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ABSTRACT: Terrestrial laser scanning is the current technique of choice for acquiring high resolution topographic data at the site scale

(i.e. over tens to hundreds ofmetres), for accurate volumemeasurements or processmodelling. However, in regions of complex topography

withmultiple local horizons, restricted lines of sight significantly hinder use of such tripod-based instruments by requiringmultiple setups to

achieve full coverage of the area.We demonstrate a novel hand-heldmobile laser scanning technique that offers particular promise for site-

scale topographic surveys of complex environments. To carry out a survey, the hand-held mobile laser scanner (HMLS) is walked across a

site, mapping around the surveyor continuously en route. We assess the accuracy of HMLS data by comparing survey results from an erod-

ing coastal cliff site with those acquired by a state-of-the-art terrestrial laser scanner (TLS) and also with the results of a photo-survey,

processed by structure from motion and multi-view stereo (SfM-MVS) algorithms. HMLS data are shown to have a root mean square

(RMS) difference to the benchmark TLS data of 20 mm, not dissimilar to that of the SfM-MVS survey (18 mm). The efficiency of the HMLS

system in complex terrain is demonstrated by acquiring topographic data covering ~780m2 of salt-marsh gullies, with amean point spacing

of 4.4 cm, in approximately six minutes. We estimate that HMLS surveying of gullies is approximately 40 times faster than using a TLS and

six times faster than using SfM-MVS. © 2013 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.
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Introduction

Many geomorphological studies have some form of topographic

measurement at their heart. When kilometres of coverage are

required, airborne instruments are usually used, resulting in data

with metre-scale spatial resolutions and vertical accuracies gener-

ally of a few tens of centimetres. However, over the more limited

distances of the site scale (e.g. tens to hundreds of metres), surveys

have historically been carried out on the ground, initially with

levels and theodolites, and now with total stations. Satellite

navigation systems [e.g. Global Positioning System (GPS), Global

Navigation Satellite System (GLONASS)] have also added to the

geomorphologist’s armory, allowing survey work to be easily posi-

tioned within a global coordinate system. Although such methods

provide good accuracy and precision for the measurement of

individual points, significant time is required to collect a sufficient

density of data for useful digital elevation models (DEMs) of the

landscape to be produced.

Site-scale high resolution DEMs are now routinely produced

using ground-based terrestrial laser scanners (TLSs) to provide

dense data sets, often with millions of individual measurements

at millimetre-to-centimetre accuracies (e.g. Heritage and

Hetherington, 2007). However, laser-based measurements require

line of sight and, with TLS systems being tripod-mounted, this can

significantly increase survey times in complex topographic

environments. In such scenarios, with few vantage points from

which large proportions of the project site are observable, multiple

scan positions must be used to cover the full area required.

Consequently, time-consuming instrument repositioning must be

repeatedly carried out and the complexity of the subsequent data

processing is also increased.

Advances in the mobile collection of topographic data have

been made through the use of ground-based (James et al.,

2007; Bird et al., 2010; Gessesse et al., 2010) or aerial con-

sumer cameras [e.g. on kites or unmanned aerial vehicles

(UAVs), Marzolff and Poesen, 2009; d’Oleire-Oltmanns et al.,

2012; Niethammer et al., 2012; Hugenholtz et al., 2013].

Airborne systems provide synoptic views that facilitate cover-

age of difficult terrain, but factors such as the required piloting

skill have hindered early mass adoption of UAV technology.

Nevertheless, successful trials are now being also carried out

with UAV-mounted laser scanners and even range cameras

(Kohoutek and Eisenbeiss, 2012). Most recently, DEM-

generation from both ground and aerial photographs has been
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facilitated through the application of structure from motion

(SfM) and multi-view stereo (MVS) three-dimensional (3D)

processing algorithms (Niethammer et al., 2010; Castillo

et al., 2012; Harwin and Lucieer, 2012; James and Robson,

2012; James and Varley, 2012; Fonstad et al., 2013). SfM-

MVS surveys have been demonstrated to be capable of preci-

sions ~1/1000 of the observation distance (James and Robson,

2012) so, over metres to tens of metres, they can deliver data

of comparable accuracy (millimetres to centimetres) to TLS

systems. In complex terrain such as gullies, the rapid photo-

graph collection required for SfM-MVS has shown it to be a

highly cost effective technique with respect to TLS use (Castillo

et al., 2012). However, SfM-MVS approaches do require effort

to scale and georeference the resulting models, and difficult

illumination conditions can be a challenge for all photo-based

techniques (Gimenez et al., 2009).

Here we evaluate a new ground-based approach using a hand-

held mobile laser scanner (HMLS) that represents a significant

advance in our ability to collect topographic data in complex

terrains by combining the inherent scale and reliability of laser

techniques with the flexibility of on-foot surveying and a delivered

data density typical of scanning systems. With a maximum laser

range of 30 m, the HMLS is designed as an area scanner and

can be distinguished from hand-held ‘object’ scanners [which

typically use a structured light measurement approach and have

ranges of up to 1–5 m, e.g. Mantis Vision’s MVC-F5, or see

Mankoff and Russo (2013) for similar application of the Kinect].

To carry out a survey, the HMLS is walked around the site, cap-

turing a swath of data up to ~30 m wide, en route. In this way,

convoluted topography can be effectively surveyed at walking

speed, with the surveyor simply following a path which allows

all required areas to be observed from some point along it. Auto-

mated 3D scene reconstruction from the resulting data is carried

out using sophisticated simultaneous localization and mapping

(SLAM) algorithms which simultaneously compute the full instru-

ment path and a point cloud of surfacemeasurements. TheHMLS

system works best in enclosed environments where static surface

features fully surround the sensor and provide well distributed,

consistent laser returns to facilitate convergence in the processing

algorithms (e.g. indoors, surrounded by walls, floor and ceiling).

In contrast, outdoor environments are characterized by surfaces

that can be highly irregular, covered with vegetation and seldom

‘surround’ an observer, and thus represent much more challeng-

ing applications for reconstruction. For technical details on the

novel SLAM algorithms developed, as well as mobile mapping

test results from early versions of the system, the interested reader

is referred to the robotics literature (Bosse et al., 2012; Bosse and

Zlot, 2013). With an instrument cost of ~£14k, the HMLS is af-

fordable for a laser-based system, but its use is associatedwith ad-

ditional charges for the required online SLAM processing, which

represent of the order of £200 per kilometre of surveyor path.

In this article we validate the accuracy of a HMLS for outdoor

topographic surveying suitable for geomorphological applications,

and demonstrate its utility in complex terrain. Using a coastal cliff

site, we compare a HMLS survey with benchmark data from a

state-of-the-art TLS. A simultaneous SfM-MVS survey was also car-

ried out, allowing the relative performance of two new techniques

to be directly assessed. We then demonstrate HMLS use in more

complex topography by surveying a region of multiple salt-marsh

gullies, where tripod-based scanning would be laborious.

Method and Data Collection

The HMLS instrument, the Zeb1, is a hand-held scanner (0.7 kg)

linked to a netbook computer or, on the most recent

version, just a data logger (see Figure 1 for the entire system

in use). There are no significant power requirements and, with

typical usage represented by repeated ~20-minute surveys, a

full day of work can be carried out prior to recharging.

The scanner comprises a scan head (with an inertial naviga-

tion system and an eye-safe laser giving 43 200 measure-

ments per second), spring-mounted on a hand grip (Bosse

et al., 2012). To carry out a survey, the system is initialized

and logging is started with the scanner initially lying station-

ary. After a calibration period of ~15 seconds, the survey is

executed by moving at walking speed whilst gently oscillating

the Zeb1 scan head backward and forward to capture data

from the full 3D environment. The laser specifications cite a

30-m measurement range, but this is unlikely to be achieved

outdoors (due to ambient solar radiation), and a survey swath

of up to ~15 m around the instrument is more realistic. To

facilitate accurate reconstruction and avoid problems associ-

ated with drift, the survey path should form a closed loop,

so that the same region is covered at the beginning and the

end of the path. When collection is complete, the data are

uploaded for automatic processing by a remote server, which

integrates the laser and inertial navigation data and normally

delivers the results in a similar time to that taken for the initial

walking survey. The processed data are returned as a 3D point

cloud model, with a manufacturer-cited accuracy of 30 mm,

that can be viewed and analysed in any generic point cloud

processing software.

The site used to verify Zeb1 performance under outdoor

conditions was a 2–3 m high, ~55-m long coastal cliff at

Sunderland Point, UK (Figure 2), with easy low tide access

around the cliff base. The HMLS survey was carried out by

the surveyor walking along the foot of the cliff, and back

again to close the survey loop. The TLS data were acquired

Figure 1. The Zeb1 hand-held mobile laser scanner (HMLS) in use at

the coastal cliff site Sunderland Point, UK.
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from two locations, 20–40 m from the curved cliff face, using

a Riegl VZ-1000 (with range measurement accuracy and pre-

cision specifications of 8 and 5 mm, respectively). The TLS

data were combined within Riegl’s RiScan Pro software

(v 1.7.7) to form the benchmark point cloud dataset. Finally,

the SfM-MVS photo-survey comprised taking 87 photographs

of the cliff section from distances of ~20–30 m, and using

automated processing to derive a point cloud model.

Protocols for photograph acquisition at this site, and the

associated processing procedures, are described in James

and Robson (2012), where the same SfM-MVS approach

was used to derive erosion rates.

The HMLS and SfM-MVS data sets were then registered to the

TLS model. For the HMLS data, this was initially carried out in

RiScan Pro software by refining a manual alignment of the HMLS

model to the TLS data with RiScan Pro’s automated multi-station

adjustment. SfM-MVS data required both scaling and

georeferencing, which was carried out with sfm_georef software

(James and Robson, 2012), using coordinates of fence and groyne

posts identified in the TLS survey as control points, and deriving

the equivalent locations from the image set. All point cloudswere

then cropped to the cliff face region of interest (Figure 2b) and

alignment to the TLS data was optimized by using an iterative

closest point procedure in Cloud Compare (http://www.

danielgm.net/cc/). Differences between the surveys were then

determined by calculating nearest neighbour point-to-point

distances (for each point in a survey, the 3D distance between it

and the closest point in the TLS cloud).

Although the cliff site provided the opportunity for a

detailed assessment of Zeb1 accuracy in an outdoor envi-

ronment, it does not represent a site with particularly

complex topography (e.g. it could be surveyed completely

by the TLS from two scan positions). Thus, to demonstrate

HMLS use in a more difficult environment, a nearby region

of sinuous salt-marsh gullies (Figure 3a) was also surveyed

with the Zeb1. At this site, the surveyor travelled an irregu-

lar looped path along the crests between gullies (Figure 3),

covering an area of approximately 25 m×30 m.

Results and Discussion

The characteristics of the cliff surveys are given in Table I. As an-

ticipated, the TLS survey took longest to carry out, with both the

HMLS and SfM-MVS data collection taking less than 10 minutes

each. The HMLS survey was the most rapid (despite the

surveyor covering a longer path than was actually required)

because a steady walking pace was maintained, in contrast to

the stop-start nature required for the SfM-MVS photograph

acquisition. For all techniques, the point densities acquired

could be varied by changing acquisition (e.g. walking speed

for HMLS use) or processing parameters, but nominal or default

values were selected to give overall representative results

(Table I). The point-to-point differences calculated between

the surveys and the TLS data show that the HMLS data are

similar in accuracy to those from SfM-MVS (Figure 2b), with root

mean square (RMS) differences of 20 and 18 mm, respectively.

With such values being close to the accuracy (8 mm) and

precision (5 mm) of VZ-1000 range measurements, it is difficult

to extract significantly more detail from the comparisons.

However, the HMLS results appear slightly more noisy, which

is reflected in the broader tail of the error distributions (Table I,

Figure 2b), with 98.0% of data lying within 5 mm of the TLS

results, compared to 99.0 % for SfM-MVS.

For both SfM-MVS and mobile scanning, instrument position

is initially determined incrementally, so error accumulation can

potentially cause drift along surveys. For the Zeb1, survey

design (with start and end at the same location) minimizes the

potential for drift, with the processing algorithms automatically

closing the loop through matching the initial and final 3D

scenes together. At the cliff site, the out-and-back survey would

allow any problems to be identified by the apparent appear-

ance of twinned, parallel surfaces in the resulting data, which

were not observed. Some areas of systematic offset from the

TLS data are observable midway along the cliff, but these

differences are similar for both HMLS and SfM-MVS surveys,

suggesting a cause other than drift (which would have little

HMLS

SfM-MVS
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(mm)

Elevation (m)
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Figure 2. Topographic measurement of the cliff face. (a) The full 3D point cloud from the HMLS survey; for visualization purposes, some points have been

shaded from the photographs acquired for the simultaneous SfM-MVS survey. The remaining data are shaded by their elevation (above an arbitrary datum). The

arrows highlight the cliff section selected for comparison of the HMLS and SfM-MVS surveys with the benchmark TLS data (b). Differences are determined by

calculating point-to-point distances, and are shown by the shading in the point clouds and by the histograms (see Table I for statistical values).

ULTRA-RAPID TOPOGRAPHIC SURVEYING: THE HMLS

© 2013 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd. Earth Surf. Process. Landforms, (2013)



reason to be expressed similarly in both datasets). It is thus

possible that these differences actually reflect an issue in the

TLS data (e.g. some bias effect on inclined surfaces).

At the gully site (Figure 3), the ~110 m survey path was

traversed with the HMLS (over slippery mud) in just over six

minutes, generating 433 k data points and a ~780 m2 core

region of dense data coverage (399 k points, an average point

spacing of 44 mm), allowing a 0.1-m-resolution DEM to be

constructed (Figures 3b and 3c). When using laser systems,

the presence of water surfaces can provide problems with

reflections, but the Zeb1 results appear remarkably clean – only

a minor amount of post-processing was carried out to remove

returns from spectators on the periphery of the survey. Data

from the region of water seen in Figure 3a are at a lower

density than those from solid terrain, but suggest that the

Zeb1 was successfully receiving some returns from the water

surface. Other notable areas of low data density are from

vegetated regions, which are known to present complexities

when using either laser-based systems (Coveney and

Fotheringham, 2011) or photo-based techniques (Gessesse

et al., 2010; Castillo et al., 2012; Fonstad et al., 2013). It is

emphasized that surface relief and the consistency of laser

returns (e.g. from non-vegetated areas) are integral to the

performance of the SLAM algorithms that derive the 3D

geometry. Thus, although surveys in flat or heavily vegetated

areas are possible (Bosse et al., 2012), they are likely to be

significantly reduced in accuracy, and other measurement

techniques may be more appropriate.

The efficiency of the HMLS data collection compares

favourably with those previously determined for TLS and SfM-

MVS surveying of erosion gullies. Based on a sinuous gully near

Cordoba, Spain, Castillo et al. (2012) estimated that, for a

100-m long gully reach, practical field data collection with a

TLS requires ~8.3 minutes per metre of gully (i.e. including
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Figure 3. HMLS survey of complex tidal salt-marsh region. The surveyor (a) walked an irregular looped path along crests between gullies and the

resulting point cloud data were used to derive a 0.1-m-resolution DEM (illustrated by the inset oblique hill-shaded relief map). In (b), the variation in

x–y measurement point density across the region is shown, with the black line giving the region of the DEM (c). The path of the Zeb1 scan head is

shown by the irregular line overlays in (c) and (a, inset), with the position of the surveyor in (a) indicated by the filled black circle. The linear region

of flat topography [next to the length scale in (a, inset)] is a road that abuts the gullies.

Table I. Survey characteristics for the analysed region of cliff face (Figure 2) at Sunderland Point

Technique

TLS HMLS SfM-MVS

Instrument Riegl VZ-1000 3D Laser Mapping Zeb1 Canon EOS 450D, 28 mm lens

Survey time (minutes) ~30–40a 6.3 8

Number data points (k) 797 120 449

Approximate point spacing (mm) 13 34 17

Point-to-point distances to TLS (mm):

RMS 20.2 17.8

Mean 16.9 14.4

Median 14.4 12.2

Interquartile range 11.5 9.3

aThe longer time includes that taken to collect photographs with the scanner. These enable the point cloud to be coloured but are not an absolute

requirement for topographic measurement.
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instrument setup times etc.). SfM-MVS data collection was

approximately six times faster, at 1.3 minutes per metre

(Castillo et al., 2012). In comparison, and using an estimate of

a 400 m return path required to cover a 100-m-long sinuous

gully reach, along with the average rate of approximately five

minutes per 100 m of survey path that we achieved on the salt

marsh, data collection with an HMLS would take 20 minutes,

or 0.2 minutes per metre. We anticipate this to be somewhat

conservative but, nevertheless, it suggests that gully surveys

with a HMLS could be 40 times faster than with a TLS and six

times faster than using SfM-MVS. This efficiency implies that,

even with the associated online data processing charges, HMLS

would represent a cost effective survey technique.

Conclusions

New HMLS technology offers significant advance over currently

available techniques for rapid survey of complex topography that

exhibits poor line-of-sight coverage, and is commonly the subject

of geomorpological study. Although the HMLS does not yet quite

deliver the data density or accuracy of modern TLS instruments,

its convenience will make it a highly practical surveying solution

for difficult environments. When centimetre-level topographic

data are required over distances of the order of hundreds of

metres (or less), HMLS should join SfM-MVS as a technique to

consider when planning future surveys. For complex linear

features such as gullies, field data collection with a HMLS is

expected to be approximately 40 times quicker than with a TLS,

and six times quicker than using SfM-MVS. With good viewing

conditions, SfM-MVS can deliver greater data densities and

slightly greater accuracies, but HMLS may be favoured for deliv-

ering scaled models independent of lighting conditions, faster,

and with minimal data processing requirements for the user.
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