffi 05] Sheffi, Y. The Resilient Enterprise: Overcoming Vulnerability for 

Competitive Advantage. Boston, MA: MIT Press, 2005. 
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A

abstraction: 1. A process of eliminating, hiding, 

or ignoring characteristics or aspects of a concept 

unrelated to a given purpose. 2. A concept or 

system construct that has been subjected to a 

process of abstraction.

acceptability-oriented computing: An approach 

to the construction of systems in which a designer 

identifies a set of properties that the execution 

must satisfy to be acceptable to its users. This is 

in contrast to the traditional approach, which is to 

construct a system with as few errors as possible. 

Acceptability-oriented computing was defined by 

Martin Rinard, Professor of Computer Science 

at MIT, in the paper, “Acceptability Oriented 

Computing,” presented at the 2003 Object-

Oriented Systems, Languages, & Applications 

Conference (OOPSLA ‘03).

agile method or agile methodology: A style of 

software development characterized by its release 

schedule, attitude toward change, and patterns of 

communication. The product is developed in itera-

tions, usually one to four weeks long. At the end 

of each iteration, the product has additional, fully 

implemented value and is ready to be deployed. 

The design horizon usually extends only to the 

end of the current iteration; little code is written 

in anticipation of future needs. The project is seen 

by the programmers as a stream of unanticipated 

requirements. Written natural-language com-

munication is considered a usually inefficient 

compromise. Face-to-face communication is 

higher bandwidth (but transient). Executable 

documentation—code and tests—is permanent, 

less ambiguous, and self-checking. Agile projects 

prefer a combination of the latter two over the 

first.

aleatoric: Pertaining to luck, chance, or 

randomness.

allopoiesis: A process whereby an organization or 

network of components produces something other 

than itself; literally, other-production. An example 

of allopoiesis is an assembly line. 

annealing: Any process for increasing the order 

of a system by first increasing its susceptibility 

to disorder and then steadily decreasing such 

susceptibility in the presence of mechanisms or 

phenomena that tend to create or capture order.

ant-colony optimization: A technique for solving 

problems that can be reduced to finding short 

paths in a graph by using a process similar to how 

an ant colony finds paths to food. In this process, 

individuals randomly wander the graph, leaving 

behind a trail that dissipates over time. When a 

good path is found, the individual returns along 

the left trail, reinforcing it. Other individuals 

who find this path are likely to follow it, further 

reinforcing it. Because trails dissipate over time, 

longer trails will be less likely to be reinforced 

than shorter ones.

aspect-oriented programming: A programming 

paradigm that attempts to aid programmers in the 

separation of concerns (breaking down a program 

into distinct parts that overlap in functionality as 

little as possible). The hallmark of the paradigm 

is to represent as modules crosscutting concerns, 

which are distinct design decisions or functional-

ity that are conceptually distinct but whose imple-

mentations are usually dispersed throughout the 

modules of a system. The idea was first presented 

in the paper, “Aspect-Oriented Programming,” 

by Gregor Kiczales, John Lamping, Anurag 

Mendhekar, Chris Maeda, Cristina Lopes, 

Jean-Marc Loingtier, and John Irwin, published in 

the Proceedings of the European Conference on 

Object-Oriented Programming, 1997.

attribute-specific design rule: A design rule 

aimed at maintaining a particular quality 

attribute.

augmented reality: A view of the real environ-

ment augmented with computationally supplied 

information, providing a composite view of the 

world that is partly real and partly digital. A 

military heads-up display is a simple example of 

augmented reality.

autocatalysis: A chemical reaction whose 

products include catalysts for that reaction.

Glossary 
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autopoiesis: A process whereby an organization 

or network of components produces itself; liter-

ally, self-production. An example of autopoiesis is 

a cell or an organism.

B

Bayesian technique: Any learning or decision-

making technique that relies on Bayes’ Theorem 

which, informally, tells how to update or revise 

beliefs in light of new evidence.

belief logic: Any logical calculus that models 

belief; for example, as sets of formulae or 

probabilistically.

black-box abstraction: An abstraction or 

component whose implementation is hidden and 

whose functionality is available only through its 

interface (cf., open abstraction).

black-box testing: Black-box testing, concrete-box 

testing, and functional testing refer to testing  

the outputs of a program given knowledge of 

only its functional specification and not its 

implementation. Black-box testing is in contrast 

to clear-box testing.

C

certification: Declaration via a formal certificate 

from an accredited body attesting that a particular 

assurance regarding software, hardware, or a 

system is true.

cleanroom software engineering: A software-de-

velopment methodology defined by Harlan Mills 

and his colleagues, based on formal methods, 

iterative implementation, and statistical quality 

control. The objectives of the cleanroom process 

are to develop software incrementally, produce 

software that approaches zero defects prior to first 

execution, and certify software fitness for use.  

See Cleanroom Software Engineering: Technology 

and Process by S. Prowell, C. Trammell, R. 

Linger, and J. Poore. Reading, MA: Addison 

Wesley Longman, 1999.

clear-box testing: White-box testing, clear-box 

testing, glass-box testing, and structural testing 

refer to testing the outputs of a program given 

knowledge of how the program is implemented. 

Clear-box testing is generally done by program-

mers who try to cover parts of the code and cases 

that they suspect are prone to coding errors. 

Clear-box testing is in contrast to black-box 

testing.

competitive software design: A design process in 

which competition is intentionally introduced at 

many levels.

complexity science: A scientific discipline that 

studies systems of multiple, possibly diverse, 

interconnected elements that have the capacity to 

change in response to experience, both external 

and internal.

composition: An act or result of combining 

simpler objects into more complex ones. For 

example, simpler data types can be combined 

into more complex ones. Composition also refers 

to the act or result of determining the net effect 

produced by combining functions; for example 

a composite function can be determined by 

applying each given function to the results of the 

previous function in some order in a cascade.

concurrent: When the execution flow of several 

computational processes are able to run simul-

taneously, perhaps while sharing resources. In 

general, concurrent execution is not expected to 

save elapsed time over sequential execution (cf., 

parallel).

context-aware assistive computing or context-

aware computing: An approach to the design of 

a pervasive or ubiquitous computing system that 

focuses on the shared understanding between 

humans and their computational environments, 

particularly regarding their shared context. 

Context is any information that can be used 

to characterize the situation of entities (i.e., 

people, places, and objects) that is relevant to the 

interaction between a user and a system, including 

the user and the system themselves. Context is 

typically the location, identity, and state of people, 

groups, and computational and physical objects.

contract net: A collection of computational 

nodes that collaborate to solve a distributed 

problem by allocating tasks to nodes via a series 

of contract negotiations using a formal protocol 

consisting of task annoucements, bids, awards, 

and results reporting. Negotiations involve task 

descriptions and requirements such as mandatory 

available resources and time constraints. The 

concept was first introduced by Reid Smith and 

Randy Davis in “The Contract Net Protocol: 

High level Communication and Control in a 
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Distributed Problem Solver,” IEEE Transactions 

on Computers 29, 12 (1980):1104-1113.

CORBA: Common Object Request Broker 

Architecture (CORBA) is a standard for software 

components. It defines application programming 

interfaces (APIs), communication protocols, 

and object/service information models to enable 

heterogeneous applications written in various 

languages running on various platforms to 

interoperate. CORBA thus provides platform and 

location transparency for sharing objects across a 

distributed computing platform.

crosscutting or crosscutting concerns: A single, 

coherent design or implementation decision or 

issue whose implementation typically must be 

scattered throughout the modules of a system.  

A crosscutting concern is called an aspect in 

aspect-oriented programming.

crossover: A genetic operator in digital software 

evolution that varies the genetic makeup of a 

member of the next generation by taking genetic 

contributions from two members of the current 

generation. In a genetic algorithm, genetic mate-

rial is represented linearly, and crossover is via a 

form of splicing. In genetic programming, genetic 

material is represented as a tree or as trees, and 

crossover is via a form of subtree substitution.

cryptographic: Referring to the security of in-

formation based on encoding messages in such a 

way that they cannot be decoded without special, 

private, and hard-to-acquire information.

cybernetics: The science of systems of control 

and communications in living organisms and 

machines.

D

decentralized system: A distributed system with 

no central authority for any of its aspects.

Dempster-Shafer theory: A formal theory of 

evidence (see evidence theory) based on belief 

functions and plausible reasoning that is used 

to combine separate pieces of information 

(evidence) to calculate the probability of an event. 

The theory was developed by Arthur P. Dempster 

and Glenn Shafer.

design architecture: A set of decisions that 

partitions the task of producing the complete 

design for a system into a set of largely separable 

subtasks.

design of all levels: An approach to architecture 

and design that includes as part of the design not 

only the artifact being constructed but also the 

organizational, social, and process structure of the 

design teams, including individuals, firms, and 

other organizations.

design risk: A design decision made in the 

absence of certainty of the outcome. In some 

design contexts, it is not always known whether a 

decision will result in a satisfactory artifact when 

the design is completed and implemented; such 

a decision represents a risk in the design process 

that must be assessed and managed.

design rule: A decision concerning the architec-

ture of a system that helps establish the degree 

and nature of the modularity of the system’s 

design. Typically, a design rule minimizes 

interaction between modules in the design as well 

as between different designers or design groups; 

design rules are also typically based on design 

experience. For example, the decision whether to 

control the screen of a computer with the CPU or 

a separate graphics processor is a design rule that 

structures the design space for a computer.

design space: The set of design parameters along 

with the range of values for those parameters for 

a design. A design can be considered an outline 

for an artifact (its architecture) along with a set 

of decisions about the nature and details of the 

outline; the space of possible decisions is the 

design space.

deterministic: A property of a computation that 

always has one (and the same) result given the 

same initial state and inputs.

digital evolution or digital software evolution: 

An automated methodology inspired by biological 

evolution to create software that best performs a 

specified task. It is a machine learning technique 

that uses an evolutionary algorithm (i.e., a genetic 

algorithm or genetic programming) to optimize 

a population of programs according to a fitness 

function that measures a program’s ability to 

perform a specified task.
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dissipative system: An open system that is operat-

ing outside equilibrium within an environment 

that exchanges energy, matter, or entropy.

distributed cognition: A branch of cognitive 

science that proposes that human cognition is not 

confined to the individual, but is distributed by at-

taching memories, facts, or knowledge to objects, 

individuals, and tools in the environment.

distributed system: A system in which there are a 

number of components communicating over a net-

work that are trying to cooperate in some fashion 

(or which taken together form the system).

distribution: Placing execution flows in different 

processes or on different computational platforms. 

Distribution is typically applied to improve fault 

tolerance or to access remote resources.

domain-specific language: A programming 

language designed to be useful for a specific set 

of tasks.

driven system: A system with external energy or 

information inputs.

E

econometrics: The application of statistical and 

mathematical methods in the field of economics 

to describe the numeric relationships between key 

economic forces. The main purpose of economet-

rics is to empirically verify economic theory.

ecosystem: In biology, an ecosystem is a com-

munity of plants, animals, and microorganisms 

that are linked by energy and nutrient flows and 

that interact with each other and with the physical 

environment. Rain forests, deserts, coral reefs, 

grasslands, and a rotting log are all examples of 

ecosystems. ULS systems can be characterized as 

socio-technical ecosystems.

embodied interaction: A form of interaction with 

a computational system that reflects the philoso-

phy that effective communication must take place 

in physical and social environments, not purely in 

virtual ones.

embodied virtuality: The manifestation of the 

results, processes, and mechanisms of computa-

tion in the physical world. This term, first defined 

by Mark Weiser in The Computer for the 21st 

Century (San Francisco, CA: Morgan Kauffman 

Publishers, 1995) is an alternative to ubiquitous 

computing, which envisions computers as physical 

presences in numerous parts of the real world.

Enterprise JavaBeans: A component architecture 

for building distributed, object-oriented business 

applications in Java. An Enterprise JavaBean 

(EJB) encapsulates business logic in a component 

framework that manages the details of security, 

transaction, and state management. Low-level 

details such as multi-threading, resource pooling, 

clustering, distributed naming, automatic 

persistence, remote invocation, transaction bound-

ary management, and distributed transaction 

management are handled by the EJB “container.”

entropy: Informally, the degree of disorder of a 

system. Entropy has specific definitions beyond 

the scope of this glossary in thermodynamics, 

statistical mechanics, and information theory.

epistemic uncertainty: Uncertainty based on lack 

of knowledge.

evidence theory: A formal system of reasoning 

about knowledge based on a belief function (not 

defined in this glossary) as the representation 

of degree of belief, and a method of combining 

evidence and belief. The theory is explained in 

A Mathematical Theory of Evidence by Glenn 

Shafer (Princeton, NJ: Princeton University Press, 

1976).

example-driven design: A variant of test-driven 

design in which the tests are written as if they 

were a series of examples being used to teach 

someone how to use the code, beginning with 

simple cases and moving toward the trickier ones.

F

fitness function: A type of objective function that 

quantifies the optimality of a solution in a genetic 

algorithm so that a solution can be ranked against 

all the others.

flow-structure analysis: A method for under-

standing the compositions of system services 

implemented in a network to carry out user tasks. 

See Flow-Service-Quality (FSQ) Engineering: 

Foundations for Network System Analysis and 

Development, by R. Linger, M. Pleszkoch, G. 
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Walton, and A. Hevner (CMU/SEI-2002-TN-019), 

Software Engineering Institute, Carnegie Mellon 

University, Pittsburgh, PA, June 2002.

fractal: Informally, a shape that appears similar 

at all scales; formally, a geometric object whose 

Hausdorff dimension (not defined in this glossary) 

is greater than its topological dimension (not 

defined in this glossary).

function extraction (FX): Technology for 

automated computation of the net functional 

effect, or behavior, of programs, presented in 

terms of behavior catalogs for human understand-

ing and analysis. See The Impact of Function 

Extraction Technology on Next-Generation 

Software Engineering by A. Hevner, R. Linger, R. 

Collins, M. Pleszkoch, S. Prowell, and G. Walton 

(CMU/SEI 2005-TR-015), Software Engineering 

Institute, Carnegie Mellon University, Pittsburgh, 

PA, July 2005.

function-theoretic: Of or referring to function-

theoretic foundations.

function-theoretic foundations: An approach 

to formalizing computation based on a view of 

programs as implementations of mathematical 

functions or relations, regardless of their subject 

matter or language. Function-theoretic founda-

tions provide methods for software specification, 

design, verification, and analysis, and play a 

key role in cleanroom software engineering, 

function-theoretic verification, and function 

extraction.

fuzzy set: A set with imprecise membership 

criteria. In classical set theory, a set can be defined 

by a characteristic function that takes an element 

of the universe and assigns 1 if the element 

belongs to the set and 0 otherwise. A fuzzy set is 

defined by a membership function that assigns a 

real number in the interval [0,1], where 1 means 

the element belongs, 0 means it doesn’t, and a 

number in between 0 and 1 indicates the degree of 

membership. This number is not a probability or 

likelihood, but an imprecision or vagueness. For 

example, a person walking through the doorway 

between the kitchen and dining room whose foot 

is in the dining room and part of whose body 

is in the kitchen is partly in the set of people in 

the kitchen and partly in the set of people in the 

dining room.

G

game theory: A branch of applied mathematics 

that studies strategic situations in which players 

choose actions in an attempt to maximize their 

returns.

genetic algorithm: A method of simulating the ac-

tion of evolution within a computer. A population 

is evolved by employing crossover and mutation 

operators along with a fitness function that deter-

mines how likely individuals are to reproduce. A 

genetic algorithm usually operates on a population 

of fixed-length vectors of characteristics.

genetic programming: A form of genetic 

algorithm in which members of the evolving 

population are tree-like representations of 

computer programs.

glue or glue code: Code that enables one piece of 

code or a component to interact with other code or 

another component.

GOMS model: A description of the knowledge 

that a person must have to carry out tasks on a 

device or system. The acronym “GOMS” stands 

for Goals, Operators, Methods, and Selection 

rules. A GOMS model consists of descriptions 

of the methods needed to accomplish specified 

goals. The methods are a series of steps consisting 

of operators that the person performs. A method 

may call for sub-goals to be accomplished, so the 

methods have a hierarchical structure. If there is 

more than one method to accomplish a goal, then 

the GOMS model includes selection rules that 

choose the appropriate method depending on the 

context. The GOMS framework was proposed 

by Card, Moran, and Newell in The Psychology 

of Human-Computer Interaction (Mahwah, NJ: 

Lawrence Erlbaum Associates, 1983).

greedy algorithm: A problem-solving or optimi-

zation algorithm that uses the metaheuristic of 

making the locally optimum choice at each stage 

until the entire problem is solved or optimization 

is complete. It typically produces a good solution 

quickly but rarely an optimum one.
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H

hybrid systems modeling: The process of and lan-

guages for modeling and simulating systems with 

both continuous and discrete processes. Hybrid 

systems modeling aims to model systems that can 

be described by ordinary differential equations, 

partial differential equations, differential algebraic 

equations, and ordinary differential equations 

interfaced with discrete-time algorithms.

hypermutation: A biological process or mecha-

nism to enable rapid adaptation to environmental 

conditions (including parasites and viruses) by 

altering (usually accelerating) rates of mutation. 

For example, the acquired immune system in 

multicellular animals uses hypermutation.

I

in situ control and adaptation: A model-based 

approach for designing adaptive quality of service 

in distributed systems.

in situ control, reflection, and adaptation: in situ 

control and adaptation using reflection as an 

approach.

Internet storm: A disruptive and sometimes mali-

cious set of time-localized, large-scale Internet 

infrastructure events. Denial-of-service attacks, 

Internet worms, and cascading router failures are 

examples of Internet storms.

J

jitter: A slight random or irregular variation in an 

otherwise regular sequence or signal. In telecom-

munication, an abrupt variation of one or more 

signal characteristics, such as the interval between 

successive pulses, the amplitude of successive 

cycles, or the frequency or phase of successive 

cycles. In packet-based networking, jitter is the 

variation in the delay of packets.

L

latency: A time delay between the moment 

something is initiated and the moment its first 

effect begins.

law of large numbers: A statistical law stating 

that the average of a random sample from a large 

population is likely to be close to the mean of that 

population.

M

machine learning: An approach to certain com-

putations in which, broadly speaking, a computer 

changes its own structure, program, or data based 

on inputs or external data in such a manner that 

its expected future performance improves. More 

specifically, machine learning refers to a set of 

techniques such as automatic rule extraction and 

application, determining statistical characteristics 

of a population and using them to make decisions, 

determining the weights and perhaps topology for 

a neural net based on positive and negative train-

ing examples and using it for classification, etc.

mechanism design: A sub-field of game theory 

that studies how to design the rules of a game 

to achieve a specific outcome by setting up a 

structure in which each player has an incentive 

to behave as the designer intends. One branch of 

mechanism design is the creation of markets such 

as auctions.

metadata: Data that are about or that describe 

data. Note that the word “metadata” has been 

trademarked by The Metadata Company, and the 

legal status of the generic use of the term has not 

been settled.

metaheuristics: High-level procedures that 

coordinate simple heuristics, such as local search, 

to find solutions that are of better quality than 

those found by the simple heuristics alone; meta-

heuristics are typically used in situations where 

exact algorithms are not feasible. Metaheuristics 

include simulated annealing, genetic algorithms, 

tabu search, GRASP, scatter search, ant-colony 

optimization, variable neighborhood search, and 

their hybrids.

metastability: The ability of a non-equilibrium 

state to persist for some period of time. A system 

in a metastable state is able to pass to a more 

stable equilibrium when sufficiently disturbed.

microeconomics: The branch of economics that 

deals with small-scale economic factors, such as 

the economics of an individual firm, product, or 

consumer rather than with the aggregate. One of 

the goals of microeconomics is to analyze market 

mechanisms that establish relative prices and 

allocate resources.
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middleware: A set of layers and components that 

provides reusable common services and network 

programming mechanisms. Middleware resides on 

top of an operating system and its protocol stacks 

but below the structure and functionality of any 

particular application.

model checking: A method to algorithmi-

cally verify a design by checking whether a 

model derived from the design satisfies its formal 

specification.

model-driven architecture: An approach to 

model-driven engineering architecture sponsored 

by the Object Management Group that provides 

a set of guidelines for structuring specifications 

expressed as models. System functionality is 

defined as a platform-independent model (PIM) 

through an appropriate domain-specific language. 

Given a platform definition model (PDM) 

corresponding to CORBA, .NET, etc., the PIM is 

then translated to one or more platform-specific 

models (PSMs) for the actual implementation. 

The translations between the PIM and PSMs are 

normally performed using automated tools.

monoculture: A system with low diversity.

monotonic: The property of a type of information 

and a method of reasoning or operating on it for 

which the addition of new information does not 

decrease the set of valid inferences or operations.

multi-valued logic: A logical calculus in which 

there are more than two possible truth values. 

Examples include fuzzy logic and probabilistic 

logic such as Dempster-Shafer theory.

mutator function: As used in a metaheuristic 

process, a function that takes a current state  

and returns a neighbor state, typically in a 

probabilistic manner.

N

.NET: The Microsoft .NET Framework is a 

component of the Microsoft Windows operating 

system. It provides a large body of pre-coded 

solutions to common program requirements 

and manages the execution of programs written 

specifically for the framework. Programs written 

for the .NET framework execute in a software 

environment that manages the program’s runtime 

requirements. This runtime environment, which 

is also a part of the .NET framework, is known as 

the Common Language Runtime (CLR). The CLR 

provides the appearance of an application virtual 

machine.

neuro-evolution: The use of genetic algorithms to 

create an operational artificial neural network. The 

term is used ambiguously in the literature to refer 

both to systems that evolve only the values of the 

connection weights for a network of pre-specified 

topology as well as to systems that evolve the 

topology of the network in addition to the weights.

nondeterministic: A property of a computation 

that may have more than one result. One way to 

implement a nondeterministic algorithm is using 

backtracking; another is to explore (all) possible 

solutions in parallel.

non-monotonic: The property of a type of 

information and a method of reasoning or operat-

ing on it that the addition of new information may 

decrease the set of valid inferences or operations; 

not monotonic.

NP-complete: A decision problem that requires 

a nondeterministic, polynomial-time (NP) 

algorithm to solve; an NP-complete problem is 

among the most difficult-to-solve NP problems. 

Formally, a decision problem is NP-complete if it 

is in NP (requires a nondeterministic, polynomial-

time algorithm to solve), and every other problem 

in NP is reducible to it.

n-version programming: A software-develop-

ment strategy to increase reliability through 

redundancy. One approach is to create (possibly 

independently) multiple versions of a component 

and to combine their results.

O

objective function: A function to be minimized 

or maximized in a metaheuristic optimization 

process.

off-the-shelf components: Components designed 

and implemented for specific purposes but with 

no specific application in mind; such components 

can be used in a variety of applications, some-

times with external scaffolding. A program library 

is an example.

open abstraction: An abstraction or component 

whose implementation can be customized or 

augmented.
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platforms include operating systems, libraries, 

and frameworks.

possibility theory: A mathematical theory for 

dealing with particular types of uncertainty as 

an alternative to probability theory. Possibility 

theory was defined by Lotfi Zadeh in 1978 as an 

extension to his theory of fuzzy sets and fuzzy 

logic.

probabilistic: Pertaining to any method, 

approach, or form of reasoning that relies 

on probability or theories of likelihood (cf., 

stochastic).

proof-carrying code: A technique for safe 

execution of untrusted code. A code receiver 

establishes a set of safety rules that guarantee 

safe behavior of programs, and the code 

producer creates a formal safety proof. The 

receiver can use a proof validator to check that 

the proof is valid.

Q

quality attribute: A property of a system 

by which its quality will be judged by some 

stakeholder or stakeholders. Quality-attribute 

requirements such as those for performance, 

security, modifiability, reliability, and usability 

have a significant influence on the architecture 

of a system.

quality of service: The probability that a system 

will deliver particular levels of measurable 

computational and communication properties 

such as availability, bandwidth, latency, and 

jitter. Policies and mechanisms typically are 

designed to control and improve the quality of 

service of a system.

quasi-stability: The ability of a non-equilibrium 

state to be long lasting but not perpetual; 

metastability.

R

recovery-oriented programming: An approach 

to software reliability that focuses on recover-

ing from faults quickly and effectively. This 

approach was devised by David Patterson and 

his colleagues (Recovery Oriented Computing 

(ROC): Motivation, Definition, Techniques, 

and Case Studies, Computer Science Technical 

orchestration: The activities needed to make the 

elements of a system work together in sufficient 

harmony to ensure continuous satisfaction of a set 

of specified objectives.

P

parallel: When the execution flows of several 

computational processes are able to run simul-

taneously, typically with little or no resource 

sharing. In general, parallel execution is expected 

to save elapsed time over sequential execution 

(cf., concurrent).

particle swarm optimization: A problem-solving 

metaheuristic that mimics the behavior of a flock 

or swarm. A population of individuals seeking to 

find the most fit location is placed randomly in a 

multidimensional search space. Each individual 

flies through the space with a velocity that is 

updated according to a linear combination of 

the current velocity, a vector toward the most fit 

location that the individual has seen so far, and 

a vector toward the most fit location seen so far 

either by nearby individuals (in one variation of 

the algorithm) or by the entire flock (in another).  

The latter two vectors are combined with indepen-

dent random scalars. The process terminates when 

the location with the best fitness exceeds a given 

threshold.

pattern: A description of a particular recurring 

design problem that arises in specific design 

contexts along with a well-proven solution for that 

problem. In some cases, the solution is specified 

by describing its constituent participants, their 

responsibilities and relationships, and the ways in 

which they collaborate.

phase transition: A process by which a system 

changes from one state to another with differ-

ent properties, sometimes as a result of small 

changes.

phenotropics: A mechanism for component 

interaction that uses pattern recognition or 

artificial cognition in place of function invocation 

or message passing. The term was coined by 

Jaron Lanier. See John Brockman, The Next Fifty 

Years: Science in the First Half of the Twenty-first 

Century, Vintage, 2002.

platform: The combination of hardware and 

software that provides a virtual machine that 

executes software and applications. Software 
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Report UCB//CSD-02-1175, University of 

California at Berkeley, March 15, 2002).

refactor: The process of rewriting software to 

improve its readability or structure while retaining 

its meaning or behavior.

reflection: A computational process that is able to 

reason about itself.

requirements drift: A slow variation in the 

requirements for a system as conditions change, 

including as a result of experience with the system 

or as the set of stakeholders changes.

revelation principle: The principle in game 

theory or mechanism design that states that 

for any equilibrium (stable state) of a game of 

incomplete information, there corresponds an 

associated revelation mechanism that has an 

equilibrium where the players truthfully report 

their payoff-related, private information.

robust; robustness: The ability of a system to 

continue to function despite the existence of faults 

in its component subsystems, parts, or communi-

cation mechanisms.

S

satisfice: To seek a solution that satisfies the 

minimum requirements necessary.

security: The capability of a system to provide 

confidentiality, integrity, and availability of data 

and services, both locally and globally.

self-organizing criticality: A driven system that 

radically changes its behavior or structure because 

of its intrinsic dynamics. The archetype of a self-

organized critical system is a sand pile. Sand is 

slowly dropped onto a surface, forming a pile. As 

the pile grows, avalanches occur that carry sand 

from the top to the bottom of the pile.

sequence-based specification: A method of 

specification distinguished by a process of 

enumerating all stimulus-response pairs as well as 

all sequences of stimuli along with their required 

responses, including whether a sequence is not 

possible, and the identification of equivalence 

classes of sequences. The method is described in 

“Sequence-Based Specification of Deterministic 

Systems,” by S. Prowell and J. Poore, Software 

- Practice and Experience 28, 3 (Mar 1998): 

329-344.

service-oriented architecture: A design for 

linking computational resources (principally, ap-

plications and data) on demand using standardized 

(typically network-based) interfaces and protocols 

to achieve the desired results for service consum-

ers (which can be end users or other services).

simulated annealing: A problem-solving or 

optimization metaheuristic that finds a good 

approximation to a global optimum by using a 

process inspired by metallurgical annealing. 

It operates by repeatedly considering a random 

nearby solution, and selecting that solution with a 

probability that depends on the difference between 

the current fitness and desired fitness, and on a 

global temperature that decreases according to a 

schedule. The process terminates after, at most, a 

fixed number of steps.

socio-technical ecosystem: An ecosystem whose 

elements are groups of people together with their 

computational and physical environments.

speciation: The formation of new and distinct 

species in a process of natural or digital evolution.

staged computation: Breaking the construction 

of a program into stages whose outputs are 

programs. Partial evaluation is an example of 

staged computation.

statistical mechanics: The branch of physics that 

makes theoretical predictions about the behavior 

of a macroscopic system on the basis of statistical 

laws governing its component particles.

stochastic: Involving chance or probability; 

involving or containing a random variable or 

variables. For example, a stochastic process is 

one whose behavior is nondeterministic in that 

the next state of the environment is partially but 

not fully determined by the previous state of the 

environment.

swarm intelligence: The collective behavior of 

decentralized, self-organized systems. Swarm-

intelligence systems are typically made up of a 

population of simple agents interacting locally 

with one another and with their environment. 

Local interactions between such agents often lead 

to the emergence of global behavior. Examples 

from nature include ant colonies, bird flocking, 

animal herding, bacteria molding, and fish 

schooling.
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system health: A measure of the ability of a 

system to deliver its required functionality at its 

specified quality levels.

system of systems: A system comprising 

independent, self-contained systems that, taken as 

a whole, satisfy a specified need.

system viability: The success or continuing 

effectiveness of a system.

T

test-driven design: A style of program design that 

begins by writing one simple test, then writing just 

enough code to pass it. Then another simple test 

is written, and code is added to pass both it and 

the previous test. The programmer then looks for 

opportunities to improve the code by generalizing 

it, removing duplication, restructuring it, or 

making it more understandable. The test-code-

improve cycle repeats until there are no more tests 

to be had. It is claimed that a good global design 

emerges from the need to decouple the code to 

make tests run fast and the local heuristic rules 

for code improvement. The tests are retained and 

run frequently to prevent unintended effects of 

changes to the design.

trust: The extent to which users of a system can 

rely on its data and services.

type-safe staged computation: A staged computa-

tion using a language that guarantees that every 

generated program is type safe.

U

ubiquitous computing: The integration of compu-

tation into the environment; this is in contrast to 

computers as distinct objects.

ultra-large-scale (ULS) system: A system at least 

one of whose dimensions is of such a large scale 

that constructing the system using development 

processes and techniques prevailing at the start 

of the 21st century is problematic. ULS systems 

exhibit the following characteristics: decentraliza-

tion; conflicting, unknowable, and diverse require-

ments; continuous evolution and deployment; 

heterogeneous and changing elements; erosion of 

the people/system boundary; and normal failures 

of parts of the system.

universal usability: The characteristic of an 

information or communications device that it is 

usable by any person regardless of skill level, 

knowledge, age, gender, disabilities, disabling 

conditions (mobility, sunlight, noise), literacy, 

culture, income, etc., and regardless of the number 

of (simultaneous) users.

user-centered design: A design philosophy and 

process in which the needs, wants, and limitations 

of the end user of an interface or artifact are given 

extensive attention at each stage of the design 

process.

V

validation, software: Confirmation by examina-

tion and provision of objective evidence that 

software specifications conform to user needs 

and intended uses and that the requirements 

implemented through software can be consistently 

fulfilled.

verification, software: Evidence that a design 

meets all of its specified requirements.

Von Neumann execution model: A model of 

computation consisting of a central processing 

unit (CPU) and a single memory for instructions 

and data.

W

wicked problem: An ill-defined design and plan-

ning problem having incomplete, contradictory, 

and changing requirements. Solutions to wicked 

problems are often difficult to recognize because 

of complex interdependencies. This term was sug-

gested by H. Rittel and M. Webber in the paper, 

“Dilemmas in a General Theory of Planning,” 

Policy Sciences 4, Elsevier Scientific Publishing 

Company, Inc., Amsterdam, 1973.
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