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Abstract— Direct-conversion transceivers are the predominat-
ing architecture in current mobile communication systems.
Despite many advantages, this topology suffers from unavoidable
mismatches in the analog part, which causes imbalance between
the in-phase and quadrature (I/Q) component. In this paper,
we present a novel fully digital, blind I/Q imbalance com-
pensation algorithm that features extremely low computational
complexity and high compensation performance for a wide range
of input signal types. Different to many state-of-the-art compen-
sation schemes, the approach is not based on a gradient descent
optimization and does not require any global feedback. This
simplifies the implementation at high data rates and reduces the
configuration effort to a minimum. For comparison, we examine
an existing method of moment-based estimator with similar
properties, for which we also provide the detailed insights beyond
available literature. For both algorithms, we provide a rigorous
mathematical analysis, which is supported by simulations with a
focus on various long-term evolution (LTE) signal types. In addi-
tion, hardware architectures, including field-programmable gate
array (FPGA) verification, are presented for both algorithms.

Index Terms— Amplitude and phase imbalance, image atten-
uation, long-term evolution, direct conversion transceiver,
field-programmable gate array.

I. INTRODUCTION

CURRENT radio frequency (RF) transceivers implement-

ing mobile communication standards such as Long-Term

Evolution (LTE) usually employ the direct-conversion archi-

tecture. One big advantage of this architecture is its simplicity

due to the fact that the RF signal is split into an in-phase (I)

and quadrature (Q) path and directly down-converted with-

out the need for any kind of intermediate frequency (IF)

stage. On the other hand, analog non-idealities and para-

meter variations necessarily lead to errors in terms of gain
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and phase matching between the I- and Q-path, termed I/Q

imbalance. This results in a spectral image compromising the

quality of the received signal which can be quantized by

the so-called image rejection ratio (IRR) [1]–[6]. Carefully

designing the analog paths can reduce the problem but never

fully mitigate it: some mismatch in the mixers, local oscillator

signals, anti-aliasing filters and the analog-to-digital convert-

ers (ADCs) will always remain. Typical IRR values of the

analog design itself are around 20 dB to 40 dB [4]–[6]. From

a system level perspective it is natural to implement further

mechanisms to improve the IRR. Here, digital signal process-

ing proved to be a powerful tool, while also profiting from

technology shrinking compared to pure analog approaches.

A. Prior Approaches for I/Q Imbalance Compensation

The existing algorithms can be divided into two groups:

training data assisted approaches and blind ones. The first

ones usually feature low complexity, however, they rely on

pilot symbols [7]–[9]. This especially complicates their usage

in multi-mode multi-standard transceivers. Blind methods on

the other hand, do not require specifically allocated training

data and often are not standard dependent [10]–[13]. Many

blind algorithms use adaptive filtering methods [14], [15].

This typically leads to imbalance cancellation schemes that

solve quadratic cost functions using a gradient descent

approach [16]–[18]. Although these algorithms feature low

complexity, many of them require a feedback loop, which

complicates the digital design or the integration in a multi

standard digital-front end (DFE). The other category of blind

concepts applies blind source separation (BSS) techniques,

which however suffer from high computational effort [19].

In the context of interference cancellation [20], [21], I/Q

imbalance calibration plays a role, too. Mixed signal solutions

employ an auxiliary receiver with less stringent requirements

than a normal receiver, which often leads to designs, where low

IRR is even more an issue [22], [23]. Digital signal processing

is then used to improve the IRR [24]. More general algo-

rithms consider a frequency selective imbalance. This becomes

important for signals with very large bandwidth [13], [25].

However, the frequency dependent variations of the imbalance

are usually low, which allows an approximation by a finite

impulse response (FIR) filter with only a few coefficients [26].

B. Proposed Algorithm

In this work we propose a novel blind low-complexity esti-

mation algorithm utilizing a particular property of the phase
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distribution of the I/Q imbalance-free signal that is approx-

imately fulfilled by many communication signals. However,

the algorithm can also be applied to signals not fulfilling this

property. As we will show in a detailed mathematical analysis,

the estimator will then be biased. For comparison, we study

an existing algorithm [12] that is based on the method of

moments [27] and provide detailed insights beyond available

literature. The moment-based estimator is derived by assuming

the so-called properness [28] of the I/Q-imbalance-free signal.

The analytical results are supported by extensive simulations,

where we test the algorithms with signals defined by the

LTE standard for uplink (UL) and downlink (DL), namely

single-carrier frequency-division multiple access (SC-FDMA)

and orthogonal frequency-division multiple access (OFDMA).

The simulation results clearly show, which signal parameters

(such as bandwidth allocation and modulation scheme [29])

have an influence on the compensation performance. One

major advantage of both algorithms is that the estimation of

the I/Q imbalance can be decoupled from the cancellation

itself and thus they are feedback-free in that sense. This makes

them highly flexible in the context of mobile communication

transceivers that feature already a highly complex DFE. There,

integrating new or updated components that require feedback

is a demanding task as it requires evaluating mutual influence

of all parts at a system level. For both estimators, we develop

an efficient low-complexity hardware design, which allows us

to compare their capabilities by processing I/Q data from a

real RF transceiver within a field-programmable gate array

(FPGA). The application on measurement data clearly shows

the benefits of the proposed ultra-low complexity estimator,

as it performs equivalently to the, theoretically slightly supe-

rior, moment-based approach, but requires much less hardware

resources, especially no multipliers.

The rest of the paper is organized as follows: In Section II

a baseband model for I/Q imbalance is derived. Based on this

model, Section III describes an ideal compensation scheme

and a corresponding hardware architecture. In Section IV,

the ultra-low complexity imbalance estimator is presented,

including its mathematical derivation, simulation results and

a hardware-efficient implementation. The moment-based esti-

mator is described in Section V, where we extend the exist-

ing mathematical analysis and provide extensive simulation

results and a hardware architecture. The effect of fixed-point

arithmetic on the estimation performance of both algorithms is

examined in Section VI. Section VII provides a comparison of

the proposed estimator to other state-of-the-art approaches and

illustrates the influence of fixed-point arithmetic. The image

rejection performance of both algorithms on measured data

is shown in Section VIII, followed by concluding remarks in

Section IX.

II. BASIC I/Q IMBALANCE MODEL

Fig. 1 shows the relevant blocks of a direct-conversion

RF receiver. In the analog domain, all stages from the

antenna to the I/Q-mixer, like switches and a low noise

amplifier, operate on the real-valued RF signal. Therefore

they have no influence on the imbalance and are omitted in

Fig. 1. Basic block diagram of the relevant parts of a direct-conversion RF
receiver.

our considerations. The first relevant stage, the I/Q mixer,

down-converts the wanted receive signal located around the

carrier frequency fRx to the complex-valued analog baseband.

At this point, the analog paths for the in-phase and quadrature

component split and the mixer itself already introduces a

mismatch between the I- and the Q-signal. Additionally, due

to unavoidable parameter variations all subsequent analog

circuits up to the analog-to-digital converter contribute to

the I/Q-imbalance. In general, this mismatch is frequency-

dependent. But as measurements on our targeted receiver

show negligible frequency-dependence up to its maximum

bandwidth of 20 MHz, in the following we will focus on the

frequency-independent case.

As we intend to compensate the mismatch in the digital

domain, we first derive a baseband signal model. Let x̃BB(t)

be the complex-valued wanted receive signal, then

yRF(t) = ℜ
{

x̃BB(t) e j2π fRxt
}

(1)

represents the RF signal at the input of the mixer. Without

loss of generality, the imbalance is commonly assumed to be

concentrated at the mixer stage, even though the subsequent

analog blocks also contribute as discussed above. The local

oscillator signals of the non-ideal mixer are modeled as

sLO, I(t) =
(

1 + ǫA

2

)
cos

(
2π fRx t − ǫθ

2

)
, (2)

sLO, Q(t) = −
(

1 − ǫA

2

)
sin
(

2π fRx t + ǫθ

2

)
, (3)

where ǫA and ǫθ represent the time-invariant gain and

phase mismatch between and the I- and Q-component. The

real-valued output signals of the mixer

yRF,mixer,I(t) = yRF(t) · sLO, I(t), (4)

yRF,mixer,Q(t) = yRF(t) · sLO, Q(t) (5)

are usually combined to a complex-valued signal

yRF,mixer(t) = yRF,mixer,I(t) + j yRF,mixer,Q(t)

= yRF(t) · (sLO, I(t) + j sLO, Q(t))

= yRF(t) · sLO(t) (6)

with the complex-valued local oscillator signal sLO(t). The

mixer output signal still contains unwanted components around

±2 fRx. These components are rejected by low pass filters with
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a passband gain of GLPF = 2, leading to the analog baseband

signal yBB(t) as follows:

yBB(t) = GLPF · LPF
{

yRF,mixer(t)
}

= GLPF ·LPF

{
1

2

(
x̃BB(t) e j2π fRxt + x̃∗

BB(t) e−j2π fRxt
)
·

[(
1+ ǫA

2

)
cos

(
2π fRx t− ǫθ

2

)

−j
(

1− ǫA

2

)
sin
(

2π fRx t+ ǫθ

2

)]}

= 1

2
x̃BB(t)

[(
1+ ǫA

2

)
e j

ǫθ
2 +

(
1− ǫA

2

)
e−j

ǫθ
2

]

+1

2
x̃∗

BB(t)
[(

1+ ǫA

2

)
e−j

ǫθ
2 −

(
1− ǫA

2

)
e j

ǫθ
2

]

= k1 x̃BB(t)+k2 x̃∗
BB(t). (7)

Here x∗ denotes the complex conjugate of x . k1 and k2 are

defined as

k1 = 1

2

[(
1 + ǫA

2

)
e j

ǫθ
2 +

(
1 − ǫA

2

)
e− j

ǫθ
2

]
, (8)

k2 = 1

2

[(
1 + ǫA

2

)
e− j

ǫθ
2 −

(
1 − ǫA

2

)
e j

ǫθ
2

]
. (9)

As the gain and phase mismatches of practically used receiver

designs are typically small, |k1| will be close to 1. As a conse-

quence we define xBB(t) = k1 x̃BB(t) and intend to reconstruct

xBB(t) instead of the true wanted signal x̃BB(t). The remaining

gain and phase error on xBB(t) can then be easily corrected

by the channel equalizer, which is present in every wireless

communication system. This leads to the analog baseband

model

yBB(t) = xBB(t) + α x∗
BB(t) + wBB(t), (10)

with α = k2

k∗
1

. w̃BB(t) is baseband equivalent additive noise,

which comprises thermal and semiconductor-related noise

components of the analog circuits after the mixer stage. For

the sake of clearness this term has been omitted in the previous

derivation steps.

All algorithms presented in the subsequent chapters operate

in the digital baseband, therefore we simplify the notation by

omitting the subscript. Assuming an ADC that only introduces

quantization noise due to finite bit width, the discrete-time

imbalance model is

y[n] = x[n] + α x[n]∗ + w[n]. (11)

w[n] is the total noise, consisting of the sampled component

wBB(t) and the ADC quantization noise. For the sake of

clearness, we neglect the additive noise term in all following

derivations and simulations, which leads to the simplified

model:

y[n] = x[n] + α x[n]∗. (12)

In Section VIII we show the imbalance compensation perfor-

mance on measured data from an integrated LTE receiver to

obtain the expectable performance of the proposed algorithms

in practically relevant scenarios.

Fig. 2 illustrates the power spectral density (PSD) of a sam-

ple signal y[n] with α = 0.1 e j0.25. To ensure clear visibility

of the imbalance effect, the sample signal was chosen to only

Fig. 2. Example of wanted receive signal and its spectral image for an

imbalance factor of α = 0.1 e j0.25.

contain components in the negative frequency range. Due to

the imbalance, the component x[n]∗ in the positive frequency

range occurs. Compared to the PSD of x[n], the PSD of x[n]∗
is scaled and mirrored at f = 0. Therefore the conjugate

complex component is usually referred to as image.

III. IMAGE CANCELLATION

The reconstruction of x[n] from the distorted signal y[n]
in (12) can be done in a two-step procedure: firstly the

estimation of α, and secondly the cancellation of the image

in y[n]. As the second step can be conducted independently

of the estimation algorithm, we first consider the cancellation

scheme and provide a hardware architecture for this step.

A. Mathematical Formulation

In the following, we drop the time indices in favor of a

shorter notation and rewrite the noise-free model (12) in the

real-composite form by splitting x , y, and α into an in-phase

and quadrature component, i. e. x = xI + j xQ, y = yI + j yQ

and α = αI + jαQ. The real-composite form of (12) is then:
[

yI

yQ

]
=
[

1 + αI αQ

αQ 1 − αI

]

︸ ︷︷ ︸
T

[
xI

xQ

]
. (13)

With

T−1 = 1

1 − α2
I − α2

Q

[
1 − αI −αQ

−αQ 1 + αI

]
(14)

we have
[

xI

xQ

]
= T−1

[
yI

yQ

]
, (15)

which leads to

xI = kcanc

[
(1 − αI) yI − αQ yQ

]
(16)

xQ = kcanc

[
−αQ yI + (1 + αI) yQ

]
. (17)

The scaling factor kcanc hereby is

kcanc = 1

1 − α2
I − α2

Q

= 1

1 − |α|2
. (18)
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Combining the components xI and xQ to the complex-valued

x again yields

x = xI + j xQ

= kcanc

[
(1 − αI) yI − αQ yQ − jαQ yI + j (1 + αI) yQ

]

= kcanc (y − α y∗), (19)

In a practical implementation, α in (18) and (19) will be

replaced by the estimate α̂, and therefore we will also obtain

the estimate

x̂ = k̂canc (y − α̂ y∗). (20)

with k̂canc = 1

1−|̂α|2 . As a consequence, the image will not be

completely suppressed. The power of the remaining image

Pimg in relation to the power of the wanted signal Pmain is

quantified by the image rejection ratio (IRR). The logarithmic

image rejection ratio IRRdB of the input signal y without any

cancellation is defined as

IRRdB = 10 · log10

Pmain

Pimg
= 10 · log10

1

|α|2
. (21)

After the cancellation we have:

x̂ = k̂canc ((x + α x∗) − α̂ (x∗ + α∗x))

= k̂canc (1 − α∗α̂) x︸ ︷︷ ︸
main comp.

+ k̂canc (α − α̂) x∗
︸ ︷︷ ︸

image comp.

. (22)

The IRR after the cancellation is again the power ratio between

the main and the image component, which leads to

IRRcanc
dB = 10 · log10

|1 − α∗α̂|2

|α − α̂|2
. (23)

Without calibration, receiver designs typically achieve an IRR

of about 20 dB to 40 dB [4]–[6].

B. Digital Hardware Architecture

For our target application, namely mobile communication

systems, the received data have to be processed in real-

time. Depending on the desired data rates and the used

semiconductor process technology, this might lead to stringent

requirements on the digital hardware design. Because of sev-

eral advantages, we chose to implement a fully pipelined archi-

tecture. Inserting register stages between all major arithmetic

operations allows to run the design at high clock frequencies

or to reduce the area requirements by relaxing the constraints

on the adder and multiplier units.

Fig. 3 shows a detailed block diagram of the fully pipelined

architecture implementing (19). In a first step, the cancellation

x ′ = y − α y∗ is performed. It requires 1 adder for the com-

plex conjugation of y, 4 real multipliers and 2 real adders

for the complex multiplication α y∗, and 2 real adders for

the subtraction. Full pipelining is achieved with 12 register

stages, where the bit width of all registers is equal to the

input sample width. In the second step, the gain correction is

applied to the canceler output signal x ′. The implementation

differs from the ideal scaling (18) in one point: the division

is very unfavorable for hardware implementation and thus is

replaced by an approximation. In practice, we can assume that

Fig. 3. Fully pipelined hardware architecture for image cancellation.

Fig. 4. Deviation between exact scaling factor kcanc and Taylor series
approximation k̃canc.

the magnitude of the imbalance factor α is typically below 0.1.

Consequently, the factor kcanc or its estimated value k̂canc can

be replaced by a first order Taylor series approximation at the

point |α| = 0.

kcanc = 1

1 − |α|2
≈ 1 + |α|2 = k̃canc (24)

Fig. 4 visualizes the normalized approximation error

�kdB = 10 · log10

∣∣̃kcanc − kcanc

∣∣2

k2
canc

(25)

in the relevant range of |α|. The maximum deviation is

around -55 dB and thus justifies the simplification. As shown

in Fig. 3, the implementation of the gain correction part

requires 4 real multipliers and 2 real adders. 6 registers are

used for pipelining.

The architecture has been synthesized on an Intel Cyclone V

FPGA. Tab. I summarizes the resource usage and the maxi-

mum clock frequency of the design for the selected device.

Inputs, outputs and all internal paths used a 13 bit signed data

format. Due to the fully pipelined design, very high clock
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TABLE I

RESOURCE USAGE OF IMBALANCE CANCELER ON CYCLONE V
5CSXFC6D6F31C6 FPGA (RELATIVE USAGE IN PARENTHESIS)

frequencies of over 200 MHz are achieved. The number of

multipliers allocated by the synthesis is consistent with Fig. 3.

IV. ULTRA-LOW COMPLEXITY IMBALANCE ESTIMATION

As shown in the previous section, the reconstruction of the

wanted receive signal is possible if an accurate estimate of

the imbalance factor α is available. Typically, applications

require a fast adaption speed, high estimation accuracy and

low complexity from a hardware implementation perspective.

The first estimator presented in this paper focuses on the

last requirement and features extremely low complexity. The

output of the estimator can directly be supplied to the image

cancellation scheme shown in Section III to improve the IRR.

In the subsequent sections, we derive the statistical properties

of the algorithm, validate the results with simulations and

provide synthesis results for an FPGA implementation. Results

with measurement data are given in Section VIII.

A. Algorithm and Basic Properties

We consider the noise-free imbalance model (12). To begin

with, we examine the (practically irrelevant) special case of

|α| = 1, where the exact solution can be obtained from a single

sample at an arbitrarily chosen time index n:

y[n]
y[n]∗ =

e j
φα
2

(
e− j

φα
2 x[n]+e j

φα
2 x[n]∗

)

e− j
φα
2

(
e j

φα
2 x[n]∗+e− j

φα
2 x[n]

)=e jφα = α. (26)

Here the model (12) was inserted and α was converted to polar

form. Astoundingly, for |α| ≤ 1, α equals the mean of the left

hand side of (26):

α = E

[
y[n]
y[n]∗

]
= E

[
e j 2 arg(y[n])

]
, (27)

when x[n] fulfills some conditions that we will discuss shortly.

Here, E[.] is the expectation operator, arg(.) denotes the

argument of a complex number and y[n] is the random signal

as defined in (12). As it will be derived in Section IV-B,

the equality (27) holds under the condition that the phase of

the wanted signal x[n] is uniformly distributed in the interval

[−π, π). To give practical examples, Fig. 5 visualizes the

phase distribution of a fully allocated LTE-20 uplink signal

with underlying BPSK,1 QPSK2 and 16-QAM3 constellation

mapping as well as a fully allocated LTE-20 BPSK downlink

1Binary Phase Shift Keying
2Quadrature Phase Shift Keying
3Quadrature Amplitude Modulation

Fig. 5. Comparison of phase distributions of fully allocated LTE-20 uplink
and downlink signals with selected modulation types.

signal. Due to the SC-FDMA modulation scheme used for

the uplink, the constellation mapping has direct influence on

the phase distribution. Below 16-QAM, the actual distribution

differs significantly from the uniformity assumption. Due to

the OFDM4 modulation scheme, for downlink signals, the dis-

tribution is uniform for BPSK, too.

(27) requires to calculate an ensemble mean of e j 2 arg(y[n]).
Under the assumption that e j 2 arg(y[n]) is ergodic in the

mean [30], the natural approximation of the expectation oper-

ator is the sample mean. We therefore suggest the following

estimator for α:

α̂[n] = 1

n

n∑

k=1

y[k]
y[k]∗ = 1

n

n∑

k=1

e j 2 arg(y[k]). (28)

Note that the estimation is independent of the signal power,

since the magnitude of y[n] cancels in each individual sum-

mand. This also means that each summand represents a point

on the unit circle in the complex plane. The mean of these

points is solely defined by the phase distribution of the terms
y[n]
y[n]∗ . Each distinct value of α inside the unit circle leads to

a unique phase distribution of y[n].
If real-time processing of the incoming data samples is

required, the block-based sample mean (28) can be replaced

by the iterative version.

α̂[0] = 0

α̂[n] =
(

1 − 1

n

)
α̂[n − 1] + 1

n
e j 2 arg(y[n]), n = 1, 2, . . .

(29)

This equation already indicates the main advantage of the

estimator: its extremely low hardware complexity. The expo-

nential term can be calculated by 2 CORDIC5 stages [31] and

a static bit shift, and therefore requires no multiplications. The

constant 1
n

in (29) can also be well approximated by bit shifts.

4Orthogonal Frequency-Division Multiplexing
5Coordinate Rotation Digital Computer
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B. Mathematical Analysis

To analyze the statistical properties of the estimator, we start

by proofing the equality (27). This equality holds, as asserted

above, when the phase of x[n] is uniformly distributed within

[−π, π). By inserting the noise-free model (12) into (27),

converting x to polar form and simplifying one yields

E

[
y

y∗

]
= E

[
x + α x∗

x∗ + α∗x

]
= E

[
e jφx + α e− jφx

e− jφx + α∗ e jφx

]
. (30)

Here we assumed that the mean does not depend on the time

index. With

f (φx) = e jφx + α e− jφx

e− jφx + α∗ e jφx
(31)

the expected value in (30) can be written as integral

E[ f (φx )] =
∫ π

−π

f (φx) p�(φx) dφx . (32)

Here, p�(φx ) is the probability density function (PDF) of φx ,

which is now assumed to be uniform in [−π, π):

p�(φx ) =

⎧
⎨
⎩

1

2π
, for φx ∈ [−π, π)

0, else
. (33)

In order to analytically evaluate the integral, the substitution

z = e− jφx is introduced. Transforming the integration path

leads to a contour integral on the unit circle

E[ f (φx )] =− 1

2π

∮

Ŵ

f (z)
dz

j z
=− 1

2π j

∮

Ŵ

1+α z2

z3+α∗z
dz. (34)

Because the integration path Ŵ is a closed curve in the complex

plane, Cauchy’s residue theorem

1

2π j

∮

Ŵ

f (z) dz =
n∑

k=1

IndŴ(ak) Resak ( f ). (35)

can be applied to solve the definite integral [32]. ak are

isolated singularities inside Ŵ. IndŴ(ak) is the winding number

relative to ak and is −1 in our case as the curve is traversed

once in clockwise – or mathematically negative – direction.

Resak ( f ) are the residues of f at the points ak . Assuming

ak are simple poles of f , the residues can be calculated as

follows:

Resak ( f ) = lim
z→ak

(z − ak) f (z). (36)

For the practically relevant case |α| < 1, the integrand in

(34) has three poles inside the unit circle, which are a1 = 0,

a2 = j
√

α∗ and a3 = − j
√

α∗. The corresponding residues

are:

Resa1( f ) = lim
z→0

z + α z3

z3 + α∗z
= 1

α∗ (37)

Resa2( f ) = lim
z→ j

√
α∗

1 + α z2

z2 + j
√

α∗z
= |α|2 − 1

2α∗ (38)

Resa3( f ) = lim
z→− j

√
α∗

1 + α z2

z2 − j
√

α∗z
= |α|2 − 1

2α∗ . (39)

Combining all intermediate results gives

E

[
y

y∗

]
= E[ f (φx)] =

n∑

k=1

Resak ( f ) = α. (40)

For |α| = 1, as already stated in (26), we have α = y[n]
y[n]∗ ,

such that

E

[
y[n]
y[n]∗

]
= α (41)

is valid for |α| ≤ 1, independent of the argument of α.

As stated above, the practical implementation of the esti-

mator is the sample mean (28). Due to the linearity of

the expectation operator and by applying the equality (41),

the unbiasedness of the proposed estimator under the assump-

tion made on x[n] can easily be shown:

E[̂α] = E

[
1

n

n∑

k=1

y[k]
y[k]∗

]
= 1

n

n∑

k=1

E

[
y[k]
y[k]∗

]
= α (42)

It turns out that a closed form solution for the variance of

the estimator cannot easily be found in general. It is, however,

possible to find an expression for the variance under the

additional assumption that the sequence
y[n]
y[n]∗ is uncorrelated.

This assumption is fulfilled if the sequence φx [n] is indepen-

dently distributed. Note, that the independence assumption is

violated by many communication signals as it will be shown

in simulations.

With these assumptions, the sample mean can be interpreted

as mean over n individual, uncorrelated estimates
y[k]
y[k]∗ . This

allows to split the variance expression as follows:

Var[̂α] = 1

n2

n∑

k=1

Var

[
y[k]
y[k]∗

]

= 1

n2

n∑

k=1

(
E

[∣∣∣∣
y[k]
y[k]∗

∣∣∣∣
2
]

−
∣∣∣∣E
[

y[k]
y[k]∗

]∣∣∣∣
2
)

= 1

n2

n∑

k=1

(1 − |α|2)

= 1

n
(1 − |α|2), (43)

where the equality (41) was used. In the special case of

|α| = 1, (43) yields 0. This result is consistent with (26), since

for |α| = 1 the exact solution can be obtained from a single

sample. Interestingly, the variance is independent of the phase

of α.

C. Simulation Results

In the derivation of the unbiasedness (42) we assumed that

the phase φx [n] is uniformly distributed, a property which is

approximately true for a number of communication signals.

However, for the derivation of the variance in (43) we addi-

tionally assumed that φx [n] is independently distributed, which

is typically not fulfilled for practical communication signals.

To verify the theoretical results, we consider simulations with

white Gaussian noise at first. We then proceed with signals that

violate one or both of the assumptions. 105 data samples were
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Fig. 6. Ultra-low complexity estimator: theoretical bias (a) and variance
(b) under assumption of uniform and independent distribution of φx compared
to simulations with white Gaussian noise and fully allocated LTE-20 up- and
downlink signals (100 resource blocks).

used for all simulations, and the estimator was implemented

using double-precision arithmetic.

Fig. 6a shows the simulated bias for white Gaussian noise

and fully allocated LTE-20 uplink and downlink signals with

QPSK and 16-QAM constellation mapping. Fig. 6b visualizes

the corresponding variance and compares it to (43). Both

figures show ensemble averages. For white Gaussian noise,

the simulation results perfectly match with theory. The bias

is zero (except for fluctuations within simulation accuracy)

and the variance equals the theoretical result. In contrast to

that, the estimator is biased for both LTE uplink signals.

The bias is caused by the constellation mapping of the LTE

signals, which violates the uniformity assumption on the phase

of x[n]. As depicted in Fig. 5, the 16-QAM modulation

causes less deviation from a uniform distribution than QPSK

and consequently shows less bias, too. For the downlink

signal, the phase distribution is uniform and the estimator is

Fig. 7. Ultra-low complexity estimator: Simulated image rejection ratio
for white Gaussian noise and LTE-20 downlink signals with three different
allocation patterns.

unbiased, independent of the constellation. Compared to (43),

the variance of the estimator is larger by a factor of about

1.5 for both, up- and downlink signals. The reason is that the

sequence φx [n] is correlated for LTE signals, which violates

the independence assumption made during the derivation of

the variance expression.

For the application in a receiver, the most relevant perfor-

mance metric is the image rejection ratio (23). Fig. 7 depicts

the IRRcanc
dB for selected signal types. Here in addition to

the estimation of α, the exact cancellation (20) was applied.

The IRRdB without cancellation (21) acts as a baseline. Even

though the initial IRRdB in a receiver is usually above 20 dB

(corresponding to |α| < 0.1), for simulations α is varied

over the full range from 0 to 1 because the results are of

interest from a theoretical point of view. For a white Gaussian

input signal, the IRRcanc
dB is almost constant over a wide

range of α. A value of 51 dB is achieved for |α| < 0.6.

In contrast to that, for an LTE downlink signal with QPSK

constellation mapping, the IRRcanc
dB heavily depends on the

allocation pattern. Fig. 8 symbolically illustrates the power

spectral density of the three allocations, which were used in

the simulation. For a single outer left resource block (RB),

the IRRcanc
dB is excellent with about 79 dB in the relevant range

|α| < 0.1. A fully allocated LTE signal with 100 RBs leads to

an IRRcanc
dB of about 50 dB for |α| < 0.1. In case of a centered

narrow allocation the IRRcanc
dB drops to about 32 dB in the

relevant range. This allocation type corresponds to a highly

oversampled signal with little information gain per sample. In

this case, the performance could be enhanced by increasing

the sequence length used for estimation. Despite the different

modulation type, the performance of the estimator does not

differ significantly for LTE uplink signals.

D. Digital Hardware Architecture

As already stated in Section III-B, in this paper, we focus

on real-time processing of data streams. Therefore we

implemented the iterative sample mean (29) instead of the
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Fig. 8. LTE-20 allocation patterns used for simulation.

Fig. 9. Top level block diagram of low-complexity estimator.

block-based variant. We present a fully pipelined architecture

to relax the timing constraints on the arithmetic operations.

Fig. 9 illustrates the basic block diagram of the estimator

without cancellation. The first term required by the algorithm

is e j2 arg(y[n]), which equals a normalization of the sample y[n]
followed by a doubling of its phase. The CORDIC algorithm

provides a multiplier-less approximation for this kind of vector

operations. The CORDIC basically splits the rotation of a

vector into hardware efficient partial rotations. A CORDIC

slice performs one such partial rotation and requires 3 adders

and 2 static shifters. In a first step, we use a parallel CORDIC

implementation [31] with 7 slices to rotate the complex input

sample towards the real axis. In this so-called vectoring mode,

the CORDIC outputs the magnitude and phase of the input

sample. We then omit the magnitude and double the phase

with a static bit shift. In the next step, we rotate the real

value 1 by the doubled phase value using a CORDIC with

7 slices in rotation mode. The result of the second stage is the

approximated real and imaginary component of e j2 arg(y[n]).
Both CORDICs operate on 13 bit signed data and use pipelin-

ing registers between all individual slices. The outputs of

the second CORDIC stage are passed to two averager stages,

Fig. 10. Fully pipelined hardware architecture of averager.

Fig. 11. General lookup table based approximation of nonlinear functions.

which compute the iterative sample mean as shown in Fig. 10.

The mean is implemented as follows:

ū[n]=((u[n]−ū[n−1])·smnt[n]) ≫ sexp[n]+ū[n−1], (44)

where ≫ denotes a variable arithmetic right shift. Instead of

using two multipliers with high bit width as suggested by (29),

the proposed structure uses a single multiplier with lower

bitwidth and a variable shifter. This custom floating-point

representation increases the dynamic range of the scaling

factor. Nonetheless, the computation of the scaling factor 1
n

requires a computationally intensive division in each time

step. A rough, but hardware efficient approximation of the

division is to replace 1
n

entirely by bit shifts, i. e. smnt[n] = 1

and sexp[n] = ⌊log2(n)⌋, where ⌊.⌋ is the floor function. The

sequence of shift values could be efficiently computed on the

fly or stored in a relatively small table. If the accuracy of

this approximation is not sufficient, another possibility is to

evaluate the division by using a small lookup table (LUT).

Fig. 11 shows a general architecture capable of computing any

nonlinear function through lookup tables. To keep the lookup

table small, the input value is first converted into a custom

floating point format. Afterwards, the mantissa, the exponent

and the sign are processed separately by means of a lookup

table or other logic. At the output, sign and mantissa are com-

bined again. Depending on the represented function, the logic

manipulating the exponent might be very simple. In case of the

division, just a sign change is required. Intuitively, the LUT

based iterative sample mean is considerably more accurate for

short input sequences (below 1000 samples) or certain signal

types. For random signals or when averaging over longer

sequences, the difference in the approximation error reduces.

The algorithm depicted in Fig. 9 has been synthesized

on a Cyclone V FPGA. Both, the shift based and the LUT

based approximation of the division have been implemented.

Tab. II shows the resource requirements and the maximum

achievable clock frequencies. At maximum, this estimator
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TABLE II

RESOURCE USAGE OF LOW-COMPLEXITY IMBALANCE ESTIMATOR

ON CYCLONE V 5CSXFC6D6F31C6 FPGA (RELATIVE

RESOURCE USAGE IN PARENTHESIS)

requires 2 multipliers and a very low number of logic elements.

Therefore, its area and power requirements are minimal.

V. IMBALANCE ESTIMATION BASED ON

METHOD OF MOMENTS

For comparison, in this paper we examine a second esti-

mator, which was first published in [12], and give valuable

insights beyond existing literature. The estimator is based on

a standard method of statistics: the method of moments [27].

Like the algorithm presented in Section IV, this algorithm

can directly be combined with the imbalance compensation

scheme in Section III to improve the IRR. However, it can also

be used as a standalone estimator. In the following, we repeat

the derivation for later reference, provide a comprehensive

performance evaluation for different signal types and develop

an appropriate hardware architecture.

A. Algorithm and Basic Properties

We base the derivation again on the noise-free model (12).

As the estimator operates on a complex-valued input sequence

y[n], the theory for complex random variables and signals is

applied in the derivation. Particularly, it requires the so-called

properness of complex-random variables. For a zero mean

random variable z, properness is given when [28]:

E[z2] = 0. (45)

or equivalently

E[z2
I ] = E[z2

Q] (46)

E[zI zQ] = 0 (47)

We now assume that the samples of the wanted signal x[n]
are zero mean and proper. Note that this property holds

for communications signals with square-type constellation,

like QPSK, 16-QAM, etc. Additionally we assume that the

variances of the real and imaginary part of x[n], σ 2
I and σ 2

Q,

are independent of the time index. Then σ 2
I and σ 2

Q are equal

and from now on denoted with σ 2
xI,Q

. Note that due to the zero

mean assumption on x[n], the imbalance signal y[n] is also

zero mean.

The method of moments starts by expressing the relevant

moments of the true distribution of a random variable by

analytic functions in k unknown parameters. In our case the

unknowns are the power σ 2
xI,Q

of the real or imaginary part of

x[n] and the imbalance factor α. The required moments are

the variance and the pseudo-variance of the complex random

signal y[n]. While the former is equal to the power of y[n],
the latter is a measure for the properness of the signal. As y[n]
is assumed to be zero mean, the moments are:

m1 = E[|y[n]|2] = 2 (1 + |α|2) σ 2
xI,Q

(48)

m2 = E[y[n]2] = 4 α σ 2
xI,Q

. (49)

This system of independent equations can be solved for σ 2
xI,Q

and α. The solutions are:

σ 2
xI,Q

= 1

4

(
m1 +

√
m2

1 − |m2|2
)

(50)

α = m2

4 σ 2
xI,Q

. (51)

Assuming that |y[n]|2 and y[n]2 are ergodic in the mean,

again the natural approximation of the ensemble means are the

sample means. Therefore, the following estimates are used for

m1 and m2:

m̂1[n] = 1

n

n∑

k=1

|y[k]|2 (52)

m̂2[n] = 1

n

n∑

k=1

y[k]2, (53)

which in turn can be replaced by the iterative forms

m̂1[0] = 0, m̂2[0] = 0

m̂1[n] =
(

1 − 1

n

)
m̂1[n − 1] + 1

n
|y[n]|2 (54)

m̂2[n] =
(

1 − 1

n

)
m̂2[n − 1] + 1

n
y[n]2 (55)

if block-based processing is not applicable. The estimator α̂

for α is consequently given by inserting (54) and (55) into

(50) and (51).

Due to the complexity of the occurring terms, the bias and

variance of the estimator cannot easily be derived analytically.

However, simulations (see Section V-C) indicate that the

estimator is unbiased for proper signals x[n] with zero mean.

B. Complex Exponential Input Sequence

In all previous considerations, we limited the assumptions

on the wanted signal x[n] to a minimum as the aim was to

develop a blind estimation algorithm applicable for typical

communication signals. But as an extension to the existing lit-

erature, we now apply the idea of the moment-based estimator

to complex exponential sequences. This special deterministic

signal has high similarity to a single-carrier of multi-carrier

modulation schemes. In fact, N samples of the normalized

input sequence

xexp[n] = e j 2π n
N , N ≥ 3, n = 1, 2, . . . (56)

are sufficient to obtain the exact value of α. This inter-

esting result can be derived by starting with the distorted

sequence y[n]

y[n] = e j 2π n
N + α e− j 2π n

N . (57)
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Inserting y[k] into the sample mean (53), which in this case

represents a deterministic value rather than a random variable,

leads to

m̂2[N] = 1

N

N∑

k=1

(
e j 2π k

N + α e− j 2π k
N

)2

= 2α + 1

N

N−1∑

k=0

e j 4π
N

(
e j 4π

N

)k

+
N−1∑

k=0

e− j 4π
N

(
e− j 4π

N

)k

.

(58)

Both sums represent finite geometric series. Inserting into the

closed form formula for the finite geometric series immedi-

ately shows that both sums are zero for N ≥ 3. From (58) we

obtain

α̂ = m̂2

2
(59)

In this derivation no noise was considered. Even in the

presence of additive noise, this signal type leads to an excellent

estimation accuracy. In this case the number of input samples

should be a multiple of N .

C. Simulation Results

Since no simple analytical predictions can be made on

the statistical properties of the moment-based estimator, only

numerical simulations can show its capabilities. All perfor-

mance metrics were obtained for sequences with 105 samples

and double-precision arithmetic. White Gaussian noise and

LTE-20 signals with square-type constellation and various

allocation patterns have been chosen as input signals. Both

signal types are zero mean and proper and therefore fulfill

the assumptions made during the derivation of the estimator.

Even in case of a BPSK constellation, an LTE downlink signal

is still proper due to the underlying multi-carrier modulation.

In the uplink, however, a BPSK signal violates the properness

assumption.

Fig. 12 visualizes the simulated bias and variance for

white Gaussian noise, a fully allocated LTE-20 uplink signal

and a fully allocated LTE-20 downlink signal. Both LTE

signals use a QPSK constellation. Within the accuracy of the

simulation, the estimation is unbiased for all three signal types.

Interestingly, for white Gaussian noise and the uplink signal,

also the variance is the same. The variance of the downlink

signal is larger by a factor of 2 in the practically relevant range

of |α| < 0.2. Bias and variance are again independent of the

phase of α. For |α| = 1, the variance is 0, indicating an exact

solution.

In Fig. 13 the simulated image rejection ratio (23) over

the magnitude of α is plotted for white Gaussian noise and

LTE downlink signals with QPSK constellation mapping.

Interestingly, and different to the estimator in Section IV, for

all signals, the IRRcanc
dB is independent of α as long as |α| < 1.

Similarly to the estimator in Section IV, the achievable per-

formance heavily depends on the allocation pattern of the

used LTE signals. The power spectral density of the patterns

used in the simulation is shown in Fig. 8. The allocation of a

single outer resource block gives an excellent rejection of over

Fig. 12. Moment-based estimator: simulated bias (a) and variance (b) with
white Gaussian noise and fully allocated LTE-20 up- and downlink signals
(100 resource blocks).

Fig. 13. Moment-based estimator: simulated image rejection ratio for white
Gaussian noise and LTE-20 downlink signals with three different allocation
patterns.

90 dB. For white Gaussian noise an IRRcanc
dB of about 55 dB

is obtained. A fully allocated LTE-20 downlink signal leads

to an IRRcanc
dB of about 52 dB. A centered narrow allocation
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Fig. 14. Block diagram of moment-based estimator.

TABLE III

RESOURCE USAGE OF MOMENT-BASED IMBALANCE ESTIMATOR

ON CYCLONE V 5CSXFC6D6F31C6 FPGA (RELATIVE

USAGE IN PARENTHESIS)

gives the lowest IRRcanc
dB of about 35 dB, which is around 3 dB

better compared to the estimator in Section IV.

D. Digital Hardware Architecture

For the second estimator we again decided to develop a

fully pipelined architecture, capable of real-time processing

incoming data samples. As outlined in Fig. 14, the two

moments of the input signal are estimated with a direct

implementation of the iterative equations (54) and (55). In a

first step, y2 = y2
I − y2

Q + 2 j yIyQ and |y|2 = y2
I + y2

Q are

computed, where only three distinct products occur. The terms

y2 and |y|2 are then averaged by the iterative sample mean

approximation depicted in Fig. 10. A detailed description of

this unit is given in Section IV-D. Using the moments m̂1

and m̂2, the variance of the components of x[n] is computed by

inserting into (50). The required square root is approximated

by a variant of the architecture shown in Fig. 11. Here,

the lookup table contains the values of the square root for

a normalized number range, and the exponent is divided by 2.

The final estimate of the imbalance factor is obtained by

computing (51). The occurring division is again approximated

by the LUT based architecture visualized in Fig. 11. In total,

the estimator requires 8 real multipliers and 5 adders working

at the input bit width. Depending on the implementation

of the averagers, these blocks might contribute 3 additional

multipliers with lower bit width.

Tab. III summarizes the synthesis result of the moment-

based estimator on a Cyclone V FPGA. Compared to the

estimator in Section IV, the moment-based estimator requires

less logic elements, but 8 or 9 additional multipliers, depend-

ing on the configuration. Therefore, if implemented on an

application-specific integrated circuit (ASIC) the second esti-

mator would have higher area and power requirements.

Fig. 15. Effect of fixed-point arithmetic on the estimation performance of
the ultra-low complex and the moment-based estimator.

Fig. 16. Convergence behavior of selected I/Q imbalance estimation algo-
rithms on a fully allocated LTE-20 downlink signal. Initial IRRdB is 15 dB.

VI. ESTIMATION PERFORMANCE OF FIXED-POINT

IMPLEMENTATIONS

In all previous simulations only double-precision imple-

mentations of the algorithms have been considered. However,

the achievable image rejection in a practical application might

be significantly lower than the shown performance numbers.
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Fig. 17. Image rejection performance of ultra-low complexity and moment-based estimator on measurement data.

One reason for the degraded estimation performance is addi-

tive noise, consisting of a sampled analog noise component

and quantization noise of the ADC. In (11) this term is

denoted with w[n]. In addition, a practical implementation in

a receiver usually uses fixed-point arithmetic, which causes

additional noise by truncation of intermediate results or the

approximation of demanding operations such as division and

square root. This component depends directly on the chosen bit

widths. Consequently, we use bit-true models of the hardware

architectures presented above and compare the performance

to the double-precision implementations. This allows us to

assess the performance loss in terms of image rejection due

to fixed-point arithmetic. Fig. 15 visualizes the IRRcanc
dB for

varying bit width of the main data path, while keeping the

size and bit width of all LUTs constant. 105 samples of a fully

allocated LTE-20 sequence with QPSK constellation mapping

were used in the simulations. The signal-to-noise ratio of

the receive signal y[n] was set to 55 dB. The initial image

rejection was 15d B . Especially the moment-based estimator

shows a substantial drop in image rejection for bit widths

lower than 14 bit. We assume that the observed behavior is

mainly caused by the cascading of multiplications and the

approximated division, which both amplify the quantization

noise. In contrast, the low-complexity estimator discussed

in Section IV is able to almost match the double-precision

implementation for bit widths down to 12 bit. Combined with

its overall lower hardware requirements, this robustness makes

the estimator very suitable for usage in low-cost receive chains.

The additive noise component of y[n] had no influence on the

performance of both estimators.

VII. COMPARISON TO OTHER STATE-OF-THE-ART

I/Q IMBALANCE ESTIMATORS

Unlike the proposed ultra-low complex estimator and the

moment-based approach, many state-of-the-art blind imbal-

ance compensation algorithms iteratively update their estimate

based on the feedback of the canceler output signal. A very

recent example for this group of estimators is [17], where

a quadratic cost function is minimized using a normalized

complex least-mean squares (NCLMS) algorithm. Another

example is [11], which solves a blind signal separation prob-

lem by iteratively computing a suitable whitening transfor-

mation. The conceptual differences between these classes of

estimators directly affect the convergence behavior and the

achievable image rejection ratio, as the simulation results

in Fig. 16 illustrate. In these simulations, a fully allocated

LTE-20 downlink signal was selected as wanted receive signal

and the initial IRRdB was set to 15 dB. Double-precision

arithmetic was used for all four algorithms. Both, the NCLMS

and the whitening transformation, offer a step size parameter

which was tuned for maximum IRRcanc
dB within the input

sequence length of 105 samples. While the ultra-low complex

and moment-based approach perform similarly, the other two

algorithms show a significantly slower convergence and a

worse final IRRcanc
dB of 50 dB.

VIII. EXPERIMENTAL RESULTS

We conclude our investigations on the ultra-low complex

and moment-based estimator by applying both fixed-point

implementations to measurement data. For this purpose we

captured digital baseband data from an integrated low-cost

LTE/4G receiver. These data streams were then processed on

an FPGA development board. The results, i. e. the corrected

signal and the estimated imbalance factor, were sent back to

the PC and visualized. As a reference, a floating-point variant

of both algorithms applied to the captured data. The chosen

receive signal was an LTE-20 downlink signal with a carrier

frequency of 1.84 GHz and an initial IRR of about 15 dB. The

used constellation mapping was QPSK. Fig. 17 visualizes the

power spectral densities of the signal without imbalance can-

cellation and after applying both estimators. 105 samples were

used for all estimations. In Fig. 17a, the floating-point and

the fixed-point variant of the ultra-low complexity approach is

applied. Fig. 17b shows the results for the floating-point and
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the fixed-point variant of the moment-based approach. As a

reference, both figures also contain the measured noise floor.

In the first estimator, most arithmetic operations were imple-

mented using a data format of 13 bit signed. The second

estimator required a bit width of 15 bit. Compared to the

input, the internal bit width of the averager was increased

by 8 bit to 10 bit, depending on the estimator. The scaling

sequence used inside the averagers was approximated with

bit shifts only, which interestingly performs almost equal to

the lookup table based variant. As Fig. 17 shows, there is

only a marginal difference between the fixed-point and the

floating-point implementations. Both approaches attain a final

IRRcanc
dB of about 45 dB, which is the limit for the measurement

data due to the receiver noise floor. The achieved image

rejection ratio is in accordance with simulations that predict

an IRRcanc
dB of around 47 dB.

IX. CONCLUSION

In this paper, we presented a novel blind ultra-low

complexity algorithm for I/Q imbalance compensation in

direct-conversion transceivers. This algorithm estimates the

imbalance factor and can be combined with a general I/Q

imbalance cancellation scheme described in this work. In con-

trast to many existing algorithms, the estimator does not

require a feedback from the cancellation structure, and can

be implemented stand-alone. An existing estimator, which

also fits the shown cancellation structure, is based on the

method of moments. In our work, we extended the analysis of

this algorithm and compared it with the ultra-low complexity

approach. We demonstrated the capabilities of both estimators

with LTE up- and downlink signals for varying bandwidth

allocation and modulation schemes. While in theory, the sec-

ond algorithm yields a slightly better estimation performance,

in a fixed-point implementation this advantage is lost due to

its higher sensitivity to rounding errors. Its lower hardware

requirements and higher robustness in fixed-point arithmetic

render the ultra-low complex estimator more suitable for

implementation. A comparison to feedback-based state-of-the-

art algorithms revealed that the ultra-low complexity as well as

the moment-based approach are superior in terms of adaptation

rate and obtainable image rejection. We concluded our work

with experimental results, where we used the presented hard-

ware architectures of both algorithms to process the received

signal from a low-cost LTE/4G transceiver on an FPGA. Both

estimators succeeded in suppressing the image in the received

signal down to the noise floor.
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