
COMPUTED TOMOGRAPHY

Ultra-low-dose chest CT imaging of COVID-19 patients using a deep
residual neural network

Isaac Shiri1 & Azadeh Akhavanallaf1 & Amirhossein Sanaat1 & Yazdan Salimi1 & Dariush Askari2 & Zahra Mansouri3 &

Sajad P. Shayesteh4
& Mohammad Hasanian5

& Kiara Rezaei-Kalantari6 & Ali Salahshour7 & Saleh Sandoughdaran8
&

Hamid Abdollahi9 & Hossein Arabi1 & Habib Zaidi1,10,11,12

Received: 9 June 2020 /Revised: 13 August 2020 /Accepted: 21 August 2020
# The Author(s) 2020

Abstract

Objectives The current study aimed to design an ultra-low-dose CT examination protocol using a deep learning approach suitable

for clinical diagnosis of COVID-19 patients.

Methods In this study, 800, 170, and 171 pairs of ultra-low-dose and full-dose CT images were used as input/output as training,

test, and external validation set, respectively, to implement the full-dose prediction technique. A residual convolutional neural

network was applied to generate full-dose from ultra-low-dose CT images. The quality of predicted CT images was assessed

using root mean square error (RMSE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Scores ranging

from 1 to 5 were assigned reflecting subjective assessment of image quality and related COVID-19 features, including ground

glass opacities (GGO), crazy paving (CP), consolidation (CS), nodular infiltrates (NI), bronchovascular thickening (BVT), and

pleural effusion (PE).

Results The radiation dose in terms of CT dose index (CTDIvol) was reduced by up to 89%. The RMSE decreased from 0.16 ±

0.05 to 0.09 ± 0.02 and from 0.16 ± 0.06 to 0.08 ± 0.02 for the predicted compared with ultra-low-dose CT images in the test and

external validation set, respectively. The overall scoring assigned by radiologists showed an acceptance rate of 4.72 ± 0.57 out of

5 for reference full-dose CT images, while ultra-low-dose CT images rated 2.78 ± 0.9. The predicted CT images using the deep

learning algorithm achieved a score of 4.42 ± 0.8.

Conclusions The results demonstrated that the deep learning algorithm is capable of predicting standard full-dose CT images with

acceptable quality for the clinical diagnosis of COVID-19 positive patients with substantial radiation dose reduction.
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Key Points

• Ultra-low-dose CT imaging of COVID-19 patients would result in the loss of critical information about lesion types, which
could potentially affect clinical diagnosis.

• Deep learning–based prediction of full-dose from ultra-low-dose CT images for the diagnosis of COVID-19 could reduce the
radiation dose by up to 89%.

•Deep learning algorithms failed to recover the correct lesion structure/density for a number of patients considered outliers, and
as such, further research and development is warranted to address these limitations.
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Abbreviations

ADMIRE Advanced modeled iterative reconstruction

AEC Automatic exposure control

BVT Bronchovascular thickening

CNN Convolutional neural network

CNR Contrast-to-noise ratio

COVID-19 Coronavirus disease 2019

CP Crazy paving

CS Consolidation

CT Computed tomography

CTDI CT dose index

DLP Dose-length product

ED Effective dose

FBP Filtered backprojection

GAN Generative adversarial network

GGO Ground glass opacities

NI Nodular infiltrates

PE Pleural effusion

RT-PCR Real-time reverse transcription-polymerase

chain reaction

SARS Severe acute respiratory syndrome

SARS-CoV-2 Severe acute respiratory syndrome

coronavirus 2

SNR Signal-to-noise ratio

WHO World Health Organization

Introduction

The emergence of a novel coronavirus in December 2019 in

Wuhan, China, known as severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) was recognized as a global pub-

lic health concern by the World Health Organization (WHO)

[1]. SARS-CoV-2 disease 2019 or COVID-19 is an infectious

disease that affects the upper and lower respiratory tract and

induces mild to severe respiratory syndromes, including pneu-

monia [2]. Real-time reverse transcription-polymerase chain

reaction (RT-PCR) is considered the standard method for

COVID-19 diagnosis but is prone to a number of limitations,

including the time of preparation and false-positive and false-

negative rates in different clinical samples [3]. Conversely,

early studies confirmed that computed tomography (CT) is a

feasible approach for COVID-19 diagnosis [4]. Until recently,

a wide range of clinical studies have been conducted on the

feasibility of CT findings in the early detection and manage-

ment of COVID-19 patients. However, there are still consid-

erable knowledge gaps in the recognition of CT features

linked to COVID-19 [4, 5].

As CT examinations account for the major cause of radia-

tion exposure to the general public from diagnostic medical

imaging procedures, the development of low-dose CT imag-

ing protocols is highly desirable. A recent study demonstrated

that DNA double-strand breaks and chromosome aberrations

increased in patients undergoing a standard-dose CT exami-

nation while no effect on humanDNAwas detected in patients

undergoing low-dose CT scans [6]. Although a plethora of

hardware and software technological advances in CT dose

reduction have been reported, including high-sensitivity de-

tectors, new automatic exposure control (AEC) systems, adap-

tive x-ray tube voltage, and new image reconstruction algo-

rithms, CT is still not a low-dose imaging modality [7].

Therefore, the level of radiation exposure from this modality

is still a matter of concern [8]. Task-specific low-dose imaging

protocols devised in both academic and corporate settings

were adopted in a clinical setting [9]. Zhou et al [10] suggested

a low-dose CT protocol enabling to significantly reduce the

dose-length product (DLP) and effective dose (ED) without

sacrificing signal-to-noise ratio (SNR) and contrast-to-noise

ratio (CNR). Nevertheless, converting from conventional

full-dose to low-dose CT imaging protocols is not a simple

task owing to the fear of increasing the false-positive rate due

to the elevated level of noise and missing anatomical

structures.

A number of professional societies, scientists, and clini-

cians proposed appropriate low-dose CT protocols for

COVID-19 [11–14]. However, these protocols are not widely

deployed in clinical centers for the same abovementioned rea-

sons. Clinicians and radiologists often tend to use established

protocols employing full-dose CT imaging and often lack time

or are reluctant to develop or adopt new protocols, especially

during emergency situations, such as during the COVID-19

outbreak.

In addition to conventional denoising approaches [15, 16],

a number of deep learning algorithms have been proposed for
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medical image analysis [17–19], PET [20], and SPECT [21]

denoising as well as CT image denoising and enhance-

ment of image quality [10, 22–25]. Yang et al [22]

applied a generative adversarial network (GAN) with

the Wasserstein distance and perceptual loss to denoise

low-dose CT images. In another study, Kim et al [23]

investigated the effect of different loss functions on

convolutional neural network (CNN)–based image

denoising performance using task-based image quality

assessment for various signals and dose levels. Shin

et al [24] compared the image quality of low-dose CT

images obtained using a deep learning–based denoising

algorithm with low-dose CT images reconstructed using

filtered backprojection (FBP) and advanced modeled it-

erative reconstruction (ADMIRE). They reported that

deep learning techniques achieved better noise proper-

ties compared with FBP and ADMIRE reconstructions

of low-dose CT images. In this work, we aimed to use

deep learning algorithms on ultra-low-dose COVID-19

CT images to generate high-quality images for a com-

parable diagnostic accuracy with full-dose CT images.

Materials and methods

Data acquisition

This retrospective study was approved by the ethics commit-

tees of the participating centers. Written consent was waived

with approval. We included 1141 volumetric chest CT exams

from 9 medical centers, among which 312 volumetric CT

images were from PCR-positive COVID-19 patients.
COVID-19 patients were collected from three centers and

various scanner models, including Emotion 16 (Siemens

Healthcare), NeuViz Dual (Neusoft Medical Systems), and

Optima CT580 (GE Healthcare). All CT images were ac-

quired in each center using the same protocol and were recon-

structed using a filtered backprojection (FBP) algorithm

(Table 1).

Ultra-low-dose CT simulation

Based on Beer-Lambert law (I = I0 exp(− ∫ μ(e, x)dx)), the in-
cident flux level of the ultra-low-dose scan (I0) can be calcu-

lated by adequately scaling the incident flux level of the cor-

responding full-dose scan. According to the physics of CT

transmission data (Eq. 1), we simulated ultra-low-dose CT

projection data from full-dose projections in the sinogram do-

main by adding a statistically independent Poisson noise dis-

tribution and a Gaussian noise distribution.

bI ¼ Poisson I0ð Þ þ Gaussian me;σ
2
e

� �
ð1Þ

where Î is the measured noisy signal recorded in the detector

channels, and I0 is the mean number of photons passing

through the patient determined based on a linear relationship

with tube current (mAs).me and σ
2
e are the mean and variance

of the electronic noise, respectively. The whole procedure is

as follows:

1. Converting Hounsfield units (HUs) to linear attenuation

coefficients according to tube voltage in the full-dose im-

age (μtissue ¼
HU� μwater−μairð Þ

1000
þ μwater ),

2. Generating projection data (psd) from the attenuation map

(μtissue) using the Radon transform on the full-dose image

with the following setups: parallel beam geometry and

1080 projection angles in one rotation,

3. Converting projection data to the transmission data, i.e.,

Tsd=exp( − psd),
4. Generating ultra-low-dose transmission data by multiply-

ing ultra-low-dose scan incident flux by full-dose trans-

mission data, i.e., Tuld ¼ Iuld0 � T sd,

5. Simulating the noise in ultra-low-dose scan by adding

Poisson noise and Gaussian noise to the transmission da-

ta, i.e., Iuld ¼ Poisson Tuldð Þ þ Gaussian me;σ
2
e

� �
,

6. Calculating ultra-low-dose projection data in the

sinogram domain, i.e., puld ¼ log
Iuld0
Iuld

� �
,

7. Reconstruction of the ultra-low-dose images using FBP

algorithm,

8. Converting the reconstructed attenuation map to HU

using the equation in step 1.

In the abovementioned steps for simulating ultra-low-dose

scan, three parameters should be determined, namely, the

ultra-low-dose scan incident flux (Iuld0 ), the mean (me), and

the variance (σ2
e ) of electronic noise. In modern CT scanners,

these parameters can be determined during routine calibration

procedures. However, this is not practical for multi-centric

clinical database. Hence, these parameters were set based on

the fitting noise level of the simulated ultra-low-dose CT

Table 1 Acquisition parameters of full-dose and low-dose chest CT

protocols

Parameters Full-dose CT Low-dose CT

CTDIvol (mGy) 6.5 (4.16–10.5) 0.72 (0.66–1.03)

Voltage (kVp) 100–120 90

Tube current (mA) 100–150 20–45

Pitch factor 1.3–1.8 0.75
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images with a real ultra-low-dose CT image-set serving as a

reference. The reference ultra-low-dose CT images were ac-

quired under a task-specific ultra-low-dose protocol for

the diagnosis of COVID-19 on the MX 16-slice CT

scanner (Philips Healthcare) with a reduced CT dose

index (CTDIvol) of about 0.72 mGy. The acquisition

parameters of the protocol were as follows: tube poten-

tial of 90 kVp, tube current range of 20–45 mA, 0.5-s

rotation time, and a pitch factor of 0.75 with the FBP

image reconstruction procedure. To quantify the noise

level of the simulated ultra-low-dose CT images, the

noise index was produced based on the method pro-

posed by Christianson et al [26]. The incident flux level

(Iuld0 ) was determined when the magnitudes of noise

levels in soft-tissue and lungs between simulated ultra-

low-dose images were within 10% interval compared

with that in the reference images. In electronic systems,

me is usually calibrated to be zero whereas the variance

of electronic noise was initialized based on the method

proposed by Zeng et al [27] for the Definition Edge CT

scanner (Siemens Healthcare). Subsequently, an observer

study was performed to evaluate the quality of simulat-

ed ultra-low-dose images against the full-dose images.

Three physicists took part in this study to visually score

the apparent Poisson noise and streak artifacts owing to

statistical errors originating from low photon scanning

and Gaussian noise. We categorized our dataset into

multiple groups according to the scanner model and

imaging protocol used. Consequently, three image sets

were randomly selected from each group for the evalu-

ation process. Two ROIs (5 × 5 cm2) were drawn in the

soft-tissue (upper part of the liver) and lung regions

without including adjacent anatomic structures. The av-

erage standard deviation (STD) across the ROIs was

calculated. The simulation parameters were updated to

obtain the same STD in two ROIs drawn on soft-tissue

and lungs, while the visual similarity between simulated

ul t ra- low-dose image and ful l -dose image was

preserved.

Deep learning algorithm

Network architecture

We applied a deep residual neural network (ResNet) for image

to image transformation in an attempt to predict full-dose from

ultra-low-dose CT images [28]. The residual model proposed

by Wenqi et al [28] for image classification was modified for

regression application in this study. Figure 1 presents the ar-

chitecture of ResNet employed in the current study. This net-

work combines 20 convolutional layers, including two seven

and one six convolutional layers for low-, medium-, and high-

level features extraction. For effective feature extraction, the

ResNet architecture adopts a dilated convolution with factors

of 2 and 4 for seven intermediate and six last layers. In this

combination, every two convolutional layers are linked to a

residual connection where a leaky rectified linear unit

(LReLU) acts as an activation function. The ResNet imple-

mented in TensorFlow (version 1.12.1) was utilized to trans-

form ultra-low-dose to full-dose chest CT images.

In this work, a 3 × 3 × 1 kernel was applied for all convo-

lutions. The ResNet network has residual connections that

bypass the parameterized layers through combining the input

and output of a block to render a smooth information propa-

gation, thus enhancing the training speed/quality. The ResNet

architecture benefits from 9 residual blocks that proved effi-

cient for improving the feature extraction process. This work

avoids a large number of trainable parameters. More detail of

ResNet architecture is presented in Fig. 1.

Implementation details

In this study, 800 (112 COVID-19), 170 (100 COVID-19),

and 171 (100 COVID-19) pairs of ultra-low-dose and full-

dose CT studies were used as input/output as training, test,

and external validation set, respectively, to implement the

full-dose prediction technique. The ResNet model with an

architecture of a 2D spatial window equal to 512 × 512voxels

was employed (CT images were cropped to eliminate the bed

Fig. 1 Architecture of the deep residual neural network (ResNet) along

with details of the associated layers. Red color layer, layer with dilation 1;

yellow color layer, layer with dilation 2; brown color layer, layer with

dilation 4. Conv, convolutional kernel; LReLu, leaky rectified linear unit;

SoftMax, Softmax function; Residual, residual connection
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and background air). To train the network, Adam optimizer

and L2norm loss function were adopted. The training of the

network for full-dose prediction took about 50 h using a

2080TI GPU, Intel(R) Xeon 2.30-GHz 7i CUP, and 64-GB

RAM. After ten epochs, the training loss reached its plateau.

Quantitative evaluation

Our qualitative and quantitative evaluation of the framework

was performed on 170 tests and 171 external validation set. To

this end, ultra-low-dose and predicted images were compared

with reference full-dose images. The quality of CT images

was assessed using voxel-wise root mean square error

(RMSE). Moreover, the structural similarity index (SSIM)

and peak signal-to-noise ratio (PSNR) were used as quantita-

tive measures of the quality of the predicted CT images.

Table 2 Mean and STD of peak signal-to-noise ratio (PSNR), structural

similarity index (SSIM), and root mean square error (RMSE) for the

predicted and ultra-low-dose CT images in the test and external validation

sets and statistical difference between predicted and ultra-low-dose

images

Parameters Images Test External validation

RMSE Predicted 0.09 ± 0.02 0.08 ± 0.02

Ultra-low-dose 0.16 ± 0.05 0.16 ± 0.06

p value p < 0.0001 p < 0.0001

PSNR Predicted 32.97 ± 2.60 33.60 ± 2.70

Ultra-low-dose 28.44 ± 3.87 29.40 ± 4.94

p value p < 0.0001 p < 0.0001

SSIM Predicted 0.97 ± 0.02 0.97 ± 0.01

Ultra-low-dose 0.89 ± 0.07 0.89 ± 0.07

p value p < 0.0001 p < 0.0001

Fig. 2 Mean and STD of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and root mean square error (RMSE) for the predicted and

ultra-low-dose CT images in the test and external validation sets
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Clinical evaluation

All patient chest CT images were categorized into three

groups, namely full-dose, ultra-low-dose, and predicted by

lung windowing. Blind qualitative assessment of CT images

was performed by a radiologist with 10 years of experience.

The radiologists’ clinical evaluations were based on qualita-

tive assessment, including appraisal of lesion density, shape,

position, and margin in addition to the analysis of lesion type.

For the qualitative assessment, scores ranging from 1 to 5

were assigned to each image as follows: excellent, 5; good,

4; adequate, 3; poor, 2; and uninterpretable, 1. This scoring

scheme was separately used for the overall assessment of im-

age quality, i.e., margin, shape, and density as well as for

lesion type. Lesion types included ground glass opacities

(GGO), crazy paving (CP), consolidation (CS), nodular infil-

trates (NI), bronchovascular thickening (BVT), and pleural

effusion (PE). To categorize lesions based on their location,

they were attributed to any of the following anatomical re-

gions in the lung: left lung, right lung, upper zone, lower zone,

middle zone, superior segment, posterior segment, and central

and peripheral areas.

Results

The mean value of CTDIvol for the ultra-low-dose protocol

based on which the simulation parameters are determined is

about 0.72mGy (range 0.66–1.02mGy) (Table 1). In contrast,

this index ranges from 4.16 to 10.5 mGy with an average of

6.5 mGy for the full-dose protocol. According to the adopted

Fig. 3 a Image quality scoring of

different images. b Lesion type

frequency in different images.

Ground glass opacities (GGO),

crazy paving (CP), consolidation

(CS), nodular infiltrates (NI),

bronchovascular thickening

(BVT), and pleural effusion (PE).

Scores (excellent, 5; good, 4;

adequate, 3; poor, 2; and

uninterpretable, 1)

Table 3 Image quality scores assigned by human observers for different

lesions. GGO, ground glass opacities; CS, consolidation; CP, crazy
paving; NI, nodular infiltrates, BVT, bronchovascular thickening; PE,
pleural effusion (PE). Scores (excellent, 5; good, 4; adequate, 3; poor,

2; and uninterpretable, 1)

Lesions Full-dose Ultra-low-

dose

Predicted

GGO 4.70 ± 0.47 2.67 ± 0.61 3.90 ± 1.09

CS 4.52 ± 0.87 3.36 ± 0.64 4.92 ± 0.28

CP 5.00 ± 0.00 3.00 ± 0.00 4.50 ± 0.71

NI 5.00 ± 0.00 3.25 ± 0.50 4.75 ± 0.50

BVT 4.79 ± 0.41 2.44 ± 1.11 4.44 ± 0.56

PE 5.00 ± 0.00 2.50 ± 1.05 4.50 ± 0.55
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methodology, the incident flux was determined in the range of

3.5–4 × 103 for different scanner models.

The quantitative metrics, including RMSE, PSNR, and

SSIM for predicted full-dose and ultra-low-dose CT images

in the test and external validation sets, are plotted as box plots

in Fig. 2 and summarized in Table 2. The RMSE in units of

normalized HU decreased from 0.16 ± 0.05 to 0.09 ± 0.02 and

from 0.16 ± 0.06 to 0.08 ± 0.02 for predicted full-dose images

from ultra-low-dose CT images in test and external validation

set, respectively. The SIMM and PSNR increased from 0.89 ±

0.07 to 0.97 ± 0.01 and from 29.40 ± 4.94 to 33.60 ± 2.70 for

predicted full-dose images in the external validation set,

respectively.

The overall results associated with the assessment of image

quality are shown in Fig. 3a wherein high image quality var-

iations can be observed in ultra-low-dose scans, while the

predicted full-dose images are mostly scored good or excel-

lent. Overall scoring shows that the full-dose images received

the highest score (4.72 ± 0.57) whereas the ultra-low-dose

images were rated with the lowest scores (2.78 ± 0.9). In

Fig. 3b, the frequency of occurrence of each lesion type in

the different series of images is shown. As can be seen,

GGO has the highest occurrence in all images, whereas mixed

(all) had the same occurrence for all images. Changes in the

essence of features are as follows: in the ultra-low-dose group,

GGO is shifted to normal feature whereas consolidation is

turned to GGO.

Lesion detectability scoring results are shown in Fig. 4. The

excellent score (score = 5) for CS in full-dose images is in

about 60% of the cases while it exceeds 90% in predicted full-

dose CT images. CP, NI, and PE achieve an excellent score

(100%) in predicted images and is more than 40%, 70%, and

40% of the cases, respectively. The overall image quality

scores assigned by human observers for different lesions are

summarized in Table 3. Table 4 presents the visual scoring of

different images for different aspects of CT findings, includ-

ing lesion status, margin, shape, and density.

Figure 5 and supplemental figures 1 and 2 present a repre-

sentative example of a full-dose, ultra-low-dose, and predicted

full-dose CT images. The predicted CT images improved im-

age quality, thus enabling most lesions to be easily classified.

Figure 6 and supplemental figures 3 and 4 show an example of

an outlier in which image quality was improved; however,

some relevant anatomical details were missing. Hence, the

network failed to recover the full detail of images and GGO

lesion converted to CS. For an outlier in the predicted group,

GGO was shifted to consolidation.

Discussion

Despite the controversies and heated debates around the po-

tential haphazardous effects of low levels of ionizing radiation

and the linear-no-threshold theory [29], concerns from

Table 4 Image quality assessment through visual scoring of different images documenting different aspects of CT findings. Scores (excellent, 5; good,

4; adequate, 3; poor, 2; and uninterpretable, 1)

CT findings Full-dose Low-dose Predicted

Lesion status Laterality Left lung 4.66 ± 0.55 3.14 ± 0.69 4.52 ± 0.51

Right lung 4.70 ± 0.53 3.12 ± 0.65 4.52 ± 0.51

Cephalocaudal distribution Upper 4.44 ± 0.63 2.94 ± 0.44 4.25 ± 0.45

Lower 4.68 ± 0.54 3.10 ± 0.60 4.48 ± 0.51

Middle 4.71 ± 0.53 3.23 ± 0.56 4.48 ± 0.51

Location Central 4.67 ± 0.58 3.33 ± 1.15 5.00 ± 0.00

Peripheral 4.76 ± 0.44 3.12 ± 0.70 4.71 ± 0.47

Superior 4.65 ± 0.59 3.25 ± 0.64 4.60 ± 0.50

Posterior 4.68 ± 0.54 3.23 ± 0.62 4.65 ± 0.49

Central and peripheral 4.63 ± 0.62 3.19 ± 0.54 4.44 ± 0.51

Margin Ill defined 4.48 ± 0.75 2.30 ± 0.91 4.19 ± 0.56

Well defined 4.67 ± 0.55 3.15 ± 0.60 4.93 ± 0.27

Shape Nodular 5.00 ± 0.00 4.00 ± 0.00 5.00 ± 0.00

Wedged 5.00 ± 0.00 3.33 ± 0.82 5.00 ± 0.00

Elongated 4.00 ± 1.41 2.00 ± 1.41 4.50 ± 0.71

Confluent 4.54 ± 0.66 3.00 ± 0.66 4.54 ± 0.51

Density Part solid 4.83 ± 0.41 2.40 ± 1.14 3.60 ± 1.52

Solid 4.60 ± 1.26 3.40 ± 0.70 4.80 ± 0.42

Pure GGO 4.63 ± 0.49 2.79 ± 0.66 3.96 ± 1.27

GGO and CS 5.00 ± 0.00 2.80 ± 0.84 4.40 ± 0.55
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radiation exposure are still current [30]. Since CT imaging is

widely used in clinical diagnosis, prognosis, and assessment

of response to treatment and follow-up of a number of dis-

eases, it is an incremental source of radiation dose to patients

in modern healthcare [7, 31]. With respect to the current

COVID-19 crisis, chest CT imaging is the fastest diagnostic

approach. However, it remains a high-dose imaging modality,

and as such, developing an ultra-low-dose protocol enabling

to maintain optimal image quality is clinically relevant in pub-

lic health management. Therefore, as a response to this out-

break and the subsequent demand for CT imaging for mass

population, an ultra-low-dose imaging approach was pro-

posed to minimize radiation exposure of the population.

This is achieved through a deep learning approach introduced

for COVID-19 patient diagnosis by generating high-quality

full-dose from ultra-low-dose CT images. It was shown that

although the simulated ultra-low-dose CT images were diag-

nostically compromised, the generated full-dose images were

appropriate for the task at hand. The proposed ultra-low-dose

approach based on deep learning algorithms succeeded to re-

duce the CTDIvol by up to 89%, reflecting a substantial reduc-

tion of the radiation dose associated with diagnostic CT

examinations.

A number of studies have assessed the role of low-dose

CT for COVID-19 management [11–14]. Agostini et al

[12] evaluated the feasibility and diagnostic reliability of

a low-dose, long-pitch dual-source chest CT protocol for

COVID-19 patients in terms of signal-to-noise and

contrast-to-noise ratio and Likert scales. They reported that

their low-dose CT protocol achieved significant dose re-

duction, lower motion artifacts with optimum signal and

contrast-to-noise ratio. However, this protocol is only ap-

plicable on third-generation dual-source CT scanners, and

as such, it is not applicable on older CT imaging systems.

Dangis et al [14] examined the accuracy and reproducibil-

ity of low-dose sub-millisievert chest CT for the diagnosis

of COVID-19. They demonstrated that low-dose CT has

excellent sensitivity, specificity, positive predictive value,

negative predictive value, and accuracy for the diagnosis of

COVID-19 with a mean effective dose of 0.56 ± 0.25 mSv.

In the current study, the simulated ultra-low-dose CT im-

ages represent the outcome of a protocol with a significant

reduction of CTDIvol (up to 89%) compared with the cor-

responding full-dose CT images, which is a good metric

for comparing patient effective dose and risks of ionizing

radiation [32]. This is a commended effort in view of the

current recommendations in radiation protection [33], par-

ticularly for the diagnosis and follow-up of a sensitive

population, such as pediatric patients and pregnant women.

The results of this study demonstrated that by using CNNs,

we could generate images with a significantly lower dose and

acceptable image quality. Although image quality in the pre-

dicted images was not exactly identical to full-dose CT im-

ages, most COVID-19 features, including nodular infiltrate,

consolidation, and crazy paving features, obtained high

scores, almost similar to full-dose CT images.

Fig. 4 Image quality scoring of different images. Ground glass opacities (GGO), Crazy Paving (CP), Consolidation (CS), Nodular Infiltrates (NI),

Bronchovascular thickening (BVT), and Pleural effusion (PE). Scores (excellent: 5, good: 4, adequate, 3, poor: 2 and uninterpretable: 1)

1427Eur Radiol  (2021) 31:1420–1431



We also demonstrated that the texture of COVID-19 le-

sions could be erroneously altered in the predicted CT images,

which would skew the diagnosis/scoring. We observed that in

the ultra-low-dose group, GGO was shifted to normal feature,

whereas consolidation was shifted to GGO. In the low-dose

group, the shift of GGO to normal features might be due to

closeness of meanHUvalue of GGO to normal. In addition, as

the differences between the HU value of GGO and consolida-

tion lesions are located in the normal neighborhood, they may

be depicted and diagnosed as similar features. Likewise, in the

predicted group, GGO was shifted to consolidation owing to

the local induced bias noise pattern in ultra-low-dose images,

heterogeneity of lesions, and smoothing effect of deep learn-

ing in some outlier cases. The low-dose simulation would

result in overall zero bias (zero-mean noise signal) with ele-

vated noise variance depending on the underlying signals/

textures and level of simulated low-dose scanning. Due to

the fine texture as well as relatively low density (low CT

numbers) of GGO lesions, the streak-like noise patterns led

to mostly positive bias and rougher textures in these lesions.

As such, the likelihood of misinterpretation of GGO with CP

increased in the resulting synthetic standard dose CT images.

In addition, the minimum widely used learnable kernel

employed in the current study is 3 × 3, which would slightly

Fig. 5 Representative full-dose

image and corresponding ultra-

low-dose and predicted full-dose

images
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smooth the structures of the resulting synthetic images. The

local positive noise-induced bias along with the smoothness of

the structures in the resulting CT images led to the misidenti-

fication of some GGO lesions with CP.
Although ultra-low-dose CT can be equally effective in

COVID-19 detection and diagnosis as the full-dose CT, it

suffers from a number of limitations, particularly the increased

noise level caused by photon deprivation. One of the limita-

tions of the present study was that during the clinical assess-

ment, the ultra-low-dose images could be easily identified by

radiologists because of the high noise present. This might

have led them to be subconsciously biased, hence assigning

lower scores to these images. We reported outliers originating

mostly from the low quality of the simulated ultra-low-dose

CT images (high noise level and/or noise-induced artifact)

caused by photon starvation in simulated corpulent patients.

The application of the current method in COVID-19 imaging

warranted a thorough investigation of outliers owing to inter-/

intra-patient variation and noise variability.

Conclusion

Ultra-low-dose CT imaging of COVID-19 patients would re-

sult in the loss of critical information about lesion types.

However, the results presented in this work indicated that

ResNet is an optimal algorithm for generating ultra-low-dose

CT images for COVID-19 diagnosis. Nevertheless, the deep

Fig. 6 Outlier report: CT images

of a patient where the deep

learning algorithm improved

image quality but changed the

patchy lesion to consolidation in

predicted images. The red arrows

pinpoint changes in the identified

lesions
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learning solution failed to recover the correct lesion structure/

density for a number of patients and as such, further research

and development is warranted to address these limitations.
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