
Ultra-Large-Scale
Systems
The Software Challenge
of the Future

Report Documentation Page
Form Approved

OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington

VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number.

1. REPORT DATE

JUN 2006
2. REPORT TYPE

3. DATES COVERED

 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE

Ultra-Large-Scale Systems: The Software Challenge of the Future

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Carnegie Mellon University ,Software Engineering Institute

(SEI),Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

Same as

Report (SAR)

18. NUMBER

OF PAGES

150

19a. NAME OF

RESPONSIBLE PERSON
a. REPORT

unclassified

b. ABSTRACT

unclassified

c. THIS PAGE

unclassified

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std Z39-18

Ultra-Large-Scale Systems Study Lead

Linda Northrop

Ultra-Large-Scale Systems Study Report

Author Team

Peter Feiler

Richard P. Gabriel

John Goodenough

Rick Linger

Tom Longstaff

Rick Kazman

Mark Klein

Linda Northrop

Douglas Schmidt

Kevin Sullivan

Kurt Wallnau

Chief Editor

Bill Pollak

Information Designer

Daniel Pipitone

iUltra-Large-Scale Systems

The Software Challenge of the Future

Ultra-Large-Scale Systems
 The Software Challenge of the Future

June 2006

Unlimited distribution subject to the copyright.

Pittsburgh, PA 15213-3890

ii Ultra-Large-Scale Systems

The Software Challenge of the Future

This report was prepared for the

SEI Administrative Agent

ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD

position. It is published in the interest of scientific and technical information

exchange.

This work is sponsored by the U. S. Army. The Software Engineering Institute is

a federally funded research and development center sponsored by the U. S.

Department of Defense.

© Copyright 2006 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE

ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS”

BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER

INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON

UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH

RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the

rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative

works from this document for internal use is granted, provided the copyright and

“No Warranty” statements are included with all reproductions and derivative

works.

External use. Requests for permission to reproduce this document or prepare

derivative works of this document for external and commercial use should be

addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract

Number FA8721-05-C-0003 with Carnegie Mellon University for the operation

of the Software Engineering Institute, a federally funded research and develop-

ment center. The Government of the United States has a royalty-free government-

purpose license to use, duplicate, or disclose the work, in whole or in part and in

any manner, and to have or permit others to do so, for government purposes

pursuant to the copyright license under the clause at 252. 227-7013.

For information about purchasing paper copies of SEI reports, please visit the

publications portion of our Web site:

http://www. sei.cmu.edu/publications/pubweb. html

Ultra-Large-Scale Systems

The Software Challenge of the Future

iii

In
tro

d
u

c
tio

n

Table of Contents

 Acknowledgments ..vii

 Executive Summary .. ix

 Part I Section 1: Introduction ... 1

 1.1 Genesis of the ULS Systems Research Study 1

 1.2 The DoD’s Goal of Information Dominance 2

 1.3 The Missing Key to Information Dominance 2

 1.4 The Engineering Perspective on Software Development 3

 1.5 The Need for a New Perspective ... 4

 1.6 From Engineering to Complex Systems 5

 1.6.1 From Buildings to Cities .. 5

 1.6.2 From Systems to Ecosystems .. 6

 1.6.3 Beyond the Internet .. 7

 1.7 The Results of This Study .. 8

Section 2: Characteristics of ULS Systems...................................11

 2.1 Decentralized Control ..13

 2.2 Inherently Conflicting, Unknowable, and Diverse

Requirements ... 14

 2.3 Continuous Evolution and Deployment15

 2.4 Heterogeneous, Inconsistent, and Changing Elements16

 2.5 Erosion of the People/System Boundary17

 2.6 Normal Failures ...19

 2.7 New Paradigms for Acquisition and Policy20

 2.8 Summary ..20

Section 3: Challenges in ULS Systems .. 21

 3.1 Design and Evolution ..22

 3.2 Orchestration and Control ...25

 3.3 Monitoring and Assessment ..26

C
h

a
ra

c
te

ris
tic

s
C

h
a
lle

n
g

e
s

iv Ultra-Large-Scale Systems

The Software Challenge of the Future

Table of Contents

Section 4: Overview of Research Areas 29

 4.1 Human Interaction ...31

 4.2 Computational Emergence ..32

 4.3 Design ..33

 4.4 Computational Engineering ...35

 4.5 Adaptive System Infrastructure ...36

 4.6 Adaptable and Predictable System Quality38

 4.7 Policy, Acquisition, and Management40

Section 5: Summary and Recommendations 41

 5.1 Toward a Roadmap for a ULS Systems Research Program42

 5.1.1 DoD Missions and Capabilities ...43

 5.1.2 Research Tracks Associated with Missions and Capabilities ...48

 5.1.3 Research Areas by Funding Types ...50

 5.1.4 Research Risk/Reward ...52

 5.2 Recommendations ...54

 5.3 Study Conclusion ...55

 Part II Section 6: Detailed Description of Research Areas 57

 6.1 Human Interaction ...57

 6.1.1 Context-Aware Assistive Computing ..59

 6.1.2 Understanding Users and Their Contexts60

 6.1.3 Modeling Users and User Communities61

 6.1.4 Fostering Non-Competitive Social Collaboration62

 6.1.5 Longevity ...63

 6.1.6 Further Reading ...64

 6.2 Computational Emergence ..65

 6.2.1 Algorithmic Mechanism Design ...66

 6.2.2 Metaheuristics in Software Engineering68

 6.2.3 Digital Evolution ..71

 6.2.4 Further Reading ...73

 6.3 Design ..74

 6.3.1 Design of All Levels ..76

 6.3.2 Design Spaces and Design Rules ..77

 6.3.3 Harnessing Economics to Promote Good Design79

 6.3.4 Design Representation and Analysis ...80

 6.3.5 Assimilation ...81

R
e

s
e

a
rc

h
 A

re
a

s
R

e
c
o

m
m

e
n

d
a
tio

n
s

vUltra-Large-Scale Systems

The Software Challenge of the Future

 6.3.6 Determining and Managing Requirements85

 6.3.7 Further Reading ...87

 6.4 Computational Engineering ...89

 6.4.1 Expressive Representation Languages90

 6.4.2 Scaled-Up Specification, Verification, and Certification93

 6.4.3 Computational Engineering for Analysis and Design95

 6.4.4 Further Reading ...97

 6.5 Adaptive System Infrastructure ...97

 6.5.1 Decentralized Production Management98

 6.5.2 View-Based Evolution ...100

 6.5.3 Evolutionary Configuration and Deployment102

 6.5.4 In Situ Control and Adaptation ..104

 6.5.5 Further Reading ...106

 6.6 Adaptable and Predictable System Quality107

 6.6.1 Robustness, Adaptation, and Quality Attributes108

 6.6.2 Scale and Composition of Quality Attributes109

 6.6.3 Understanding People-Centric Quality Attributes111

 6.6.4 Enforcing Quality Requirements ...112

 6.6.5 Security, Trust, and Resiliency ..113

 6.6.6 Engineering Management at Ultra-Large Scales114

 6.6.7 Further Reading ...115

 6.7 Policy, Acquisition, and Management118

 6.7.1 Policy Definition for ULS Systems ...118

 6.7.2 Fast Acquisition for ULS Systems ..120

 6.7.3 Management of ULS Systems ...122

 6.7.4 Further Reading ...123

 Glossary ..125

vi Ultra-Large-Scale Systems

The Software Challenge of the Future

 Table 1: Relationship Between Research Areas and Challenges 31

 Table 2: Research Topics Needed for Specific DoD

Missions and Related Capabilities49

 Table 3: Research Topics Categorized by DoD

Research Funding Type ...51

 Table 4: Research Areas and Range of Risk/Reward 53

List of Tables

Ultra-Large-Scale Systems

The Software Challenge of the Future

vii

Acknowledgments

The principal team of authors who wrote this report consists of

Peter Feiler, John Goodenough, Rick Linger, Tom Longstaff, Rick Kazman,

Mark Klein, Linda Northrop, and Kurt Wallnau from the Carnegie Mellon®

Software Engineering Institute (SEI), along with Richard P. Gabriel,

Sun Microsystems, Inc.; Douglas Schmidt, Vanderbilt University; and

Kevin Sullivan, University of Virginia.

The team thanks the many individuals who contributed directly to its work.

The Ultra-Large-Scale (ULS) Systems Study Team consisted of

Gregory Abowd, Georgia Institute of Technology; Carliss Baldwin,

Harvard Business School; Robert Balzer, Teknowledge Corporation;

Gregor Kiczales, University of British Columbia; John Lehoczky,

Carnegie Mellon University; Ali Mili, New Jersey Institute of Technology;

Peter Neumann, SRI International; Mark Pleszkoch, SEI; Mary Shaw,

Carnegie Mellon University; Daniel Siewiorek, Carnegie Mellon University;

and Jack Whalen, Palo Alto Research Center (PARC). All of these

individuals made substantive contributions to the foundational ideas that

the author team developed in this report.

Invited speakers at an early meeting were Assistant Secretary of the Army

Claude Bolton (on video), Office of the Assistant Secretary of the U. S.

Army (Acquisition, Logistics, & Technology) (ASA ALT); Peter Freeman,

National Science Foundation; David Emery, DSI; and Bruce Krogh,

Carnegie Mellon University. They provided valuable inspiration to the

study principals.

This report was reviewed in draft form by individuals chosen for their

diverse perspectives and technical expertise. The purpose of this indepen-

dent review was to elicit candid and critical comments that would help make

the published report as technically sound as possible. The author team is

grateful to those who carefully and thoughtfully reviewed its interim drafts:

John Bay, Air Force Research Lab; Brian Barry, Bederra Corporation;

Barry Boehm, University of Southern California; Larry Druffel, South

Carolina Research Authority (SCRA); Peter Freeman, National Science

Foundation; Ron Goldman, Sun Microsystems Laboratories; Watts S.

Humphrey, SEI; Bruce Krogh, Carnegie Mellon University; Jim Linnehan,

ASA ALT; Martin Rinard, Massachusetts Institute of Technology;

Dennis Smith, SEI; and Guy Steele, Sun Microsystems, Inc.

viii Ultra-Large-Scale Systems

The Software Challenge of the Future

Although these reviewers provided many constructive comments and

suggestions, they were not asked to endorse the final conclusions or

recommendations presented in this report, nor did they see the final draft

of the report before its release. Responsibility for the final content of this

report rests entirely with the author team.

The author team is also grateful for support provided by SEI staff:

David Carney, Suzanne Couturiaux, Pamela Curtis, David Gregg,

Laura Huber, Bob Krut, Melissa Neely, Ray Obenza, Daniel Pipitone,

Bill Pollak, Hal Stevens, Pennie Walters, Sharon West, Barbara White,

David White, David Zubrow, and the SEI Information Technology staff.

Acknowledgments

Ultra-Large-Scale Systems

The Software Challenge of the Future

ix

Executive Summary

The U. S. Department of Defense (DoD) has a goal of information

dominance—to achieve and exploit superior collection, fusion, analysis, and

use of information to meet mission objectives. This goal depends on

increasingly complex systems characterized by thousands of platforms,1

sensors, decision nodes, weapons, and warfighters connected through

heterogeneous wired and wireless networks. These systems will push far

beyond the size of today’s systems and systems of systems by every measure:

number of lines of code; number of people employing the system for

different purposes; amount of data stored, accessed, manipulated, and

refined; number of connections and interdependencies among software

components; and number of hardware elements. They will be ultra-large-

scale (ULS) systems.

The sheer scale of ULS systems will change everything. ULS systems will

necessarily be decentralized in a variety of ways, developed and used by a

wide variety of stakeholders with conflicting needs, evolving continuously,

and constructed from heterogeneous parts. People will not just be users

of a ULS system; they will be elements of the system. Software and

hardware failures will be the norm rather than the exception. The acquisition

of a ULS system will be simultaneous with its operation and will require

new methods for control. These characteristics are beginning to emerge in

today’s DoD systems of systems; in ULS systems they will dominate.

Consequently, ULS systems will place unprecedented demands on software

acquisition, production, deployment, management, documentation, usage,

and evolution practices.

Fundamental gaps in our current understanding of software and software

development at the scale of ULS systems present profound impediments to

the technically and economically effective achievement of the DoD goal

of deterrence and dominance based on information superiority. These gaps

are strategic, not tactical. They are unlikely to be addressed adequately by

incremental research within established categories. Rather, we require a

broad new conception of both the nature of such systems and new ideas for

how to develop them. We will need to look at them differently, not just as

systems or systems of systems, but as socio-technical ecosystems. We will

face fundamental challenges in the design and evolution, orchestration and

control, and monitoring and assessment of ULS systems. These challenges

require breakthrough research.

1 Bold-italic formatting of a word or phrase indicates that its definition appears in the Glossary.

x Ultra-Large-Scale Systems

The Software Challenge of the Future

We propose a ULS systems research agenda for an interdisciplinary portfolio

of research in at least the following areas:

• Human Interaction: involves anthropologists, sociologists, and social

scientists conducting detailed socio-technical analyses of user interactions

in the field, with the goal of understanding how to construct and evolve

such socio-technical systems effectively.

• Computational Emergence: explores the use of methods and tools based

on economics and game theory (e.g., mechanism design) to ensure

globally optimal ULS system behavior and explores metaheuristics and

digital evolution to augment the cognitive limits of human designers.

• Design: broadens the traditional technology-centric definition of design

to include people and organizations; social, cognitive, and economic

considerations; and design structures such as design rules and government

policies.

• Computational Engineering: focuses on evolving the expressiveness of

representations to accommodate the semantic diversity of many languages

and focuses on providing automated support for computing the evolving

behavior of components and their compositions.

• Adaptive System Infrastructure: investigates integrated development

environments and runtime platforms that will support the decentralized

nature of ULS systems as well as technologies, methods, and theories

that will enable ULS systems to be developed in their deployment

environments.

• Adaptable and Predictable System Quality: focuses on how to maintain

quality in a ULS system in the face of continuous change, ongoing

failures, and attacks and focuses on how to identify, predict, and control

new indicators of system health (akin to the U. S. gross domestic product)

that are needed because of the scale of ULS systems.

• Policy, Acquisition, and Management: focuses on transforming

acquisition policies and processes to accommodate the rapid and

continuous evolution of ULS systems by treating suppliers and supply

chains as intrinsic and essential components of a ULS system.

Executive Summary

xiUltra-Large-Scale Systems

The Software Challenge of the Future

The proposed research does not supplant current, important software research

but rather significantly expands its horizons. Moreover, because we are

focused on systems of the future, we have purposely avoided couching our

descriptions in terms of today’s technology. The envisioned outcome of the

proposed research is a spectrum of technologies and methods for developing

these systems of the future, with national-security, economic, and societal

benefits that extend far beyond ULS systems themselves.

Though our research agenda does not prescribe a single, definitive roadmap,

we offer three structures that suggest ways to cluster and prioritize groups of

research areas mapping the research areas and topics to (1) specific DoD

missions and required capabilities, (2) DoD research funding types required

to support them, and (3) estimates of the relative starting points of the

research. These structures can then be used to define one or more roadmaps

that could lead to one or more ULS systems research programs or projects.

As a first step, we recommend the funding and establishment of a ULS

System Research Startup Initiative, which over the course of the next two

years would, among other things,

• work with others to conduct new basic research in key areas;

• foster the growth of a community of informed stakeholders and

researchers; and

• formulate and issue an initial Broad Agency Announcement (BAA) to

attract researchers with proven expertise in the diverse set of disciplines

(e.g., software engineering, economics, human factors, cognitive psychol-

ogy, sociology, systems engineering, and business policy) that are collec-

tively required to meet the challenge of ULS systems.

The United States needs a program that will fund the software research

required to sustain ongoing transformations in national defense and achieve

the DoD goal of information dominance. The key challenge is the decision

to move forward. The ULS System Research Agenda presented in this report

provides the starting point for the path ahead.

xii Ultra-Large-Scale Systems

The Software Challenge of the Future

Ultra-Large-Scale Systems

The Software Challenge of the Future

1

1
Introduction

 1.1

Genesis of the

ULS Systems

Research Study

 The office of the Assistant Secretary of the U. S. Army (Acquisition,

Logistics, & Technology) (ASA ALT) funded the Software Engineering

Institute (SEI) to lead a 12-month investigation of ultra-large-scale (ULS)

systems software. ASA ALT posed this question to the SEI: “Given the

issues with today’s software engineering, how can we build the systems of

the future that are likely to have billions of lines of code?”

The intended outcome of the study was a proposed research agenda for

ULS systems; a proposal for a program that would fund, coordinate, and

conduct needed research; and the creation of a collaborative research

network that would work toward solving the ULS system problem for the

U. S. Department of Defense (DoD).

Although a billion lines of code was the initial challenge, increased code

size brings with it increased scale in many other dimensions, posing

challenges that strain current software foundations. To understand the

challenges and the research needed to meet them, the study brought together

software experts and experts from outside the software engineering field

from a variety of institutions and organizations. This multi-disciplinary

team sought solutions both within and beyond traditional software and

systems engineering disciplines. This report describes and justifies the

ULS system research agenda that resulted from the year-long study.

To appreciate the need for the study and the value of its output, it is

important to first understand current DoD objectives and to analyze the

fundamental shortfalls in today’s software concepts, tools, and methods

for reaching those objectives.

Part I

2 Ultra-Large-Scale Systems

The Software Challenge of the Future

1 Introduction

Introduction Characteristics Challenges Research Areas Recommendations

1.2

The DoD’s Goal

of Information

Dominance

 The DoD has a goal of information dominance—to achieve and exploit

superior collection, fusion, analysis, and use of information to meet mission

objectives. As articulated in the recent Quadrennial Defense Review Report,2

achievement of this goal depends on increasingly complex systems

characterized by thousands of platforms, sensors, decision nodes, weapons,

and warfighters connected through heterogeneous wired and wireless

networks. These systems will be ULS systems. The Global Information Grid

(GIG), the Army Future Combat Systems (FCS), and FORCEnet are

examples of emerging DoD systems of systems intended to organize and

coordinate this large human, application, and technology space to

• provide DoD planners with the right information at the right place and

the right time across a range of support systems and battlefield systems;

• optimally and adaptively manage information resources to provide usable

target-quality information to warfighters engaged in tactical operations;

and

• conduct effective information operations even in the face of attack, while

also denying information critical to adversaries.

This technology base must be capable of orchestrating the human, comput-

ing, and communications environment to aggregate, filter, and prioritize the

delivery of this information to work effectively in the context of transient

and enduring resource constraints and failures. An essential property of

information dominance is continuous adaptation. Adaptation is needed to

compensate for changes in the mission requirements (such as rerouting strike

packages to engage time-critical targets and modifying target/weapon

pairings to avoid fratricide) and operating environments (such as dynamic

network topologies, publish/subscribe membership changes, and intermittent

connectivity).

1.3

The Missing

Key to Information

Dominance

 Although systems comprise far more than software, it is software that

fundamentally makes possible the achievement of the DoD goal of informa-

tion dominance and the envisioned improvement in human and organiza-

tional performance. At the same time, though, software also presents the

greatest impediment to DoD goals.

We have seen transformations in all facets of society that have been

catalyzed by advances in software technology. The revolution in business

practices effected by Google, for example, is directly traceable to advances

in software technology—specifically, new algorithms that enable a scalable

architecture for information searches.

2 Quadrennial Defense Review Report, February 2006, http://www.defenselink.mil/qdr/report/Report20060203.pdf

3Ultra-Large-Scale Systems

The Software Challenge of the Future

Yet, from the perspective of the underlying science and engineering

knowledge base, software is the least well understood and the most

problematic element of large-scale systems. Software and software project

failures are among the dominant causes of system cost and schedule

overruns; of failures of systems to satisfy the requirements of those who

procure and use them; and, increasingly, of costly and dangerous system

failures. Despite the careful application of modern software engineering

techniques, software failure is far more prevalent than hardware failure

as a cause of major system outages. While some problems are caused by

poor practice, the root cause of most system problems is our inadequate

software knowledge base.

1.4

The Engineering

Perspective on

Software

Development

 The problems presented by software have long been recognized. By the late

1960s, it was clear that the software problem was real, significant, and

growing rapidly. The NATO Conference held in 1968 was a watershed event. 3

At that conference, the community agreed to characterize software develop-

ment as an engineering problem and to establish as a goal that the computer

science research and development community solve the major open problems

by working to establish a new theoretical and practical discipline of software

engineering.

In the nearly 40 years since 1968, tremendous progress has been made in the

field of software engineering. The net effect has made it possible to construct

increasingly complex systems. At the same time, as our software engineering

capabilities have grown, so have our aspirations, and our aspirations continue

to largely exceed our capabilities. That is, with respect to current large

software-intensive systems, our aspiration to establish software development

as an engineering discipline is, to a significant extent, still an aspiration. As we

struggle to develop today’s systems, we simultaneously aspire to develop the

far more ambitious systems that we envision for the future.

The President’s Information Technology Advisory Committee (PITAC) clearly

stated that our current software science and technology base is inadequate to

meet current and future needs;4 blue-ribbon panels have identified major

problems in software development as challenge problems in computer science;

and reports such as that by the Standish Group5 document an unimpressive

record in large software projects in the private sector—even in the relatively

well-understood domain of business applications. In the Standish Group’s

most recent report, only 34% of all projects were deemed to be successful.

3 Naur, P. & Randell, B. (eds.). Software Engineering: Report of a Conference Sponsored by the NATO Science

Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels, Scientific Affairs Division, NATO (1969).

4 The President’s Information Technology Advisory Committee. Information Technology: Investing in Our Future, final

report. February 1999.

5 Standish Group. The Chaos Report, 2003.

4 Ultra-Large-Scale Systems

The Software Challenge of the Future

1 Introduction

Introduction Characteristics Challenges Research Areas Recommendations

Although this success rate was considered a significant improvement from the

1994 rate of 16%, it is still far from adequate. The record of large government-

sponsored projects is similarly lamentable; many multi-billion-dollar failures

have been documented in the open literature.6

Today, as the evidence clearly shows, in software we continue to accept failure

rates, quality problems, and costs that would be unacceptable in any other

field of engineering. The software needed to achieve the DoD’s goal of

information dominance will be orders of magnitude more complex than that

for even the most demanding of our currently existing systems. Our current

practices are already extraordinarily costly and problematic; they simply will

not scale to the size and levels of complexity of the ULS systems that the

DoD needs in the future.

The problem that the DoD now faces is clear. Fundamental gaps in our

understanding of software and software development at the scale of

ULS systems present profound impediments to the technically and economi-

cally effective achievement of the DoD goal of deterrence and dominance

based on information superiority.

1.5

The Need for

a New Perspective

 ULS systems will place unprecedented demands on software acquisition,

production, deployment, management, documentation, usage, and evolution

practices. The inability of current practices to meet these demands calls for

breakthrough research in concepts, methods, and tools.

This report presents a new perspective on problem formulations and an initial

research agenda that we believe has the potential to lead to the required

breakthroughs. What this report avoids is any suggestion that adequate

solutions will be found solely by a straightforward extrapolation from today’s

technology, including high-visibility concepts such as service-oriented

architectures and model-based development. The depth of the gaps in current

knowledge demands not just the incremental extension of existing work but

also innovation, ranging from new conceptual models of the problem space to

revolutionary solution approaches.

There is, without question, a critical need for a significant increase in software

engineering research; but this alone will be inadequate. We need to shift

our perspective and how we characterize the problems that we face. We need

new ideas on how to address these problems. In many cases, such new

perspectives and solution approaches will be inspired by work emerging at the

intersection of traditional software engineering and other disciplines, such

6 See, for example Neumann, P. G. Computer-Related Risks. New York: ACM Press and Reading, MA: Addison-Wesley,

1995; Defense Science Board. Report of the Defense Science Board Task Force on Information Warfare Defense (IW-D).

Washington, DC: Office of the Under Secretary of Defense for Acquisition and Technology, November 21, 1996; and

http://www.csl.sri.com/users/neumann/illustrative.html#7.

5Ultra-Large-Scale Systems

The Software Challenge of the Future

as microeconomics, biology, city planning, and anthropology—fields

concerned with people as well as with coherence in the context of scale and

complexity.

1.6

From Engineering to

Complex Systems

 Alan Kay7 famously said that the right perspective is worth 80 IQ points.8 For

40 years, we have embraced the traditional engineering perspective. The basic

premise underlying the research agenda presented in this document is that

beyond certain complexity thresholds, a traditional centralized engineering

perspective is no longer adequate nor can it be the primary means by which

ultra-complex systems are made real. Electrical and water systems are

engineered, but cities are not—although their forms are regulated by both

natural and imposed constraints. Firms are engineered, but the overall

structure of the economy is not—although it is regulated. Ecosystems exhibit

high degrees of complexity and organization, but not through engineering.

The protocols on which the Internet is based were engineered, but the Web as

a whole was not engineered—although its form is constrained by both natural

and artificial regulations. In this report, we take the position that the advances

needed for ULS systems require a change in perspective, from the satisfaction

of requirements through traditional, rational, top-down engineering to their

satisfaction by the regulation of complex, decentralized systems.

1.6.1

From Buildings

to Cities

 One way to understand the difference in scale between traditional and ULS

systems is to think about buildings, infrastructure systems, and cities.

Designing and building most of today’s large systems can be compared to

designing and constructing a single, large building or a single infrastructure

system (such as for power or water distribution). In contrast, ULS systems will

operate at levels of complexity more similar to cities. At first it might seem that

designing and building a city is simply a matter of designing and building a

large number of buildings. However, cities are not conceived or built by

individual organizations, but rather by the actions of many individuals acting

locally over time. The form of a city is not defined in advance by specifying

requirements; rather, a city emerges and changes over time through the loosely

coordinated and regulated actions of many individuals. The factors that enable

cities to be successful, then, include both extensive infrastructures not present

in individual buildings as well as mechanisms that regulate local actions to

maintain coherence without central control. These mechanisms include

government organizations and policies, city planning, streets and transportation

systems, communication and emergency services, and distribution of food and

consumer goods, to name a few. Moreover, it is not feasible to design and build

a city in one attempt. People, companies, communities, and organizations

decide to build parts of cities for their own purposes. Cities grow and thrive

7 Alan Kay is, among other things, the winner of the Turing Award, the highest scientific award in the field

of computer science.

8 “Predicting The Future,” reproduced from Stanford Engineering, Volume 1, Number 1, Autumn 1989, pp. 1-6.

6 Ultra-Large-Scale Systems

The Software Challenge of the Future

1 Introduction

Introduction Characteristics Challenges Research Areas Recommendations

based on cultural and economic necessities, and, although some aspects

of a city are designed and constructed in a local context, most elements that

make up the essence of a city arise from more global policies and mecha-

nisms, such as zoning laws, building codes, and economic incentives

designed to encourage certain sorts of growth and construction.

Closer examination of the two design and construction problems—buildings

versus cities—reveals that, although it is necessary, skill in designing and

constructing buildings does not help much in designing and constructing a

city. To point out just one of the major differences: every day in every city,

construction is going on, repairs are taking place, modifications are being

made, and yet the cities continue to function. Like cities, ULS systems will

not simply be bigger systems: they will be interdependent webs of software-

intensive systems, people, policies, cultures, and economics.

1.6.2

From Systems to

Ecosystems

 Another way to understand the needed

shift in perspective is in terms of the

concept of ecosystems—and of what we

call socio-technical ecosystems in

particular. Like a biological ecosystem, a

ULS system comprises a dynamic

community of interdependent and

competing organisms (in this case, people,

computing devices, and organizations) in

a complex and changing environment. The concept of an ecosystem connotes

complexity, decentralized control, hard-to-predict effects of certain kinds

of disruptions, difficulty of monitoring and assessment, and the risks in

monocultures, as well as competition with niches, robustness, survivability,

adaptability, stability, and health.

In a ULS system, there will be competition for resources, such as bandwidth,

storage capacity, sensors, and weapons. The system will enforce rules

intended to encourage effective use of these resources to achieve mission

objectives. There may be variations in service depending on how different

commanders, planners, and automated subsystems attempt to apply the

available resources to missions with different levels of importance and

urgency. With appropriate incentives and rules enforced by the system,

these resources will be optimized so that they are appropriately available.

In addition, there may be an overall measure of the quality of service

being provided to different parts of the system or for different purposes

(e.g., quality-of-service requirements will change for some parts of the

system during a mission). This measure can be used to determine if the

incentives are working as intended. As system behavior changes in response

to the incentives, the incentives may also need to be changed to ensure

that key mission goals are accomplished.

7Ultra-Large-Scale Systems

The Software Challenge of the Future

We traditionally view system development and acquisition as a technology-

centric, rational, largely top-down, centrally controlled process of implemen-

tation and deployment. By contrast, a defining element of ULS systems is

that they will include people, organizations, and technologies at all levels,

from those responsible for overall policy implemented within the system

to those producing the system to those actually using it. There will be

organizations and participants responsible for setting acquisition, production,

and operational policies governing the overall system, and there will be

organizations, technologies, and people responsible for producing ULS

systems. For example, the DoD, Congress, and the Office of the Secretary

of Defense (OSD), in their roles as policy makers, will play essential roles

in an overall system. Contractors and warfighters will participate at another

level of system organization. There are rich kinds of interdependencies

among players, systems, and activities across all of these levels.

The concept of an ecosystem is not novel. Nor is the analogy perfect.

For example, unlike biological ecosystems, whose dynamics involve nutrient

and energy flows, ULS ecosystem dynamics involve exchanges of economic,

security, and other forms of value. Yet even with its imperfections, the

analogy helps illuminate the nature of the problem facing the ULS system

developer: an inadequate understanding of how to create and maintain

systems that have characteristics similar to those found in ecosystems.

The challenge facing the ULS systems research community is to help fill

these major gaps in knowledge.

1.6.3

Beyond the Internet

 The Web foreshadows the characteristics of ULS systems. Its scale is much

larger than that of any of today’s systems of systems. Its development,

oversight, and operational control are decentralized. Its stakeholders have

diverse, conflicting, complex, and changing requirements. The services it

provides undergo continuous evolution. The actions of the people making use

of the Web influence what services are provided, and the services provided

influence the actions of people. It has been designed to avoid the worst

problems deriving from the heterogeneity of its elements and to be insensi-

tive to connection failures.

But the Web was not designed with the DoD’s needs in mind. Security was

not given much attention in its original design, and its use for purposes for

which it was not initially intended, such as e-commerce, has revealed

exploitable vulnerabilities. The elements of the Web are loosely intercon-

nected in the sense that the failure of most elements does not have a

significant effect on many users. The bandwidth available to the Web is much

greater than what is likely to be available for the DoD’s ULS systems. And

although the Web is an important element of people’s work lives, it is not as

critical as a ULS DoD system would be.

8 Ultra-Large-Scale Systems

The Software Challenge of the Future

1 Introduction

Introduction Characteristics Challenges Research Areas Recommendations

The existence of the Web suggests what ULS systems might be like, but

despite the Web’s success and ubiquity, ULS systems for DoD purposes are

likely to push the boundaries of what we have learned (and are learning)

from the existence of the Web.

1.7

The Results of

This Study

 The DoD’s goal of information

dominance, the software that

will be required to achieve that

goal, and the concomitant need

for a new perspective in

software development are all

fundamental to the research

agenda that resulted from our

study. Our agenda is meant to

catalyze a funded ULS system

research program and inspire

researchers from a diverse set of disciplines to address ULS system software

challenges. We expect researchers to be motivated to investigate the

identified topics and to propose other research in those areas. Prosecuting a

research agenda of this magnitude is like planting many seeds. Some will

bear fruit; others will be weeded out and perhaps substituted with heartier

types. Similarly, over time we see this research agenda changing to match

breakthroughs and results. We also recognize a complementary need to

establish a transition component of the research program that will ensure that

successful results get packaged and transitioned to the DoD as quickly as

possible. The rest of this report is divided into two parts as follows:

Part I describes and justifies our ULS system research agenda.

Section 2: Characteristics of ULS Systems examines the consequences of

scale implied by ULS systems. It characterizes ULS systems as complex

systems that are significantly beyond the reach of the traditional engineering

paradigm of software development and provides the basis for understanding

the technical challenges that are inherent in these systems.

Section 3: Challenges in ULS Systems describes and analyzes the major

challenges posed by ULS systems.

Section 4: Overview of Research Areas presents seven major research areas

and underlying topics that hold promise for addressing ULS system

challenges, thereby filling the most important gaps in software knowledge

and capability at the scale needed for ULS systems.

9Ultra-Large-Scale Systems

The Software Challenge of the Future

Section 5: Summary and Recommendations shows how the proposed

research topics are related to needed DoD capabilities and outlines a path

forward for a substantive, long-term, funded ULS System Research

Program.

Part II provides more detailed information for technically

oriented readers.

Section 6: Detailed Description of Research Areas presents each research

area and research topic in detail.

We also provide a Glossary at the end of the report. Words and phrases that

are defined in the Glossary are formatted in bold-italic typeface when they

appear within the text.

10 Ultra-Large-Scale Systems

The Software Challenge of the Future

Ultra-Large-Scale Systems

The Software Challenge of the Future

11

2
Characteristics of
ULS Systems

There are characteristics of ULS systems that will arise because of their

scale. These characteristics undermine current, widely used, software

engineering approaches and provide the basis for the technical challenges

associated with ULS systems.

The primary characteristic of ULS systems is ultra-large size on any imagin-

able dimension—number of lines of code; number of people employing the

system for different purposes; amount of data stored, accessed, manipulated,

and refined; number of connections and interdependencies among software

components; number of hardware elements; etc. But to understand the nature

of ULS systems, we must go beyond just the concept of size; we must un-

derstand the effects of scale and the demands that ULS systems are likely to

place on technologies and processes. Issues that are not significant at smaller

scales become significant at ultra-large scales. The problems introduced by

scale require new solution approaches and new concepts of system design,

development, operation, and evolution. In short, scale changes everything.

ULS systems will have some characteristics in common with today’s systems

of systems (SoSs). Mark Maier9 has developed a list of characteristics that

distinguish large monolithic systems from systems of systems:

• operational independence of the elements: Component systems are

independently useful.

• managerial independence of the elements: Component systems are

acquired and operated independently; they maintain their existence

independent of the SoS.

• evolutionary development: The SoS is not created fully formed but

comes into existence gradually.

9 Maier, Mark W. Architecting Principles for Systems-of-Systems.

http://www.infoed.com/Open/PAPERS/systems.htm, 1996.

12 Ultra-Large-Scale Systems

The Software Challenge of the Future

2 Characteristics of ULS Systems

Introduction Characteristics Challenges Research Areas Recommendations

• emergent behavior: Behaviors of the SoS are not localized to any

component system. The principal purposes of the SoS are fulfilled by

these behaviors.

• geographic distribution: Components are so geographically distributed

that their interactions are limited primarily to information exchange

rather than exchanges of mass or energy.

Maier goes on to define different classes of systems of systems based on the

amount of management control that is possible. The class he calls “virtual”

systems of systems is closest to ULS systems:

Virtual systems lack a central management authority.

Indeed, they lack a centrally agreed upon purpose for

the system-of-systems. Large scale behavior emerges,

and may be desirable, but the supersystem must rely

upon relatively invisible mechanisms to maintain it.

Maier then cites the Web and national economies as examples

of virtual SoSs.

Maier’s definitions are useful for classifying systems but are not so useful

for understanding the underlying technical problems of ULS systems.

The characteristics of ULS systems that will arise because of their scale

are much more revealing. These characteristics are as follows:

• decentralization: The scale of ULS systems means that they will

necessarily be decentralized in a variety of ways—decentralized data,

development, evolution, and operational control.

• inherently conflicting, unknowable, and diverse requirements: ULS

systems will be developed and used by a wide variety of stakeholders

with unavoidably different, conflicting, complex, and changing needs.

• continuous evolution and deployment: There will be an increasing need

to integrate new capabilities into a ULS system while it is operating. New

and different capabilities will be deployed, and unused capabilities will

be dropped; the system will be evolving not in phases, but continuously.

• heterogeneous, inconsistent, and changing elements: A ULS system

will not be constructed from uniform parts: there will be some misfits,

especially as the system is extended and repaired.

13Ultra-Large-Scale Systems

The Software Challenge of the Future

• erosion of the people/system boundary: People will not just be users of

a ULS system; they will be elements of the system, affecting its overall

emergent behavior.

• normal failures: Software and hardware failures will be the norm rather

than the exception.

• new paradigms for acquisition and policy: The acquisition of a ULS

system will be simultaneous with the operation of the system and require

new methods for control.

Although these characteristics are not all independent and are already

evident in some of today’s largest systems, each implies a change in the

fundamental assumptions that underlie today’s software engineering

approaches. Each contributes to the complexity of bringing ULS systems

into existence, validating their behavior, and evolving their capabilities.

Each derives from the consequences of scale changing everything. In the

remainder of this section, we discuss each characteristic and the assumptions

that the characteristic undermines. Understanding how these assumptions

are undermined helps in understanding why ULS systems present new

challenges and underscores the need for new research.

2.1

Decentralized

Control

 The scale of ULS systems will allow only limited possibilities for centralized

or hierarchical control of data, development, evolution, and operation. Even

the limited amount of hierarchical control that is possible today for very

large systems will be challenged at the scale of ULS systems and likely

require different control models.

One of today’s assumptions undermined by this characteristic is the following:

All conflicts must be resolved and must be resolved uniformly. Today’s

systems are predicated on the idea that conflicts must be addressed and

resolved. We assume that there is a conflict-resolution process and an organi-

zation that makes decisions to be followed by other elements of the system.

The scale of ULS systems will make it impossible to resolve all conflicts and

to resolve conflicts centrally. In an ecosystem, there is no central authority

for resolving conflicts; other mechanisms serve this purpose. An ecosystem

characterization of ULS systems suggests that mechanisms will be in place

to resolve conflicts locally among those who have an immediate interest in

the issue. Moreover, if the same conflict arises elsewhere in the system, it

might be resolved differently. Today’s designers of large systems generally

do not consider the idea that they should tolerate conflicts or resolve the

same conflict differently at different times and places. They also do not

typically include procedures for determining which conflicts are of greatest

importance to global system viability; we have little understanding of what

organizational processes work best for this purpose.

14 Ultra-Large-Scale Systems

The Software Challenge of the Future

2 Characteristics of ULS Systems

Introduction Characteristics Challenges Research Areas Recommendations

2.2

Inherently Conflicting,

Unknowable, and

Diverse Requirements

 The scale and complexity of problems to be solved by ULS systems mean

that, in many cases, the requirements to be satisfied by the systems will not

be adequately known until the systems are in use. Even then, as the system is

put into operation, perceptions of the problem it is solving will change. Each

attempt at a solution will give a deeper understanding of what the problem

really is, leading to yet another attempt at a solution. Some problems ad-

dressed by ULS systems are likely to be so complex that there can be no fully

satisfactory solution; requirements will never really converge.

ULS systems, by their very size and nature, will be able to serve a wide

spectrum of purposes. The more a ULS system does, the more diversity and

conflict it is likely to engender. Moreover, integrating solutions across this

spectrum will likely require knowledge from several domains, and making

use of relevant cross-domain knowledge is difficult today.

Among today’s assumptions undermined by this characteristic

are the following:

• Requirements can be known in advance and change slowly as

experience with a system grows. We know that requirements for systems

today are never completely understood in advance of building and using

a system. Even so, most systems today are developed on the assumption

that key requirements are sufficiently well understood that if a system is

built to meet these requirements, it will be useful. But ULS systems are

likely to encounter so-called wicked problems10 in which requirements

are neither knowable in advance (because there is no agreement about

what the problem is) nor stable (because each solution changes the

problem, and no solution is considered to have “solved” the problem11).

In ULS systems, even more so than today, system development, opera-

tion, and usage will have to be based on a premise of continual change

and (re)negotiation of user needs.

• Tradeoff decisions will be stable. Because of the large number of ULS

system users, each having different goals, different tradeoffs in system

behavior may be appropriate for different groups of users, and even these

tradeoffs will change over time. For example, one group may place a

high value on fast response to certain types of queries, at a cost of having

an increased error rate; another group may value accuracy more than

responsiveness. It must be possible to configure the system as it appears

to specific groups of users so that both requirements can be met simul-

taneously. Although we sometimes give attention to the idea that certain

tradeoff decisions will have to be revised over the life of the system, we

10 Rittel, H. & Webber, M. “Dilemmas in a General Theory of Planning,” pp 155-169, Policy Sciences, Vol. 4, Elsevier

Scientific Publishing Company, Inc., Amsterdam, 1973; also http://en.wikipedia.org/wiki/Wicked_problems

11 “Wicked problems have incomplete, contradictory, and changing requirements; and solutions to them are often difficult

to recognize as such because of complex interdependencies.” http://en.wikipedia.org/wiki/Wicked_problems

15Ultra-Large-Scale Systems

The Software Challenge of the Future

do not generally build systems today with the idea that the system can be

readily reconfigured to support different tradeoffs for different users.

2.3

Continuous

Evolution and

Deployment

 Another consequence of size is that ULS systems will be in service for

a long time. Their size will make it impractical to replace or retire them.

Instead, like very large systems today, they will continuously evolve to meet

new and modified requirements and to incorporate new technologies. But

we envision a different type of evolution than is typical of today’s very large

systems. By evolution, we mean change that is guided and constrained by

rules and policies that allow local needs to be satisfied in local ways without

destroying the integrity and value of the overall system. The evolution of a

ULS system will be supported by different subgroups of stakeholders, each

subgroup seeking to achieve a solution that fits its own needs, but under the

guidance of general economic, technical, and political rules that limit the

impact (both positive and negative) of any given change.

One of today’s assumptions undermined by this characteristic

is the following:

System improvements are introduced at discrete intervals (build-use-

build). As with cities, ULS systems must continue to function despite

ongoing, simultaneous construction, repairs, improvements, and demolitions.

For cities, we have considerable experience in determining

how to make improvements without catastrophically interfering with the

needs of the inhabitants. For most systems today, we do not typically

allow different subgroups to make changes simultaneously. In ULS systems,

however, the introduction of concurrent changes will generally be neces-

sary because waiting to sequence all changes will unacceptably delay the

introduction of needed capabilities and problem fixes. A key issue will

be to know which changes can be made concurrently and which must be

coordinated.

16 Ultra-Large-Scale Systems

The Software Challenge of the Future

2 Characteristics of ULS Systems

Introduction Characteristics Challenges Research Areas Recommendations

2.4

Heterogeneous,

Inconsistent, and

Changing Elements

 The size of a ULS system also means that its elements (i.e., its hardware, its

software, its procedures and rules, its people, etc.) will be heterogeneous,

inconsistent, and changing.

Heterogeneous: Software elements will be heterogeneous in part because

they will come from a variety of sources. Parts of the system will be written

in different languages, tuned for different hardware/software platforms,

and designed according to different philosophies and methodologies. Many

software elements will originate in legacy systems, written long before the

first ULS system comes into existence. Some will be dynamically supplied

and assimilated. Many will be services that will be provided over the Internet.

A key aspect of ULS system design, construction, and evolution will entail

integrating and compensating for such heterogeneous elements and engineer-

ing perspectives.

Heterogeneity can also be a benefit. In heterogeneous systems, not all ele-

ments are equally vulnerable to failures or attacks.

Inconsistent: With software originating in different places and being created

and modified by dispersed teams with different schedules, processes, goals,

and stakeholders, a ULS system will necessarily be composed of different

versions of the same software elements, possibly with inconsistencies in their

design, implementation, and usage. The system will be used in unanticipated

ways, giving rise to conditions that were not considered when some of its

constituent parts were designed. Changes in usage patterns will stress the

system, leading to clashes of assumptions about how long operations take,

how much storage is available, or how much data can be processed by a

particular algorithm. Different stakeholders will have different expectations

of how the system is to perform.

Changing: Parts of the system will always be changing. The operating

environments will be changing as failed hardware is replaced, hardware and

software are upgraded (and sometimes downgraded), and configurations of

components are modified. Many changes in ULS systems will be dynamic to

adapt to evolving mission requirements and operating conditions. As a result,

the exact composition of a ULS system cannot be known when it is being

designed and may vary from moment to moment.

17Ultra-Large-Scale Systems

The Software Challenge of the Future

Among today’s assumptions undermined by this characteristic

are the following:

• The effect of a change can be predicted sufficiently well. When replac-

ing an element, we assume that we understand sufficiently well which

characteristics of the element are essential to the adequate functioning of

the system and which are inessential. Because of this knowledge, we can

make replacements that are not exactly identical (e.g., different vendor,

different code, different performance). The scale of a ULS system

increases the likelihood that some seemingly inessential difference

between the original and the replaced units will, at least occasionally,

have significant consequences. The system must be designed to limit the

effect of such unexpected consequences, at least when they are consid-

ered harmful.

• Configuration information is accurate and can be tightly controlled.

When considering the effect of changes on a system, today’s change

processes for smaller systems make the (mostly reasonable) assumption

that the configuration of the system is both known and knowable. In ULS

systems, configuration information will never be completely accurate,

and yet, despite the inaccuracies, changes must be installed effectively.

• Components and users are fairly homogeneous. In architecting and

implementing today’s systems, we begin by believing that we understand

the capabilities of users and how they will use the system. In ULS

systems, actual usage will drift from what was anticipated not just

because of normal human tendencies, but because of the scale and variety

of people involved with the system. Today we often start with the premise

that we can control the range of hardware and software components that

are employed over the life of the system. The scale of ULS systems will

make it more difficult to ensure that each element of the system is reason-

ably up to date in its software versions, hardware capabilities, etc. The

system design will have to take into account these kinds of disparities,

which are normally not considered today.

2.5

Erosion of the

People/System

Boundary

 People will not just be users of a ULS system: they will be part of its overall

behavior. In addition, the boundary between the system and user/developer

roles will blur. Just as people who maintain and modify a city sometimes also

live within the city, in a ULS system, sometimes a person will act in the role

of a traditional user, sometimes in a supporting role as a maintainer of system

health, and sometimes as a change agent adding and repairing the system’s

functions.

Considering people to be part of the ULS system means that as the system’s

configuration and computational capabilities change, processes and proce-

dures must be in place to help people understand how to accomplish their

18 Ultra-Large-Scale Systems

The Software Challenge of the Future

2 Characteristics of ULS Systems

Introduction Characteristics Challenges Research Areas Recommendations

current objectives and become aware of new possibilities. Equally, as the

pattern of usage by people changes (for example, if a large number of people

attempt some action more or less simultaneously), the system must have

procedures in place to adapt to the changed demand. This kind of interplay

will be needed because the size of the system and the number of changes

will require the provision of methods for adapting quickly to changes in

expectations and capabilities, whether these changes are on the people side

or the hardware/software side. Increasing reliance on machine learning for

adaptation could be exploited by adversaries. Therefore a ULS system must

also be skeptical as it learns how to adapt to new situations.

The law of large numbers and the size of ULS systems potentially allow for

analyses leading to types of improvement and adaptation that are not feasible

in smaller systems. For example, with a sufficiently large number of interac-

tions, the system can begin to gather data on observed regularities in people’s

behavior and begin to build statistically reliable models of what types of

services will be required. These opportunities arise from considering people

as integral elements of the overall system’s behavior. Although the behavior

of individuals can be difficult to predict in isolation, the behavior of large

groups is more amenable to analysis.

Among today’s assumptions undermined by this characteristic

are the following:

• People are just users of the system. For some aspects of a ULS system,

it will be impossible to understand or analyze the effects of the system

without giving full consideration to the behavior of people as elements

of it. The inclusion of human behavior in the analysis of overall system

function is not new, but, in ULS systems, it will become more imperative

than for today’s systems.

• The collective behavior of people is not of interest. When designing

and analyzing ULS systems, their scale means that the collective behavior

of groups of users and developers will be a significant factor in how the

system is used, viewed, and accepted.

• Social interactions are not relevant. Today’s emphasis in designing

information systems is on the technology—how to make the system

sufficiently fast, reliable, functional, etc. It is not often the case that a

socio-technical perspective is taken. In ULS systems, desirable emergent

behaviors will partly be a function of how groups of people make use of

the technology and how the technology supports group needs. Failure to

take into account the conventions that govern people’s behaviors, failure

to take into account the benefits and problems associated with the actions

of masses of people, and failure to treat people as a part of the system

would be a mistake.

19Ultra-Large-Scale Systems

The Software Challenge of the Future

2.6

Normal Failures

 Because the physical underpinnings of a ULS system will be vast, hardware

failures will no longer be an exception. And because software components

will be stressed beyond their designed-for capabilities, software may also

behave in undesirable ways. Moreover, even when defects are low, frequency

of use may result in a continuing, low-level occurrence of failure events

somewhere in the system. For example, if a file transfer protocol fails once in

a million uses but the transfer protocol is used a million times a day, a failure

will occur, on average, once a day. We can expect that, with ULS systems,

unusual situations and boundary conditions will occur often enough that

something will always be failing.

Because of the scale of ULS systems, they must be designed to cope with

failures (of various kinds) as a continuous problem. This realization may

sound daunting or pessimistic, but we are familiar with this effect in our

everyday lives. In a large city, there will be an occasional fire, crime, or

accident often enough that it is worth having fire, police, and ambulance ser-

vices. But the occurrence of fires, crimes, or accidents in any given building

is sufficiently rare that we don’t have these services for each building. We

know that these problems are inevitable, so we can make them a part of the

community infrastructure. Similarly, in ULS systems, the types of failures

that occur infrequently in smaller scale systems will occur frequently enough

that the ULS system will have to support special capabilities for dealing with

them on a regular basis. This means not just designing systems to cope with

the consequences of such failures, but designing them to contain the effects

of failures and, to the extent possible, to give warnings before the failures

occur or have a widespread impact.

Among today’s assumptions undermined by this characteristic are the

following:

• Failures will occur infrequently. The scale of ULS systems can increase

the number of failures per unit of time—as system usage and size

increase, certain types of failure will be “normal.” ULS systems must be

designed to limit how much of the ULS system’s behavior is affected by

failure.

• Defects can be removed. Much of software engineering is devoted to

the prevention and detection of defects; yet in very large systems, it is

impossible to be sure that all defects have been removed, and, in practice,

more often than not, systems are shipped and used despite the presence

of defects. ULS system design must pay more attention to fault tolerance

than is typically paid (except for high-assurance systems). In addition,

ULS systems, because of their scale, will almost certainly introduce new

types of faults that will require new fault-tolerance strategies.

20 Ultra-Large-Scale Systems

The Software Challenge of the Future

2 Characteristics of ULS Systems

Introduction Characteristics Challenges Research Areas Recommendations

2.7

New Paradigms

for Acquisition and

Policy

 Because of its size, those responsible for making a ULS system possible

(managers, acquirers, developers, suppliers, legislators, etc.) will be unable to

comprehensively define and control uncertain and ever-changing stakeholder

requirements. Any requirement for centralized, global control over changes

cannot possibly take all these different purposes into account, manage them

efficiently, or allow for rapid changes in response to immediate needs. A

successful ULS system must have the ability to develop organically. Our

vision is not unbridled anarchy: as in cities, there will be rules, regulations,

zoning laws, governing officials, and enforcement personnel to keep things

going, allowing citizens to adapt to meet local needs while maintaining a

viable overall structure.

The size of ULS systems will present a challenge to managers. If the actual

needs of system stakeholders can never be fully anticipated, the entire

contracting, design, and construction process—no matter how closely man-

aged for quality control—will all too often result in systems that fail to meet

users’ expectations and needs.

One of today’s assumptions undermined by this characteristic

is the following:

A prime contractor is responsible for system development, operation,

and evolution. The centralized control implied by the usual prime-contractor

model is incompatible with ULS systems. For example, there is no prime

contractor in charge of the development, operation, and evolution of the

Internet, although there are organizations that have responsibility for some

portions of Internet capability. Despite this decentralized approach, the

Internet has evolved successfully. Of course, there is a certain amount of

centralization with respect to the development and evolution of interface

standards, but much of the development, operation, and evolution of Internet

services and core capabilities does not follow a prime-contractor model.

2.8

Summary

 Although today’s systems have some of the characteristics identified in

this section, what will distinguish ULS systems is that they will have all

of these characteristics. Consequently, as we have noted above, many key

assumptions we make today will be undermined: these systems will surpass

the thresholds at which today’s approaches will work even nominally.

To understand the challenges posed by ULS systems, we will need to

look at them differently, not just as systems or systems of systems, but as

socio-technical ecosystems: socio-technical because they are composed of

people and technology interacting in complex ways, and ecosystem because

characterizing them in this way will give us the richest understanding of the

technical and management problems that will be encountered when building,

operating, and developing them.

Ultra-Large-Scale Systems

The Software Challenge of the Future

21

3
Challenges In
ULS Systems

Section 2 described how the characteristics of ULS systems challenge the

fundamental assumptions of today’s software developers and acquirers. It is

clear that today’s approaches to defining, developing, deploying, operating,

acquiring, and evolving software-intensive systems will not suffice. The

success of ULS systems and the achievement of the missions that they are

intended to support depend on the development of new capabilities. If we

characterize ULS systems as cities or socio-technical ecosystems, we find

that current knowledge and practices are geared toward creating individual

buildings or species. What we lack is a scientific understanding of, and

adequate methods and technologies for, effectively developing software-

intensive systems on the scale of whole cities or ecosystems. These gaps in

knowledge and capability are strategic, not tactical. They are unlikely to be

addressed adequately by incremental research within established categories.

Rather, we need to develop a broad new conception of both the nature of

such systems and new ideas for how to develop them. Understanding the

demands that ULS systems will make is key to defining the research that is

needed for new solutions.

The challenges that we will face in developing ULS systems are organized in

three broad areas:

1. Design and Evolution

2. Orchestration and Control

3. Monitoring and Assessment

22 Ultra-Large-Scale Systems

The Software Challenge of the Future

3 Challenges in ULS Systems

Introduction Characteristics Challenges Research Areas Recommendations

3.1

Design and

Evolution

 How do we systematically address the socio-

technical ecosystem characteristics of ULS

systems? How do we design the ecosystem

infrastructure, which includes the services

provided by and to the participants in the

system, the rules (both formal and social)

guiding their behavior, the acquisition

practices, the supply-chain infrastructure,

economic issues, etc.? How do we design the organizational processes

responsible for producing and continually updating the designs of ULS

system components and integration schemes?

The scale of complexity and uncertainty in ULS system design will be so

great as to resist treatment by traditional development methods, which are

characterized by centralized control (true even of decentralized methods

such as open-source development) and by the testing of a small number

of hypotheses about what constitutes a good solution. The challenge will

be to find new ways to harness and coordinate the design capabilities and

motivations not just of individual companies, prime contractors, and supply

chains, but of whole industries, within which competition for value will

drive much richer and more economical exploration of complex design

spaces. Developing and evolving architectures around which industries will

organize presents challenges that we are not equipped to understand today.

Maintaining the conceptual integrity of system designs in the context of

such decentralized design activities spread across the economy will present

challenges to current knowledge, tools, and methods. The design of the

industrial ecosystems, including incentive structures and sources of value

(including procurement practices) that drive them, requires new thinking and

integrative research across numerous disciplines. We need a new science to

support the design of all levels of the systems that will eventually produce

the ULS systems we can envision, but not implement effectively, today.

ULS systems will be deeply embedded in the real world. These systems

will comprise not only information technology (IT) components, but

also machines of many kinds, individuals and teams, diverse sensors,

information streams and stores (including verbal and non-verbal human

communications), and so forth. We have traditionally viewed software

as programming the computer components of such systems. We face a

challenge in understanding and designing software in a new way: as the

programming of all of the information-processing mechanisms and

behaviors of complex ULS systems.

23Ultra-Large-Scale Systems

The Software Challenge of the Future

The characterization of systems as information-processing mechanisms

is not new; it dates back at least to Wiener’s concept of cybernetics. 12

However, recent developments in areas such as computer science and

distributed cognition put us in a position to reconsider how information

is processed in truly complex systems and to design their underlying

information processes to make them sentient, adaptive, and effective in

performing complex missions.

Finally, adding new capabilities to our systems today is a laborious process

of redesign and reengineering. ULS systems will require internal infrastruc-

ture and mechanisms to facilitate the development and introduction of such

improvements whether they are initiated by system designers, implementers,

and operators or the users and computational elements interior to the ULS

system. New theories of ULS system evolution will help to provide the rules

and mechanisms needed to facilitate effective evolution of these systems, but

the challenges in accomplishing this exceed our current change-management

research and practice.

Listed below is a sample of specific challenges in ULS system design

and evolution. Each one can be mapped to the characteristics described in

Section 2. For example, economics and industry structure deals with how to

align the structure of systems with industry elements and economic forces to

discover and meet key ULS requirements. This challenge relates to the de-

centralization and new paradigms for acquisition and policy characteristics;

the issue is how to engage industrial partners in developing and evolving

ULS systems when a different acquisition and management control model is

needed. It relates to the characteristics of inherently conflicting, unknowable,

and diverse requirements and heterogeneous, inconsistent, and changing ele-

ments because these factors affect how the contractual mechanisms will have

to work. The normal failures characteristic affects the acceptance criteria for

contractor work.

• economics and industry structure: How do we align design architec-

tures13 and industry structures to harness economic forces in the service

of discovering and meeting key requirements?

• social activity for constructing computational environments:

How do we model interaction with a social context in a way that offers

guidance for how to design and support ULS systems?

12 Norbert Wiener (1894-1964): Wiener’s work before and during World War II led to the publishing of Cybernetics, or

Control and Communication in the Animal and Machine in 1948. In it, he described a new way of looking at how the

world functioned based on his research on the way in which information is transmitted and processed. He saw a world

that focused on information, not energy and on digital or numeric processes, not machine or analog processes.

13 By design architecture we mean a set of decisions that partitions the task of producing the complete design for a

system into a set of largely separable subtasks.

24 Ultra-Large-Scale Systems

The Software Challenge of the Future

3 Challenges in ULS Systems

Introduction Characteristics Challenges Research Areas Recommendations

• legal issues: How will we resolve the legal issues that would today

prevent a ULS system from achieving its full potential? These issues

include licensing, intellectual property, and liability concerns that

arise due to the size and complexity of a ULS system that is developed

under multiple authorities. How will legal policies (e.g., regarding the

certification of security- and safety-critical components) adapt (if at all)

to the characteristics of ULS systems (e.g., to self-reconfigurability as a

pervasive technical characteristic)?

• enforcement mechanisms and processes: How do we create enforce-

ment mechanisms for the set of (legal, design, and process) rules that

support and maintain the integrity of the system? What structures are

required to negotiate exceptions to the rules so that the ULS system can

be adaptable without affecting its long-term sustainment?

• definition of common services supporting the ULS system: How

do we define an infrastructure (a set of technological, legal, and social

services) that will be common to many elements of the ULS system?

• rules and regulations: How will whole industries come together to

agree on rules and regulations to ensure overall coherence and quality

while still being sufficiently flexible to permit stakeholders to explore and

compete within rich design spaces?

• agility: How can the groups responsible for ULS development, mainte-

nance, and evolution be kept sufficiently agile to respond effectively to

changes in requirements, system configuration, system environment, etc.?

• handling of change: How can the processes for developing, maintaining,

and evolving a ULS system be adapted to handle in situ design change

and evolution rather than relying on static requirements preceding design

and implementation?

• integration: How can we minimize the effort needed to integrate

components built independently by different teams, with different goals,

and at different times to create the current system?

• user-controlled evolution: How do we provide components and

composition rules that give users the ability to create new, unplanned

capabilities?

• computer-supported evolution: How do we provide automated

methods to evolve ULS systems?

• adaptable structure: How do we create designs that are effective even as

requirements and the ULS environment change continually?

• emergent quality: How do we organize processes for producing ULS

systems so that they converge on high-quality designs?

25Ultra-Large-Scale Systems

The Software Challenge of the Future

3.2

Orchestration and

Control

 By orchestration we mean the set of activities needed to make the ele-

ments of a ULS system work in reasonable harmony to ensure continuous

satisfaction of the mission objectives. Orchestration involves management

and administration but at a scale well beyond that of traditional, centralized,

relatively fine-grained controls. Orchestration requires a combination of

up-front design, overall policy promulgation and enforcement, and real-time

adjustment of operating parameters.

Orchestrating a ULS system requires supporting interdependencies and

controlling the consequences of local actions with respect to their effect on

the emergent whole, even though each part of a system might be acting to

maximize its local utility. In a city, for example, when different groups want

more services than can be provided, there are procedures for deciding what

gets provided and to whom. The city governance authorities do not control the

actions of individual citizens, but they do specify general rules of behavior

that are intended to minimize unnecessary conflict, disruption, or uneconomic

use of city resources. Similarly, the policies and inherent capabilities that

constrain the interactions of the participants in a ULS ecosystem create a

framework for the long-term viability and adaptability of a ULS system in a

world of changing missions, deployments, and required functionality.

Orchestration is needed at all levels of ULS systems. At one level, the

activities of otherwise autonomous companies developing key technologies

for ULS systems will need to be orchestrated. At another level, the behaviors

of a ULS system in operation will need to allocate resources in real time to

satisfy real-time mission objectives. At the highest level, orchestration could

both affect and be driven by doctrine, policy, appropriations, and procure-

ment practices.

This style of system management is fundamentally different from the way

we manage systems today. To succeed in developing and operating ULS

systems, we thus need new knowledge, technologies, and methods in the

following areas:

• online modification: How can necessary adjustments to a system be

made while the system is running, with minimal disturbance to user

services; how can the changes be propagated throughout the system when

necessary?

• maintenance of quality of service: How can the overall quality of

service be maintained while enabling the flexibility to provide different

levels of service to different groups?

• creation and execution of policies and rules: What policies and rules

lead to effective solutions despite divergent viewpoints of stakeholders?

How are such rules and policies created? How are they executed?

26 Ultra-Large-Scale Systems

The Software Challenge of the Future

3 Challenges in ULS Systems

Introduction Characteristics Challenges Research Areas Recommendations

• adaptation to users and contexts: How can the needs of users and

stakeholders be discovered and understood; how can those needs be

translated into execution-time modifications and adaptations? How can

the context—both the user’s context and the physical context—be sensed,

captured, and translated into adaptations?

• enabling of user-controlled orchestration: How do we provide com-

ponents and composition rules that give users the ability to adapt and

customize portions of the system in the field?

 3.3

Monitoring and

Assessment

 The effectiveness of ULS system design, evolution, and orchestration

has to be evaluated. There must be an ability to monitor and assess ULS

system state, behavior, and overall health and well being. The monitoring

and assessment of complex systems, and subsequent adjustment of system

parameters, is not a new idea. In a city, for example, sensors collect informa-

tion about traffic conditions, and this information is then distributed to those

to whom it is relevant, allowing people to select alternate routes around

traffic jams, for example. In complex telecommunication, transportation,

and electrical distribution networks, continuous measurements are made of

system configuration, resource usage and demand, system and component

failure status, etc. Measurements are taken by monitoring embedded sensors.

Assessment activities then determine what the measurements mean, such

as by simulating the future health of the system or determining the need for

control or orchestration actions.

The criteria for success or overall health are different for ULS systems than

for smaller systems designed to accomplish a task that does not change as

the system is used. For example, consider criteria for the success of a city.

Different criteria are used by the governing bodies, different groups of

citizens, etc. If the power fails in one part of the city, the rest of the city may

not be overly inconvenienced, at least as long as the power failure does not

last too long, impair some critical facility, or happen too often. Because a

city provides distributed services to different groups of people, its success in

delivering services will depend in part on the expectations and needs of each

group and in part on the qualities of the delivered service. Understanding

such criteria is a critical aspect of the monitoring and assessment of a ULS

system.

The primary approach today to system monitoring and assessment is through

the use of metrics. We characterize the quality or functionality of a system

by a set of metrics captured at critical probe points defined for the system’s

constituent components and networks. This is far from adequate for ULS

systems. Our current measurement science is analogous to a small set of tests,

each like a specific X-ray or MRI scan for a broken bone, whereas we need

ensemble indicators of a ULS system’s overall health, fitness, and well being.

27Ultra-Large-Scale Systems

The Software Challenge of the Future

The scale, decentralization, distribution, and heterogeneity of ULS systems

will present challenges to effective monitoring and assessment. Among other

things, it is likely that some ULS system indicators should be statistical,

composite measures of a system’s overall state—akin to the gross domestic

product or to measuring climate change by estimates such as the net loss or

gain of ice mass. To maintain a ULS system at a set of reasonable expecta-

tions, to influence the direction of its evolution, and to assess and predict its

overall quality and effective functionality, we will need to augment current

measurement approaches with additional new theories and practices. Finally,

because ULS systems are socio-technical systems with people as partici-

pants, ULS system indicators must reflect the conditions not only of the

technological but also the human, organizational, economic, and business

elements of the system.

Examples of challenges associated with monitoring and assessment are the

following:

• defining the indicators: What system-wide, end-to-end, and local qual-

ity-of-service indicators are relevant to meeting user needs and ensuring

the long-term viability of the ULS system?

• understanding why indicators change: What adjustments or changes

to system elements and interconnections will improve or degrade these

indicators?

• prioritizing the indicators: Which indicators should be examined under

what conditions? Are indicators ordered by generality, so that some give

an overall health reading of the system while others are specialized to

particular diagnostics?

• handling change and imperfect information: How do the monitoring

and assessment processes handle continual changes to components,

services, usage, connectivity, etc? Note that imperfect information can be

inaccurate, stale, or imprecise.

• gauging the human elements: What are the indicators of the health and

performance of the people, business, and organizational elements of the

ULS system?

28 Ultra-Large-Scale Systems

The Software Challenge of the Future

Ultra-Large-Scale Systems

The Software Challenge of the Future

29

4
Overview of
Research Areas

We introduce an interdisciplinary portfolio of seven research areas that

address the three challenge categories of ULS system design evolution,

orchestration and control, and monitoring and assessment. Because the

characteristics of ULS systems fundamentally undermine the assumptions of

today’s approaches, breakthrough research is necessary in all three areas to

meet the current, near-term, and long-term needs of ULS systems. Because

of the ecosystem nature of ULS systems, we must take a more expansive

view of software research and include its interactions with associated

research in the physical and social sciences. The seven research areas are the

following:

Human Interaction: Understanding ULS system behavior will depend on

the view that humans are elements of a socially constituted computational

process. This research involves anthropologists, sociologists, and social

scientists conducting detailed socio-technical analyses of user interactions

in the field, with the goal of understanding how to construct and evolve such

socio-technical systems effectively.

Computational Emergence: Some aspects of ULS systems will be

“programmed” by properly incentivizing and constraining behavior rather

than by explicitly prescribing. This research area explores the use of methods

and tools based on economics and game theory (e.g., mechanism design)

to ensure globally optimal ULS system behavior by exploiting the strategic

self-interests of the system’s constituencies. This research area also includes

exploring metaheuristics and digital evolution to augment the cognitive

limits of human designers, so they can manage ongoing ULS system adapta-

tion more effectively.

30 Ultra-Large-Scale Systems

The Software Challenge of the Future

4 Overview of Research Areas

Introduction Characteristics Challenges Research Areas Recommendations

Design: This research area broadens the traditional technology-centric

definition of design to include people and organizations; social, cognitive,

and economic considerations; and design structures such as design rules

and government policies. It involves research in support of designing ULS

systems from all of these points of view and at many levels of abstraction,

from the hardware to the software to the people and organizations in which

they work.

Computational Engineering: ULS systems will be defined in many

languages, each with its own abstractions and semantic structures. This

research area focuses on evolving the expressiveness of representations

to accommodate this semantic diversity. Because the complexity of ULS

systems will challenge human comprehension, this area also focuses on

providing automated support for computing the behavior of components and

their compositions in systems and for maintaining desired properties as ULS

systems evolve.

Adaptive System Infrastructure: This research area investigates integrated

development environments and runtime platforms that support the decen-

tralized nature of ULS systems. This research also focuses on technologies,

methods, and theories that will enable ULS systems to be developed in their

deployment environments.

Adaptable and Predictable System Quality: Managing traditional

qualities such as security, performance, reliability, and usability is necessary

but not sufficient to meet the challenges of ULS systems. This research

area focuses on how to maintain quality in a ULS system in the face of

continuous change, ongoing failures, and attacks. It also includes identify-

ing, predicting, and controlling new indicators of system health (akin to the

U. S. gross domestic product) that are needed because of the scale of ULS

systems.

Policy, Acquisition, and Management: This research area focuses on

transforming acquisition policies and processes to accommodate the rapid

and continuous evolution of ULS systems by treating suppliers and supply

chains as intrinsic and essential components of a ULS system.

31Ultra-Large-Scale Systems

The Software Challenge of the Future

While this collection of research areas is not exhaustive, it represents the

spectrum of research that is needed for designing, deploying, and manag-

ing systems as they evolve toward ultra-large scale. Table 1 shows the

relationship between the seven research areas described and the challenges

described in Section 3. Meeting these challenges requires a wide spectrum

of research in a variety of disciplines beyond computer science and software

engineering, an expansion of our computational foundations, and perhaps

even new foundations. A dot in the following table indicates that the research

area addresses a portion of the indicated challenge.

Table 1: Relationship Between Research Areas and Challenges

Research Areas
Design and
Evolution

Orchestration and
Control

Monitoring and
Assessment

Human Interaction

Computational
Emergence

Design

Computational
Engineering

Adaptive System
Infrastructure

Adaptable and Predictable
System Quality

Policy, Acquisition, and
Management

The remainder of this section elaborates on Table 1 by explaining how

each research area addresses one or more of the challenges presented in

Section 3. Detailed descriptions of the research areas as well as their

associated research topics are presented in Part II of this report.

4.1

Human Interaction

 Research in the area of Human Interaction addresses some of the

challenges in Design and Evolution and Orchestration and Control.

Relevance to Design and Evolution. People are key participants in ULS

systems. Many problems in complex systems today stem from failures at the

individual and organizational level. We therefore need research on user-

centered specifications and on Modeling Users and User Communities.14

At the heart of this research are empirical methods, such as those used in

ethnography, sociology, cognitive and brain science, and anthropology.

14 Bold formatting indicates that this research topic is described in detail in Part II, Section 6 and referred

to in the tables in Section 5.

32 Ultra-Large-Scale Systems

The Software Challenge of the Future

4 Overview of Research Areas

Introduction Characteristics Challenges Research Areas Recommendations

While some models of human interaction are inspired primarily by economic

factors and competitive forces to drive improvements, research is needed

to understand other models, such as open source, that involve Fostering

Non-Competitive Social Collaboration. In these models, pure self-interest

is supplanted by altruistic motivations and the desire to be perceived as pro-

ductive and intelligent. Since ULS systems will outlast specific people and

organizations, ULS system Longevity requires research in the organizational

structures needed to ensure consistency and robustness as management,

personnel, and strategies change over time.

Relevance to Orchestration and Control. Research is also needed in

Context-Aware Assistive Computing to model and develop accurate and

robust sensing, filtering, aggregation, and visualization capabilities directed

at operating ULS systems. These models will help people by significantly

reducing inessential distractions and demands on their attention and

anticipating their needs while they orchestrate and use ULS systems.

Research in these areas also involves Understanding Users and Their

Contexts to develop models of human expectations in varying contexts and

create techniques to represent and automatically adjust those models based

on experience.

4.2

Computational

Emergence

 Research in the area of Computational Emergence addresses some of the

challenges in Design and Evolution and Orchestration and Control.

Relevance to Design and Evolution. ULS systems will often lack a central

locus of operational or institutional control. They must therefore satisfy the

needs of participants at multiple levels of organization (i.e., from individual

components and users to whole institutions). It cannot always be assumed

that all participants will participate altruistically for the good of the entire

system. In many cases, participants will instead behave opportunistically to

meet their own mission requirements, irrespective of the goals and objectives

of other participants. Economic and game-theoretic mechanism designs and

related approaches may play an important role in achieving globally optimal

behavior precisely because they assume the strategic self-interested behavior

of key stakeholders and constituencies. Algorithmic Mechanism Design

puts mechanism design into a computational setting by using computers

to design mechanisms and using mechanisms to control computing. As the

design challenges of ULS systems exceed the capabilities of human design-

ers, we will increasingly depend on computational support for software and

system design in much the same way as we employ model checking and

automated layout packages to aid hardware design. While mechanism design

is a well-established field in its own right, we need fundamental research

to apply the theory to ULS systems (e.g., to steer emergent behavior in

desired directions).

33Ultra-Large-Scale Systems

The Software Challenge of the Future

While mechanism designs provide optimal solutions at particular instants,

they do not address the needs of their users at all times across the lifespan of

these systems. Breakthroughs in Metaheuristics in Software Engineering

and Digital Evolution would offer promising means to cope with pressures

that inevitably require ULS systems to adapt to new environments and

circumstances, including new policies, missions, and mechanisms. Mapping

software engineering problems into metaheuristic problems and creating

objective functions and mutator functions for metaheuristic approaches

are research topics in this area. Judiciously used, digital evolution can

substantially augment the cognitive limits of human designers and can find

novel (possibly counterintuitive) solutions to complex ULS system design

problems.

While mechanism designs, digital evolution, and adaptive systems may

be constrained to relatively narrow scopes in early phases of ULS systems

research, they all enlist the use of computational resources to solve

important ULS system-design and evolution challenges. They also highlight

a future in which synergy is achieved between digital and human participants

in ULS systems.

Relevance to Orchestration and Control. Evolution in ULS systems

will rarely occur in discrete, planned steps in a closed environment; instead

it will be continuous and dynamic. The rules for continuous evolution

must therefore be built into ULS systems and their supporting platforms,

processes, and tools so that they will be largely self-reliant and able to cope

with dynamically changing environments without constant human interven-

tion. Achieving this goal requires research on in situ control, reflection,

and adaptation to ensure continuous adherence to system functional and

quality-of-service policies in the context of rapidly changing operational

demands and resource availability.

4.3

Design

 Research in the area of Design addresses some of the challenges in

Design and Evolution.

Relevance to Design and Evolution. Fundamental to the design and

evolution of ULS systems will be explicit attention to design across logical,

spatial, physical, organizational, social, cognitive, economic, and other

aspects of the system. Attention to design is also needed across levels

of abstraction involving hardware and software and involving procurers,

acquirers, producers, integrators, trainers, and users. A key area of research

in design is therefore the need for Design of All Levels of ULS systems.

Research in design includes formulating the architectural designs of ULS

systems in terms of Design Spaces and Design Rules: design rules that

34 Ultra-Large-Scale Systems

The Software Challenge of the Future

4 Overview of Research Areas

Introduction Characteristics Challenges Research Areas Recommendations

structure design artifacts and design spaces around which decentralized

design activities—and even whole industry structures—may come to be

organized. Design rules generalize from traditional interface specifications

to structure design artifacts using a much broader concept of constraints

that serve to regulate decentralized design processes, largely to assure that

component parts will integrate into systems having specified properties.

We need research on designing, representing, and analyzing design spaces

and on the means by which design rules are created, validated, and changed.

The overall design activity—in some cases carried out across entire industry

sectors, including open-source projects, university projects, and individual

contributions—then acts as a complex adaptive system, strongly driven to

converge economically15 on, and to maintain, good designs. Today we have

few tested theories or practices of designing ULS systems for economic

value or of how to establish economic forces that promote good design, such

as through new contracting and acquisition structures. We therefore need

research on Harnessing Economics to Promote Good Design leading to

a deeper understanding of how to organize designs and design activities to

maximize value and on how to create economic conditions that predictably

provide incentives to create and sustain valuable designs.

Operational ULS systems will also behave as complex adaptive systems in

which feedback and control are essential to meet user and mission objectives.

We therefore need research to understand how to decentralize design activi-

ties so that they are responsive to feedback from deployed running systems.

Since ULS systems will serve different classes of users with distinct and

often conflicting interests, research is needed on Design Representation and

Analysis and reconciliation of distinct and competing interests, both offline

and online and at various levels up and down echelons.

Today’s large-scale systems are often characterized by attempts to leverage

components that were not designed to work together or that are inconsistent

with the design rules of the system architecture in which they are inserted.

The success of ULS systems will depend on significant progress being made

on ULS system Assimilation, where nonconformant components (often with

less than adequate reliability) are assimilated into architecturally coherent and

robust ULS systems. This research will focus on developing techniques that

enable analyzing, modeling, fortifying, and evolving large legacy code bases;

working with diverse data; and integrating diverse, uncertain, and unreliable

information sources into a coherent operational picture.

15 Economic concerns also include the systems of value used by open-source communities, university projects, and

individual efforts. These concerns might not all be monetary value systems, but they all result in forces that promote

improvement of the designs.

35Ultra-Large-Scale Systems

The Software Challenge of the Future

ULS systems will exacerbate today’s problems in Determining and

Managing Requirements due to the scope of application domains that

exceed limits of human intellectual capabilities, the complexity and

fragmentation of socio-economic processes and organizations that are highly

decentralized and autonomous, and the sheer complexity of the problems

being addressed. Analysis and design methods must accommodate pervasive

incompleteness, imperfection, uncertainty, and nondeterminacy in the

products and processes that arise throughout the system’s development and

evolution. We need research on ULS system-requirements topics, such as the

basics of requirements gathering, conflict management, ambiguity tolerance,

and requirements phaseout.

4.4

Computational

Engineering

 Research in the area of Computational Engineering addresses some of the

challenges in Design and Evolution.

Relevance to Design and Evolution. ULS systems will require new

approaches to intellectual control for developers and users with different

backgrounds and objectives. Research on Expressive Representation

Languages, more comprehensive programming and abstraction mecha-

nisms, and more powerful capabilities for modularity and composition

will be required. In addition, we need new techniques to support the rich

semantic web that exists among artifacts that will make up ULS systems,

including policies, specifications, designs, implementations, documentation,

legacy code, and many others.

Because ULS systems will be highly decentralized, they will depend heavily

on trusted core components and standards throughout their architectures.

While complete upfront specification of ULS systems will be impractical, an

important subset of trusted components and standards will require compre-

hensive specification to support extremely rigorous validation, verification,

and certification. We need research to define ULS-capable Scaled-Up

Specification, Verification, and Certification technologies. Research is

also needed to understand how model-based, aspect-oriented, and other

generative methods can help satisfy stringent certifiability and reliability

requirements.

The design and construction of ULS systems will benefit from scaling up the

granularity of reliable engineering artifacts. A billion-line system becomes

a million-unit system if the reliable unit of construction is a component of

a thousand lines and becomes a ten-unit or hundred-unit system if hundred-

thousand-line or ten-thousand-line subsystems, respectively, can be reliably

built from reliable thousand-line components. Fast and correct development

of such large components will require automation of the computational anal-

36 Ultra-Large-Scale Systems

The Software Challenge of the Future

4 Overview of Research Areas

Introduction Characteristics Challenges Research Areas Recommendations

ysis and verification of ULS system specifications, architectures, designs,

and implementations at a level of precision not possible today. We therefore

need research on scientific foundations in support of Computational

Engineering for Analysis and Design to compute the behavior and quality

attributes defined by programs and their associated specification and design

artifacts. This research is also required for automated composition of compo-

nents in highly decentralized and distributed architectures. In addition, as

ULS systems evolve and adapt to changing operating conditions, we must

develop methods for automated computation and maintenance of correct

definitions of system behavior.

4.5

Adaptive System

Infrastructure

 Research in the area of Adaptive System Infrastructure addresses some

of the challenges in Orchestration and Control and Monitoring and

Assessment.

Relevance to Orchestration and Control. Today’s software-development

and deployment environments are oriented toward traditional software-devel-

opment practices that produce and execute software artifacts and centralize

activities in a single organization or with central points of control, as in

traditional prime/subcontractor structures and open-source development.

ULS systems, in contrast, face a broader set of issues:

• Development, deployment, and operational activities will be more

integrated and overlapping in ULS systems.

• ULS systems will have many concurrent information flows and will be

produced by decentralized design processes.

• Deployment environments that span organizational boundaries will

require development environments to assure security and privacy.

• Because of the blurring of the distinction between design time and

runtime, ULS systems will increasingly be developed in situ.

These characteristics of ULS systems imply the need for research in

Decentralized Production Management, including

• investigation of multi-team, multi-organization interoperability;

• new approaches to multi-institution security; and

• coordinated system testing throughout all the software life-cycle phases

(as opposed to waiting until system integration).

37Ultra-Large-Scale Systems

The Software Challenge of the Future

Since ULS systems will increasingly be developed in situ in the deployment

environment, research is needed on Evolutionary Configuration and

Deployment, which entails

• investigating mechanisms for maintaining the desired degree of trustworthi-

ness in deployment configurations when applications use both trusted and

untrusted components;

• analyzing the effects of intended changes and propagating changes auto-

matically and robustly into the set of known alternatives without negatively

affecting the system’s quality of service;

• supporting the coexistence and interoperability between different deploy-

ment configurations; and

• automatic rollover to new configurations, monitoring of the operations

of these new configurations against expectations, and rollback to proven

configurations.

ULS systems will have to respond to emergent behavior on the part of the users

and the environments in which the system is situated. As a consequence, ULS

systems must be able to observe their own operations, recognize acceptable and

unacceptable behaviors, and take corrective action with little or no operator

intervention. These adaptations must occur dependably to achieve a balanced

level of quality for ULS system participants. Achieving these goals requires

research in In Situ Control and Adaptation, which focuses on control-theo-

retic techniques, decentralized resource-management algorithms, predictable

reconfiguration, and reflection mechanisms with predictable effects on quality

of service and mechanisms for policy-driven configuration migration.

Relevance to Monitoring and Assessment. To enable automated analysis of

system properties and synthesis of many implementation details, new tools

and platforms are needed to specify modifications at the appropriate level of

abstraction. We therefore need research on View-Based Evolution, which

involves instrumenting the system to update views automatically, navigating

among views, controlling execution instrumentation and monitoring, and

combining human state with computational state.

38 Ultra-Large-Scale Systems

The Software Challenge of the Future

4 Overview of Research Areas

Introduction Characteristics Challenges Research Areas Recommendations

4.6

Adaptable and

Predictable System

Quality

 Research in the area of Adaptable and Predictable System Quality

addresses some of the challenges in Orchestration and Control,

Monitoring and Assessment, and Design and Evolution.

Relevance to Orchestration and Control. ULS systems will be long

running and must operate robustly in environments fraught with failures,

overloads, and attacks. Moreover, ULS systems must maintain robustness in

the presence of adaptations that are not centrally controlled or authorized,

and which in some cases may be initiated by the systems themselves

rather than by human operators. Research is needed to develop theories of

Robustness, Adaptation, and Quality Attributes, along with supporting

mechanisms that accommodate both the traditional concepts of instantaneous

robustness and the time-sequenced concept of robustness that arises from the

decentralized, adaptive, and long-lived nature of ULS systems. This research

includes seeking to uncover signals in development processes (e.g., numbers

of reported adaptations) and runtime processes (e.g., system dynamics) that

predict impending points of instability and studying robustness mechanisms

arising in naturally robust systems.

Some degree of system failures (hardware and software) will be intrinsic

to ULS systems. For example, at any given moment, some portion of the

Internet is in failure mode. It is inevitable that ULS systems will be tempting

targets of attack for capable and motivated adversaries seeking tactical and

strategic advantages. We have difficulty achieving high levels of security

even for the state-of-the-art systems of systems today. To ensure acceptably

high, measurable levels of Security, Trust, and Resiliency for ULS systems,

research is required in the following topics: security, trust, and resiliency

measures and metrics; attack detection; attack containment; graceful

degradation under attack; recovery from attacks; and attack diagnostics and

forensics.

Engineering Management at Ultra-Large Scales is another topic that must

be addressed for ULS systems. Developing practices that foster continuous

product and process improvement across organizational boundaries is just

one of many issues confronting engineering management at ultra-large

scales. Moreover, new product and process measures and new technical

infrastructures will be required to support management decision making.

Research is needed on how to motivate and manage ULS system knowledge

workers and how to develop measurements of system and process, product,

and project health.

39Ultra-Large-Scale Systems

The Software Challenge of the Future

Relevance to Monitoring and Assessment. In addition to defining entirely

new quality attributes, there will also be changes in the way developers and

operators of ULS systems specify, analyze, and control quality attributes.

Increasing scale requires increasing aggregation and abstraction, which in

turn suggests increasing reliance on stochastic theories of behavior and the

need to understand how theories at different levels of abstraction interact

with one another. For example, Internet storms arise at the massive scale

of the Internet but do not appear in smaller scale settings. Predicting and

averting these types of phenomena require novel theories and applications

of approaches inspired by such fields as statistical mechanics and pos-

sibility theory. In general, research on Scale and Composition of Quality

Attributes is needed to identify new measures; complementary stochastic

and deterministic theories of quality; and verification techniques that ac-

commodate uncertainty arising from non determinism, measurement error,

and lack of knowledge.

Relevance to Design and Evolution. Predicting and preserving system-

wide qualities require establishing and sustaining the system invariants

on which these qualities depend. A variety of enforcement mechanisms

have been developed over many years of practice—transaction monitors,

security monitors, sandboxes, and schedulers, to name a few. In some cases,

we need new research on scaling these mechanisms to ULS system scale;

in other cases, completely new mechanisms are needed. In all cases, the

enforcement mechanisms must be linked explicitly with the complementary

quality theories. Topics of particular research interest for Enforcing Quality

Requirements include enforcement mechanisms for shared resources and

robust recovery mechanisms and mechanisms for ensuring acceptable levels

of computing when operating in suboptimal conditions.

People will be a key part of a ULS system, and the overall quality attributes

of the system include quality attributes of humans as well as the technol-

ogy and the interactions between the two. We therefore need research

on Understanding People-Centric Quality Attributes, which includes

trustworthy human-comprehensible models of system state; modeling

human-human interactions, human quality attributes, and crowd behavior;

and blending human and system quality attributes.

40 Ultra-Large-Scale Systems

The Software Challenge of the Future

4 Overview of Research Areas

Introduction Characteristics Challenges Research Areas Recommendations

4.7

Policy, Acquisition,

and Management

 Research in the area of Policy, Acquisition, and Management addresses

some of the challenges in Design and Evolution and Orchestration

and Control.

Relevance to Design and Evolution. Just as computational elements of a

ULS system will be interdependent, so too will human elements. Not only

will the actions of human participants affect other users, but successful op-

eration may depend on appropriate action by other users. The systems must

be explicitly designed to accommodate change at all levels, and consequently

their acquisition processes must be designed to support dynamic changes in

system capabilities. Organizational, technical, and operational policies must

be developed and largely automated to enable fast and effective local actions

while preserving global capabilities.

Given the scope and scale of ULS systems, technical, organizational, and op-

erational policies will emerge as principal vehicles for ensuring harmonious

operations. Therefore Policy Definition for ULS Systems must support both

local and global operations in such a way that people and the computational

actions they initiate can achieve cooperative and even competing objectives

without impairing the viability of the system as a whole. Such considerations

require definition of policies whose effect on system operations, stability,

and long-term viability is well-defined and widely understood. Research is

needed in policy definition that allows for flexible collaboration, effective

governance and local adaptation, and automated support for making and

assessing policy decisions.

Relevance to Orchestration and Control. Given their pervasive application

to support global operations in many simultaneous strategic and tactical

situations, Fast Acquisition for ULS Systems will be required to meet

changing threats and environments. Research will be needed in developing

new acquisition processes for fast response, integrating supply chains for

operational readiness, capitalizing on ad hoc acquisition, and automating for

fast acquisition.

Since ULS systems will be designed to support dynamic coalitions and

management of tactical and strategic operations in a highly distributed

setting, decentralized Management of ULS Systems within an overall

policy framework will be critical. Research is required in managing ULS

systems for operational readiness and organizing supply chains of vendors

and integrators for fast system evolution.

Ultra-Large-Scale Systems

The Software Challenge of the Future

41

5
Summary and
Recommendations

The research areas introduced in Section 4 provide an initial research

agenda for ULS systems based on the results of our one-year study. Our

experience from this study underscored the need for fundamental research

breakthroughs across multiple, multi-disciplinary areas in order to solve

ULS system challenges. We therefore intend that research and development

(R&D) communities be active on numerous fronts. We also intend that as

R&D communities increasingly understand the nature of ULS systems,

they will identify promising research in areas and topics that are not covered

in this report.

Moreover, we have purposely avoided couching our descriptions in terms

of today’s technology. We are focused on systems of the future, namely

ULS systems. The research that will lead us to that future is long term

and fundamental. We are aware that some of today’s successful software

technologies and methodologies are perceived as panaceas for future DoD

system development, such as the following:

• service-oriented architecture (SOA) platforms (such as web services,

.NET, Enterprise JavaBeans, and CORBA), which have introduced

advanced capabilities to the mainstream IT community and which

incorporate various levels of middleware as part of the overall

development process

• the World Wide Web Consortium (WC3), where information-

management standards have enabled us to connect independently

developed browsers and web pages easily

• model-driven architecture (MDA), which defines an approach to

software development that separates the specification of system function-

ality from the specification of its implementation on specific platforms

by structuring specifications expressed as high-level models rather than

platform-specific code

• the High-Performance Computing (HPC) Grid, which is enabling scien-

tists and researchers to collaborate on grand challenge problems such as

global climate change modeling and high-energy physics experiments

42 Ultra-Large-Scale Systems

The Software Challenge of the Future

5 Summary and Recommendations

Introduction Characteristics Challenges Research Areas Recommendations

• the Global Command and Control System (GCCS), which integrated

a series of commercially available products into a defined standard suite

to provide interoperability among a variety of services and functions in

the DoD

• the Global Information Grid (GIG), a net-centric system operating in a

global context expected to provide processing, storage, management,

and transport of information to support all DoD, national-security, and

related intelligence-community missions and functions

These technologies and methodologies and others not cited herald technical

progress and will undoubtedly have some bearing on success with ULS

systems. In key ways, however, each is deficient in meeting the challenges

associated with ULS systems of the future. None addresses the set of root

characteristics of ULS systems or the complexity stemming from the scale

and the ecosystem nature of ULS systems. Dealing with these character-

istics, challenges, and complexity at the fidelity needed for ULS systems

requires a new generation of research areas that are informed by—but not

necessarily constrained by—the existing technology base.

5.1

Toward a Roadmap

for a ULS Systems

Research Program

 Though our catalog of research areas and topics is a solid beginning, it is

insufficient to structure a dedicated research program for ULS systems.

Given the scope of the ULS systems problem space, there are many possible

approaches to structuring a research program. Since different agencies and

organizations have different missions and needs, no single research program

is likely to be suitable for all sponsors. As a result, we do not present or

prescribe a single roadmap, but instead offer three structures16 that suggest

ways to cluster and prioritize groups of research areas. These structures can

then be used to define one or more roadmaps that could lay out one or more

ULS systems research programs or projects.

The first structure, described in Sections 5.1.1 and 5.1.2 and summarized

in Table 2, maps specific DoD missions and required capabilities to the

ULS system research areas and topics in which research is needed to enable

achievement of the missions and delivery of the capabilities. The second

structure, described in Section 5.1.3 and summarized in Table 3, maps our

research areas and topics to the DoD research funding types required to

support them. The third structure, presented in Section 5.1.4 and summa-

rized in Table 4, estimates the associated risks and rewards of the research

topics in each of the identified research areas.

16 We have defined these structures as illustrated in Tables 2, 3, and 4 to the best of our current understanding. Our

categorization of research topics according to mission/capabilities (Table 2), research-funding types (Table 3), and

associated risks and rewards (Table 4) is admittedly subjective and is intended as a starting position.

43Ultra-Large-Scale Systems

The Software Challenge of the Future

5.1.1

DoD Missions and

Capabilities

 To tie the research areas to specific DoD capabilities, the following three

important missions have been extracted from the 2006 DoD Quadrennial

Defense Review (QDR):17

Mission 1: Information management of net-centric tactical operations

Mission 2: Tailored, flexible forces

Mission 3: Leverage information technology and innovative concepts to

develop interoperable joint C4ISR

Although software was not singled out as an explicit challenge area in the

QDR, these three missions rely heavily on software systems that are much

larger, more sophisticated, and more complex than those currently avail-

able—systems that match the characteristics of ULS systems as we have

described them. Below, we describe the goals of each mission and present

a pair of associated and required capabilities. These capabilities directly

establish the need for breakthroughs and innovations in the research areas

that we have identified. For each capability, we then construct a research

track consisting of the set of pertinent research topics. The research topics

are designated by number as they appear in Part II, Section 6 of this report.

Those topics in bold constitute research that is essential to achieving the

capability, while those in plain text will provide support in achieving that

capability. All of this information is summarized in Table 2. Our association,

though admittedly subjective, forms an initial basis for structuring ULS

system research roadmaps.

Mission 1: Information management of net-centric tactical operations.

This mission focuses on using connectivity to help joint forces gain greater

situational awareness to attack the enemy and avoid fratricide. The QDR

illustrates how important it has become to build our joint DoD systems of

the future to assure information dominance over all adversaries, conventional

nation states, and asymmetric group threats:

Achieving the full potential of net-centricity requires viewing information

as an enterprise asset to be shared and as a weapon system to be

protected. As an enterprise asset, the collection and dissemination of

information should be managed by portfolios of capabilities that cut

across legacy stove-piped systems. These capability portfolios would

include network-based command and control, communications on the

move and information fusion. Current and evolving threats highlight the

need to design, operate and defend the network to ensure continuity of

joint operations. [QDR, page 58]

17 Quadrennial Defense Review Report, February 2006, http://www.defenselink.mil/qdr/report/Report20060203.pdf

44 Ultra-Large-Scale Systems

The Software Challenge of the Future

5 Summary and Recommendations

Introduction Characteristics Challenges Research Areas Recommendations

Tactical operational systems designed to support the warfighter anywhere

and anytime against any adversary must include capabilities that provide

timely information to all levels of the theater during tactical operations.

Below, we describe two important required capabilities for information

management of net-centric tactical operations, along with the research tracks

needed to technically enable these capabilities.

• Capability 1 (C1): Maintain coherent common operating picture

by rapidly collecting, processing, disseminating, and protecting

information spanning echelons, services, and coalitions across a mix

of ultra-large-scale environments. The needed information will come

from an expanding set of information sources, some operated by the

DoD, some by our coalition partners, and others in the private sector.

Without a capability to manage this information and present a coherent,

common, timely, and reliable operating picture to warfighters, we risk

either information overload during critical decision-making processes or

missing information resulting in wrong decisions.

Research track 1 (RT1):

Essential Support

6.1.1, 6.1.4, 6.2.1, 6.4.3, 6.5.1, 6.5.3,
6.5.4, 6.6.3, 6.6.4, 6.7.3

6.1.2, 6.1.3, 6.3.3, 6.3.5, 6.6.1, 6.6.5,
6.7.2

• Capability 2 (C2): Assure ULS system operation in the presence

of attack and conduct effective information operations, while denying

these capabilities to adversaries. In addition to getting the right

information at the right time to warfighters, we must also prepare for

adversaries who will use our reliance on technology to deny our use of

that technology in tactical operations. Our ULS systems must therefore

incorporate capabilities to assure that they continue to operate while

under assault by our adversaries. Likewise, to maintain information

dominance during all phases of an operation, our ULS systems must

deny the information critical to our adversaries.

Research track 2 (RT2):

Essential Support

6.1.4, 6.1.5, 6.3.6, 6.4.2, 6.5.4, 6.6.1,
6.6.3, 6.6.4, 6.6.5, 6.7.2

6.1.2, 6.1.3, 6.3.2, 6.3.3, 6.3.4,
6.5.2, 6.6.6, 6.7.1

45Ultra-Large-Scale Systems

The Software Challenge of the Future

Mission 2: Tailored, flexible forces. The focus of this mission is on rapid

joint mobility and effects-based operations. The QDR articulates the need

for a future force that can adapt quickly to changing conditions, incorporate

new technology and functions without halting a mission, and smoothly

integrate these changes and adaptations without losing any of the previous

gains in quality of service or operational capabilities:

Rapid global mobility is central to the effectiveness of the future force.

The joint force will balance speed of deployment with desired

warfighter effects to deliver the right capabilities at the right time and

at the right place. Effectiveness of mobility forces will be measured not

only by the quantity of material they move, but also by the operational

effects they help to achieve. Mobility capabilities will be fully integrated

across geographic theaters and between warfighting components and

force providers, with response times measured in hours and days rather

than weeks. They will enable the Department’s move from a large

institutional force to a future force that concentrates more operational

capabilities at the front line. They will underpin the transition from

a Cold War-era garrisoned force to a future force that is tailored for

expeditionary operations. [QDR, page 53]

Future ULS systems that support DoD operations must be as flexible as

the forces they support. This flexibility must go beyond current system

configuration capabilities to an integrated and continuous improvement

capability that rolls out new technology and system capabilities when and as

they are needed by commanders and planners. The capabilities required for

this mission and their respective research tracks are described below.

• Capability 3 (C3): Support seamless ULS system operation by

rapidly fielding new capabilities in response to new needs and cus-

tomized deployment environments. This capability requires an entirely

new approach to systems acquisition that can support dynamic changes to

operational systems at an ultra-large scale without replacing the system.

The ability to field new functions properly is the subject of this capability

and research track. Only through a thoroughly different approach will we

achieve systems that will support the mobility vision in the QDR.

Research track 3 (RT3):

Essential Support

6.1.5, 6.2.1, 6.2.3, 6.3.1, 6.3.2, 6.3.3,
6.3.5, 6.3.6, 6.4.1, 6.4.3, 6.5.2, 6.5.3,
6.6.6, 6.7.3

6.1.2, 6.4.2, 6.6.3, 6.6.4,

46 Ultra-Large-Scale Systems

The Software Challenge of the Future

5 Summary and Recommendations

Introduction Characteristics Challenges Research Areas Recommendations

• Capability 4 (C4): Dynamic adaptation of a ULS system to ensure

mission success in a rapidly changing environment. This capability

requires rapid adaptation of a ULS system to a rapidly changing environ-

ment. Whether it is deploying to a new theater with entirely different

characteristics under carefully planned circumstances or adapting to a

surprising new adversarial tactic, the ULS system must support dynamic

adaptation that aligns the systems and their functions with the current

needs of warfighters in the environment. While this is a manually intensive

process today, the future ULS system should automatically adapt to a

changing environment, providing warfighters with the necessary informa-

tion, services, and actions to carry out any mission, anytime, anywhere.

Research track 4 (RT4):

Essential Support

6.1.1, 6.2.1, 6.2.2, 6.2.3, 6.3.2, 6.3.5,
6.4.2, 6.4.3, 6.5.2, 6.5.3, 6.5.4, 6.6.1,
6.6.5, 6.6.6

6.1.4, 6.1.5, 6.3.3, 6.3.4, 6.6.4

Mission 3: Leverage information technology and innovative concepts

to develop interoperable joint Command Control Communications

Intelligence Surveillance, and Reconnaissance (C4ISR). The focus of

this mission is on supporting the global war on terrorism. At its center

is a requirement for the global coordination of information from widely

diverse sensors to an equally wide variety of analysts’ workstations. Both

the sensors and analysts will be geographically and politically distributed

around the globe, yet must all be coordinated and cooperative. Unlike our

current Internet systems, the security requirements and differing policies on

information sharing will need a system that can understand and resolve the

complex landscape of information-sharing constraints while enabling all of

the information sharing that is possible. Current software approaches are

adequate for a limited and fixed set of sensors, but are inadequate for the

many-to-many information systems that will be needed to support this

C4ISR mission as described below by the QDR:

The ability of the future force to establish an “unblinking eye” over the

battle-space through persistent surveillance will be key to conducting

effective joint operations. Future capabilities in ISR, including those

operating in space, will support operations against any target, day or night,

in any weather, and in denied or contested areas. The aim is to integrate

global awareness with local precision. Intelligence functions will be fully

integrated with operations down to the tactical level, with far greater ability

to reach back to intelligence collection systems and analytic capabilities

outside the theater. Supporting this vision will require an architecture that

moves intelligence data collected in the theater to the users, rather than

47Ultra-Large-Scale Systems

The Software Challenge of the Future

deploying users to the theater. Future ISR capabilities will be designed to

collect information that will help decision-makers mitigate surprise and

anticipate potential adversaries’ actions. An essential part of the future

ISR architecture is a robust missile warning capability. [QDR, page 55]

The joint force of the future will have more robust and coherent joint

command and control capabilities. Rapidly deployable, standing joint

task force headquarters will be available to the Combatant Commanders

in greater numbers to meet the range of potential contingencies. These

headquarters will enable the real-time synthesis of operations and

intelligence functions and processes, increasing joint force adaptability

and speed of action. The joint headquarters will have better information,

processes and tools to design and conduct network-enabled operations

with other agencies and with international partners. Implementation of

Adaptive Planning in the Department will further enhance the lethality of

both subordinate standing joint task force headquarters and their parent

Combatant Commands by enabling them to produce high-quality, relevant

plans in as little as six months. Adaptive Planning is the catalyst that will

transform the Department’s operational planning processes and systems.

Furthermore, Global Force Management, the Department’s model for

force management, reporting and analysis, will provide Commanders with

an unprecedented depth of up-to-date and decision-quality information on

unit readiness, personnel and equipment availability. [QDR, page 59]

Unlike the Cold War or any previous military engagements, meeting future

DoD operations will require ULS systems to integrate information from

everywhere around the globe. In particular, this mission requires systems

of the future to fuse, compute, relay, store, and display significantly more

information than ever before. The capabilities indicated by this mission are

described below, along with their respective research tracks.

• Capability 5 (C5): Transparent, effective, and secure use of informa-

tion across commands, allies, and private industry to achieve unity

of effort. This defense capability in turn requires a software capability

to manage data on an ultra-large scale as well as to provide information

to every participant according to their legitimate access rights, while

assuring that the same data cannot be stolen or modified by an adversary.

Research track 5 (RT5):

Essential Support

6.1.1, 6.1.2, 6.2.1, 6.2.2, 6.3.1, 6.3.6,
6.4.1, 6.4.2, 6.4.3, 6.5.1, 6.6.3, 6.6.5,
6.7.1, 6.7.2

6.1.4, 6.2.3, 6.3.2, 6.3.4, 6.3.5,
6.5.3, 6.6.1, 6.6.6

48 Ultra-Large-Scale Systems

The Software Challenge of the Future

5 Summary and Recommendations

Introduction Characteristics Challenges Research Areas Recommendations

• Capability 6 (C6): Application of local context to global information

sources to ensure use of the right data anytime, anyplace, for any

mission. The local context can greatly change the interpretation of

information. In addition to simply moving the data to the right place at

the right time, the ULS system must have the technical capability to turn

received information into knowledge that leads to action—by integrating

all available data and local context to provide a view that each local user

can act upon according to his or her role and access.

 Research track 6 (RT6):

Essential Support

6.1.1, 6.1.2, 6.1.3, 6.1.4, 6.1.5, 6.2.1,
6.2.3, 6.3.1, 6.3.2, 6.3.4, 6.3.5, 6.4.1,
6.5.1, 6.5.4, 6.6.2, 6.6.4, 6.7.1, 6.7.3

6.3.3, 6.5.2, 6.6.3, 6.6.5

5.1.2

Research Tracks

Associated with

Missions and

Capabilities

 Table 2 illustrates the research tracks RT1–RT6 by summarizing the topics

associated with each research area and mapping each to the related missions

and capabilities (denoted C1–C6) described above. A full circle indicates

that the research is necessary to provide this capability (corresponding to

the bold numbers in the research tracks), while a half circle indicates that

the research will provide important support for developing the capability

(corresponding to the plain-text numbers in the research tracks).

Columns C1/RT1 through C6/RT6 represent research tracks that are

necessary (but possibly not sufficient18) to achieve the capability indicated.

Some topics span a number of research tracks. This crosscutting indicates

that results from such topics support multiple capabilities; we advocate an

integrated approach to using those results across multiple tracks.

Table 2 can be used to identify and establish priorities for specific research

projects either by mission, individual capability, or research topic. These

multiple dimensions reflect the various goals and interests of different

agencies and individual program managers. They also directly demonstrate

the contribution of the research topics to DoD stakeholders.

18 The research track as described lists the research topics deemed essential by the authors of this report. As a particular

research track is executed, results of early research in the track may indicate other research that would be necessary to

achieve the intended outcome.

49Ultra-Large-Scale Systems

The Software Challenge of the Future

Table 2: Research Topics Needed for Specific DoD Missions and Related Capabilities

Research Areas and Topics Mission 1 Mission 2 Mission 3

C
1

R
T

1

C
2

R
T

2

C
3

R
T

3

C
4

R
T

4

C
5

R
T

5

C
6

R
T

6

Human Interaction

6.1.1 Context-Aware Assistive Computing

6.1.2 Understanding Users and Their Contexts

6.1.3 Modeling Users and User Communities

6.1.4 Fostering Non-Competitive Social Collaboration

6.1.5 Longevity

Computational Emergence

6.2.1 Algorithmic Mechanism Design

6.2.2 Metaheuristics in Software Engineering

6.2.3 Digital Evolution

Design

6.3.1 Design of All Levels

6.3.2 Design Spaces and Design Rules

6.3.3 Harnessing Economics to Promote Good Design

6.3.4 Design Representation and Analysis

6.3.5 Assimilation

6.3.6 Determining and Managing Requirements

Computational Engineering

6.4.1 Expressive Representation Languages

6.4.2 Scaled-Up Specification, Verification, and Certification

6.4.3 Computational Engineering for Analysis and Design

Adaptive System Infrastructure

6.5.1 Decentralized Production Management

6.5.2 View-Based Evolution

6.5.3 Evolutionary Configuration and Deployment

6.5.4 In Situ Control and Adaptation

Adaptable and Predictable System Quality

6.6.1 Robustness, Adaptation, and Quality Attributes

6.6.2 Scale and Composition of Quality Attributes

6.6.3 Understanding People-Centric Quality Attributes

6.6.4 Enforcing Quality Requirements

6.6.5 Security, Trust, and Resiliency

6.6.6 Engineering Management at Ultra-Large Scales

Policy, Acquisition, and Management

6.7.1 Policy Definition for ULS Systems

6.7.2 Fast Acquisition for ULS Systems

6.7.3 Management of ULS Systems

50 Ultra-Large-Scale Systems

The Software Challenge of the Future

5 Summary and Recommendations

Introduction Characteristics Challenges Research Areas Recommendations

5.1.3

Research Areas by

Funding Types

 Table 3 groups the seven research areas and topics according to their need for

funding at the 6.1 (basic research), 6.2 (applied research), or 6.3 (advanced

technology development) levels.19 In many cases, the areas are sufficiently

rich to contain subareas that are at different states of readiness and thus

could benefit from multiple levels of funding. In addition, there are other

R&D programs under development, such as the Office of the Secretary of

Defense’s (OSD’s) Software-Intensive Systems Producibility Initiative, that

will greatly benefit from the 6.1 and 6.2 research of a ULS Systems Research

Program, which in turn could reduce the need for extensive 6.3 funding in

these programs. The infrastructure to produce experiments and demonstra-

tions of research results can be funded through existing systems-of-systems

acquisitions. In turn, these activities will be leveraged by the 6.2 research of

a ULS Systems Research Program to produce more rigorous and substantial

demonstrations of systems at the scale required to take the results out of

laboratory settings to a realistically large and complex DoD environment.

19 For a description of research funding levels, see http://www.cnsronline.org/dodsntfaq.php.

51Ultra-Large-Scale Systems

The Software Challenge of the Future

Table 3: Research Topics Categorized by DoD Research Funding Type

Research Areas and Topics Research Level

6.1 6.2 6.3

Human Interaction

6.1.1 Context-Aware Assistive Computing

6.1.2 Understanding Users and Their Contexts

6.1.3 Modeling Users and User Communities

6.1.4 Fostering Non-Competitive Social Collaboration

6.1.5 Longevity

Computational Emergence

6.2.1 Algorithmic Mechanism Design

6.2.2 Metaheuristics in Software Engineering

6.2.3 Digital Evolution

Design

6.3.1 Design of All Levels

6.3.2 Design Spaces and Design Rules

6.3.3 Harnessing Economics to Promote Good Design

6.3.4 Design Representation and Analysis

6.3.5 Assimilation

6.3.6 Determining and Managing Requirements

Computational Engineering

6.4.1 Expressive Representation Languages

6.4.2 Scaled-Up Specification, Verification, and Certification

6.4.3 Computational Engineering for Analysis and Design

Adaptive System Infrastructure

6.5.1 Decentralized Production Management

6.5.2 View-Based Evolution

6.5.3 Evolutionary Configuration and Deployment

6.5.4 In Situ Control and Adaptation

Adaptable and Predictable System Quality

6.6.1 Robustness, Adaptation, and Quality Attributes

6.6.2 Scale and Composition of Quality Attributes

6.6.3 Understanding People-Centric Quality Attributes

6.6.4 Enforcing Quality Requirements

6.6.5 Security, Trust, and Resiliency

6.6.6 Engineering Management at Ultra-Large Scales

Policy, Acquisition, and Management

6.7.1 Policy Definition for ULS Systems

6.7.2 Fast Acquisition for ULS Systems

6.7.3 Management of ULS Systems

52 Ultra-Large-Scale Systems

The Software Challenge of the Future

5 Summary and Recommendations

Introduction Characteristics Challenges Research Areas Recommendations

5.1.4

Research

Risk/Reward

 The research agenda we are proposing is a mixture of research that builds on

some existing groundwork, research that breaks new ground in established

areas, and research that is in an entirely new direction. Table 4 provides an

initial characterization of the primary topics in each of the seven research

areas. As is the purpose of the other tables in this section, Table 4 is intended

to help structure a ULS system research project or program by indicating the

range of research risk/reward that we are proposing. It can also serve as a

companion to Part II, in which we discuss the research details.

Each row in the table is a research area or topic in our proposed agenda.

The first column gives the name, and the remaining three columns indicate

whether the area already has existing groundwork, whether it is breaking

ground in an established area, or whether it represents a new direction.

These three categories are not mutually exclusive. We use a blank plus two

marks to indicate three levels: a blank cell means that we are not proposing

work in this category; a half circle in a cell means that we are proposing

some new work; and a full circle in a cell means that we are proposing

substantial new work. The marks in this table are substantiated by the

detailed descriptions of the research areas and topics found in Section 6.

53Ultra-Large-Scale Systems

The Software Challenge of the Future

Table 4: Research Areas and Range of Risk/Reward

Research Areas and Topics
Existing

Groundwork
Breaking
Ground

New
Direction

Human Interaction

6.1.1 Context-Aware Assistive Computing

6.1.2 Understanding Users and Their Contexts

6.1.3 Modeling Users and User Communities

6.1.4 Fostering Non-Competitive Social Collaboration

6.1.5 Longevity

Computational Emergence

6.2.1 Algorithmic Mechanism Design

6.2.2 Metaheuristics in Software Engineering

6.2.3 Digital Evolution

Design

6.3.1 Design of All Levels

6.3.2 Design Spaces and Design Rules

6.3.3 Harnessing Economics to Promote Good Design

6.3.4 Design Representation and Analysis

6.3.5 Assimilation

6.3.6 Determining and Managing Requirements

Computational Engineering

6.4.1 Expressive Representation Languages

6.4.2 Scaled-Up Specification, Verification, and Certification

6.4.3 Computational Engineering for Analysis and Design

Adaptive System Infrastructure

6.5.1 Decentralized Production Management

6.5.2 View-Based Evolution

6.5.3 Evolutionary Configuration and Deployment

6.5.4 In Situ Control and Adaptation

Adaptable and Predictable System Quality

6.6.1 Robustness, Adaptation, and Quality Attributes

6.6.2 Scale and Composition of Quality Attributes

6.6.3 Understanding People-Centric Quality Attributes

6.6.4 Enforcing Quality Requirements

6.6.5 Security, Trust, and Resiliency

6.6.6 Engineering Management at Ultra-Large Scales

Policy, Acquisition, and Management

6.7.1 Policy Definition for ULS Systems

6.7.2 Fast Acquisition for ULS Systems

6.7.3 Management of ULS Systems

54 Ultra-Large-Scale Systems

The Software Challenge of the Future

5 Summary and Recommendations

Introduction Characteristics Challenges Research Areas Recommendations

5.2

Recommendations

 The goal of the above three structures is to both justify and support the

development of a plan for a substantive, long-term, funded ULS System

Research Program—a program that will marshal the talent of researchers

who are experts in the diverse set of disciplines needed to conduct the

proposed research. Although it is premature to prescribe a definitive roadmap

for ULS system research, Tables 2–4 suggest possible ways to set priorities.

We expect that sponsors with different needs will likely choose to support

different combinations of research and perhaps different paths through

(or projects within) the research program.

As a first step, we recommend the funding and establishment of a ULS

System Research Startup Initiative, which would consist of a subset of the

contributors to this report as well as other experts with a history of success

in the proposed research areas. Over the course of the next two years, this

initiative will take the following actions:

• Begin to work with others in the community to conduct new basic re-

search in the areas of Human Interaction, Computational Emergence,

and Design. Work in the other areas should follow as soon thereafter as

practical.

• Build on existing research efforts and capabilities in the identified

research areas to apply them to ULS system challenges.

• Take the ULS system research agenda to a greater level of fidelity and

develop a definitive roadmap based on the objectives of the key sponsors.

• Foster the growth of a community of informed stakeholders and

researchers.

• Formulate and issue an initial Broad Agency Announcement (BAA)

to attract researchers with proven expertise in the diverse set of disci-

plines (e.g., software engineering, economics, human factors, cognitive

psychology, sociology, systems engineering, and business policy) that

are collectively required to conduct the proposed research.

As a result of this study, a community of interest in ULS systems and the

needed research is already beginning to grow. Contributors to this study

have begun to describe and advocate ULS system challenges and potential

research. Over the course of the past year, keynote presentations and

invited talks related to this study have been given at a diverse set of forums.

Workshops and panel discussions are being organized, and the term “ultra-

large-scale systems” is gaining traction with others outside the original

group charged to conduct the study. As others in the research community

become familiar with the ULS system characteristics and challenges, we

expect that new research topics and research areas will be proposed.

We welcome the community’s ideas and contributions.

55Ultra-Large-Scale Systems

The Software Challenge of the Future

5.3

Study Conclusion

 We have described the characteristics of ULS systems, the associated techni-

cal challenges, and the need for a bold, new perspective. We have defined

promising research areas and structures that can bolster the definition of a

ULS System Research Program. After one year of study, we are certain that

new long-term research is required to fulfill the DoD’s vision of the future.

The challenges described in this report are not science fiction; they are com-

ing, and much more rapidly than this report’s research-oriented charter might

suggest. The Internet is a precursor ULS system that is already in widespread

use, and the U. S. power, communication, and transport grids currently

exhibit many ULS characteristics. Other such systems will doubtless follow.

The fact that the worldwide Internet was constructed without any massive

research and development program might suggest that future systems will be

produced with similar ease. The problem, however, is that, with the current

state of software technology and practice, such systems cannot be built to

accomplish specific objectives—much less future DoD missions—on predict-

able schedules or for affordable budgets. To have any chance of meeting the

future needs for such systems, a research program like that described in this

report must be initiated now.

It is no exaggeration to say that the operational capabilities of the DoD will

increasingly depend on software capabilities equal to the challenges of ULS

systems. Software capability cannot be taken for granted in the DoD vision of

the future. In the absence of new scientific knowledge and engineering know-

how, were a ULS system needed to meet a perceived need, it would now have

to be designed and built with current software technology and the traditional

acquisition-and-contracting model. While these may be the best-known

approaches, they have consistently been proven inadequate.

The proposed ULS system research is broader and deeper than software

research that is currently being conducted, because the problems addressed

are inherently broader and deeper. The proposed research does not supplant

current, important software research but rather significantly expands its

horizons. We believe this research could result in operational capabilities to

develop and evolve the ULS systems of the future. The envisioned outcome

of the proposed research is a spectrum of technologies and methods for

developing these systems of the future, with national-security, economic, and

societal benefits that extend far beyond ULS systems themselves.

56 Ultra-Large-Scale Systems

The Software Challenge of the Future

5 Summary and Recommendations

Introduction Characteristics Challenges Research Areas Recommendations

Our conclusion is that with appropriate investments, capable, reliable, and

responsive ULS systems could be developed, validated, deployed, operated,

and evolved. The United States needs to establish a program that will fund

the software research needed to support the ongoing transformations in

national defense and global interdependence. The key challenge is the

decision to move forward. The ULS System Research Agenda presented in

this report provides the starting point for the path ahead.

Ultra-Large-Scale Systems

The Software Challenge of the Future

57

6
Detailed Description
of Research Areas

In this section of the report, we describe more fully the research areas

and topics that were introduced in Section 4. For each research area, we

summarize why ULS systems require research in the area, briefly discuss

related research topics, and recommend references for further reading about

the topics.21

This collection of research areas and topics is not meant to be exhaustive.

Rather it is representative of—and highlights promising directions for—the

spectrum of research needed to address the current, imminent, and long-term

challenges posed by ULS systems. Our goal in this section is to convey

a sense of the breadth of research needed to develop ULS systems and to

define opportunities for building a research program for ULS systems.

We present a diverse range of research areas and topics, some relatively

conservative with benefits likely in the short term and some of greater risk

but promising more substantial benefits if successful.

6.1

Human Interaction

 People and their organizations are essential components of ULS systems,

which we have already characterized as socio-technical ecosystems. Many

of the failures in complex systems today stem from failures at the individual

and organizational level. ULS systems will present even greater challenges

due to their inherently vast distribution and the expected absence of a single

central administrative authority. Computer science and related engineer-

ing fields are not well equipped to address the interaction of technology

with people, even in single, unconnected systems. When approaching the

challenges associated with ULS systems, we must collaborate with and learn

from anthropologists, sociologists, and social scientists.

21 The references we discuss in the “Further Reading” sections are not intended to be exhaustive or pose as a scholarly

bibliography, but rather give a sample set of authoritative offerings that provide more information.

58 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

Behavioral analysis that is based on an economic model (for example, see

Section 6.2.1 on algorithmic mechanism design) has the advantage of isolat-

ing one crucial factor: how the selfish pursuit of individual interest influences

collective outcomes. But human behavior can also be studied to advantage us-

ing a cultural approach, focusing on the shared practices (and the beliefs that

support them) used by members of work groups to organize their activities,

whether mundane or exceptional. Indeed, a group’s culture can be thought of

as an evolving set of practices for accomplishing various activities. Practices

are how things really get done in everyday life; in this sense, they must be

distinguished from a group’s rule-like laws and norms, which are intended

to proscribe and regulate the everyday through formal, necessarily abstract

statements about how things should ideally or authoritatively get done.

Moreover, groundbreaking interdisciplinary research by Hutchins (among

others) demonstrates that many social processes are, in fact, computational

processes, which yields an important insight in the opposite direction: com-

putational processes, at least at the scale of a ULS system, are actually social

processes. Hutchins’ detailed description of navigation on a Navy vessel22

demonstrates a view of computation that goes far beyond the digital com-

puter. In this view, humans can be intrinsic elements of a socially constituted

computational process. Computational processes are governed by protocols

that are derived from and deeply embedded in specific cultures. In fact, these

protocols are so deeply embedded as to be effectively invisible to the human

actors. These culture-embedded protocols must be understood before they can

be made explicit and must be made explicit before their digital elements can

be made transparent to the human actors.

For example, every firm (and every family) performs a computational process

of receiving and spending money every month. Society places constraints on

these computations: firms (and families) that “fail” are deemed “bankrupt,”

and are subject to constraints and reorganization. “Balancing our books” is a

very mundane but ubiquitous, socially constructed computational process.

We cannot fully anticipate the context within which ULS systems will operate

and necessarily evolve, as the socio-cultural practices of many different groups

(stakeholders, users) will, in fact, be constructing this real-world compu-

tational environment. The challenge is thus to design and support systems

using an accurate model (scientific understanding) of this ULS/social-context

interaction. What is needed, then, are detailed socio-technical analyses of user

interactions, in the field, with complex sources of information that current

large-scale systems make possible. Analyses of actual situations of decision

making will help us to develop a more sophisticated understanding of the ways

that computational environments with such systems are truly constructed.

Research into the human aspects of ULS systems is needed on the topics

described below.

22 Hutchins, Edwin. Cognition in the Wild. Boston, MA: The MIT Press, 1995.

59Ultra-Large-Scale Systems

The Software Challenge of the Future

6.1.1

Context-Aware

Assistive Computing

 A defining characteristic of a ULS system is an intentional blurring of the

division between the physical and digital worlds. In particular, new input and

output technologies create opportunities for computers to be more helpful

to people doing complex tasks. Context-aware computing describes the

situation in which a (possibly mobile) computer is aware of its users’ state

and surroundings and modifies its behavior based on this information.

A user’s context can be quite rich, consisting of attributes such as physical

location, physiological state (such as body temperature and heart rate),

emotional state (such as angry, distraught, or calm), personal history, daily

behavioral patterns, and so on. A human assistant given such context would

make decisions proactively, anticipating users’ needs. In making these

decisions, the assistant would typically not disturb the user at inopportune

moments except in an emergency. Similarly this assistant would filter,

abstract, and visualize information to aid the user’s decision making.

The goal of context-aware assistive computing is to enable (mobile)

computers or intelligent environments to exploit context information to

assist people by

• significantly reducing demands on their attention through adaptive

automation, and

• providing them with the right information and easy-to-access control

capabilities at the right time, for more effective manual task execution.

Combined with inferences about users’ intentions, context-aware computing

would enable improvement in user-perceived network and application perfor-

mance and reliability. Context-aware applications are built on fundamental

sensing services such as spatial and temporal awareness. Spatial awareness

includes the relative and absolute position and orientation of a user. Temporal

awareness includes the scheduled time of public and private events. Research

in context-aware assistive computing should include the following subtopics:

Research Tracks

Essential

60 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

Adapting to Changing User-Resource Needs. Many of the capabilities

in ULS systems require adaptive behavior to meet user expectations and

smooth the imbalances between demands and changing environments. There

are two fundamental types of adaptation required: (1) changes beneath the

applications to continue to meet the required service levels despite changes

in resource availability and (2) changes at the application level to either react

to currently available levels of service or request new levels under modified

circumstances. In both, a ULS system must determine whether it needs to (or

can) reallocate resources or change strategies to achieve the desired quality

of service. We therefore need research to develop context-aware applications,

middleware, operating systems, and networks that can change their qual-

ity-of-service demands as the conditions under which they operate change.

Mechanisms for reconfiguration must be put into place to implement new

levels of quality of service as required, with attention to both the individual

and the aggregate points of view and the conflicts that they may represent.

Adapting to Changing User Tasks. Just as user-resource needs will

vary over time, so too will user tasks vary. In many cases, the ULS system

will need to take the initiative to help the user work effectively. This

transcends traditional system adaptation, which is typically a matter of

resource allocation. Runtime reconfiguration may have the effect of altering

parts of the system that are directly or indirectly visible to people and could

therefore cause confusion. We therefore need research on mechanisms that

moderate the effects of people-visible changes to the ULS system, or that

adapt existing user views to the new system states. Research is also needed

in context-aware technologies that can semantically model user tasks

and goals and automatically provide or suggest alternative forms of data

presentation, visualization, aggregation, and filtering. In addition, research

is needed on modifying the task model itself, to take into account the users’

needs and state.

6.1.2

Understanding

Users and Their

Contexts

 The designers and developers of ULS system software cannot be expected

to anticipate fully the context within which ULS systems will be built and

operated and how they will evolve. This context will be continually changing,

and there will be many different groups of stakeholders (such as users,

application developers, acquirers, policy makers, tool and infrastructure

makers, etc.), each of whom will have their own community and associated

socio-cultural practices and expectations. Accurately understanding and cap-

turing the user’s context is already a difficult and error-prone task for existing

systems, many of which fail because they are deemed unusable by their

stakeholders. In the ULS context, the ever-changing nature of the system,

its users, and its environment make this a far greater challenge. Meeting this

challenge will require research to enable better integration of user modeling

and ethnographic elicitation techniques, as discussed below.

Research Tracks

Essential Support

61Ultra-Large-Scale Systems

The Software Challenge of the Future

Ethnographic Foundations for User-Centered Specifications.

Individual users pursue their own objectives, and users are often unable to

express or generalize these objectives outside the context of actual system

use. Different users place their own values on specific services and have

different expectations, which may be more or less stringent than the system’s

developers intended. Research on specification and evaluation methods and

tools that help us consider the context and expectations of specific users

and that build on existing techniques for questionnaires, interviews, and

contextual inquiry can address this challenge. Research is needed to elicit

and understand the users’ needs and expectations, and to determine how to

structure the elicitation of those expectations in a form that the user will find

manageable.

Representing User Beliefs and Expectations. Because the set of user

expectations will be far more complex in a ULS system than in a traditional

system, we also need research in representing user knowledge and belief sys-

tems. This information must be represented in a way that is both comprehen-

sible and capable of analysis, which is a further facet of the needed research.

Last, we will need tools to model and predict whether a ULS system can

meet its stakeholders’ expectations, before the system is built or fielded.

Runtime Mechanisms for Assessing and Moderating User Beliefs and

Expectations. In addition, context-dependent runtime mechanisms will be

needed to determine whether the modeled expectations are being met by the

running system and, if not, how to rectify the situation. Because these models

will profoundly affect the operation of the system, research must validate

that the models are usable and complete and that they faithfully represent the

users’ expectations.

6.1.3

Modeling Users and

User Communities

 To develop more sophisticated insights into how ULS systems are actually

constructed and how they evolve, research is needed to construct user models

and context models based on detailed socio-technical analyses of user

interactions in the field:

Modeling Communities of Users Rather Than Individuals.

While existing systems occasionally contain user models—for example,

GOMS (goals, operators, methods, and selection rules) models—they do

not contain explicit models of groups or communities of users and their

behaviors. Research would help us know how to make ULS systems serve

such communities effectively.

Research Tracks

Essential Support

62 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

Continuous User Modeling. The needs and preferences of users change as

they use a software system. If the system is itself evolving as the users and

their needs evolve, user modeling must be repeated. In particular it cannot

succeed if it is solely a design-time activity. More research is therefore

needed on the topic of universal usability: how to collect data about users

with a wide variety of expertise and knowledge that is continuously and

autonomously updated. And these models of users and their groups must be

regularly updated without constant human intervention.

Representing the User and the Context. A ULS system will have to

explicitly model the user’s intention and context as well as organizational

or enterprise goals and context. We therefore need research on the topic

of contextual inquiry to improve our abilities to conduct and validate user

studies, ethnographic studies, and system evaluations in real ULS systems.

Inferring Diverse User Needs and Utility. ULS systems should adapt their

behaviors to the needs of users and their circumstances. Rules of engagement

must be considered as part of the user’s context, and policies governing sys-

tem operation must be dynamically changeable. ULS systems serve diverse

users with different needs at different times and with different fundamental

relations to the system. These needs are independent and possibly at variance

with those of other users. We therefore need research on topics such as

universal access: accessibility guidelines, adaptive and augmented interac-

tion, alternative input/output techniques, designing for diversity, modality-

independent interaction, multi-sensory interfaces, and personalization.

6.1.4

Fostering Non-

Competitive Social

Collaboration

 The motivations for individuals (and even firms) to engage in open-source

projects are not exactly based on pure self-interests: included in the basis

are human characteristics such as the need to share, to give and receive gifts,

and to act altruistically.23 Even in this arena, self-interests do have a place.

They take the form of an interest in becoming well regarded, being thought

of as productive and intelligent, and becoming known rather than in simply

accumulating wealth. The open-source community participates in the larger

software- and systems-production realm, and, in many cases, open-source

code forms some of the best foundations for our computing infrastructure.

This software is produced without explicit cost, in a distributed fashion, and

with high quality.

23 See Raymond, E. The Cathedral & the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary.

O’Reilly, 2001.

Research Tracks

Essential Support

63Ultra-Large-Scale Systems

The Software Challenge of the Future

As a research topic, open-source software development brings up many

interesting issues that have not been extensively explored in the past:

Social Foundations for Non-Competitive Social Collaboration. What are

the social foundations for non-competitive collaboration? How is it possible

to collaborate in a way that is almost entirely virtual, and how does this form

of collaboration compare with face-to-face interaction? How does one build

trust and negotiate conflicts in such a community? The extended nature of the

open-source community also brings up questions of multi-cultural bridging.

Economic Foundations for Non-Competitive Social Collaboration.

Given that the open-source community does not operate primarily from a

financial motive, is there any place for value-based approaches to software

development? How are priorities established? How are tradeoffs and schedule

decisions made, particularly when they affect potentially vast (largely unpaid)

resources? What is the comparable role for risk-seeking or risk-averse

behavior that we see in financially motivated markets? What are the incentive

structures for cooperative organizations?

6.1.5

Longevity

 One of the consequences of scale in ULS systems is that they will exist for a

very long time—decades at least. This longevity affects aspects of the system

having to do with people. It means that organizations will need to be able

to work on and with the ULS system for many years. Moreover, people and

organizations will be coming and going constantly within the ULS ecosystem.

Key research questions include the following:

Stability of Requirements. How will requirements reflect the changing

nature of people within the ULS system over decades-long durations? While

it is inevitable that requirements will change over time, requirements must

be monitored and managed to ensure that no individual or organization can

appreciably change the system without understanding, and perhaps getting

approval from, the other participants. This implies the need for research into

the archiving and retrieval of requirements (which will become enormous

repositories over time), and more important, for research into automated

support for analyzing these requirements so that the implications of new

requirements can be assessed and requirements trends can be tracked.

Research Tracks

Essential Support

64 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

Stable Organizational Structures. Given that organizations evolve and that

organizations are composed of individuals, how can we define structures that

will ensure that an organization’s involvement with a ULS system is consistent

in management, personnel, and strategic changes over time? Conversely, if it

is determined that some organizational change is necessary (even though it

creates a discontinuity with some aspects of the existing system), what are the

principles for how the ULS system will adapt to these changes?

Maintenance of Design Information. How can a ULS system remain fresh

as different generations of users, designers, and others join it?

Ease of Learning. Given its ecosystem nature, how will new people in a

ULS system learn about the parts of the ULS system relevant to them?

6.1.6

Further Reading

 Paul Dourish’s book Where the Action Is: The Foundations of Embodied

Interaction [Dourish 01a] is one of the most important recent writings on

human-centered design. Dourish argues that design should not be about

tasks and their requirements or about applications, or computing; but rather,

it should be about (human) embodied interaction and thus be especially

concerned with the problem of shared awareness, with the organization of

social relationships, and with human emotions as socio-cultural products

(rather than individual internal states). Dourish has also written useful papers

on context-aware computing and, more generally, the entire concept of

context (not what parameters define it, but rather what kind of entity it is and

where it comes from) [Dourish 01b] and the problem of context and shared

awareness in human-computer interaction [Dourish 98].

For field studies of human behavior, especially work activities and how

they can inform computer system design (focusing here on the idea of work

practices rather than processes), an essential volume is Workplace Studies:

Recovering Work Practice and Informing Systems Design by Luff and

colleagues [Luff 00a]. Christian Heath and Paul Luff’s Technology in Action

[Luff 00b] provides useful studies of the relationship between humans and

technology.

Finally, Edwin Hutchins’ Cognition in the Wild [Hutchins 95] is essential

reading for anyone interested in a thoroughly social (rather than largely

psychological) account of human cognition and reasoning, written from

an anthropological perspective and drawing extensively on field studies of

decision making and reasoning where technology plays an important role.

[Dourish 98] Dourish, P. & Button, G. “On ‘Technomethodology’:

Foundational Relationships between Ethnomethodology and System

Design.” Human-Computer Interaction 13 (1998): 395-432.

65Ultra-Large-Scale Systems

The Software Challenge of the Future

[Dourish 01a] Dourish, P. Where the Action Is: The Foundations of Embodied

Interaction. Cambridge, MA: MIT Press, 2001.

[Dourish 01b] Dourish, P. “Seeking a Foundation for Context-Aware

Computing.” Human-Computer Interaction 16 (2001): 229–241.

[Hutchins 95] Hutchins, E. Cognition in the Wild. Cambridge, MA: MIT

Press, 1995.

[Luff 00a] Luff, P.; Hindmarsh, J. & Heath, C. (eds.). Workplace Studies:

Recovering Work Practice and Informing Systems Design. Cambridge

University Press, 2000.

[Luff 00b] Luff, P. & Heath, C. Technology in Action. Cambridge University

Press, 2000.

6.2

Computational

Emergence

 ULS systems must satisfy the needs of participants at multiple levels of

organization (i.e., from individual components and users to whole institu-

tions). These participants will often behave opportunistically to meet their

own mission requirements, irrespective of the goals and objectives of other

participants. In such cases, methods and tools based on economics and game

theory (e.g., mechanism design) are likely to play an important role in ensur-

ing the achievement of globally optimal behavior even when the participants

are concerned only with achieving their own goals.

ULS systems must satisfy the needs of their users not only at any instant

in time, but also across the lifespan of these systems as they evolve.

Metaheuristics and digital evolution offer promising means to cope with

pressures that require ULS systems to adapt to new environments, new poli-

cies, missions, and mechanisms. These techniques appear to have the potential

to augment the cognitive limits of human designers and to find novel design

solutions to complex design problems. Research can determine whether it will

be possible for rules for continuous evolution to be built into ULS systems and

their supporting platforms so that they can become more self-reliant and cope

with dynamically changing environments without constant human interven-

tion. These ideas suggest the need for research on in situ control, reflection,

and adaptation to ensure continuous adherence to system policies despite

rapidly changing operational demands and resource availability.

The technologies described here represent some of the more speculative

research in this report. As a result, they may be constrained to relatively

narrow domains of application in the early phases of ULS system research.

They all, however, enlist the use of computational resources to solve

important challenges in ULS system design and evolution, and they highlight

a future state in which a synergy is achieved between digital and human

participants in ULS systems.

66 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

6.2.1

Algorithmic

Mechanism Design

 ULS systems will, in many cases, lack a central locus of operational or

institutional control, and the participants in the system at any time (including

users and institutions) will have disjointed and competing interests. A key

challenge in this context is to provide a basis for simultaneously satisfying

system-wide quality goals and satisfying the (competing) goals and expecta-

tions of many diverse actors. It is precisely these scale factors that point to

a promising avenue of ULS systems research, namely research in applying

economic theories of decentralized decision making to software systems.

This research, one variant of which is known as mechanism design and

another as institution design, lies at the intersection of microeconomics and

game theory. It involves designing mechanisms, protocols, and institutions

that are mathematically proven to satisfy certain system-wide objectives

under the assumption that individuals interacting through such institutions act

in a self-interested manner and may hold private information that is relevant

to a required decision. Economic behavior yields the utility of cooperation

from the discord of competition; mechanism design regards cooperation as

an emergent property of agents engaging in selfish, competitive economic

behavior. Algorithmic mechanism design puts mechanism design into a

 > Mechanism Design:
 Combining Game Theory, Microeconomics, and Computation

Relevance to DoD Missions

ULS systems must support warfighters

at all echelons who are engaged in

information-intensive activities and

who must share critical but finite

information technology resources. Future

combat missions will require robust

and decentralized resource allocation

mechanisms that are resilient to deception,

support a diversity of interests, and

provide fully predictable and near-optimal

global outcome.

Key Concepts

Game theory provides mathematical tools

to study the outcomes of interactions

among self-interested, and possibly

deceptive, players, where the interactions

are governed by a set of rules. Mechanism

design is the inverse of game theory: it

seeks to discover the rules of games that

will result in a desired outcome despite

self-interested and deceptive behavior.

Mechanism design is concerned primarily

with microeconomics—the economic

behavior of agents in the face of scarcity.

Monograph Efficiency 9.3

Marginal Rate of Reference 0.0

Public Perception Indicator 1.8

Productivity Potential Index -24.0

Expected Utility 1.5

Oskar Morgenstern
1902 – 1977

Monograph Efficiency 3.7

Marginal Rate of Reference 12.0

Public Perception Indicator 22.3

Productivity Potential Index -44.0

Expected Utility 1.0

John von Neumann
1903 – 1957

GAME THEORY GAME THEORY

Monograph Efficiency 0.0

Marginal Rate of Reference 0.0

Public Perception Indicator 11.1

Productivity Potential Index +10.2

Expected Utility 5.0

John F. Nash Jr.
b1928

GAME THEORY

Monograph Efficiency 6.3

Marginal Rate of Reference 14.0

Public Perception Indicator 2.2

Productivity Potential Index +11.4

Expected Utility 2.0

Reinhard Selten
b1930

GAME THEORY

Research Tracks

Essential

67Ultra-Large-Scale Systems

The Software Challenge of the Future

computational setting: using computers to design mechanisms and using

mechanisms to control computing.24

In a ULS system, mechanism design can be applied to problems involving

the sharing of scarce or exclusive resources (e.g., network bandwidth, power)

among actors—both human and computational—that may engage in strategic

behavior marked by a combination of guile and self-interest. Mechanism de-

sign has a mathematical foundation and has seen many practical applications

in settings ranging from many extremely small-scale transactions (e.g., eBay

auctions) to a small number of extreme-scale transactions (e.g., allocating the

U. S. radio spectrum). For these reasons, mechanism design holds promise

for effecting emergent behavior in ULS systems. While mechanism design is

a well-established field in its own right, we need the following fundamental

research to apply the theory to ULS systems:

Computational Complexity of Algorithmic Mechanism Design.

While mechanism design has a rich history, its embedding in computational

settings is more recent. The cornerstone revelation principle (that is, the

principle that a social-choice function can always be designed such that

actors will truthfully reveal their preferences) may be valid in a strictly

mathematical sense, but the computational complexity (these are typically

NP-complete problems) for agents to compute their preferences may lead

to inaccurate valuations, in turn leading to suboptimal global results. On

the other hand (and for the same reason), computational complexity can

be used to defeat strategic behavior (i.e., it affects honest and dishonest

actors equally). Thus scale can have both positive and negative effects on

mechanisms, and we need to understand these effects better. For application

to ULS systems, many of the well-established possibility and impossibility

results from the theory of mechanism design must be re-examined in light

of computational complexity. In addition, research is needed to determine

effective approximate algorithms, since, as systems grow to ultra-large scale,

we will inevitably encounter situations where an NP-complete algorithm is

impractical.

Computational Complexity of Automated Mechanism Design.

Automated mechanism design—allowing the system to determine and

optimize its own mechanisms—is essential in self-adapting systems but

hampered by the complexity of design search. More research would help

us understand the theoretical and practical limits of automated mechanism

design. While the constrained subject area works to the advantage of design

automation, computational complexity and the high confidence usually

required of game-theoretic solutions are countervailing forces. In particular,

it is important to know which subjects are suitable for automated mechanism

design and for these subjects to obtain a sound means to estimate the rate

of convergence of an automated design process to a desired (not necessarily

optimal) quality goal. In this way, a reasoned tradeoff between the optimality

and practicality of the designed mechanisms can be determined.

24 These ideas are closely related to the concepts of decentralized and competitive design processes described in

Section 6.1, but concepts of mechanism design, in particular, make much stronger assumptions about the nature of the

competing agents and about the game being played than are likely to hold in a world of competing design teams.

68 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

Adaptation as a Mechanism. Algorithmic mechanisms cannot be intro-

duced simultaneously at all points in a ULS system. As a consequence, new

mechanisms will have to co-exist with more traditional “pre-mechanistic”

resource-management strategies. An important research question is how

a ULS system can incorporate mechanisms through which agents will

adopt new mechanisms. One issue that this research must address is how

to motivate the adoption of new mechanisms in spite of possibly nontrivial

switchover costs. A second issue is how to sustain switchover processes over

time, for example through transition periods where scale limitations of older

mechanisms diminish due to the adoption of new mechanisms.

Mechanisms for Acquisition. Online auction systems such as eBay are

widely known, but they make use of just one class of mechanism—the

auction. Other classes of mechanism are also being explored, some of which

may have direct application not just to the control of ULS systems but also

to their production and acquisition. For example, voting mechanisms enable

an arbitrary society of agents to agree on actions that bind the entire society

in virtual enterprises. Bargaining mechanisms allow bilateral agreements

among agents that have conflicting interests, for example in subcontracting;

contracts and contract nets are an important application. Market mecha-

nisms enable efficient distribution of goods between two classes of agents:

producers of software products and consumers of these products. Research is

therefore needed in both the creation of novel mechanisms and the efficacy

of mechanisms such as those discussed here.

6.2.2

Metaheuristics

in Software

Engineering

 Although algorithmic mechanism design is promising, it works best in situa-

tions in which the goals of individual participants can be precisely character-

ized. It is less well suited to situations in which participants themselves

are attempting to satisfy multiple, possibly competing objectives that may

change from time to time. Of course, this is also an ever-present problem

in systems that is sometimes characterized as quality-attribute tradeoff. For

example, while mechanism design might be suitable for providing guarantees

of optimal allocation of network bandwidth under competing interests, it is

not (yet) suitable for guaranteeing an optimal bandwidth allocation under

competing quality requirements for security (e.g., data privacy) or reliability

(e.g., data redundancy). Moreover, because mechanisms embody a priori

solutions to design problems, they do not address another significant chal-

lenge posed by ULS systems—their longevity.

In effect, while mechanism designs provide optimal solutions for the ULS

system at a particular instant in its evolution, they do not address a search for

optimality in the (relatively) deep time of the overall life of a ULS system.

To meet these challenges, research is needed on metaheuristics, which is

a class of (often biologically inspired) search techniques that iteratively

Research Tracks

Essential

69Ultra-Large-Scale Systems

The Software Challenge of the Future

seeks an optimum solution within a landscape of possibilities that may be

extremely complicated and even discontinuous. Metaheuristics characterize

a problem as a set of states within a search space, a current state, a mutator

function (that moves from one state to another), and some objective (goal

or fitness) function that is to be optimized. Common examples of meta-

heuristic techniques are genetic programming, simulated annealing, greedy

algorithms, swarm intelligence, and ant-colony optimization. Metaheuristics

have already found several applications in software engineering research and

development. The emphasis of metaheuristics is on simple parts that collec-

tively solve a complex problem. For example, ants, slide molds, or individual

neurons possess little intelligence and little context individually, but they

react and adapt intelligently en masse over time. These examples suggest that

metaheuristic techniques may be able to scale to ultra-large problems in a

way that traditional software engineering techniques cannot.

Examples of existing uses of metaheuristics are found in software testing,

algorithm optimization, and program analysis. We need research on the

following topics associated with metaheuristics:

> Metaheuristics:
 Search with Ants, Swarms, and Genetics

Relevance to DoD Missions

War fighting poses many

optimization problems (e.g.,

in logistics and movement

control). Future combat

situations will be ever more

dynamic, and optimization

decisions will be based on

more data and more diverse

types and sources of data. The

ability to quickly generate near-

optimal solutions to complex

optimization problems will

provide the future warfighter

with a qualitative edge on the

battlefield.

Key Concepts

Many critical optimization

problems, for example find-

ing the most time-efficient

route for delivering material

to a (possibly large) number

of locations, are known to be

computationally intractable.

Rules of thumb—or heuristics—

are search strategies used

to find reasonable solutions

with reasonable effort, though

these solutions may be far

from optimal. Metaheuristics

are super-strategies that can

combine, control, and guide

the operation of lower level

heuristics. Many metaheuristic

strategies are inspired by

optimization strategies

found in biological systems

(ant colonies) and physical

processes (annealing).

70 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

Representation of Software Engineering Problems as Metaheuristic

Problems. Many problems in software engineering are not readily or

obviously transformed into search problems. Test-data generation is an

example of a software engineering problem that has been successfully treated

using metaheuristics: this problem has a large, natural search component

and an easily definable fitness function. For example, in clear-box testing,

a natural and easily defined fitness function is the percentage of branches

that have been covered by the test suite. Research will determine the broad

class of software engineering problems that can be naturally understood and

represented as search problems.

Creating Objective Functions. Can objective functions—the measures that

metaheuristic algorithms use to direct their searches—be easily and naturally

specified? One approach is to harness the techniques used in test-driven

design disciplines in which part or all of a specification is in terms of user-

understandable tests residing in a simple test harness. Can a more adaptable

approach to objective functions be found? Can we learn from the recent

research in biology on hypermutation—the mechanism by which the human

immune system adapts to new attacks—and the regulation of mutations

under stress?

Creating Mutator Functions. Mutator functions are the engine that moves

the search from one state in the space to another. Creating such functions is

currently a handcrafting process. For the metaheuristic approach to be widely

applicable, research is needed that guides the developer in mapping from the

problem space to an effective mutator function.

Harnessing Swarm Intelligence. Ant-colony optimization (and related

algorithms) and particle swarm optimization are two successful techniques

using swarm intelligence: the study of collective behavior in decentralized,

self-organized systems such as swarms, flocks, schools, and herds. Research

is needed to apply swarm intelligence to ULS resource management,

quality-attribute maintenance, and robustness in general. Swarm intelligence

is appropriate in situations where there are large numbers of relatively

inexpensive, relatively autonomous agents that collectively need to solve

some search or optimization problem.

71Ultra-Large-Scale Systems

The Software Challenge of the Future

6.2.3

Digital Evolution

 Human cognition constrains designers to consider designs that are elegant,

understandable, modular, and mostly hierarchical. Good designs for some

parts of ULS systems, however, might well be found in less-well-structured

design spaces. In such cases, machines might be able to produce better

designs than people. The objective of digital software evolution is to use

the brute power of computers to overcome the constraining limits of human

cognition to discover optimal or unusual, satisficing engineering solutions, at

the cost of design-time qualities such as the understandability of a design.

Digital software evolution uses metaheuristic techniques such as genetic

programming and simulated annealing to design and implement software that

exhibits desired emergent behavior. At present, most work on digital software

evolution is centered on the creation of algorithms or entire programs. The

results, both theoretical and practical, have been good so far, but the follow-

ing types of research are needed to enable digital software evolution to work

effectively on the larger, more complex components in ULS systems:

Evolving Designs Through Crossover. Can crossover, which is the process

of combining traits from two individuals in the population that is being

evolved, be optimized to better capture good partial designs, perhaps in a

manner akin to automatically defined functions and speciation but using

human designs as well as digitally evolved designs? This approach aims

at automating only part of the design process rather than all of it. Proven

designs would be the raw material used by digital software evolution to

essentially compose or combine known designs into larger and more complex

ones. Moreover, perhaps designs produced by digital software evolution can

be used as material for higher level (human and nonhuman) designs. We also

note that metaheuristic concepts might have applications to manual design

processes. For example, the concept of crossover might well have applica-

tions to iterated competitions between design organizations (as discussed in

Section 6.1), where at certain points some teams can see what other teams

have done and adopt successful elements as a starting point for a next round.

Evolvable Resource-Sharing Policies. In deployed ULS systems, unex-

pected interactions between components through resource sharing—includ-

ing such things as power usage on portable, power-poor devices—can lead to

difficult-to-diagnose problems. It might be possible to treat resource sharing

as a first-class evolvable entity and apply crossover, mutation, etc. to this

aspect of the system, either as a resource or as part of a process that boosts

robustness and stability.

Evolvable Modularization. People design systems by fixing interfaces

early and by modularizing based on limiting the number of function points

in a module. Can better, more robust designs evolve when the definitions

of modules can vary by allowing functionality to be moved from module to

Research Tracks

Essential Support

72 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

module or to be replicated entirely? Digital software evolution may be able to

exploit such situations—in fact, a problem encountered in genetic program-

ming, especially in designing analog circuits, is that accidental functionalities

are unexpectedly exploited.

Automatically Evolved Intercomponent Glue. A simple problem in

producing a working system from a high-level design is producing the glue

that connects components together. The details of an application program-

ming interface (API) can cause numerous problems, particularly when the

API evolves. How much of a system’s intercomponent glue can be evolved

automatically? This problem includes being able to discover proper API

conventions and protocols as well as scaffolding code.

Automatically Evolved Implementations. A problem with software

development as it is practiced today is that, while the overall design of a

program or component might be fine, the details can be tricky. Is it possible

to use software evolution to complete the implementation of a design once

a certain level of detail is achieved? Can features, performance, or other

characteristics be continuously and automatically improved or refactored

through a process of slow, conservative software evolution? Can evolutionary

techniques based on possible refactorings be used to find good, effective

parallelizations of single-threaded code?

Regulating Digital Evolution. Is it possible to combine approaches to gain

better overall performance of software evolution by using various regulation

mechanisms? For example, some researchers have tried combining genetic

programming with Bayesian techniques to try to quell the tendency for

genetic programming to create larger and larger programs as the number

of generations grows. Genetic mechanisms may provide clues for other

concepts. For example, in nature, the production of a phenotype (an organ-

ism) given a genotype (genetic code) involves a lengthy process controlled by

several regulatory mechanisms. Can we find and harness similar regulatory

mechanisms to improve digital software evolution by creating regulated

distance between the representation that evolution manipulates and the

resulting program? Current research into type-safe staged computation

is a preliminary step in this direction. Recently it has been observed that

mutation rates and the loci of mutations in a genome can be modulated under

stress (adverse changing environmental conditions). Perhaps our metaheuris-

tic algorithms including digital software evolution can benefit from similar

mechanisms.

Self-Sustaining Techniques. The work of keeping a system healthy and

alive is not always the same as the designed operation of that system. Some

promising approaches are detecting non-self in the behavioral domain

using immunological techniques, detecting damaged or inconsistent data

73Ultra-Large-Scale Systems

The Software Challenge of the Future

structures and performing (minimal) repairs, and performing micro-reboots

of suspected components. To sustain a long-running system, can we use

continual re-creation techniques, such as autopoiesis and autocatalysis? An

autopoietic system is one whose network of components and the components

are continually produced by that network of components; an autocatalytic

system is a chemical reaction whose required catalyst is produced by the

reaction itself.

6.2.4

Further Reading

 Nisan and Ronen’s “Algorithmic Mechanism Design” [Nisan 99] is the

seminal paper on computational mechanisms. Although this paper appeared

several years after various prototypical applications of mechanisms in

computing settings, it provided a definite structure for further research.

Sandholm’s “Distributed Rational Decision Making” [Sandholm 99] is an

accessible survey of computational mechanisms, covering voting, auctions,

bargaining, markets, and contract nets. Schneidman and Parkes [Schneidman

03] explain the use of mechanisms to overcome naturally occurring strategic

behavior in peer-to-peer networks and outline a number of open problems

that remain to be solved. Blum and Roli provide a concise overview,

classification, and comparison of research in metaheuristics [Blum 03]. A

book-level treatment of just one population-based metaheuristic is available

in Dorigo and Stutzle’s Ant Colony Optimization [Dorigo 04].

The de rigueur references on genetic programming and genetic algorithm

are the books by John Koza and his colleagues [Koza 92, Koza 94, Koza 99,

Koza 03]. Papers indicative of the practical application of digital evolu-

tion and the range of nonhuman design are by Adrian Thompson and his

colleagues [Thompson 99, Thompson 02].

[Blum 03] Blum, C. & Roli, A. “Metaheuristics in Combinatorial

Optimization: Overview and Conceptual Comparison.” ACM Computing

Surveys 35, 3 (September 2003): 268-308.

[Dorigo 04] Dorigo, M. & Stutzle, T. Ant Colony Optimization. Cambridge,

MA: MIT Press, 2004.

[Koza 92] Koza, J. Genetic Programming: On the Programming of Computers

by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[Koza 94] Koza, J. Genetic Programming II: Automatic Discovery of

Reusable Programs. Cambridge, MA: MIT Press, 1994.

[Koza 99] Koza, J.; Bennett, F.; Andre, D.; & Keane, M. Genetic

Programming III: Darwinian Invention and Problem Solving. San Francisco,

CA: Morgan Kaufmann, 1999.

[Koza 03] Koza, J.; Keane, M.; Streeter, M.; Mydlowec, W.; Yu, J.; &

Lanza, G. Genetic Programming IV: Routine Human-Competitive Machine

Intelligence. Norwell, MA: Kluwer Academic Publishers, 2003.

74 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

[Nisan 99] Nisan, N. & Ronen, A. “Algorithmic Mechanism Design,”

129-140. Proceedings of the 31st ACM Symposium on Theory of Computing.

Atlanta, GA, May 1–4, 1999.

[Sandholm 99] Sandholm, T. “Distributed Rational Decision Making,”

201–258. Multiagent Systems: A Modern Introduction to Distributed

Artificial Intelligence. Weiss, G., ed. Cambridge, MA: MIT Press, 1999.

[Schneidman 03] Shneidman, J. & Parkes, D. “Rationality and Self-Interest

in Peer to Peer Networks.” Proceedings of the 2nd International Workshop on

Peer-to-Peer Systems (IPTPS ‘03). Berkeley, CA, Feb. 20–21, 2003. Berlin,

Germany: Springer-Verlag, 2003.

[Thompson 99] Thompson, A.; Layzell, P.; & Zebulum, R. “Explorations

in Design Space: Unconventional Electronics Design Through Artificial

Evolution.” IEEE Transactions of Evolutionary Computation 3, 3

(September 1999): 167–196.

[Thompson 02] Thompson, A. “Notes on Design Through Artificial

Evolution: Opportunities and Algorithms,” 17–26. Adaptive Computing in

Design and Manufacture V. Berlin, Germany: Springer-Verlag, 2002.

6.3

Design

 Designing software for ULS systems involves activities such as the

following:

• participating in the formulation of the problems that the systems will

address as they relate to the software elements;

• defining the capabilities required in the software to address such needs;

• structuring and developing plans (or designs in the narrow sense of the

word25) for producing such software; and

• regulating the production of the software, evaluating it, and making

changes as information and conditions change.

Current design theory, methods, notations, tools and practices, and the

acquisition methods that support them are inadequate to design ULS systems

effectively. Some of the most important shortcomings are the following:

• Typical traditional design approaches are relatively centralized,26 but

centralized processes perform poorly at the complexity scale of ULS

systems. This characterization is likely to be true for many aspects of

ULS system software development, from determining requirements to

detailed programming to support, maintenance, and evolution.

25 For ULS systems, designing encompasses producing the code for the system, not only making a plan for that code.

26 Although open source is not centralized and agile methodologies are not as centralized as many other

methodologies, these approaches are usually considered outside the mainstream; however, there is a lot to

learn from them for ULS systems.

75Ultra-Large-Scale Systems

The Software Challenge of the Future

• Much traditional software research and practice seeks methods enabling

individual projects to produce good designs reliably on time and under

budget—and, in some cases, projects succeed when measured this way.

ULS system design, however, will be characterized by inherent uncer-

tainty and incomplete knowledge of requirements and the consequences

of design decisions. Design risk is inherent. Therefore nearly every

project—even competently executed projects—will exhibit significant

variation (i.e., unpredictability) in costs, duration, and quality of results.

• Although traditional design methods are formulated to facilitate design

evolution, the impact of change in many dimensions and across many

time scales without the control of centralized design processes will pose

particular problems for ULS systems. Moreover, although current design

methods do emphasize design for change, they provide little guidance on

how to invest in flexibility and generality in design.

• Today we have a poor understanding of the influence of economic condi-

tions on design activities and thus in particular on how to establish eco-

nomic conditions (e.g., through the organization of acquisition processes,

incentives, and industry structures) conducive to producing good designs.

We especially lack a clear understanding of how to fund design in the

context of emergent requirements and the need for decentralized design

processes. Similarly, we don’t understand how to enlist the open-source,

university and other software- and system-producing communities by

means of their fundamental motivations to produce good designs.

• ULS system designs must satisfy combinations of demanding technical

constraints that are difficult to satisfy even in today’s relatively simple

systems and for which, in some cases, requisite supporting infrastructure

and mechanisms do not yet exist. Examples include simultaneous

dependability, significant self-reconfigurability, and economic value.

Reconfigurability greatly expands behavioral complexity, making static

analysis and testing for high-assurance dependability costly at best, and

infeasible in some cases.

• ULS systems will be both software intensive and human intensive, so the

software elements must be designed with attention to issues ranging from

technology to information processing by individual people, human teams,

and organizations. Current software-design theories assume that the

target environment is a network of computers and devices. Yet teams and

human organizations within larger systems are also information-process-

ing mechanisms, engendering new opportunities and complexities. We

have little in the way of a theory for or practice of “engineering” human

organizations.

76 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

Successful ULS systems will require substantial advances in theories,

models, concepts, tools, technologies, methods, and applications of software

design to address the challenges described above. The following research

topics emerge from the need for these advances.

6.3.1

Design of All Levels

 The successful design of ULS systems appears to depend to a significant

extent on the design of all levels: not only of the software artifacts but of

entire socio-technical ecosystems—both those that produce the systems and

those in which they are employed—and of the linkages that integrate them

into an even larger system. Design at all levels means designing the software

artifacts, the development and acquisition infrastructure, and the rules and

policies as a unit. Moreover, the complexity of ULS system design dictates

the need for significant decentralization of design-production activities.

For example, multiple industry sectors, each driven by competition and

coordinated with each other by architectural agreements and other rules,

constraints, and incentives, might be more effective in producing ULS

system designs and improving them than traditional prime/subcontractor

structures. The personal computer (PC) industry provides an example of

such a decentralized design process. Multiple competitors within subsectors

develop competing designs at the component level: for CPUs, operating

systems, networks, and applications. The complexity of the PC is such that no

single company could have advanced its design to the point at which it exists

today. Monolithic PC designs could have been produced and were produced.

However, it seems unlikely that any single company could have achieved the

rapid, simultaneous advances we have seen in quality, cost, and performance

in so many dimensions. The competition between Intel and AMD has

produced tremendous advances in processor technology. A company the

size of Microsoft has succeeded with just a few key system components: an

operating system and an application suite. Another industry sector focuses on

graphics hardware, another on sound cards, and so forth. The key idea is that

a massive, decentralized industry structure, coordinated by architectural and

other agreements and by other means but without a commanding centralized

controller, now drives an extraordinary design process that continues to

improve the PC. The PC, of course, is but one component type in a ULS

system. We foresee the need for research on whether comparable industry

structures and design processes could be harnessed to design ULS systems

and components and on how to design them.

In addition to the design of ULS system artifacts and architectures, we would

have to give attention to the design of the decentralized industrial and other

organizations27 that would develop and continually enhance these designs

as well as to the design of the surrounding economic and other motivational

27 Such organizations include open-source communities, university and industrial research laboratories, and even

individuals who produce high-quality designs and software based on motivations that are not purely monetary or

even economic.

Research Tracks

Essential

77Ultra-Large-Scale Systems

The Software Challenge of the Future

conditions; these include but are not limited to acquisition structures and

methods. We therefore need research on theories and methods of design that

relate detailed designs, architectural designs, decentralized organizations,

and driving economic and other motivational forces. For example, we need

new methods for developing and assessing the designs of end-to-end system

architectures that will produce and continually improve ULS system designs.

6.3.2

Design Spaces and

Design Rules

 The architecture of a ULS system will consist of design rules (such as

agreements on conventions, presuppositions, and constraints in the form of

interfaces, standards, service-level agreements, etc.) that serve to decompose

a system into component parts by decoupling design decisions that would

otherwise be coupled. Design rules thereby also define the structure of the

design spaces that will be explored by organizations working to design

individual parts. The design process emerges as a search for valuable designs

for both individual parts and combinations of parts, augmented by additional

processes that occasionally select best-of-breed designs for parts and

combinations thereof for testing and actual production. The architecture both

divides the design work into simpler tasks and structures the design spaces

that the competing organizations explore.

> Design Rules:
 Combining Software and

Engineering Systems Design,

Financial Economics, and

Complex Adaptive Systems

Relevance to DoD Missions

Mission-critical ULS systems will necessarily

be developed and maintained over

long periods of time by collections of

organizations from various industry sectors.

Today we lack a testable and validated theory

of how to create incentives for development

of an optimal or even viable allocation

of design parts and processes to various

industry and DoD constituents so that

feasible ULS systems are produced.

Key Concepts

Modularity in design is a key to managing

the complexity of software and to producing

software systems amenable to change

and to concurrent development. We are

now learning that modularity also creates

economic forces that shape and constrain

large-scale design activities. Modules appear

to create real options, capital investment

analogs of financial options. Baldwin and

Clark’s concept of design rules provides a

generalized account of what it means for a

design to be modular and of the conditions

under which such modularity generates

significant economic potential. Design

rules impose structure on design space to

be searched for good solutions, allowing

separate industry participants to seek good

solutions independently within modules.

As improved solutions are found, design

transformations are made. The overall result

is to organize the search for good system

designs as a decentralized, complex adaptive

system. Key research needs in this area are to

develop, test, and apply descriptive theories

to advance actual ULS system and software

engineering capabilities.

Research Tracks

Essential Support

78 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

This is a new perspective: architecture is not purely a technical plan for

producing a single system or closely related family of systems, but a

structuring of the design spaces that a complex design process at an industrial

scale will explore over time. Note that although breaking up an architecture

into design spaces and striving for a set of coherent and effective design rules

would seem to imply a significant degree of control of the overall design and

production process, the design spaces, design rules, and the organizations will

be continually adjusting and adapting to both internal and external forces.

We need research on the methods and processes for devising ULS archi-

tectures in terms of design spaces and design rules. In particular, we need

research on designing, representing, and analyzing design spaces. The design

process is to explore the design space using parallel, decentralized processes

regulated by design rules, which are architectural agreements and other

constraints (such as security and performance) and incentives. Design rules

must operate at many levels of abstraction—ranging from the outermost,

most general shape of the architecture down to some level of detail below

which possibly independent designers or design groups are permitted to

make their own decisions.

Key research questions include the following:

Design Spaces. How do we support a design-space view of architecture with

new representations, tools, and environments? How do we map, represent,

and analyze the architectures of ULS systems to predict economic and tech-

nical properties of the resulting processes and products? How and to what

extent do demanding performance requirements and other constraints limit

the possibilities for modularization of architectures for ULS system designs?

How can organizations leverage architecture for competitive advantage?

Design Rules. What are the means by which design rules for ULS systems

are created and changed? How are design rules validated with respect

to system-level properties that they are meant to assure, and how are the

products produced by individual organizations during the process verified

against prevailing design rules? How are design dependencies managed

across component and organizational boundaries? How do we make design

rules flexible enough to permit effective exploration of the design space

over competing architectures (competing design rules)? How do we design

attribute-specific design rules, such as rules that lead to components that are

not only secure in themselves but that remain secure when composed?

79Ultra-Large-Scale Systems

The Software Challenge of the Future

6.3.3

Harnessing

Economics to

Promote Good

Design

 Today we have few tested theories or practices of how to design ULS systems

for economic value or of how to establish economic forces that promote

good design, such as through new contracting structures. For example, we

have no tested theory describing how modular architectures create economic

value, and thus we have little scientific basis for designing modular industry

structures that are likely to produce good designs for ULS systems and their

parts. We therefore need research leading to a deeper understanding of how

to organize designs and design activities to maximize value and of how to

create economic conditions that predictably provide incentives to create

valuable designs (net of the cost and time to produce them).

The decomposition of a ULS system into parts is likely to be of little use

if there is no company that can profit by producing key parts; nor are

high-quality parts likely to be produced with great economic efficiency in

the absence of competition.28 We lack a theory and practice of competitive

software design—i.e., of design processes in which competition is intention-

ally introduced at many levels. Likewise, we have little tested theory or

practice of design risk management. If the outcome of a design attempt is

uncertain, diversification over multiple independent attempts is an obvious

strategy for risk management (as well as being consistent with the introduc-

tion of competition systematically into design processes). Indeed bakeoffs

and other competitions are used today. We need research on how much

diversity maximizes expected returns, how to promote design diversity in

competitions, and how to use competition in detailed design.

Example research questions include the following:

Design Risk Management. When is diversification through parallel,

competitive design-space exploration a better strategy for achieving goals in

scope, cost, timeliness, and quality than previous attempts to develop repeat-

able design methods that reliably produce good outcomes? To what extent

can we assume that multiple versions are independent in dimensions that

matter (a question related to earlier work on assumptions of independence

in the use of n-version programming to improve software reliability)? How

can we quickly tell when designs are unlikely to succeed, and how can we

organize our design processes to enable effective value-creating cancellation

of unsuccessful designs?

Value Assessment. How do we model and use the value propositions of

system users, producers, and others in formulating designs and design

processes for economic viability? How can we assess the economic viability

of proposed modules or system architectures? By what means can we design

ULS systems when market forces are simply inadequate to provide an incen-

tive for efficient design processes?29

28 Note that this discussion is solely in the context of commercial interests. Open-source projects, for example, produce

high-quality software through a different process. In this report, we assume that open source will be part of the overall

marketplace of software components and that the effects of competition between commercial and open-source

projects will be similar to those described here in purely economic terms.

29 This can happen when a potential market for a system, part of a system, or component is too small or nonexistent.

On the other hand, there is no requirement that design processes be efficient.

Research Tracks

Essential Support

80 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

6.3.4

Design

Representation and

Analysis

 Today’s design representations do not support the kinds of design-theory

development or practical analysis needed to support ULS system design.

Key research questions include the following:

Design Rule Representation. How do we represent architectural designs

based on generalized concepts of design rules and design spaces, rather than

on the much more limited special case of APIs, which dominate in architec-

tural design today?

Design Rule Properties. How do we analyze such new representations to

ascertain likely technical and economic properties of designs and design

processes?

Role Representation. How do we represent the information-processing,

storage, and communications roles that people play in complex systems,

perhaps in a manner that unifies modeling of human and information-tech-

nology elements?

Temporal Representation. How do we represent and validate temporal

properties of design processes such as synchronization rules pertaining to

separate companies and organizations?

Representing Diverse Parts. How can we construct detailed repre-

sentations of designs whose parts are developed by separate—often

competing—organizations?

Evaluating Representations for People. How can we evaluate tradeoffs

among representation expressiveness, human comprehensibility, and the

propensity for human error?

Today’s design representations, which are based mostly on computational

processes communicating through APIs, are far from sufficient to support the

needs of ULS systems. For example, they do not readily admit representation

of the design rules that have to be followed to enable secure interoperability.

Research Tracks

Essential Support

81Ultra-Large-Scale Systems

The Software Challenge of the Future

6.3.5

Assimilation

 Today’s large-scale systems are often characterized by attempts to leverage

components that were not designed to work together or that are inconsistent

with the design rules of the architecture in which they are being inserted. It is

doubtful, however, that force fitting uncoordinated components will scale up

reliably to meet the demanding technical and economic requirements of ULS

systems. Experience with today’s systems-of-systems programs suggests

that ULS systems will continue to face many similar problems, including the

need to include legacy systems and the need to integrate and interact with

off-the-shelf parts. Moreover, as ULS systems come to depend on third-

party-provider network-based services, entirely new forms of old problems

will emerge. Past research on techniques for dealing with such problems

has not been commensurate with the magnitude of the problems, and the

success of ULS systems likely depends on significant progress being made

on ULS system assimilation, where nonconformant parts are assimilated into

architecturally coherent ULS systems. To achieve this progress, the following

research is needed:

6.3.5.1

Legacy-System

Assimilation

 Much of the work in developing and maintaining ULS systems will involve

assimilating large legacy code bases—for example, by adding to those

systems to create the basis for a ULS system, by reconfiguring the legacy

system before insertion in a ULS system, and by redeploying legacy systems

in contexts for which they were not designed as part of a ULS system.

Significant changes will have to be made to existing legacy systems (for

example, to change basic aspects of the system’s functionality or design

assumptions) in order to bring them into conformance with design rules

sufficient to enable integration into a ULS system with reasonable assurance

that required system properties will be attained or preserved. It is essential

to find ways to exploit new technologies and social practices so that legacy

systems describe their own structure and behavior more fully than they do

today, with little additional burden on developers, so that they do not become

ossified and incapable of evolution.

Each ULS system will exist for so long that some parts of it will become

like legacy systems with respect to the emerging and evolving ULS system

over time. The Y2K crisis is an apt, if perhaps overused, example of the

problem. In the 1960s and 1970s (and even through the 1980s), many

large-system developers believed that years (as dates) could be represented

with two digits, reasoning that those systems would be replaced before any

effects of the change of century resulted. No precautions were taken to make

a simple conversion to a new or expanded representation when the time came.

The result was that billions of dollars were spent to bring these systems up to

date or to replace them when such replacements were not strictly necessary.

This example raises numerous issues for ULS systems requiring research.

It is not that the designers of the two-digit systems were irresponsible or

Research Tracks

Essential Support

82 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

poor designers; they chose the designs with deliberate thought and with

knowledge of the limitations of the design decision, but made a tradeoff

that was later to be regretted. Even today, excellent designers design with

data-size limits when there are (computationally expensive) means to avoid

these issues. We therefore need new research in the following topics:

Working with Legacy Code. We should develop techniques that enable

analyzing, modeling, and evolving legacy code bases. The goals of such

research include making it possible to model legacy code in various ways, to

overlay models onto code, and to manipulate code by way of such models.

Working with Diverse Data. We must be able to exploit rich new capabili-

ties in areas of metadata, loosely structured data, multimedia, information

search and synthesis, etc., to produce systems that have understandable,

built-in design and operational diagrams and other documentation, produced

without undue effort, and that are sufficient to help reduce the decay

of structure and knowledge that cripples so many engineers of large systems

today.

Working with Code Maturing into Legacy. We need to develop

techniques to treat older parts of a ULS system as legacy, including

how to handle unforeseen requirements, changing data characteristics,

 new technologies, etc.

6.3.5.2

Integrating Diverse

and Uncertain

Information Sources

 ULS systems will often use information from diverse sources that varies

in reliability and trustworthiness. The resulting aggregate information may

therefore be inconsistent and it may be non-monotonic: values may

change and reliability may decrease as new information is integrated.

Moreover, since the sources of information will be independent, the content,

format, and other properties of the data will be subject to unpredictable

change over time.

Some information sources must be integrated immediately, based on

metadata and other formal descriptions. In some cases, rule sets will be

integrated, and if they are proven unreliable, the conclusions reached and

actions taken based on them must be addressed.

We need research on Techniques for Integrating Diverse Information

Sources. We must be able to integrate information from multiple, diverse,

and possibly unreliable or untrustworthy services, possibly immediately;

determine the quality of the result; and adapt to variations in quality and

to other changes over time.

83Ultra-Large-Scale Systems

The Software Challenge of the Future

Possible approaches to this requirement include the following:

• Defining Standards for Information Sources. We could define

standards for describing information sources that include sufficient meta-

information to set expectations about format, semantics, and availability.

• Composing Information Sources. We could create smart glue that

monitors information sources to ensure that they behave as expected,

taking remedial action if they do not.

• Estimating Reliability of Information Sources. We need to develop

techniques for estimating the reliability of an integrated body of informa-

tion that reflects the reliability of its individual sources.

• Measuring Capabilities. We need to generate measures of ULS system

creation, evolution, operation, and support that reflect overall capability

and permit identification of significant deviations at any system level.

6.3.5.3

Off-the-Shelf

Components

 As noted, for economic and technical reasons, ULS systems will be subject

to pressures to incorporate off-the-shelf (OTS) components30 (which may be

packaged as commercial, open source, government rights, etc.). A compo-

nent is considered OTS if it was not designed, produced, and changed under

the design rules that govern the system in which it is inserted. Components

often include the teams/firms that developed them (through maintenance and

service relationships, business acquisitions, etc). Models of assimilation in

socio-technical ecosystems thus include not just technical means of assimila-

tion such as software wrappers, but also business means, such as mergers and

acquisitions, that provide new levels of design control.

Research questions include the following:

Effective Technical and Economic Decisions for OTS components.

What tools, methods, theories, and technical and business practices can

better enable designers to make technically and economically effective

decisions regarding the use of OTS components in ULS systems and system

components?

Assessing Quality Tradeoffs for OTS Components. What kinds of tools

and practices are needed to assess quality tradeoffs and implications in all

relevant dimensions, including reliability, availability, safety, security, risk of

obsolescence, and life-cycle costs and benefits, especially concerning cost of

change and of refreshing technology?

Assimilating OTS Components. How can OTS components be better

assimilated into ULS systems when they are judged to be the best options?

30 The term “component” here is intended to mean a constituent part of the ULS system, which could be a web service

or a piece of hardware.

84 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

Understanding Long-Term Value of OTS Components. How can

situations in which the short-term benefits of using OTS components are

outweighed by the present value of downstream costs under reasonable

assumptions about the future be easily be recognized?

6.3.5.4

Component-

Integration

Technologies

 Because not much can be done in the short term to change the direction

of the installed base of hardware and software components, a reasonable

approach is to provide the needed services at higher levels of ULS compo-

nent-integration technologies, such as middleware platforms. A crucial issue

is how to go beyond building component technologies for ULS systems that

simply provide a better network, operating system, resource manager, or

security service in isolation. We therefore need research on the following

topics:

Integrating Components. We need techniques for integrating capabilities

and delivering them to applications in ways that enable them to realize

a model of adaptive behavior with tradeoffs among the various quality

attributes. A promising approach is middleware that can be placed on top

of legacy systems to take advantage of redundancy and diversity, acting

as a coordinator for a variety of previously uncoordinated components—

perhaps components that were never conceived of as being part of the

same ULS system.

Hardware for ULS Component Integration. We need to look at new

hardware and software platforms (computer systems, memory structures,

specialized processors, frameworks, etc.) to support ULS system develop-

ment and deployment.

6.3.5.5

Design for

Assimilation

 Today’s software-design methods are largely based on the idea of composi-

tion of black-box abstractions: components characterized by minimal

external interfaces and implemented by hidden inner mechanisms. Some

recent research (for example, on open implementations and aspect-oriented

programming) suggests that system assimilation might be eased by relaxing

such strictly enforced abstraction. We need research on the following topics:

Dimensions of Design Assimilation. What tradeoffs are involved (for

example, for and against ease of change) in the use of such approaches?

Mechanisms for Assimilation Design. What is the range of software-design

techniques and mechanisms that can help to assimilate components into

systems even if such components do not conform to all the design rules nec-

essary for intervention-free integration or interoperation? Which approaches

are best, and how can they be advanced?

85Ultra-Large-Scale Systems

The Software Challenge of the Future

6.3.6

Determining

and Managing

Requirements

 Formulating system requirements is a critical success factor in software

engineering, and shortcomings in this dimension are one leading cause of

software project failures. Determining or discovering the requirements is

also the software engineering activity that is the most domain specific, the

least capable of being automated and formalized, and the least scalable. ULS

systems will make these problems worse because of the scope of applica-

tion domains that exceed the limits of human intellectual capabilities, the

complexity and fragmentation of socio-economic processes and organiza-

tions that are highly decentralized and autonomous, and the sheer complexity

of the problems being addressed.

Because of the smaller scope and scale of traditional systems, it was

sometimes workable for teams first to analyze requirements and write down

specifications, and then to proceed through detailed design, coding, testing,

etc.31 For ULS systems, however, such a life cycle is unrealistic. Analysis

and design methods must accommodate pervasive incompleteness, imperfec-

tion, uncertainty, and non-determinacy in the products and processes that

arise throughout the system’s development and evolution. The distinction is

blurred between design time, development time, and runtime (or deployment

time). We need research on ULS system requirements on such topics as the

basics of requirements gathering, conflict management, ambiguity tolerance,

and requirements phaseout.

6.3.6.1

Basics of

Requirements

Gathering

 Because ULS systems comprehend so much functionality and therefore are

unfathomably complex, requirements gathering takes on a whole new complex-

ion. There will be, in effect, randomness or uncertainty in the requirements, in the

specifications, and in the system itself—and it may not be possible to determine

reliably where the problem lies. Further, because ULS systems will be socio-

technical ecosystems, the scope of requirements gathering must expand to include

people. Therefore we need research on the following:

User-Centered Requirements. We must understand user-centered design in

the presence of diverse stakeholders including large numbers of diverse users

with varying abilities and required tasks.

Implementing Partial Requirements. We must figure out how to do

incremental or fractal design and implementation (perhaps in the mold of

agile methodologies).

Design Rules and Requirements Feedback. We must figure out how

to construct design rules that encourage sophisticated feedback paths in

requirements, specifications, designs, and implementations.

31 The category of a system can influence how feasible it is to gather requirements accurately before design and

implementation. In some scientific and engineering situations, complete requirements are more likely to be determined

beforehand than in situations where the deployment of the system alters social, organizational, or business forces in

an ecosystem or society. In the latter case, requirements will tend to drift, and perhaps the entire ecosystem—the

deployed system and its social and other components—will converge at some point.

Research Tracks

Essential

86 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

6.3.6.2

Conflict

Management

 Because ULS systems will serve different classes of users with distinct

interests, it will be difficult to detect and resolve conflicts in requirements for

different system parts and stakeholders. We therefore need research on the

following:

Competing Human Interests. We need to figure out how to represent,

analyze, and reconcile distinct and competing interests. Examples include

the following:

• developing logics that support multi-layered representation and

reasoning;

• reconciling conflicting security requirements;

• reconciling requirements arising from users (user-centered design) and

from those arising from non-user stakeholders; and

• analyzing requirements for compatibility, redundancy, inconsistency,

emergent properties, and combined behaviors.

6.3.6.3

Ambiguity Tolerance

 In traditional requirements engineering, tolerating ambiguity is a strategic

measure intended to postpone specification of details until they are fully

understood. In contrast, we expect uncertainty, ambiguity, and non-deter-

minacy to be permanent characteristics of ULS systems. We therefore need

research on the following:

Uncertain and Ambiguous Requirements. How do we best analyze,

transform, and reason about requirements in the presence of uncertainty and

ambiguity?

Requirements Drift. How do we represent and respond to requirements

drift in socio-technical ecosystems where the presence of a new system can

affect human and organizational dynamics, and therefore the requirements?

6.3.6.4

Requirements

Phaseout

 Traditional life-cycle models make provisions for a phaseout stage, during

which a software system is phased out and replaced with a new system. The

economics of ULS systems will be such that phaseouts will often be far in

the future. We therefore need research on the following:

Life Cycle of Requirements. How do we provide for longevity by

representing requirements in a way that accommodates the addition,

deletion, modification, or recomposition of requirements over long periods

of time and evolution?

87Ultra-Large-Scale Systems

The Software Challenge of the Future

6.3.7

Further Reading

 Design in general, and the design of software and software-intensive systems

in particular, is a topic that has received a great deal of study over many

decades. Herbert Simon’s epochal paper, “The Architecture of Complexity”

(reprinted in his book, The Sciences of the Artificial [Simon 69]), provides

a touchstone for significant thinking on the structure of complex systems,

whether engineered or emergent. The basic idea is that for systems to be

robust in the face of change, they must have a structure that is hierarchical

or nearly so. Parnas’s notion of information-hiding design modularity, first

presented in his paper, “On the Criteria for Decomposing Systems into

Modules” [Parnas 72], is an important prescriptive guideline to help develop-

ers design software that is robust to change. This idea reduces Simon’s notion

to an operational guideline for software engineers.

A separate but related stream of thinking emerged in the social sciences.

Coase’s famous paper, “The Nature of the Firm” [Coase 52], attempted to

explain why the emergent structure of the capitalist economy is a collection

of firms, not just one large firm. The question he tried to answer was roughly,

“Why doesn’t competition drive out all firms but one?” His answer revolved

around concepts of transaction and organization costs driving the economy

to a decentralized rather than a centralized structure. Carliss Baldwin and

Kim Clark brought together these two lines of thinking in their book, Design

Rules: The Power of Modularity [Baldwin 99]. In it, they try to account for

the emergent, modular structure of the modern computer industry based

on the idea that information-hiding modules in computer design create

economic value in the form of real options (capital-investment analogs of

financial options) and that the overall economy drives industry to organize

itself to pursue this options value.

Boehm (for example in his book, Software Engineering Economics [Boehm

81] and in a more recent paper, “Software Economics: A Roadmap” [Boehm

00]) has pioneered the concept that software producers should optimize for

value creation rather than merely for technical perfection.

Sullivan and colleagues [Sullivan 99] and Sullivan and Griswold and their

students [Sullivan 01] have argued that concepts of real options, including

the notions of Baldwin and Clark, can be operationalized to advance the

theory and practice of software engineering. In particular, some recent work

has shown that Baldwin and Clark’s concept of design rules, as a formulation

of what it means for a design to be modular, leads naturally to a generalized

concept of interface. This concept can accommodate both an apparently

non-hierarchical form of modularity being explored today under the rubric of

aspect-oriented design [Griswold 06] and to the scaling up of software-based

forms of modularity to the design of complex activities within firms and

perhaps even to the structuring of industry sectors.

88 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

Any serious operationalization of this concept for ULS system design will

require the precise formulation and validation of critical design rules. The

work of Jackson [Jackson 06] on practical formal methods appears to hold

significant promise to advance our capabilities in this dimension.

[Baldwin 99] Baldwin, C. & Clark, K. Design Rules: The Power of

Modularity. Cambridge, MA: MIT Press, 1999.

[Boehm 81] Boehm, B. W. Software Engineering Economics.

Prentice Hall, 1981.

[Boehm 00] Boehm, B. W. & Sullivan, K. “Software Economics:

A Roadmap.” The Future of Software Engineering. Association for

Computing Machinery, 2000.

[Coase 52] Coase, R. H. “The Nature of the Firm.” Readings in Price

Theory. Stigler and Boulding (eds.). Chicago, IL: R. D. Irwin, 1952.

[Griswold 06] Griswold, W. G.; Sullivan, K.; Song, Y.; Shonle, M.;

Tewari, N.; Cai, Y.; & Rajan, H. “Modular Software Design with

Crosscutting Interfaces.” IEEE Software 23, 1 (January/February, 2006):

51-60.

[Jackson 06] Jackson, D. Software Abstractions: Logic, Language, and

Analysis. Cambridge, MA: MIT Press, 2006.

[Parnas 72] Parnas, D. L. “On the Criteria for Decomposing Systems

into Modules.” Communications of the ACM 15, 12 (December

1972):1053–1058.

[Simon 69] Simon, H. A. “The Architecture of Complexity,” 192-229. The

Sciences of the Artificial. Cambridge, MA: MIT Press, 1969.

[Sullivan 99] Sullivan, K. J.; Chalasani, P.; Jha, S.; & Sazawal, V.

“Software Design as an Investment Activity: A Real Options Perspective.”

Real Options and Business Strategy: Applications to Decision Making.

L. Trigeorgis (ed.). Risk Books, 1999.

[Sullivan 01] Sullivan, K.; Griswold, W. G.; Cai, Y; & Hallen, B.

“The Structure and Value of Modularity in Software Design,” 98-101.

Proceedings of the 8th European Software Engineering Conference,

held jointly with the 9th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, 2001.

89Ultra-Large-Scale Systems

The Software Challenge of the Future

6.4

Computational

Engineering

 To respond to rapidly changing environments, ULS systems will require

fast and reliable component development and evolution. In addition, people

with many different backgrounds and interests will need to understand

quickly the design and operation of ULS systems and their components.

To meet these needs, new approaches will be required to enable intellectual

control at an entirely new level of scope and scale for analysis, design, and

operation. Moreover, ULS systems will be defined and implemented in many

languages, each with its own abstractions and semantic structures, creating

requirements for analysis of artifacts in multiple semantic frameworks.

Unfortunately, most existing programming languages treat software as an

isolated, closed-world formal system. Such a view, although not without

benefits, is not sufficient for the needs of ULS systems. We must evolve the

capabilities of programming and other representational languages to make

ULS systems more understandable at all levels of abstraction.

Another requirement is to create ULS systems out of larger and larger

components. That is, if the granularity of reliable engineering artifacts can

be scaled up sufficiently, the design, construction, and analysis of ULS

systems will become more manageable. For example, a billion-line system

becomes a million-unit system if the reliable unit of construction is a

component of a thousand lines, and it becomes a ten- or hundred-unit system

if hundred-thousand-line or ten-thousand-line subsystems, respectively, can

be reliably built from reliable thousand-line components. Creating such large

components and subsystems at the requisite level of reliability can be aided

by computational analysis of software behavior that can be used to model,

specify, verify, and test components as they are developed and evolved.

90 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

6.4.1

Expressive

Representation

Languages

 To address these challenges, ULS systems will require increased language

expressivity, an expanded view of abstraction, and more powerful capabili-

ties for modularity, composition, verification, and validation. Abstraction

mechanisms must be capable of spanning larger and more diverse kinds of

phenomena, for example, very high-level specifications and architectures,

error and exception propagation, quality-of-service management, nonfunc-

tional characteristics, temporal properties, and crosscutting concerns. More

expressive domain-specific languages and models of architectural structures

and computational dynamics will also be needed, as will design and code-

generation capabilities based on these domain-specific models. Research will

also be required in the areas of expressiveness, semantics, and modularity,

including human comprehensibility and tradeoffs between expressiveness and

comprehension, as described in the following subsections.

6.4.1.1

Improved Language

Expressiveness

 Improved languages are required for representing ULS systems and their

components at all levels of abstraction. Today’s languages focus largely

on Von Neumann execution models rather than on policies, design rules,

and specifications against which designs can be checked for conformance.

Conceptual designs—as opposed to code-level designs—are rarely docu-

mented and not well supported by languages and associated tools. As a result,

designs and their coded implementations often diverge, resulting in a loss of

the semantic information and design rationale vital to their future evolution.

Many implementation faults originate from the difficulty of coding concepts

that are clear and simple in the domain of the problem but unclear and

complex when mapped to the domain of programming-language constructs.

Today’s languages are insufficient for ULS systems—they separate concerns

poorly, are full of accidental complexities, are difficult to implement reliably,

do not lend themselves adequately to analysis and optimization, and represent

information in the solution domain rather than in the problem domain.

Promising research topics on language expressiveness include the following:

Domain-Specific Languages. Research is required to develop domain-

specific language (DSL) semantics and syntax at all levels, from specification

and architecture to design and implementation. This work will address new

mechanisms for separating and viewing concerns, superimposition of multiple

expressive views on code, representation of temporal relationships in domain

terms rather than implementation terms, architectural and platform support for

DSLs, automated synthesis of artifacts such as code from DSLs, generation of

simulations and configuration descriptions from DSL models, and provision

of language and support-system features that improve human learning and

comprehension while reducing human errors.

Research Tracks

Essential

91Ultra-Large-Scale Systems

The Software Challenge of the Future

Language Technologies for ULS System Development. Research is required

in foundations of language design, including type-safe approaches to staged

computation, aspect-oriented composition of functional behavior and quality

properties, representation of conceptual designs and their integration with

code, and development environments for integrating nonlocal and legacy

semantics and domain models with the semantics of newly developed artifacts.

Technology development is also required to support loosely coupled interfaces

between components (Jaron Lanier’s phenotropics32 provide a good example)

to simplify component composition. This work will also include exploration

of new computational models and investigation of other disciplines such as

biology for expressive models applicable to ULS systems.

Language Technologies for Human Communication. Research in language

expressiveness will not be limited to the artificial elements of ULS systems,

but will extend to people as well. This work will develop means for more

effective human communication than is possible with today’s graphical

interfaces, including methods for sustained multi-party cross-organizational

conversations during development and operation of ULS systems. Key objec-

tives include language forms for reliable communication and understanding

of policies, designs, and implementations, as well as real-time communication

during system operation and evolution, all across widely varying stakeholder

groups and environments.

6.4.1.2

Comprehensive

Language Semantics

 To enable computational methods for assessing behavior and quality attributes,

ULS software engineering technologies can benefit from complete and correct

definitions of the semantics of engineering languages and representations at

all levels of exposition, from specifications and architectures to designs and

implementations. Many important semantic relationships in software cross

the program/non-program boundary. For example, identifiers in code relate to

entities outside the code, and artifacts other than code define aspects of ULS

systems at all levels of abstraction, including semantic references to code.

These relationships may reference, for example, specifications, configuration

files, build scripts, error databases, email archives of design discussions, etc.

Research is thus needed in the following areas:

Foundations for ULS System Semantic Webs. Research will be required

on technologies to support the rich semantic web among the intentional

artifacts of ULS systems, including new and legacy specifications, designs,

and code; simulations and models; domain-specific languages and programs;

and many others. To keep pace with the perpetual evolution of ULS systems,

these technologies will permit developers to reason about semantic webs to

better understand the often nonlocal meaning of programs and other system

representations.

32 See Brockman, John. The Next Fifty Years: Science in the First Half of the Twenty-first Century. Vintage, 2002.

92 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

Foundations for High-Level ULS System Abstractions. Research will be

needed to develop frameworks and structures for abstract but precise repre-

sentations of large-scale ULS system artifacts and to understand and support

corresponding human methods of reasoning and analysis. Breakthroughs will

be required in mathematical foundations for very high-level representations

capable of supporting abstraction and refinement while preserving behavioral

equivalence across widely varying levels of expression. Such abstractions

must be mathematically sound, referentially transparent down to details, and

low in complexity to enable intellectual control.

6.4.1.3

New Forms of

Modularity

 ULS systems will include many different stakeholders involved in defining

and understanding both the modularity of ULS systems and the component

compositions that the modularization implies. Research is needed in the

following areas to support these objectives:

Modularization Views for Human Understanding. Research is required

on foundations for view correspondence that will support multiple perspec-

tives on ULS system modularizations and the relationships they imply. A

promising approach is to develop a correspondence calculus that provides

methods for assessing the difference between views and the abstractions

they embody—for example, to determine if changing a view changes the sys-

tem—and between different structural properties of views—for example, in

assessing the hierarchical or crosscutting properties of various modulariza-

tions. Techniques will also be required to express and manipulate behaviors

that do not modularize and compose along typical functional lines.

New Methods for Improved Modularization. Recent research has shown

that it is possible to isolate and compose systems out of not just traditional

block and hierarchical but also crosscutting structures. Moreover, work in

biology and other disciplines suggests meaningful concepts of modularity

that do not align with spatial co-location. To understand how functional and

other requirements can be better allocated across components, this work

will include investigation of artificially designed software and systems,

such as digitally evolved analog circuits; robots and other devices designed

by neuro-evolution; and robots that employ probabilistic techniques and

machine learning. Biological systems such as the human immune system

will be investigated to explore examples of non-monolithic modularity. In

addition, generalized concepts of modularity based on design rules may

transcend some limitations of traditional modularization concepts and permit

a level of expressiveness required to accommodate crosscutting modularity.

93Ultra-Large-Scale Systems

The Software Challenge of the Future

6.4.2

Scaled-Up Specifica-

tion, Verification, and

Certification

 As computational power increases, formal methods that might have once

seemed intractable are becoming practical. Moreover, the engineering

implications of formal foundations are becoming better understood. These

trends provide an opportunity to harness computational power to help

automate fundamental engineering operations in a next generation of more

capable tools to support ULS system development.

6.4.2.1

Trusted Core

Components

 Because ULS systems will be highly decentralized and distributed, they will

depend heavily on trusted core components throughout their architectures.

These components include key operating system, middleware, and data-

management components; communication protocols; and cryptographic

implementations, all of which will participate in maintaining operational

integrity across and within widely varying domains. These trusted core

components, envisioned as small but essential portions of ULS systems,

will participate in the coordination and integration of the majority of system

components that may or may not be trusted. While complete specifications

of ULS systems will likely be difficult to achieve, complete specifications of

trusted components will be possible and necessary. Trusted cores will require

complete specification to support correctness verification and certification.

Moreover, ULS systems will require trusted elements such as self-modifying

and self-sustaining subsystems, adaptive control functions, and interacting

autonomous agents. Developing technologies for achieving a sufficient level

of trust in these elements will require research in the following area:

Specification, Verification, and Certification for Trustworthy ULS

Systems. Research is needed for extending and scaling up theoretical

foundations and engineering methods of existing specification techniques

(for example, sequence-based specification and flow-structure analysis);

for defining precise semantics of specification languages, both for effective

use and for development of automated support; and for verifying designs

and implementations of trusted core components for correctness with respect

to their specifications. Practical application of correctness verification on a

broad scale requires research to scale up and automate existing methods (for

example, function-theoretic verification, proof-carrying code, and model

checking). Research will also be required for certifying trusted compo-

nents for fitness for use with scientific methods—for example, statistical,

usage-based testing—to provide confidence that their implementations can

be depended on to provide correct functionality in operational environ-

ments. Research is required to scale up these methods to certify the trusted

components as well as to develop new methods for verifying and validating

autonomous software components of ULS systems.

Research Tracks

Essential Support

94 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

6.4.2.2

Cost-Effective

Specification and

Analysis

 Complete, correct specifications of entire ULS systems and their subsystems

may be difficult to achieve in practice. The properties on which participants

depend, and which therefore must be specified, are open ended, and the cost

of establishing required properties for every element of a ULS system may

be prohibitive. What can be achieved in practice is a partial specification that

grows as more information becomes available. The reliability of information

in such partial specifications will vary; for example, it may arise from formal

analysis, empirical data, or subjective judgment.

A key research question is thus how to validate ULS systems under these

circumstances. If complete verification is impractical, how do participants

decide how much of which validation activities are cost effective, and how

do they determine whether the qualities of a ULS system are sufficient

for its intended purpose? One approach is to develop an integrated frame-

work for evolving specifications that supports partial and approximate

knowledge, including

• specification of an open-ended set of properties;

• information about the level of trust in property values;

• analysis and validation techniques to assess the level of trust;

• estimation of the cost and value of analyses that produce new

information; and

• propagation of new information for further analysis.

Research is thus required in the following area:

Sufficient Correctness for ULS Systems. New methods are required for

drawing acceptably valid conclusions from incomplete, inconsistent, and

changing knowledge about the system, its constituent parts, and the needs

of its users. These methods involve both assessing the level of confidence

in particular qualities for a class of tasks for a specific participant group

and cost-effectively determining whether a ULS system in fact meets

those qualities.

6.4.2.3

Model-Based

Validation

 Conventional development processes are based on assumptions of long life

cycles with minimal requirements change and exhaustive test-case analyses.

These processes are inadequate for ULS systems, particularly for the parts of

the system that incur stringent quality-of-service requirements. We therefore

need research in the following area:

95Ultra-Large-Scale Systems

The Software Challenge of the Future

Model-Based Validation for ULS Systems. Research is required on model-

based methods to better understand their application to stringent certifiability

and reliability requirements of ULS systems. For example, model-based

formalisms are often amenable to verification for system correctness, and

empirical benchmark generation enables certain performance properties to

be verified. In addition, incorporating the models generated by requirements

and specification languages into engineered development environments with

improved human-computer interaction can facilitate use of formal methods

while accounting for ease-of-use requirements.

6.4.3

Computational

Engineering for

Analysis and Design

 Software developers today lack practical means to determine and validate

the full functional behavior of programs and their corresponding specifica-

tions, architectures, and designs. This shortcoming in present-day software

engineering drives cost and complexity and will substantially inhibit

development of ULS systems. Although computation of program behavior is

a significant problem subject to theoretical limitations, engineering solutions

are emerging—for example, in function-extraction technology—and we

need to make progress in this area. Routine availability of computed behavior

will substantially reduce the complexity and cost of software and system

development, verification, and evolution.

Research Tracks

Essential

Research Tracks

Essential

> Computational
 Engineering for
 ULS System
 Analysis and Design

Relevance to DoD Missions

ULS systems must provide reliable mission

capabilities to warfighters under adverse and

unpredictable circumstances. The software

will be depended on by many people,

and so must be dependable. The task of

developing dependable software at the scope

and scale of ULS systems will exceed the

capabilities of current software engineering

methods that have evolved in the first 50

years of computing. A transformation to

next-generation software engineering as a

computational discipline will help augment

human capabilities for fast and reliable

development.

Key Concepts

Computational Engineering will encompass

many technologies. For example, it will

require automation to compute the behavior

of software and other engineering artifacts,

such as specifications and architectures, to

the maximum extent possible for human

intellectual control. This is an extremely

difficult problem that will require innovative

research. Function-theoretic foundations

of software illuminate strategies for behavior

computation based on the semantic structures

of programming and other representation

languages. The availability of computed

behavior during system development and

operation will help address problems of

correctness verification, security analysis,

and component composition as well.

ULS
Systems

Human
Intellectual

Control

Computational
Engineering

96 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

We need the following research to enable computational automation for

ULS system development and analysis:

Computation of Component Behavior in Development and Analysis.

Component reliability requires that full functional behavior and quality

attributes be known for validation against requirements and verification

of correctness. Research is required on how to compute the behavior of

software to the maximum extent possible. The objective is to replace current

labor-intensive and error-prone analysis of program behavior in human-time

scale with fast and correct computation of program behavior in CPU-time

scale. This research can build on function-theoretic foundations—for

example, as found in cleanroom software engineering and function-extrac-

tion technology—that treat programs as rules for mathematical functions and

relations. These foundations define procedure-free functional representations

of program structures and algebraic methods for their derivation. Research

will be needed in organizing and simplifying computed behavior expres-

sions, as well as in the human factors of behavior presentation and analysis.

Behavior computation can be expected to increase the span of human

intellectual control and increase confidence in the correctness of software.

Computation of Component Compositions in Network Architectures.

The overall behavior of compositions of components combined into network

architectures must be calculated for fast and reliable system development and

evolution. Composition computations must generate correct abstractions of

the net behavior of combined components and further scale up the reliable

unit of construction for ULS systems. Such a capability is important for

developing and verifying the flow structures of enterprise tasks implemented

through component compositions across distributed network architectures.

Research can expand theoretical foundations and develop engineering au-

tomation for defining components in composable form and computing their

composite behavior. This work can build on function-theoretic mathematical

foundations that prescribe compositional methods for calculating the net

behavior of combined components. We will also need research in specifying

intercomponent domain representations suitable for compositional analysis.

Truth-Preserving Computation. ULS systems will require maintenance

of correct self-descriptions of the structure and function of systems and

components for both computational analysis and human intellectual

control. Automated truth-maintenance capabilities can initially derive and

subsequently preserve the correctness and completeness of these semantic

descriptions as systems and their components change. We will need research

to define semantics-based descriptions of systems and components and to

develop computational methods both to preserve the truth of such descrip-

tions under system evolution and to reveal violations of required behavioral

invariances. Research will also be required to create a semantic calculus as a

basis for truth-preservation computations.

97Ultra-Large-Scale Systems

The Software Challenge of the Future

6.4.4

Further Reading

 A survey of methods and issues in developing domain-specific languages

can be found in “When and how to develop domain-specific languages” by

Mernik and colleagues [Mernik 05]. Neumann discusses development of

trustworthy components and systems [Neumann 03] in terms of disciplined

development processes, principle-driven architectures, and composable com-

ponents. Prowell and colleagues provide background in function-theoretic

methods for specification, verification, and certification [Prowell 99], and

Pleszkoch and Linger [Pleszkoch 04] discuss technology for computational

analysis of software behavior.

[Mernik 05] Mernik, M.; Heering, J.; & Sloane, A. “When and how to

develop domain-specific languages.” ACM Computing Surveys 37, 4 (2005):

316–344.

[Neumann 03] Neumann, P. Principled Assuredly Trustworthy Composable

Architectures (SRI Project 11459, Final Report). Menlo Park, CA: Computer

Science Laboratory, SRI International, June 28, 2003. http://www.csl.sri.

com/neumann/chats4.html; also chats4.ps and chats4.pdf.

[Pleszkoch 04] Pleszkoch, M. & Linger, R. “Improving Network System

Security with Function Extraction Technology for Automated Computation

of Program Behavior.” Proceedings of the 37th Hawaii International

Conference on System Sciences (HICSS-37), Kona, HI. IEEE Computer

Society Press, 2004.

[Prowell 99] Prowell, S.; Trammell, C. J.; Linger, R.; & Poore, J. H.

Cleanroom Software Engineering: Technology and Process. SEI Series in

Software Engineering. Reading, MA: Addison-Wesley Longman, 1999.

6.5

Adaptive System

Infrastructure

 Development environments provide an integrated set of languages and tools

that aid the construction, integration, and validation of software artifacts and

applications. The runtime infrastructure for executing applications is pro-

vided by deployment environments, such as networks, operating systems, and

middleware. Today’s software-development environments and deployment

environments are heavily oriented toward traditional software-development

practices that focus on the production and execution of software artifacts.

They centralize activities in a single organization or with central points of

control, as in traditional prime/subcontractor structures and open-source

development.

ULS systems, in contrast, require an adaptive system infrastructure that

supports the following:

98 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

• Integrated operation and evolution: Development, deployment, and

operational activities will be more integrated and overlapping in ULS

systems than in current practices, which are typically characterized by

distinctions, such as the requirements phase, the design phase, and the

testing phase. These distinctions between phases will be blurred or even

lost in a ULS system.

• Decentralization: ULS systems will have many concurrent information

flows among development, deployment, and operational activities and

will be produced by decentralized design processes involving many par-

ticipating organizations and be coordinated by architectural agreements.

• Design of all levels: ULS systems will require attention to production

and operation as well as to engineering and management, which must be

supported by an integrated development and operational environment.

Engineering of ULS systems requires support for abstractions and views

in order to manage the inherent complexity.

• Security and trust: Development and deployment that span organizational

boundaries will require a system infrastructure that ensures the security

and privacy of sensitive information and that manages continuously

changing organizational boundaries.

• Continuous in situ evolution: Because of the blurring of the distinction

between design time and runtime, ULS systems will increasingly be

developed in situ, piecewise, in the operational environment. The number

of changes will be so large that the ULS system cannot be treated as a

monolithic system. Instead, deployment configurations will evolve, and

changes will migrate through the ULS system.

The need to support an adaptive system infrastructure creates a need for

research on decentralized production management, on view-based evolution

of the system design, on evolutionary configuration and deployment in

the operational environment, and on in situ control and adaptation of the

operational system.

6.5.1

Decentralized

Production

Management

 With a ULS architecture in place, companies and other organizations will

be able to work in parallel to develop, select, deploy, and maintain system

components. Environment support for system production and runtime man-

agement will, in many ways, resemble the support for software development

provided by today’s best software engineering tools and environments.

The production of ULS systems must be managed in a decentralized fashion

across major boundaries (e.g., companies, countries, and even cultures).

Because of legacy commitments and the wish to leverage technology

advances, it is inevitable that a variety of development subenvironments

and heterogeneous operational platforms will be used. Different firms and

Research Tracks

Essential

99Ultra-Large-Scale Systems

The Software Challenge of the Future

organizations will make different choices, and, in some cases, technology

(e.g., specialized embedded processors, secure operating systems, and fault-

tolerant middleware) will constrain developers’ choices of language and tool

environments as well as runtime platforms. Multi-team, multi-organization

interoperability is critical to allow for the formation of ad hoc coalitions of

companies into design teams.

The large-scale, distributed, decentralized—yet tightly coordinated—

engineering activities that will be needed to develop and maintain ULS

systems will require new approaches to multi-institution security.

Today’s perimeter security paradigm dictates that integration across organiza-

tions generally happens outside of those organizations’ firewalls, through the

use of such mechanisms as demilitarized zones. Such methods will not scale

economically to enable multi-organization development activities. In another

dimension, development environments for ULS systems will themselves

have to provide strict security control over the viewing of and access to

design information and capabilities of running systems. In other words, as

design information comes to be shared across teams and organizations while

boundaries continually change, we will have to address trust and security of

the intellectual properties as well as corporate and national security.

Without coordinated system integration and testing in otherwise desyn-

chronized and decentralized design processes, users of ULS systems will

have little confidence that their deployment configurations will operate as

expected. To achieve such confidence, the following research is needed:

Multi-Team, Multi-Organization Interoperability. We will need research

into an adaptive system infrastructure that combines development, deploy-

ment, and operational support for interoperability between deployment

configurations and development and operational teams as well as between

organizations to manage the development and operation of ULS systems.

This interoperability research must address

• change control when design dependences span organizational boundaries;

• global analysis of systems under development when the components are

developed across such boundaries;

• enforcement of development protocols across administrative domains

(such as signoffs on software artifacts);

• contracting and accounting;

• mining of technical and social data across organizational boundaries

(e.g., to find emergent or previously undocumented design dependencies

or to map large-scale design structures);

100 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

• integrated support for economic analysis, contracting, and manage-

ment-level monitoring and control;

• support for business intelligence and decision making;

• support for expressing and enforcing high-level development poli-

cies; and

• environment interfaces to regulatory/certification authorities.

Security and Trust. We need research to develop new models of security

consistent with the need for much deeper, yet still secure, integration of

information and activities across continually changing organizational

boundaries. We also must be able to track the provenance of software and

other design elements (for example, to track down all software produced by

persons/organizations later found to have been tainted). Advances in security

for development environments are likely to be applicable across many parts

of ULS systems.

Coordinated System Integration and Testing. To ensure predictable

operation of deployment configurations of ULS applications, the following

issues must be addressed:

• supporting system integrators in their selection of components that

emerge from ongoing competitions among suppliers;

• virtually integrated views of development activities that are distributed

over many organizations, for purposes of early verification, problem

detection, etc.

• system integration/build mechanisms taking inputs from across such

boundaries; and

• support for automated and authenticated validation within and between

domains and coalition partners.

6.5.2

View-Based

Evolution

 ULS systems and their designs will be extraordinarily complex and will thus

be understandable only through abstract views that present the information

essential to a task while eliding the bulk of irrelevant information and

unnecessary detail. The concept of software and system views is not new.

Advances in viewing and visualization technology, however, promise to ease

software development and evolution tasks. Moreover, the unique charac-

teristics of ULS systems create demanding new challenges, largely due to

heterogeneity, decentralization, and complexity.

Research Tracks

Essential Support

101Ultra-Large-Scale Systems

The Software Challenge of the Future

ULS systems will be too complex to treat as monolithic systems for purposes

of system change. Rather, many changes will be made to ULS systems

through abstract views that isolate those parts that are relevant to a given

change. Integrated development environments and deployment environments

could enable developers and operators to specify the applicability criteria

for view-based modification policies and automatically apply them to all

data flows, information flows, services, components, or events that satisfy

the applicability criteria. What the environment does to effect such changes

might be incomprehensible to the developers or operators, but the changes

must be coherent and validated.

The following research is needed:

Abstract Views and Visualization. We need research leading to new

development environments and deployment environments to enable develop-

ers to explore and visualize all manner of software artifacts and behaviors of

ULS systems. Example artifacts and behaviors include requirements, design

rules, code, executing behavior, hardware and network configurations, and

load and performance characteristics. Development tools should be able

to extract information from—and integrate across—artifacts in different

languages, managed by different development and deployment environments,

coming from separate hardware and software components, across company

boundaries, from systems with dynamically changing network topologies,

etc. Although much work has been and is going on in these areas, we need

advances to address systems of immense scale that enable us to

• automatically produce views and the instrumentation required to update

the set of defined views;

• include human state and behavior in technical system views;

• present parts of the system that are not designed by people to people in a

comprehensible and usable form;

• visualize dependence structures among decisions in conceptual designs

for the purposes of evaluating such properties as the likely cost of change

or economic costs and benefits;

• determine the sorts of views that enable people to make good develop-

ment/operation decisions; and

• determine how best to display or visualize the health of a ULS system to

people (users, designers, and orchestrators) who are unable to compre-

hend the entire system.

102 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

Policy-Based Modifications. Research is needed to enable developers

and operators to specify policies or criteria that future modifications of

the system must satisfy and then support the enforcement of such policies.

Enforcing policies can be difficult, perhaps requiring automated design and

validation. Key research questions include the following:

• How are policies generated, specified, represented, enforced, and adapted

over time?

• Are there changes to programming languages, computational models,

development environments, or deployment environments that enable

policy-based modifications?

• How is policy-based modification related to refactoring?

• Can automated refactoring be used to accomplish some policy-based

modifications?

6.5.3

Evolutionary

Configuration and

Deployment

 Software engineers have traditionally created and configured entire applica-

tions internally and tested/released them into their deployment environments.

In contrast, because of the blurring of the distinction between design time

and runtime, ULS systems will increasingly be developed in situ in the

deployment environment. This trend creates the need for synergistic develop-

ment and deployment environments for deploying and configuring the

behavior of reusable components to meet quality-of-service requirements in

the context in which they execute. It also requires in situ systems, processes,

and techniques for measurement, analysis, and modeling of the interactions

among configuration choices and the achievement of desired functional and

performance qualities.

Deployment configurations of ULS applications will use both trusted and

untrusted components of the ULS system and operate in an environment that

may include hostile components. Many such deployment configurations will

be used in life-critical situations and require full trust of their users.

Development and deployment environments for ULS systems must support

the capability for developers and operators to modify existing systems

with new components, new versions of existing components, or alternative

choices for configurable interfaces. Those modifications must be propagated

consistently throughout deployment configurations.

Different deployment configurations will execute concurrently in the same

operational ULS system. Component-version separation of co-resident

deployment configurations, as well as stability of those configurations in

light of the evolving ULS, will be critical to the robust operation of each

deployment configuration.

Research Tracks

Essential Support

103Ultra-Large-Scale Systems

The Software Challenge of the Future

Multiple component versions or deployment configurations will run

simultaneously. Different deployment configurations must interoperate across

different component versions to facilitate information interchange and to

ensure robust operation through comparison of their outputs and effects.

Instrumentation of the system to provide inputs to the multiple versions and

monitor their outputs and effects must be automatically installed and inferred

from the versions being monitored. These problems will be especially

complicated because people and organizations will be parts of the ULS

system. As a result, there is likely to be little chance for duplicating behavior

from instance to instance.

Automatic rollover to new configurations, monitoring of the operations

of these new configurations against expectations, and rollback to proven

configurations are essential to a predictable operational environment.

We need research in the following topics for evolutionary configuration and

deployment:

Trusted Deployment Configurations. Research is needed into mechanisms

that maintain a desired degree of trustworthiness in deployment configura-

tions during operation of the deployed configuration. Such mechanisms

must exhibit a degree of resilience that is considerably higher than today’s

techniques deployed in today’s Internet environment. Advances in security-

and-trust technology for production management can be leveraged in this

context.

Change Propagation in Deployment Configurations. Research is needed

on how to analyze the effects of intended changes and how to propagate

changes automatically and robustly into the set of known alternatives without

negatively affecting system quality of service.

Deployment Configuration Co-Residence. Research is needed into

mechanisms to enable developers and operators to isolate deployment

configurations and detect interference between them.

Interoperability of Deployment Configurations. Research is needed into

mechanisms to support interoperability in a multi-version environment and

to enable developers and operators to detect, highlight, and comprehend

functional and quality differences between simultaneous executions in the

presence of non-artificial components.

Predictable System Rollover and Rollback. Research is needed into

techniques to ensure that when rollback is required (e.g., due to a system

malfunction that cannot be corrected by restarting one or more components),

an earlier version of one or more components can be made available and

a minimally disruptive consistent configuration can be deployed without

negatively affecting system functionality and qualities.

104 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

6.5.4

In Situ Control and

Adaptation

 ULS systems will have to respond to emergent behavior on the part of the

users and the environment in which the system is situated. Consequently,

the behavior of the system itself will be emergent. Existing systems use a

manufacturing model: software is designed and constructed in a factory,

and the completed software is deployed elsewhere. The design loop connects

the field back to the factory—expert designers examine feedback from the

field to produce subsequent versions. This design loop is too distant in time

and space for ULS systems, which must provide continuous on-demand

situational awareness and actuation capabilities to respond to emergent

behaviors. These requirements create the need for mechanisms to facilitate

manageable and safe in situ adaptation of ULS systems, so that ULS

systems can be responsible for much of their evolution and so that human

operation of the system, and hence errors caused by operator mistakes, can

be minimized.

ULS systems must be able to observe their own operations (i.e., the

operations of individual components, individual deployment configurations,

and collections of deployment configurations), recognize acceptable and

unacceptable behaviors, and take corrective action with little or no operator

intervention. These adaptations must occur dependably to achieve a balanced

level of quality for ULS system participants. Achieving these goals requires

research into new capabilities for

• actively monitoring the activity of components and their environments;

• continually performing self-testing;

• detecting errors and automatically recovering from them;

• automatically configuring components during installation; and

• protecting the system from damage when patches and updates are

installed as well as from attacks perpetrated against them during deploy-

ment and runtime.

Proposed research topics are the following:

Control-Theoretic Foundations for Adaptive Systems. A key challenge

facing trustworthy adaptive ULS systems will be to develop models of system

operation at the component, deployment-configuration, and system levels.

Another key challenge will be to develop control algorithms that can ensure

essential system-quality attributes while simultaneously handling rapidly

changing demands and resource-availability profiles as well as varying service

strategies and policies tuned for different environments. Control-theoretic

techniques, in particular hybrid systems modeling, involve algorithms and

control mechanisms that handle rapidly changing demands and resource-avail-

ability profiles and configure these mechanisms with service strategies and

policies tuned for different environments. Such control-theoretic models may

have their roots in the control-systems domain or may be based on value-based

Research Tracks

Essential

105Ultra-Large-Scale Systems

The Software Challenge of the Future

quality-of-service models prevalent in the business domain. Research is

therefore needed in scalable techniques and tools for developing controllers

that can provide verifiable adaptation for ULS systems under a wide range of

conditions in an automated manner. Such controllers must handle complex

issues arising from the composition of adaptable components into collections

of deployment configurations.

Decentralized Resource Management. Because of the decentralized

and distributed nature of ULS systems, it will not be feasible to know the

entire set of application tasks that will run, the loads they will impose on

system resources in response to dynamically changing environments, or the

order in which the tasks will execute. This dynamism can occur because

the number of combinations in which application tasks can be mapped to

system resources is too large to compute efficiently or because task runtime

behaviors are simply too variable to predict accurately. Research is therefore

needed in decentralized resource-management algorithms and mechanisms

that can robustly optimize system responses to changing environments or

requirements, such as changing component interconnections, power levels,

CPU/network bandwidth, latency/jitter, and dependability needs. Such

algorithms must ensure the operational safety and correct functioning of the

ULS system viewed as a control system (e.g., control model validation and

certification) and calibrate the ULS control system to improve performance

and adjust to changes over time.

Predictable Reconfiguration. We envision that ULS system participants will

develop, test, and operate new deployment configurations and reconfigura-

tions in operational systems, and that these systems will have to simultane-

ously manage component versions and deployment configurations based on

automated observations and rules of acceptable behavior. The adaptations

of ULS systems must be coordinated with the desire of ULS system users

to evolve and adapt their deployment configurations. Research is therefore

needed in techniques that coordinate and resolve the conflict between the

desire for ULS systems to operate and optimize their behavior autonomously

and the need for users to believe that they are in control of their operating

environments (i.e., to predictably evolve their system configurations).

Transparent Reflection. Reflection makes the internal organization of

ULS systems both visible and changeable for system-infrastructure and

application software to inspect and modify at runtime. Research is therefore

needed in robust mechanisms for supporting such reflection without unduly

degrading quality of service or obscuring the application architecture of

deployment configurations from users. In other words, runtime monitoring,

feedback, and transition mechanisms (e.g., dynamic reconfiguration or

online recompilation) are needed to change application and system behavior

robustly (e.g., while meeting stringent end-to-end robustness requirements)

without changing the basic implementation structure of applications.

106 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

Similarly, mechanisms are needed to support decentralized and distributed

data collection and data fusion based on incomplete and approximate data.

Policy-Driven Migration Management. Different users of the ULS

system will evolve their deployment configurations according to their own

needs and interests. In that process, they will utilize components available

as part of the ULS system infrastructure or provided by the ULS component

marketplace. They will expect to be in control of the evolution of their

deployment configurations. However, at times it will be essential that ULS

system users migrate their deployment configurations to new versions of

components—in particular, new versions of components that may have been

compromised, that place undue resource constraints on the ULS system, and

that critically affect the operation of other components. Research is needed

into mechanisms that achieve such policy-driven migration without unduly

restricting the freedom of ULS system users and without becoming a tool

that can be misused for unauthorized forced migration to vulnerable system-

component variants.

6.5.5

Further Reading

 Raymond’s The Cathedral & the Bazaar: Musings on Linux and Open Source

by an Accidental Revolutionary [Raymond 01] is a comprehensive treatment

of the open-source movement, which is our best example of decentralized

production management. Kruchten [Kruchten 95] provides an overview of

architectural views and how each of them can be used to achieve engineering

control over a different set of system qualities and concerns. Subramonian

[Subramonian 04] and Mikic-Rakic [Mikic-Rakic 05] and their colleagues

discuss configuration, deployment, and redeployment considerations. Finally,

two recent papers by Ye [Ye 05] and Wang [Wang 05] and their colleagues

address in situ control and adaptation by providing schemes for managing

reliability and performance via middleware.

[Kruchten 95] Kruchten, P. “The 4+1 View Model of Architecture.”

IEEE Software 12, 6 (1995): 42–50.

[Mikic-Rakic 05] Mikic-Rakic, M.; Malek, S.; & Medvidovic, N.

“Improving Availability in Large, Distributed Component-Based Systems

Via Redeployment.” Proceedings of the 3rd International Working

Conference on Component Deployment. Grenoble, France, November

28-29, 2005.

[Raymond 01] Raymond, E. The Cathedral & the Bazaar: Musings on Linux

and Open Source by an Accidental Revolutionary. O’Reilly, 2001.

[Subramonian 04] Subramonian, V.; Shen, L-J; Gill, C.; & Wang, N.

“The Design and Performance of Dynamic and Static Configuration

Mechanisms in Component Middleware for Distributed Real-Time and

Embedded Systems.” Proceedings of the 25th IEEE International Real-Time

Systems Symposium. Lisbon, Portugal, December 5-8, 2004.

107Ultra-Large-Scale Systems

The Software Challenge of the Future

[Wang 05] Wang, X.; Lu, C.; & Koutsoukos, X. “Enhancing the Robustness

of Distributed Real-Time Middleware via End-to-End Utilization Control.”

IEEE Real-Time Systems Symposium (RTSS ‘05), December 2005.

[Ye 04] Ye, J.; Loyall, J.; Shapiro, R.; Schantz, R.; Neema, S.; Abdelwahed,

S.; Mahadevan, N.; Koets, M.; & Varner, D. “A Model-Based Approach to

Designing QoS Adaptive Applications.” 25th IEEE International Real-Time

Systems Symposium. Lisbon, Portugal, December 5-8, 2004.

6.6

Adaptable and

Predictable System

Quality

 ULS systems will be long running and must operate robustly in environ-

ments fraught with failures, overloads, and attacks. Moreover, ULS systems

must maintain robustness in the presence of adaptations that are not centrally

controlled or authorized and that, in some cases, may be initiated by the

systems themselves.

At ultra-large scale, new kinds of system behavior, and therefore new quality

attributes, may arise. For example, Internet storms arise at the massive scale

of the Internet but do not appear in smaller scale settings. Predicting and

averting these types of phenomena require novel theories and applications of

approaches inspired by such fields as statistical mechanics and possibility

theory.

Predicting and preserving system-wide qualities requires establishing and

sustaining the system invariants on which these qualities depend. A variety of

enforcement mechanisms have been developed over many years of practice

(for example, transaction monitors, security monitors, sandboxes, and

schedulers, to name a few). We must establish whether these enforcement

mechanisms are suitable at ultra-large scale and must find new, more suitable

mechanisms where necessary. Moreover, enforcement mechanisms must be

designed both to accommodate an incipient level of hardware and software

failure that is inevitable in ULS systems and to provide graceful behavior

degradation and recovery in the presence of failures.

Some degree of system failures (hardware and software) will be as intrinsic

to ULS systems; for example, at any given moment, some portion of the

Internet is in failure mode. It is inevitable that ULS systems will be inviting

targets of attack for capable and motivated adversaries seeking tactical and

strategic advantages. Although attacks do not fall under the purview of

typical quality-of-service concerns, there is an obvious correlation between

the treatment of vulnerabilities and the treatment of other system qualities

that are frequent targets of attack.

Because of the significant human element in ULS systems, quality attributes

will apply to the human and organizational components as well as to

hardware and software components. On the one hand, a more comprehensive

108 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

treatment of human factors in immersive and ubiquitous computing systems

is required. On the other hand, correlations between human behavior and

traditional system quality attributes will become more prominent. For

example, the reliability of one part of a ULS system might depend on human

coordination among multiple organizations.

Engineering management is another facet of the human element that

must be revisited for systems at ultra-large scale. Developing practices that

foster continuous product and process improvement across organizational

boundaries is just one of many challenges confronting engineering manage-

ment at ultra-large scales. Moreover, new product and process measures

and new technical infrastructures will be required to support management

decision making.

6.6.1

Robustness,

Adaptation, and

Quality Attributes

 Dynamic systems in general are quasi-stable around a defined number of

system states33 that correspond to (possibly unbounded) regions of observ-

able system behavior. In the systems context, robustness can be thought

of as the tendency of a system to remain within a specified state space

(i.e., a region) even in the presence of perturbations of one or more control

variables. Analogously, systems large and small must maintain quasi-stability

with respect to required qualities of service, and in these cases, robustness

can be thought about in terms of traditional quality-attribute specifications.

For example, reliability, safety, and availability can be specified in terms of

the probability that a system will be in or remain in a specific state for some

period of time. This form of requirement specification is widely seen in

practice, regardless of whether there are sufficiently robust quality-attribute

theories to ensure such qualities analytically.

Achieving robustness in ULS systems poses unique challenges not only

in terms of the quasi-stability of system functions in the sense we have

described, but also in terms of the system’s quasi-stability under the effects

of evolutionary pressure. A ULS system will likely have no single point of

authority for version control and changes in system configuration, includ-

ing the release of new software components or versions of components,

new hardware and network technology, and new interconnections between

systems and components. These changes may be individually small and,

therefore, may not disrupt the quasi-stability of the ULS system. However,

the accumulating weight of successive evolutionary steps may result in

fundamental discontinuities (or phase transitions) in system behavior.

33 This is a result of self-organizing criticality. Open, dissipative systems typically gravitate toward an equilibrium that is

not a true stable point (quasi-stability or metastability)—because conditions are always changing (the openness of the

system means that things are being put into it, while the system dissipates those things).

Research Tracks

Essential

Support

109Ultra-Large-Scale Systems

The Software Challenge of the Future

Analogies to this phenomenon arise frequently in the physical sciences. One

illustration is the stability of sand piles. Dropping a single grain of sand on

the sand pile will, in most cases, have little effect. Occasionally, however, a

single grain of sand will produce an avalanche—a phase transition—from

the old sand pile that has become unstable under accumulated change to the

new sand pile. This phenomenon is widely encountered in physical systems

(e.g., percolation, annealing, and states of matter).

We need theories of robustness along with supporting mechanisms that

accommodate both the traditional concepts of instantaneous robustness and

the time-sequenced concept of robustness that arises from the decentralized,

adaptive, and long-lived nature of ULS systems. To develop such theories,

we need research on the following topics:

Signals for Robustness Limits. Is the sand pile less robust just before

an avalanche than it is immediately after an avalanche? There are results

from complexity science that suggest that there may be universal laws that

operate on natural and artificial systems. Research here will seek to uncover

signals in development processes (e.g., numbers of reported adaptations)

and runtime processes (e.g., system dynamics) that predict impending

phase transitions and determine the extent to which these signals depend on

particular quality attributes.

Natural Systems Robustness. A study of natural robustness is an essential

adjunct to the characterization of a ULS system as an ecosystem. Naturally

occurring systems such as the human autonomic system and natural habitats

achieve robustness in the face of change through feedback, filtering, self-

repair, adaptation, and flexibility at many levels of abstraction. The study of

mechanisms arising in naturally robust systems, where robustness emerges

from the interaction of many complementary mechanisms, may suggest new

mechanisms or combinations of existing, possibly revised mechanisms that

would help make ULS systems robust.

6.6.2

Scale and

Composition of

Quality Attributes

 Two fundamental strategies for dealing with scale and scale-induced

complexity are abstraction and (de)composition. Abstraction seeks to hide

irrelevant details; composition seeks to divide and conquer.

Not all phenomena readily admit to both strategies; for example, models

of system behavior governed by shared-resource use (e.g., performance

governed by shared CPU) typically abstract many details not pertaining to

time, but these same theories tend not to be strictly compositional. In this

case, the potentially adverse effect of non-compositionality on the comput-

ability of system quality is moderated by the use of abstraction. On the

other hand, abstraction may give rise to non-determinacy. Non-determinacy

is accommodated through the use of statistical techniques; we sacrifice the

ability to predict a single event in favor of predicting the aggregate behavior

of many events.

Research Tracks

Essential

110 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

This is a recapitulation of an argument in the ULS system context that is well

established in the physical sciences: more is different. That is, although phe-

nomena at one level of system organization may be able to be (and indeed,

are expected to be) derived from phenomena at a lower level of organization,

higher level models are nevertheless appropriate. For example, the ideal gas

laws are statistical mechanical (stochastic) descriptions of particle-level

phenomena that can also be described deterministically at a more primitive

but usually computationally intractable level of description.

Some phenomena, however, are not susceptible to either abstraction or

composition—for example, high-dimension control theories that exhibit

chaotic behavior (e.g., atmospheric phenomena and market phenomena).

New computational theories may be needed to analyze or simulate these

effects in ULS systems, for example to predict or simulate and control the

effects of Internet storms or their equivalent in high-demand ad-hoc networks

in the future battlespace.

Research is therefore needed on the following topics:

Complementary Stochastic and Deterministic Theories of System

Quality. The repertoire of complementary—deterministic and stochas-

tic—quality-attribute theories must be expanded and enriched. Such theories

exist in a limited form for timing but must be extended to other quality

attributes such as security and availability. This research must address mutual

quality-attribute dependencies and effects and enable combined quality

claims across components of the system, overlapping subsystems, and

enforcement mechanisms.

Verification with Aleatoric Uncertainty. Verification technology has

traditionally been reduced to (dis)proving assertions about system behavior,

or more particularly about the correspondence of an implementation to

its specification. Recent advances in fully automated verification, for

example in software model checking, are encouraging but must be extended

to accommodate aleatoric uncertainty, in particular uncertainty arising

from non-determinism and measurement error. Possibilities include research

in verification using multi-valued logics, belief logics, and analogous

model logics.

Analysis and Verification with Epistemic Uncertainty. Epistemic uncer-

tainty arises due to a lack of knowledge; it is wholly distinct from uncertain-

ty that arises from aleatoric uncertainty, which arises from non-determinism

and the measurement error. As systems increase in scale, our knowledge

about the behavior of any of their parts will diminish, and what we may

know may be out of date and therefore incorrect at the time this information

will be used. Research on evidence theory (e.g., Dempster-Shafer theory),

possibility theory (e.g., fuzzy sets), and related fields is needed.

111Ultra-Large-Scale Systems

The Software Challenge of the Future

6.6.3

Understanding

People-Centric

Quality Attributes

 People are part of a ULS system. The overall quality attributes of the system

include quality attributes of the human parts as well as the artificial parts,

and the interactions between the two. Therefore we need research on the

following topics:

Trustworthy People-Comprehensible Models of System State. We need

to understand how to develop accurate models of the system that humans

can trust, so that they can react appropriately. Often human errors in existing

systems can be traced to the fact that people either are not informed about

underlying problems in the system (e.g., the Chernobyl disaster, the 2003

North American blackout); were informed about system state, but it was

incorrectly reported (e.g., the Three Mile Island disaster); or did not believe

what the system was reporting to them about its internal state.

Modeling People-People Interactions. Part of the failure of the North

American power grid in 2003 can be traced to the fact that operators in

Parma, Ohio did not notify operators in neighboring regions about troubles

in their own power grid. Similarly, air traffic accidents are often related to

miscommunications or mishandled interactions among people. Since people

are an integral part of a ULS system, their mental state and the nature of their

reactions, particularly in stressful circumstances, must be modeled so that

the system can be designed appropriately and can react appropriately during

operation. Thus research is required on creating models of human-human

interaction. This research is related to the topics discussed in Section 6.1 on

human interaction.

Modeling Human Quality Attributes. As integral parts of a ULS system,

human performance, human reliability, and human security, to name just

three examples, will affect system performance, availability, and security.

While the human aspect in security has been long recognized, we seldom

model human performance or reliability when we design systems. Some

models of human performance do exist, but they focus on human perfor-

mance in highly structured, repetitive tasks (e.g., operator performance in

a directory-assistance task). Research is needed to broaden the scope of

such models and to include other quality attributes such as reliability. This

research must also integrate system-oriented measures of quality attributes

with human-oriented measures. In addition, research is needed on designing

human protocols and interactions within the system so that a desired state of

performance, reliability, safety, etc. can be achieved. For example, in air traf-

fic control, human redundancy is employed to ensure that no single failure of

a human is catastrophic for the system’s performance, reliability, or safety.

Modeling Crowd Behavior. While research exists on modeling individual

people in their interactions with a system, there is a need for research in

the social psychology of crowds. For example, many web-site crashes have

Research Tracks

Essential

Support

112 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

been attributed to the sites being too popular (e.g., a web site selling tickets

to a popular concert) and not to any nefarious intent by an adversary. Since

ULS systems are ecosystems, the behaviors of the people within the system

will greatly affect the state of the system, potentially causing worst-case

behaviors to emerge. Research is needed, then, to model the use of ULS

systems crowds in order to determine worst-case usage scenarios for

performance, reliability, and security. Since people are rational actors, this

research is related to the discussion of algorithmic mechanism design found

in Section 6.2.1.

Blending Human and System Quality Attributes. Given that a ULS

system depends on the behavior of both the human and the computational

elements, research is needed that blends traditional quality-attribute models

with human quality-attribute models, discussed above, to determine how

these elements should be combined. Research questions include

• Should the computational part of the system respond when the human

components fall below certain thresholds?

• How should the human part of the system respond when the artificial part

falls below certain thresholds?

• Are there ways for each part to compensate for the other or help the other

maintain good levels?

6.6.4

Enforcing Quality

Requirements

 Every theory makes assumptions about its environment. For quality at-

tributes, some of these assumptions can be discharged by particular runtime

enforcement mechanisms. There are a number of well-known quality-en-

forcement mechanisms today for timing, reliability, transactions, security,

and so forth. In some cases, we need research to scale them to ULS system

scale; in other cases, completely new mechanisms are needed. In all cases,

the enforcement mechanisms must be linked explicitly with the comple-

mentary quality theories. Topics of particular research interest for enforcing

quality requirements include the following:

Enforcement Mechanisms for Shared Resources. Many quality attributes

are affected by policies for managing scarce, shared resources. Reservation

and admission-control mechanisms are examples of well-known mechanisms

that must be enhanced to address issues of scale and trust in ULS systems.

In addition, these mechanisms must be parameterized to enforce or adapt to

new attribute-theory-specific invariants.

Recovery-Oriented Computing. Because system failures and human errors

are inevitable, we must focus attention on providing ULS systems that can

recover from errors and operate through attacks rather than shut down com-

pletely. For example, we need robust mechanisms to ensure the necessary

Research Tracks

Essential

Support

113Ultra-Large-Scale Systems

The Software Challenge of the Future

degree of replication to guard against partial system failures and attacks or to

provide guaranteed, best-effort, conditional, or statistical levels of quality of

service in the face of failure.

Acceptability-Oriented Computing. Reliably providing increasingly complex

functionality may not be possible in ULS systems because the limitations

of our abilities to design and implement correctly have been surpassed. In

these cases, there may be approaches that will enable the construction of

computer systems that can sustain (potentially self-inflicted) damage, process

unexpected or illegal inputs, and take incorrect actions, yet nevertheless

continue to execute productively.

6.6.5

Security, Trust, and

Resiliency

 We currently have difficulty achieving high levels of security even with state-

of-the-art systems of systems. For ULS systems, we will need security, trust,

and resiliency to be at an acceptably high, measurable level so that users can

trust that these systems will reliably achieve their objectives. Security is the

capability of the system to provide confidentiality, integrity, and availability

on the ULS system data and services both locally and globally. Trust is the

extent to which users of the ULS system will be able to rely on the data and

services of the ULS system. Resiliency is the capability of the ULS system

to maintain an acceptable level of service while under stress from adverse

environmental conditions such as attacks or cascading failures.

While we have an extensive history of research in the area of system security,

the results of this research to date apply only to the small-system or compo-

nent level of systems. We will need to apply these qualities to all levels of the

ULS system including the creation, acquisition, deployment, integration, and

operation of the system. Significant automation in the detection and response

to threats to the ULS system will be a necessary component: the system will

be too complex for any analyst to realize the ultimate effect of the multitude

of simultaneous attacks and failures continuously experienced by the ULS

system. As the systems become integrated with a dynamic arrangement of

coalition partners and participants, the separation between external attackers

and insider attackers will also be blurred.

Standard enforcement mechanisms and design approaches to achieve a given

level of service are generally not designed to detect attacks.34 At best, they

are conceived to deliver certain kinds and levels of functionality in the pres-

ence of disturbances. Unfortunately, many such mechanisms may actually

provide an attack mechanism with the routes it needs to be able to spread.

In some cases, the correct approach to an attack is to violate quality guaran-

tees for the sake of preserving other, more important, parts of the system.

34 The information that these mechanisms and approaches happen to collect in the process of dealing with failures may

be useful for detecting an attack.

Research Tracks

Essential Support

114 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

Research is required in the following areas:

Security, Trust, and Resiliency Measures and Metrics. We currently have

no measures or metrics for security, trust, or resiliency that apply to our envi-

sioned ULS systems. It may be possible to obtain useable measures for ULS

systems using a statistical approach, much like statistical thermodynamics

provides important measures for particle dynamics in the aggregate.

Attack Detection. Detecting attacks is distinct from detecting failures or

providing service at some guaranteed levels. Perhaps detecting attacks re-

quires active mechanisms similar to immune systems. We should investigate

the possibility that machine learning could be used to detect attack-based

anomalies.

Attack Containment. Containing attacks might involve cordoning off parts

of the system and permitting only very carefully screened communications

between the possibly attacked parts and the rest. This would require commu-

nication mechanisms optimized for safety and caution rather than efficiency.

Graceful Degradation Under Attack. Degrading gracefully might require

dropping below service guarantees. Reflection might be required to pause

some of the ULS system’s operations while the system assesses itself and

plans how to proceed.

Recovering from Attacks. How can the system repair itself after an attack

(or bad failure of some sort)? Is checkpointing practical? Should components

be required to be able to restart/reinitialize themselves? Can specifications

play a role?

Attack Diagnostics and Forensics. Diagnosing attacks might require the

ULS system to have a model of itself against which it can check. Perhaps

testing code developed during development can be used; perhaps self-de-

scriptions can be created using immunological or statistical means.

6.6.6

Engineering

Management at

Ultra-Large Scales

 Because of the unprecedented scale of ULS systems, quality must be a

paramount concern. Proper system performance will require the cooperative

interaction of reasonably large portions of these systems. Therefore, the

defect content of their parts must be kept low enough so that their testing can

be completed in a reasonable time period and so that they can be maintained

in proper operation for reasonably long periods of time. This calls for a

consistently high level of quality work on the part of the developers, enhanc-

ers, and maintainers of all aspects of ULS systems.

Research Tracks

Essential Support

115Ultra-Large-Scale Systems

The Software Challenge of the Future

To ensure high-quality work throughout such systems, quality-management

guidelines and measurement frameworks are required that can identify poor-

quality work and direct management attention to the sources of problems.

Quality work is done only by people who strive to produce quality results.

Because much of the design, development, and maintenance work on ULS

systems will be knowledge work, and because the quality of knowledge

work is largely controlled by the knowledge workers themselves, means

to motivate quality work are needed together with means to measure and

identify quality deviations without demotivating the knowledge workers.

Research is needed, therefore, in the following areas:

Motivating and Managing the ULS System Knowledge Worker.

Significant research at the boundaries of technology, management, and

psychology is needed to discover methods to track work so that both

poor- and good-quality work can be attributed to people and organizations

without demotivating individual knowledge workers or producing perverse

organizational competition.

Measurements of System and Process, Product, and Project Health.

The quality of engineering management decisions depends on judgment

and data. While measures of software quality and program status have

been developed over many years of painful experience, new orders of scale

present new challenges. Research is needed in measures for ULS systems

that are akin to those used at the gross scale of econometrics (for example,

the discovery of leading indicators for system health) and in techniques to

sample this data across various organizational, contractual, social, technical,

and temporal boundaries.

6.6.7

Further Reading

 The references cited in Section 6.1.6 focus primarily on understanding

people-centered design, human behavior, and context-aware comput-

ing. In this section, we are more concerned with people as information

processors—their inputs, outputs, and processing capabilities. Models of

human performance in human-computer interaction have existed and been

experimentally validated for decades. Some of the classic works in this area

are those of Card, Newell, Kieras and others [e.g., Card 83, Elkind 90, Kieras

88]. Studies on the behavior of crowds can be found in Collective Behavior

by Turner & Killian [Turner 93].

Although a bit dated with regard to technology, the issues raised in the

National Research Council report Trust in Cyberspace [Schneider 98] still

outline the important security characteristics—characteristics that will

be even more problematic in the context of ULS systems. The work on

information survivability, started by the Defense Advanced Research Projects

Agency (DARPA) in 1994 and continuing through 2001 is well represented

116 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

by Moore and colleagues [Moore 01] and by Kyamakya and colleagues

[Kyamakya 00]. The latter work extended the security concept to systems

of systems and, while still not sufficient for ULS systems, provides a base

on which to build. Finally for attack recognition, the seminal paper by D.

Denning [Denning 87] is still the best reference available for framing the

issues involved in distributed attack detection.

Patterson, Fox, and their colleagues have researched techniques for monitor-

ing and correcting execution [Patterson 02, Candea 01, Candea 04]. Rinard

and his students and colleagues are studying how to make the execution of

systems more robust by detecting data-structure corruption and repairing

it [Rinard 03, Rinard 05]. Further, they are investigating when errors and

failures can be tolerated during execution and exactly how to proceed

effectively with execution after an error or failure.

[Candea 01] Candea, G. & Fox, A. “Recursive Restartability: Turning the

Reboot Sledgehammer into a Scalpel.” Proceedings of the 8th Workshop on

Hot Topics in Operating Systems (HotOS-VIII). Schloss Elmau, Germany,

May 2001.

[Candea 04] Candea, G.; Brown, A.; Fox, A.; & Patterson, D. “Recovery

Oriented Computing: Building Multi-Tier Dependability.” IEEE Computer

37, 11 (Nov. 2004).

[Card 83] Card, S.; Moran, T.; & Newell, A. The Psychology of Human-

Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates, 1983.

[Denning 87] Denning, D. “An Intrusion-Detection Model.” IEEE

Transactions on Software Engineering 13, 2 (Feb. 1987): 222-232.

[Elkind 90] Elkind, J.; Card, S.; Hochberg, J.; & Huey, B. (eds.). Human

Performance Models for Computer Aided Engineering. San Diego, CA:

Academic Press, Inc., 1990.

[Kieras 88] Kieras, D. E. “Towards a practical GOMS model methodology

for user interface design.” The Handbook of Human-Computer Interaction.

Helander, M. (ed.). Amsterdam: North-Holland Elsevier, 1988.

[Kyamakya 00] Kyamakya, K.; Jobmann, K.; & Meincke, M. “Security and

Survivability of Distributed Systems: An Overview,” IEEE MILCOM 2000,

Los Angeles, CA, 2000.

[Moore 01] Moore, A.; Ellison, R.; & Linger, R. Attack Modeling

for Information Security and Survivability (CMU/SEI-2001-TN-001,

ADA388771), Pittsburgh, PA: Software Engineering Institute, Carnegie

Mellon University, 2001.

117Ultra-Large-Scale Systems

The Software Challenge of the Future

[Patterson 02] Patterson, D.; Brown, A.; Broadwell, P.; Candea, G.;

Chen, M.; Cutler, J.; Enriquez, P.; Fox, A.; Kiciman, E.; Merzbacher, M.;

Oppenheimer, D.; Sastry, N.; Tetzlaff, W.; Traupman, J.; & Treuhaft, N.

Recovery-Oriented Computing (ROC): Motivation, Definition, Techniques,

and Case Studies (UCB CSD-02-1175). Berkeley, CA: University of

California, Berkeley, 2002.

[Rinard 03] Rinard, M. “Automatic Detection and Repair of Errors in Data

Structures,” 221–239. Companion to the 18th Annual ACM SIGPLAN

Conference on Object Oriented Programming, Systems, Languages, and

Applications, Anaheim, CA, October 26–30, 2003.

[Rinard 05] Rinard, M.; Cadar, C.; & Nguyen, H. H. “Exploring the

Acceptability Envelope.” Companion to the 20th Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and

Applications. San Diego, CA, October 16–20, 2005.

[Schneider 98] Schneider, F. (ed.). Trust in Cyberspace. Washington, DC:

National Academy Press, 1998.

[Turner 93] Turner, R. & Killian, L. Collective Behavior, 4th edition.

Englewood Cliffs, NJ: Prentice Hall, 1993.

118 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

6.7

Policy, Acquisition,

and Management

 ULS systems will be developed to support national priorities and enable

the missions they define. The systems will require rapid development and

evolution to keep pace with changing mission objectives. To achieve this

requirement, capability for fast and flexible adaptation must be built in as a

first-class functional property of ULS systems and their supporting ecosys-

tems. The systems must be explicitly designed to accommodate change at all

levels, and their acquisition processes must be designed to support dynamic

changes in system capabilities. Slow-paced processes for policy definition,

system acquisition, and program management will be insufficient for this

purpose. Fast acquisition will require fundamental changes in processes

that are not well suited to acquiring software, where the possibility for rapid

response exists but is largely unrealized. Acquisition for ULS systems will

be highly distributed, ranging from planned development of strategic system

capabilities to opportunistic incorporation of components in the field to

meet immediate tactical needs. It is important to note that the acquisition

processes and their supply chains should be regarded not as separate entities,

but rather as first-class components of ULS ecosystems, subject to the same

attention to design and evolution as operational software components.

ULS systems will present problems in management and coordination that

must remain tractable as scale increases. The people and organizations in

ULS systems will have different, time-varying, and often competitive or even

adversarial objectives. Moreover, the actions of particular individuals and

organizations may affect the ability of others to accomplish their goals, and

the success of one group may depend on appropriate actions by other groups.

This kind of situation is often referred to as a wicked problem.

More generally, ULS systems will encompass the actions of all system

participants, including not only computational elements but also human

developers, administrators, operators, and users. Even if participants operate

in good faith, it may be difficult for them to understand the full context and

implications of their actions. Policy and management frameworks for ULS

systems must therefore address both global constraints and local freedom

of action. Organizational, technical, and operational policies and rules at all

levels must be developed and largely automated to enable fast and effective

local actions while preserving global capabilities.

6.7.1

Policy Definition for

ULS Systems

 Given the scope and scale of ULS systems, technical, organizational, and

operational policies will emerge as principal vehicles for ensuring harmoni-

ous operations at all levels. Conformance to policies will become the price

of entry for participation in ULS systems, and fast assessment of policy

conformance will become critically important.

Research Tracks

Essential Support

119Ultra-Large-Scale Systems

The Software Challenge of the Future

In terms of policy formulation, competition can arise among participants in

ULS systems even if that is not their intention. Policies must support both

local and global operations in such a way that people and the computational

actions they initiate can achieve cooperative and even competing objectives

without impairing the viability of the system as a whole. For example,

because some tasks will be more urgent than others and because preserving

overall functionality may be more important than providing ideal service

under all circumstances, not everyone will experience the same quality of

service. Such considerations require definition of policies whose effect on

system operations, stability, and long-term viability is well defined and

widely understood. Because of the central role of policy in ULS systems,

research is required on the following topics:

Policy Definition for Flexible Collaboration. ULS system policies will

have to reconcile diverse and competing objectives while providing complete

and unambiguous semantic content sufficient to govern distributed-system

development, evolution, and operation. Policy makers will have to deal with

multiple stakeholders whose objectives are often incompatible and poorly

articulated. Policy definition in such environments would be slow and labori-

ous. Research is required to develop more effective processes for definition

and use of content-rich policies as a first-class mechanism for achieving

long-term sustainability of ULS socio-technical ecosystems. These processes

must address conflict resolution, encourage flexible collaboration, and

build consensus on an unprecedented scale, as well as provide closed-loop

feedback mechanisms for incorporating improvements. They must be both

system-centric for preserving global viability and user-centric for incorporat-

ing local policies, adaptations, and innovations.

Policy Content for Effective Governance. Research is required in how

to define ULS system policies that specify organizational, technical, and

operational constraints for global system integrity and freedoms for flexible

adaptation. Organizational policies must encompass diverse entities ranging

from supply-chain participants to nation-state collaborators to military units

in command centers and in the field. They must define legal, contractual,

and economic structures and responsibilities for all participants. Technical

policies must prescribe architectural frameworks, design rules, semantic

structures, and development environments as the rules of participation and

the context for freedom of action in evolving and adapting ULS systems.

And operational policies must define usage authorizations, responsibilities,

and security processes across a broad spectrum of stakeholders ranging from

software developers to national governments. A major research challenge is

to characterize the options available for governing ULS systems, including

methods derived from principles of democracy, collaborative teaming,

motivational competition, hierarchical delegation, and economic self-interest.

120 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

Policy Content for Local Evolution. Because of their scale and longevity,

ULS systems will experience and should create incentives for substantial

local adaptation and bottom-up evolution. Studies are needed to understand

why and how end users make local adaptations to systems. We need research

on how to develop policies for guiding system evolution when local needs

must be met but conflict with global policies. Local stakeholders may have

little choice in addressing urgent needs, for example, in responding to tactical

situations or isolating failed parts of systems, and ULS system policies must

accommodate and adapt to such situations. Research in mechanism design

(described in Section 6.2.1) is an example of a promising approach for

determining supportive policies in this context.

Computational Automation for Policy Decisions. The scope and scale of

ULS systems will require that policy mechanisms be automated. Research

is required in collaborative work environments for policy formulation and

conflict resolution, techniques for evaluating the semantic consistency of

policies across cultures and languages, methods for rapid assessment of policy

conformance and application of permissions or sanctions, and incorporation

of timely feedback and local policy modifications in response to changing

tactical needs.

6.7.2

Fast Acquisition for

ULS Systems

 The pervasive application of ULS systems to support global operations

in many simultaneous strategic and tactical situations will generate many

requirements for rapid evolution to meet changing threats and environments.

Research will be needed in the following topics to achieve this level of

flexibility:

New Acquisition Processes for Fast Response. Current methods of system

acquisition based on requests for proposals (RFPs) and lengthy vendor evalu-

ations could impose unacceptable delays in the development and evolution of

ULS systems. Research is required to create new acquisition models that en-

able rapid responses. In particular, much of the evolution of ULS systems will

occur in situ, thereby imposing requirements to maintain critical operational

capabilities while adding or improving other capabilities in place. Present

acquisition methods that assume traditional life-cycle models for development

and testing prior to deployment are ill suited to such a dynamic environment.

This research must address contracting, intellectual property, information

sharing, and security across supply-chain organizations.

Integrating Supply Chains for Operational Readiness. Research is needed

to understand how supply-chain organizations could be integrated as first-class

operational components into ULS ecosystems, to enable the continual com-

munication, knowledge acquisition, and training necessary for fast responses

to changing system requirements. Such a strategy would integrate engineering

Research Tracks

Essential Support

121Ultra-Large-Scale Systems

The Software Challenge of the Future

> Integrated Supply Chains for Operational Readiness

Relevance to DoD Missions.

ULS systems will be required to adapt

to changing missions and unanticipated

circumstances encountered by warfighters.

Quick reaction to field new capabilities

will require software-acquisition and

development processes at all levels capable

of fast and dependable responses to these

changing needs.

Key Concepts.

Integrated supply chains are an approach to

operational readiness that treats suppliers

as intrinsic, first-class components of ULS

systems. In this model, suppliers ranging

from established vendors to open-source

communities to individual entrepreneurs

are pre-qualified in terms of available

resources and demonstrated capabilities,

and are pre-positioned in terms of

contracting, information sharing, and security

relationships to enable fast response to

operational needs as they arise. Readiness

teams within supply chains monitor ULS

systems, engage in simulations, and train

with the forces to prepare for fast evolution of

software capabilities to meet tactical needs.

The integrated supply-chain approach can

benefit from automated systems that support

fast acquisition as well as from ULS systems

with designed-in facilities for rapid evolution.

capabilities for system evolution with DoD capabilities for system use and

would put developers on the critical path when rapid adaptation is required

for mission success. In such an environment, supply-chain organizations

ranging from established vendors to open-source collaborations could

undergo periodic assessment of capabilities, participate in joint training and

readiness exercises with the forces, and come and go as needs and capabili-

ties change.

Capitalizing on Ad Hoc Acquisition. It may often be the case that, to meet

immediate needs, local users of ULS systems will be forced to engage in

ad hoc acquisition of components whose functionality and quality proper-

ties are not well understood or trusted. Because these components address

unforeseen problems, an opportunity will arise to improve and generalize

their application across similar environments. Research is required on ad hoc

acquisition to better understand how it can affect global system integrity and

potentially augment system capabilities.

Computational Automation for Fast Acquisition. Speed in acquisition

will depend on automated processing of organizational agreements, system

requirements, work-product integration, and status tracking and report-

ing. Research is needed to create the information models, computational

processes, and training that can support this level of automation.

122 Ultra-Large-Scale Systems

The Software Challenge of the Future

6 Detailed Description of Research Areas

6.7.3

Management of

ULS Systems

 ULS systems will be designed to support dynamic coalitions and manage-

ment of tactical and strategic operations through linkage of field units with

command-and-control functions on any scale necessary. At the same time,

the size and highly distributed nature of ULS systems will limit global

visibility and decentralize system management within an overall framework

of organizational, technical, and operational policies. Research is required on

how to structure ULS system management in the following areas:

Managing ULS Systems for Operational Readiness. The overarching

requirement for ULS systems is operational readiness at all times under

all conditions. While the systems will be subject to persistent failures and

permanent risks of intrusion and compromise, sufficient resources must

always be available to meet immediate operational needs. Research is

required to understand how to plan, acquire, and organize system resources

under adverse conditions to achieve this goal in a decentralized management

structure.

Managing ULS Ecosystems for Fast Evolution. The supply chains

of vendors and integrators that will populate ULS ecosystems must be

organized, and incentives must be provided to evolve ULS system capabili-

ties at a rapid pace in response to changing operational needs. Research is

required to understand how to manage these organizations, ranging from

large and established contractors to open-source communities and individual

entrepreneurs, to achieve a level of cooperation and collaboration that can

satisfy requirements for fast system evolution.

Managing ULS System Research for New Capabilities. The national

importance of ULS systems and the demanding problems they pose will

encourage a rich infrastructure of research and graduate education. This

infrastructure should be encouraged and supported to develop new capabili-

ties for ULS systems as they grow and evolve over time. Research is required

to develop management strategies for ensuring that ULS system research

programs are properly focused and produce results that accumulate into

significant operational capabilities. At the same time, it is important to foster

a new generation of ULS system experts and practitioners through graduate

education programs.

Managing ULS System Knowledge to Guide Evolution. ULS systems

engineering development and operational use will generate knowledge that

can be preserved and analyzed to guide future evolution. Research is required

to understand how to manage the acquisition, preservation, and analysis of

this rich body of information.

Research Tracks

Essential

123Ultra-Large-Scale Systems

The Software Challenge of the Future

6.7.4

Further Reading

 The seminal discussion of wicked problems can be found in Rittel and

Webber’s “Dilemmas in a general theory of planning” [Rittel 73]. Methods

for interorganizational supply-chain collaboration and cycle-time reduction

are discussed by Handfield and Nichols [Handfield 02]. Important perspec-

tives for ULS supply-chain management are provided by Baldwin and her

colleagues [Baldwin 00]: appropriate definition of system modularity is

identified as a driving force in supply-chain integration, innovation, and

efficiency; and managing supply chains for speed is discussed as a competi-

tive advantage. A management perspective on how to achieve resiliency in

large-scale systems and enterprises under adverse conditions is provided by

Sheffi [Sheffi 05].

[Baldwin 00] Baldwin, C.; Clark, K.; Magretta, J.; Dyer, J.; Fisher, M.; &

Fites, D. Harvard Business Review on Managing the Value Chain. Boston,

MA: Harvard Business School Publishing, 2000.

[Handfield 02] Handfield. R. & Nichols, E. Supply Chain Redesign:

Transforming Supply Chains into Integrated Value Systems. Upper Saddle

River, NJ: Financial Times Prentice Hall, 2002.

[Rittel 73] Rittel, H. & Webber, M. “Dilemmas in a general theory of plan-

ning.” Policy Sciences 4 (1973): 155–169.

[Sheffi 05] Sheffi, Y. The Resilient Enterprise: Overcoming Vulnerability for

Competitive Advantage. Boston, MA: MIT Press, 2005.

124 Ultra-Large-Scale Systems

The Software Challenge of the Future

Ultra-Large-Scale Systems

The Software Challenge of the Future

125

A

abstraction: 1. A process of eliminating, hiding,

or ignoring characteristics or aspects of a concept

unrelated to a given purpose. 2. A concept or

system construct that has been subjected to a

process of abstraction.

acceptability-oriented computing: An approach

to the construction of systems in which a designer

identifies a set of properties that the execution

must satisfy to be acceptable to its users. This is

in contrast to the traditional approach, which is to

construct a system with as few errors as possible.

Acceptability-oriented computing was defined by

Martin Rinard, Professor of Computer Science

at MIT, in the paper, “Acceptability Oriented

Computing,” presented at the 2003 Object-

Oriented Systems, Languages, & Applications

Conference (OOPSLA ‘03).

agile method or agile methodology: A style of

software development characterized by its release

schedule, attitude toward change, and patterns of

communication. The product is developed in itera-

tions, usually one to four weeks long. At the end

of each iteration, the product has additional, fully

implemented value and is ready to be deployed.

The design horizon usually extends only to the

end of the current iteration; little code is written

in anticipation of future needs. The project is seen

by the programmers as a stream of unanticipated

requirements. Written natural-language com-

munication is considered a usually inefficient

compromise. Face-to-face communication is

higher bandwidth (but transient). Executable

documentation—code and tests—is permanent,

less ambiguous, and self-checking. Agile projects

prefer a combination of the latter two over the

first.

aleatoric: Pertaining to luck, chance, or

randomness.

allopoiesis: A process whereby an organization or

network of components produces something other

than itself; literally, other-production. An example

of allopoiesis is an assembly line.

annealing: Any process for increasing the order

of a system by first increasing its susceptibility

to disorder and then steadily decreasing such

susceptibility in the presence of mechanisms or

phenomena that tend to create or capture order.

ant-colony optimization: A technique for solving

problems that can be reduced to finding short

paths in a graph by using a process similar to how

an ant colony finds paths to food. In this process,

individuals randomly wander the graph, leaving

behind a trail that dissipates over time. When a

good path is found, the individual returns along

the left trail, reinforcing it. Other individuals

who find this path are likely to follow it, further

reinforcing it. Because trails dissipate over time,

longer trails will be less likely to be reinforced

than shorter ones.

aspect-oriented programming: A programming

paradigm that attempts to aid programmers in the

separation of concerns (breaking down a program

into distinct parts that overlap in functionality as

little as possible). The hallmark of the paradigm

is to represent as modules crosscutting concerns,

which are distinct design decisions or functional-

ity that are conceptually distinct but whose imple-

mentations are usually dispersed throughout the

modules of a system. The idea was first presented

in the paper, “Aspect-Oriented Programming,”

by Gregor Kiczales, John Lamping, Anurag

Mendhekar, Chris Maeda, Cristina Lopes,

Jean-Marc Loingtier, and John Irwin, published in

the Proceedings of the European Conference on

Object-Oriented Programming, 1997.

attribute-specific design rule: A design rule

aimed at maintaining a particular quality

attribute.

augmented reality: A view of the real environ-

ment augmented with computationally supplied

information, providing a composite view of the

world that is partly real and partly digital. A

military heads-up display is a simple example of

augmented reality.

autocatalysis: A chemical reaction whose

products include catalysts for that reaction.

Glossary

126 Ultra-Large-Scale Systems

Software Challenge of the Future

Glossary

autopoiesis: A process whereby an organization

or network of components produces itself; liter-

ally, self-production. An example of autopoiesis is

a cell or an organism.

B

Bayesian technique: Any learning or decision-

making technique that relies on Bayes’ Theorem

which, informally, tells how to update or revise

beliefs in light of new evidence.

belief logic: Any logical calculus that models

belief; for example, as sets of formulae or

probabilistically.

black-box abstraction: An abstraction or

component whose implementation is hidden and

whose functionality is available only through its

interface (cf., open abstraction).

black-box testing: Black-box testing, concrete-box

testing, and functional testing refer to testing

the outputs of a program given knowledge of

only its functional specification and not its

implementation. Black-box testing is in contrast

to clear-box testing.

C

certification: Declaration via a formal certificate

from an accredited body attesting that a particular

assurance regarding software, hardware, or a

system is true.

cleanroom software engineering: A software-de-

velopment methodology defined by Harlan Mills

and his colleagues, based on formal methods,

iterative implementation, and statistical quality

control. The objectives of the cleanroom process

are to develop software incrementally, produce

software that approaches zero defects prior to first

execution, and certify software fitness for use.

See Cleanroom Software Engineering: Technology

and Process by S. Prowell, C. Trammell, R.

Linger, and J. Poore. Reading, MA: Addison

Wesley Longman, 1999.

clear-box testing: White-box testing, clear-box

testing, glass-box testing, and structural testing

refer to testing the outputs of a program given

knowledge of how the program is implemented.

Clear-box testing is generally done by program-

mers who try to cover parts of the code and cases

that they suspect are prone to coding errors.

Clear-box testing is in contrast to black-box

testing.

competitive software design: A design process in

which competition is intentionally introduced at

many levels.

complexity science: A scientific discipline that

studies systems of multiple, possibly diverse,

interconnected elements that have the capacity to

change in response to experience, both external

and internal.

composition: An act or result of combining

simpler objects into more complex ones. For

example, simpler data types can be combined

into more complex ones. Composition also refers

to the act or result of determining the net effect

produced by combining functions; for example

a composite function can be determined by

applying each given function to the results of the

previous function in some order in a cascade.

concurrent: When the execution flow of several

computational processes are able to run simul-

taneously, perhaps while sharing resources. In

general, concurrent execution is not expected to

save elapsed time over sequential execution (cf.,

parallel).

context-aware assistive computing or context-

aware computing: An approach to the design of

a pervasive or ubiquitous computing system that

focuses on the shared understanding between

humans and their computational environments,

particularly regarding their shared context.

Context is any information that can be used

to characterize the situation of entities (i.e.,

people, places, and objects) that is relevant to the

interaction between a user and a system, including

the user and the system themselves. Context is

typically the location, identity, and state of people,

groups, and computational and physical objects.

contract net: A collection of computational

nodes that collaborate to solve a distributed

problem by allocating tasks to nodes via a series

of contract negotiations using a formal protocol

consisting of task annoucements, bids, awards,

and results reporting. Negotiations involve task

descriptions and requirements such as mandatory

available resources and time constraints. The

concept was first introduced by Reid Smith and

Randy Davis in “The Contract Net Protocol:

High level Communication and Control in a

127Ultra-Large-Scale Systems

Software Challenge of the Future

Distributed Problem Solver,” IEEE Transactions

on Computers 29, 12 (1980):1104-1113.

CORBA: Common Object Request Broker

Architecture (CORBA) is a standard for software

components. It defines application programming

interfaces (APIs), communication protocols,

and object/service information models to enable

heterogeneous applications written in various

languages running on various platforms to

interoperate. CORBA thus provides platform and

location transparency for sharing objects across a

distributed computing platform.

crosscutting or crosscutting concerns: A single,

coherent design or implementation decision or

issue whose implementation typically must be

scattered throughout the modules of a system.

A crosscutting concern is called an aspect in

aspect-oriented programming.

crossover: A genetic operator in digital software

evolution that varies the genetic makeup of a

member of the next generation by taking genetic

contributions from two members of the current

generation. In a genetic algorithm, genetic mate-

rial is represented linearly, and crossover is via a

form of splicing. In genetic programming, genetic

material is represented as a tree or as trees, and

crossover is via a form of subtree substitution.

cryptographic: Referring to the security of in-

formation based on encoding messages in such a

way that they cannot be decoded without special,

private, and hard-to-acquire information.

cybernetics: The science of systems of control

and communications in living organisms and

machines.

D

decentralized system: A distributed system with

no central authority for any of its aspects.

Dempster-Shafer theory: A formal theory of

evidence (see evidence theory) based on belief

functions and plausible reasoning that is used

to combine separate pieces of information

(evidence) to calculate the probability of an event.

The theory was developed by Arthur P. Dempster

and Glenn Shafer.

design architecture: A set of decisions that

partitions the task of producing the complete

design for a system into a set of largely separable

subtasks.

design of all levels: An approach to architecture

and design that includes as part of the design not

only the artifact being constructed but also the

organizational, social, and process structure of the

design teams, including individuals, firms, and

other organizations.

design risk: A design decision made in the

absence of certainty of the outcome. In some

design contexts, it is not always known whether a

decision will result in a satisfactory artifact when

the design is completed and implemented; such

a decision represents a risk in the design process

that must be assessed and managed.

design rule: A decision concerning the architec-

ture of a system that helps establish the degree

and nature of the modularity of the system’s

design. Typically, a design rule minimizes

interaction between modules in the design as well

as between different designers or design groups;

design rules are also typically based on design

experience. For example, the decision whether to

control the screen of a computer with the CPU or

a separate graphics processor is a design rule that

structures the design space for a computer.

design space: The set of design parameters along

with the range of values for those parameters for

a design. A design can be considered an outline

for an artifact (its architecture) along with a set

of decisions about the nature and details of the

outline; the space of possible decisions is the

design space.

deterministic: A property of a computation that

always has one (and the same) result given the

same initial state and inputs.

digital evolution or digital software evolution:

An automated methodology inspired by biological

evolution to create software that best performs a

specified task. It is a machine learning technique

that uses an evolutionary algorithm (i.e., a genetic

algorithm or genetic programming) to optimize

a population of programs according to a fitness

function that measures a program’s ability to

perform a specified task.

128 Ultra-Large-Scale Systems

Software Challenge of the Future

Glossary

dissipative system: An open system that is operat-

ing outside equilibrium within an environment

that exchanges energy, matter, or entropy.

distributed cognition: A branch of cognitive

science that proposes that human cognition is not

confined to the individual, but is distributed by at-

taching memories, facts, or knowledge to objects,

individuals, and tools in the environment.

distributed system: A system in which there are a

number of components communicating over a net-

work that are trying to cooperate in some fashion

(or which taken together form the system).

distribution: Placing execution flows in different

processes or on different computational platforms.

Distribution is typically applied to improve fault

tolerance or to access remote resources.

domain-specific language: A programming

language designed to be useful for a specific set

of tasks.

driven system: A system with external energy or

information inputs.

E

econometrics: The application of statistical and

mathematical methods in the field of economics

to describe the numeric relationships between key

economic forces. The main purpose of economet-

rics is to empirically verify economic theory.

ecosystem: In biology, an ecosystem is a com-

munity of plants, animals, and microorganisms

that are linked by energy and nutrient flows and

that interact with each other and with the physical

environment. Rain forests, deserts, coral reefs,

grasslands, and a rotting log are all examples of

ecosystems. ULS systems can be characterized as

socio-technical ecosystems.

embodied interaction: A form of interaction with

a computational system that reflects the philoso-

phy that effective communication must take place

in physical and social environments, not purely in

virtual ones.

embodied virtuality: The manifestation of the

results, processes, and mechanisms of computa-

tion in the physical world. This term, first defined

by Mark Weiser in The Computer for the 21st

Century (San Francisco, CA: Morgan Kauffman

Publishers, 1995) is an alternative to ubiquitous

computing, which envisions computers as physical

presences in numerous parts of the real world.

Enterprise JavaBeans: A component architecture

for building distributed, object-oriented business

applications in Java. An Enterprise JavaBean

(EJB) encapsulates business logic in a component

framework that manages the details of security,

transaction, and state management. Low-level

details such as multi-threading, resource pooling,

clustering, distributed naming, automatic

persistence, remote invocation, transaction bound-

ary management, and distributed transaction

management are handled by the EJB “container.”

entropy: Informally, the degree of disorder of a

system. Entropy has specific definitions beyond

the scope of this glossary in thermodynamics,

statistical mechanics, and information theory.

epistemic uncertainty: Uncertainty based on lack

of knowledge.

evidence theory: A formal system of reasoning

about knowledge based on a belief function (not

defined in this glossary) as the representation

of degree of belief, and a method of combining

evidence and belief. The theory is explained in

A Mathematical Theory of Evidence by Glenn

Shafer (Princeton, NJ: Princeton University Press,

1976).

example-driven design: A variant of test-driven

design in which the tests are written as if they

were a series of examples being used to teach

someone how to use the code, beginning with

simple cases and moving toward the trickier ones.

F

fitness function: A type of objective function that

quantifies the optimality of a solution in a genetic

algorithm so that a solution can be ranked against

all the others.

flow-structure analysis: A method for under-

standing the compositions of system services

implemented in a network to carry out user tasks.

See Flow-Service-Quality (FSQ) Engineering:

Foundations for Network System Analysis and

Development, by R. Linger, M. Pleszkoch, G.

129Ultra-Large-Scale Systems

Software Challenge of the Future

Walton, and A. Hevner (CMU/SEI-2002-TN-019),

Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, PA, June 2002.

fractal: Informally, a shape that appears similar

at all scales; formally, a geometric object whose

Hausdorff dimension (not defined in this glossary)

is greater than its topological dimension (not

defined in this glossary).

function extraction (FX): Technology for

automated computation of the net functional

effect, or behavior, of programs, presented in

terms of behavior catalogs for human understand-

ing and analysis. See The Impact of Function

Extraction Technology on Next-Generation

Software Engineering by A. Hevner, R. Linger, R.

Collins, M. Pleszkoch, S. Prowell, and G. Walton

(CMU/SEI 2005-TR-015), Software Engineering

Institute, Carnegie Mellon University, Pittsburgh,

PA, July 2005.

function-theoretic: Of or referring to function-

theoretic foundations.

function-theoretic foundations: An approach

to formalizing computation based on a view of

programs as implementations of mathematical

functions or relations, regardless of their subject

matter or language. Function-theoretic founda-

tions provide methods for software specification,

design, verification, and analysis, and play a

key role in cleanroom software engineering,

function-theoretic verification, and function

extraction.

fuzzy set: A set with imprecise membership

criteria. In classical set theory, a set can be defined

by a characteristic function that takes an element

of the universe and assigns 1 if the element

belongs to the set and 0 otherwise. A fuzzy set is

defined by a membership function that assigns a

real number in the interval [0,1], where 1 means

the element belongs, 0 means it doesn’t, and a

number in between 0 and 1 indicates the degree of

membership. This number is not a probability or

likelihood, but an imprecision or vagueness. For

example, a person walking through the doorway

between the kitchen and dining room whose foot

is in the dining room and part of whose body

is in the kitchen is partly in the set of people in

the kitchen and partly in the set of people in the

dining room.

G

game theory: A branch of applied mathematics

that studies strategic situations in which players

choose actions in an attempt to maximize their

returns.

genetic algorithm: A method of simulating the ac-

tion of evolution within a computer. A population

is evolved by employing crossover and mutation

operators along with a fitness function that deter-

mines how likely individuals are to reproduce. A

genetic algorithm usually operates on a population

of fixed-length vectors of characteristics.

genetic programming: A form of genetic

algorithm in which members of the evolving

population are tree-like representations of

computer programs.

glue or glue code: Code that enables one piece of

code or a component to interact with other code or

another component.

GOMS model: A description of the knowledge

that a person must have to carry out tasks on a

device or system. The acronym “GOMS” stands

for Goals, Operators, Methods, and Selection

rules. A GOMS model consists of descriptions

of the methods needed to accomplish specified

goals. The methods are a series of steps consisting

of operators that the person performs. A method

may call for sub-goals to be accomplished, so the

methods have a hierarchical structure. If there is

more than one method to accomplish a goal, then

the GOMS model includes selection rules that

choose the appropriate method depending on the

context. The GOMS framework was proposed

by Card, Moran, and Newell in The Psychology

of Human-Computer Interaction (Mahwah, NJ:

Lawrence Erlbaum Associates, 1983).

greedy algorithm: A problem-solving or optimi-

zation algorithm that uses the metaheuristic of

making the locally optimum choice at each stage

until the entire problem is solved or optimization

is complete. It typically produces a good solution

quickly but rarely an optimum one.

130 Ultra-Large-Scale Systems

Software Challenge of the Future

Glossary

H

hybrid systems modeling: The process of and lan-

guages for modeling and simulating systems with

both continuous and discrete processes. Hybrid

systems modeling aims to model systems that can

be described by ordinary differential equations,

partial differential equations, differential algebraic

equations, and ordinary differential equations

interfaced with discrete-time algorithms.

hypermutation: A biological process or mecha-

nism to enable rapid adaptation to environmental

conditions (including parasites and viruses) by

altering (usually accelerating) rates of mutation.

For example, the acquired immune system in

multicellular animals uses hypermutation.

I

in situ control and adaptation: A model-based

approach for designing adaptive quality of service

in distributed systems.

in situ control, reflection, and adaptation: in situ

control and adaptation using reflection as an

approach.

Internet storm: A disruptive and sometimes mali-

cious set of time-localized, large-scale Internet

infrastructure events. Denial-of-service attacks,

Internet worms, and cascading router failures are

examples of Internet storms.

J

jitter: A slight random or irregular variation in an

otherwise regular sequence or signal. In telecom-

munication, an abrupt variation of one or more

signal characteristics, such as the interval between

successive pulses, the amplitude of successive

cycles, or the frequency or phase of successive

cycles. In packet-based networking, jitter is the

variation in the delay of packets.

L

latency: A time delay between the moment

something is initiated and the moment its first

effect begins.

law of large numbers: A statistical law stating

that the average of a random sample from a large

population is likely to be close to the mean of that

population.

M

machine learning: An approach to certain com-

putations in which, broadly speaking, a computer

changes its own structure, program, or data based

on inputs or external data in such a manner that

its expected future performance improves. More

specifically, machine learning refers to a set of

techniques such as automatic rule extraction and

application, determining statistical characteristics

of a population and using them to make decisions,

determining the weights and perhaps topology for

a neural net based on positive and negative train-

ing examples and using it for classification, etc.

mechanism design: A sub-field of game theory

that studies how to design the rules of a game

to achieve a specific outcome by setting up a

structure in which each player has an incentive

to behave as the designer intends. One branch of

mechanism design is the creation of markets such

as auctions.

metadata: Data that are about or that describe

data. Note that the word “metadata” has been

trademarked by The Metadata Company, and the

legal status of the generic use of the term has not

been settled.

metaheuristics: High-level procedures that

coordinate simple heuristics, such as local search,

to find solutions that are of better quality than

those found by the simple heuristics alone; meta-

heuristics are typically used in situations where

exact algorithms are not feasible. Metaheuristics

include simulated annealing, genetic algorithms,

tabu search, GRASP, scatter search, ant-colony

optimization, variable neighborhood search, and

their hybrids.

metastability: The ability of a non-equilibrium

state to persist for some period of time. A system

in a metastable state is able to pass to a more

stable equilibrium when sufficiently disturbed.

microeconomics: The branch of economics that

deals with small-scale economic factors, such as

the economics of an individual firm, product, or

consumer rather than with the aggregate. One of

the goals of microeconomics is to analyze market

mechanisms that establish relative prices and

allocate resources.

131Ultra-Large-Scale Systems

Software Challenge of the Future

middleware: A set of layers and components that

provides reusable common services and network

programming mechanisms. Middleware resides on

top of an operating system and its protocol stacks

but below the structure and functionality of any

particular application.

model checking: A method to algorithmi-

cally verify a design by checking whether a

model derived from the design satisfies its formal

specification.

model-driven architecture: An approach to

model-driven engineering architecture sponsored

by the Object Management Group that provides

a set of guidelines for structuring specifications

expressed as models. System functionality is

defined as a platform-independent model (PIM)

through an appropriate domain-specific language.

Given a platform definition model (PDM)

corresponding to CORBA, .NET, etc., the PIM is

then translated to one or more platform-specific

models (PSMs) for the actual implementation.

The translations between the PIM and PSMs are

normally performed using automated tools.

monoculture: A system with low diversity.

monotonic: The property of a type of information

and a method of reasoning or operating on it for

which the addition of new information does not

decrease the set of valid inferences or operations.

multi-valued logic: A logical calculus in which

there are more than two possible truth values.

Examples include fuzzy logic and probabilistic

logic such as Dempster-Shafer theory.

mutator function: As used in a metaheuristic

process, a function that takes a current state

and returns a neighbor state, typically in a

probabilistic manner.

N

.NET: The Microsoft .NET Framework is a

component of the Microsoft Windows operating

system. It provides a large body of pre-coded

solutions to common program requirements

and manages the execution of programs written

specifically for the framework. Programs written

for the .NET framework execute in a software

environment that manages the program’s runtime

requirements. This runtime environment, which

is also a part of the .NET framework, is known as

the Common Language Runtime (CLR). The CLR

provides the appearance of an application virtual

machine.

neuro-evolution: The use of genetic algorithms to

create an operational artificial neural network. The

term is used ambiguously in the literature to refer

both to systems that evolve only the values of the

connection weights for a network of pre-specified

topology as well as to systems that evolve the

topology of the network in addition to the weights.

nondeterministic: A property of a computation

that may have more than one result. One way to

implement a nondeterministic algorithm is using

backtracking; another is to explore (all) possible

solutions in parallel.

non-monotonic: The property of a type of

information and a method of reasoning or operat-

ing on it that the addition of new information may

decrease the set of valid inferences or operations;

not monotonic.

NP-complete: A decision problem that requires

a nondeterministic, polynomial-time (NP)

algorithm to solve; an NP-complete problem is

among the most difficult-to-solve NP problems.

Formally, a decision problem is NP-complete if it

is in NP (requires a nondeterministic, polynomial-

time algorithm to solve), and every other problem

in NP is reducible to it.

n-version programming: A software-develop-

ment strategy to increase reliability through

redundancy. One approach is to create (possibly

independently) multiple versions of a component

and to combine their results.

O

objective function: A function to be minimized

or maximized in a metaheuristic optimization

process.

off-the-shelf components: Components designed

and implemented for specific purposes but with

no specific application in mind; such components

can be used in a variety of applications, some-

times with external scaffolding. A program library

is an example.

open abstraction: An abstraction or component

whose implementation can be customized or

augmented.

132 Ultra-Large-Scale Systems

Software Challenge of the Future

Glossary

platforms include operating systems, libraries,

and frameworks.

possibility theory: A mathematical theory for

dealing with particular types of uncertainty as

an alternative to probability theory. Possibility

theory was defined by Lotfi Zadeh in 1978 as an

extension to his theory of fuzzy sets and fuzzy

logic.

probabilistic: Pertaining to any method,

approach, or form of reasoning that relies

on probability or theories of likelihood (cf.,

stochastic).

proof-carrying code: A technique for safe

execution of untrusted code. A code receiver

establishes a set of safety rules that guarantee

safe behavior of programs, and the code

producer creates a formal safety proof. The

receiver can use a proof validator to check that

the proof is valid.

Q

quality attribute: A property of a system

by which its quality will be judged by some

stakeholder or stakeholders. Quality-attribute

requirements such as those for performance,

security, modifiability, reliability, and usability

have a significant influence on the architecture

of a system.

quality of service: The probability that a system

will deliver particular levels of measurable

computational and communication properties

such as availability, bandwidth, latency, and

jitter. Policies and mechanisms typically are

designed to control and improve the quality of

service of a system.

quasi-stability: The ability of a non-equilibrium

state to be long lasting but not perpetual;

metastability.

R

recovery-oriented programming: An approach

to software reliability that focuses on recover-

ing from faults quickly and effectively. This

approach was devised by David Patterson and

his colleagues (Recovery Oriented Computing

(ROC): Motivation, Definition, Techniques,

and Case Studies, Computer Science Technical

orchestration: The activities needed to make the

elements of a system work together in sufficient

harmony to ensure continuous satisfaction of a set

of specified objectives.

P

parallel: When the execution flows of several

computational processes are able to run simul-

taneously, typically with little or no resource

sharing. In general, parallel execution is expected

to save elapsed time over sequential execution

(cf., concurrent).

particle swarm optimization: A problem-solving

metaheuristic that mimics the behavior of a flock

or swarm. A population of individuals seeking to

find the most fit location is placed randomly in a

multidimensional search space. Each individual

flies through the space with a velocity that is

updated according to a linear combination of

the current velocity, a vector toward the most fit

location that the individual has seen so far, and

a vector toward the most fit location seen so far

either by nearby individuals (in one variation of

the algorithm) or by the entire flock (in another).

The latter two vectors are combined with indepen-

dent random scalars. The process terminates when

the location with the best fitness exceeds a given

threshold.

pattern: A description of a particular recurring

design problem that arises in specific design

contexts along with a well-proven solution for that

problem. In some cases, the solution is specified

by describing its constituent participants, their

responsibilities and relationships, and the ways in

which they collaborate.

phase transition: A process by which a system

changes from one state to another with differ-

ent properties, sometimes as a result of small

changes.

phenotropics: A mechanism for component

interaction that uses pattern recognition or

artificial cognition in place of function invocation

or message passing. The term was coined by

Jaron Lanier. See John Brockman, The Next Fifty

Years: Science in the First Half of the Twenty-first

Century, Vintage, 2002.

platform: The combination of hardware and

software that provides a virtual machine that

executes software and applications. Software

133Ultra-Large-Scale Systems

Software Challenge of the Future

Report UCB//CSD-02-1175, University of

California at Berkeley, March 15, 2002).

refactor: The process of rewriting software to

improve its readability or structure while retaining

its meaning or behavior.

reflection: A computational process that is able to

reason about itself.

requirements drift: A slow variation in the

requirements for a system as conditions change,

including as a result of experience with the system

or as the set of stakeholders changes.

revelation principle: The principle in game

theory or mechanism design that states that

for any equilibrium (stable state) of a game of

incomplete information, there corresponds an

associated revelation mechanism that has an

equilibrium where the players truthfully report

their payoff-related, private information.

robust; robustness: The ability of a system to

continue to function despite the existence of faults

in its component subsystems, parts, or communi-

cation mechanisms.

S

satisfice: To seek a solution that satisfies the

minimum requirements necessary.

security: The capability of a system to provide

confidentiality, integrity, and availability of data

and services, both locally and globally.

self-organizing criticality: A driven system that

radically changes its behavior or structure because

of its intrinsic dynamics. The archetype of a self-

organized critical system is a sand pile. Sand is

slowly dropped onto a surface, forming a pile. As

the pile grows, avalanches occur that carry sand

from the top to the bottom of the pile.

sequence-based specification: A method of

specification distinguished by a process of

enumerating all stimulus-response pairs as well as

all sequences of stimuli along with their required

responses, including whether a sequence is not

possible, and the identification of equivalence

classes of sequences. The method is described in

“Sequence-Based Specification of Deterministic

Systems,” by S. Prowell and J. Poore, Software

- Practice and Experience 28, 3 (Mar 1998):

329-344.

service-oriented architecture: A design for

linking computational resources (principally, ap-

plications and data) on demand using standardized

(typically network-based) interfaces and protocols

to achieve the desired results for service consum-

ers (which can be end users or other services).

simulated annealing: A problem-solving or

optimization metaheuristic that finds a good

approximation to a global optimum by using a

process inspired by metallurgical annealing.

It operates by repeatedly considering a random

nearby solution, and selecting that solution with a

probability that depends on the difference between

the current fitness and desired fitness, and on a

global temperature that decreases according to a

schedule. The process terminates after, at most, a

fixed number of steps.

socio-technical ecosystem: An ecosystem whose

elements are groups of people together with their

computational and physical environments.

speciation: The formation of new and distinct

species in a process of natural or digital evolution.

staged computation: Breaking the construction

of a program into stages whose outputs are

programs. Partial evaluation is an example of

staged computation.

statistical mechanics: The branch of physics that

makes theoretical predictions about the behavior

of a macroscopic system on the basis of statistical

laws governing its component particles.

stochastic: Involving chance or probability;

involving or containing a random variable or

variables. For example, a stochastic process is

one whose behavior is nondeterministic in that

the next state of the environment is partially but

not fully determined by the previous state of the

environment.

swarm intelligence: The collective behavior of

decentralized, self-organized systems. Swarm-

intelligence systems are typically made up of a

population of simple agents interacting locally

with one another and with their environment.

Local interactions between such agents often lead

to the emergence of global behavior. Examples

from nature include ant colonies, bird flocking,

animal herding, bacteria molding, and fish

schooling.

134 Ultra-Large-Scale Systems

Software Challenge of the Future

Glossary

system health: A measure of the ability of a

system to deliver its required functionality at its

specified quality levels.

system of systems: A system comprising

independent, self-contained systems that, taken as

a whole, satisfy a specified need.

system viability: The success or continuing

effectiveness of a system.

T

test-driven design: A style of program design that

begins by writing one simple test, then writing just

enough code to pass it. Then another simple test

is written, and code is added to pass both it and

the previous test. The programmer then looks for

opportunities to improve the code by generalizing

it, removing duplication, restructuring it, or

making it more understandable. The test-code-

improve cycle repeats until there are no more tests

to be had. It is claimed that a good global design

emerges from the need to decouple the code to

make tests run fast and the local heuristic rules

for code improvement. The tests are retained and

run frequently to prevent unintended effects of

changes to the design.

trust: The extent to which users of a system can

rely on its data and services.

type-safe staged computation: A staged computa-

tion using a language that guarantees that every

generated program is type safe.

U

ubiquitous computing: The integration of compu-

tation into the environment; this is in contrast to

computers as distinct objects.

ultra-large-scale (ULS) system: A system at least

one of whose dimensions is of such a large scale

that constructing the system using development

processes and techniques prevailing at the start

of the 21st century is problematic. ULS systems

exhibit the following characteristics: decentraliza-

tion; conflicting, unknowable, and diverse require-

ments; continuous evolution and deployment;

heterogeneous and changing elements; erosion of

the people/system boundary; and normal failures

of parts of the system.

universal usability: The characteristic of an

information or communications device that it is

usable by any person regardless of skill level,

knowledge, age, gender, disabilities, disabling

conditions (mobility, sunlight, noise), literacy,

culture, income, etc., and regardless of the number

of (simultaneous) users.

user-centered design: A design philosophy and

process in which the needs, wants, and limitations

of the end user of an interface or artifact are given

extensive attention at each stage of the design

process.

V

validation, software: Confirmation by examina-

tion and provision of objective evidence that

software specifications conform to user needs

and intended uses and that the requirements

implemented through software can be consistently

fulfilled.

verification, software: Evidence that a design

meets all of its specified requirements.

Von Neumann execution model: A model of

computation consisting of a central processing

unit (CPU) and a single memory for instructions

and data.

W

wicked problem: An ill-defined design and plan-

ning problem having incomplete, contradictory,

and changing requirements. Solutions to wicked

problems are often difficult to recognize because

of complex interdependencies. This term was sug-

gested by H. Rittel and M. Webber in the paper,

“Dilemmas in a General Theory of Planning,”

Policy Sciences 4, Elsevier Scientific Publishing

Company, Inc., Amsterdam, 1973.

Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue

Pittsburgh, PA 15213-3890

Phone: 412-268-5800

Fax: 412-268-5758

www.sei.cmu.edu

customer-relations@sei.cmu.edu

© Copyright 2006 Carnegie Mellon University.

U
ltra

-L
a
rg

e
-S

c
a
le

 S
y
s
te

m
s
: T

h
e
 S

o
ftw

a
re

 C
h

a
lle

n
g

e
 o

f th
e
 F

u
tu

re

