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ABSTRACT 8 

BACKGROUND  9 

Despite progress in understanding the genetics of rare epilepsies, the more common 10 

epilepsies have proven less tractable to traditional gene-discovery analyses. We aimed to 11 

assess the contribution of ultra-rare genetic variation to the common epilepsies. 12 

METHODS 13 

We did a case-control sequencing study using the exome sequence data from unrelated 14 

individuals clinically evaluated for one of the two most common epilepsy syndromes: 15 

familial genetic generalized epilepsy (GGE) or familial sporadic non-acquired focal epilepsy 16 

(NAFE). Individuals were recruited between Nov 26, 2007 and Aug 2, 2013 through the 17 

multicentre Epilepsy Phenome/Genome Project and Epi4K collaborations, and were 18 

sequenced at the Institute for Genomic Medicine, Columbia University (New York City, 19 

USA) between Feb 6, 2013 and Aug 18, 2015. To identify epilepsy risk signals, we tested all 20 

protein-coding genes for an excess of ultrarare genetic variation among the cases compared to 21 

unrelated individuals of European ancestry selected for control purposes through unrelated 22 

studies.  23 

FINDINGS 24 
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We separately compared the sequence data from 640 individuals with familial GGE and 525 25 

individuals with familial NAFE to the same group of 3,877 controls, and found significant 26 

excess of ultra-rare deleterious variation in genes established as causative for dominant 27 

epilepsy disorders (familial GGE: OR 2.3 [95% CI 1.7–3.2]; p=9.1x10
-8

) (familial NAFE: 28 

OR 3.6 [95% CI 2.7–4.9]; p=1.1x10
-17

). Comparing an additional collection of 662 29 

individuals with sporadic NAFE to controls did not identify study-wide significant signals. 30 

For the familial NAFE cases, we found that five previously known epilepsy genes ranked as 31 

the top five genes enriched for ultra-rare deleterious variation. After accounting for the 32 

control carrier rate we estimate that these five genes contribute to the risk of epilepsy in 33 

approximately 8% of familial NAFE cases. Our analyses showed that no individual gene was 34 

significantly associated with epilepsy; however, known epilepsy genes achieved lower p-35 

values relative to the rest of the protein-coding genes (p=5.8x10
-8

). 36 

INTERPRETATION 37 

We identified excess ultra-rare variation in known epilepsy genes, which establishes a clear 38 

connection between the genetics of common and rare severe epilepsies, and shows that the 39 

variants responsible for the observed epilepsy risk signal are exceptionally rare in the general 40 

population. Our results suggest that the emerging paradigm of targeting treatments to the 41 

genetic cause in rare devastating epilepsies may also extend to a proportion of common 42 

epilepsies. These findings might allow clinicians to broadly explain the aetiology of these 43 

syndromes to patients, and lay the foundation for possible precision treatments in the future. 44 

FUNDING 45 

National Institute of Neurological Disorders and Stroke (NINDS), Epilepsy-Research UK. 46 
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INTRODUCTION 47 

Next generation sequencing has proven successful in identifying genetic contributions to rare 48 

Mendelian disorders and cancers,
1, 2

 creating widespread optimism that treatments can be 49 

targeted to underlying causes of disease.
3
 Although epilepsy is a common complex disease, it 50 

is emerging as a group of disorders with precision medicine opportunities similar to those in 51 

rare Mendelian disorders and cancers.
4
 Unlike many common diseases, epilepsy genetics 52 

research is identifying not only the genes responsible, but also the genetic variants 53 

contributing to disease in individual patients. This is most apparent in the role of de novo 54 

mutations in the epileptic encephalopathies.
5, 6

 55 

Traditional heritability studies of the common epilepsies consistently show strong genetic 56 

effects in non-acquired focal epilepsy (NAFE) and in genetic generalized epilepsy (GGE), 57 

with both shared and distinct genetic contributions to these broadly defined epilepsies.
7, 8

 58 

Two important unresolved questions are the extent to which the genes responsible for rare 59 

severe epilepsies contribute to common epilepsies, and whether, as in the rare epilepsies, 60 

genetic risk arises primarily from ultra-rare variants of large effect including de novo 61 

mutations,
5, 6

 or from a constellation of common variants each conferring small or modest 62 

effect.
9-13

 63 

Exome sequencing of large case and control cohorts followed by genome-wide collapsing 64 

analyses provide a hypothesis-free approach to discovering novel disease genes and better 65 

understanding the overall contribution of ultra-rare genetic variation to disease.
14

 Here, we 66 

assess the contribution of ultra-rare genetic variation to common epilepsies while controlling 67 

for background variation in the general population.   68 
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METHODS 69 

Participants 70 

For this case-control study, participants with familial or sporadic NAFE or familial GGE 71 

were recruited between November 26, 2007 and August 2, 2013 through the international 72 

Epilepsy Phenome/Genome Project (EPGP) and Epi4K collaborations (appendix), as 73 

previously described.
15

 The case samples were sequenced between February 6, 2013 and 74 

August 18, 2015 by the Institute for Genomic Medicine, Columbia University (New York 75 

City, NY, USA). To be clinically classified as having NAFE, patients were required to have 76 

focal seizures and no evidence of an epileptogenic lesion on clinical imaging; however, 77 

hippocampal sclerosis was not considered an exclusion criterion. To be clinically classified as 78 

having GGE, patients were required to have a diagnosis of generalized epilepsy with absence, 79 

myoclonic or tonic-clonic seizures and generalized spike-and-wave on an EEG, and no or 80 

mild intellectual disability. All patients were clinically evaluated by their local clinician or 81 

the clinical team at recruiting centres. Individuals with unclassifiable epilepsy or classified as 82 

having both GGE and NAFE were excluded from the analyses. 83 

To be classified as a familial case, at least one reported relative (up to third degree) who had 84 

been diagnosed with epilepsy was required. The sporadic NAFE cohort included participants 85 

who self-reported no known epilepsy family history and were recruited from international 86 

hospital, outpatient, and epilepsy clinics (appendix).
15, 16

 Written informed consent was 87 

collected at the time of recruitment at each of the clinical sites. Patient collection and sharing 88 

of anonymised specimens for research was approved by site-specific Institutional Review 89 

Boards and ethic committees. 90 

 The control cohort comprised of unrelated individuals of European ancestry that had been 91 

selected for control purposes and sequenced through unrelated studies not focused on 92 

neurodevelopmental, neuropsychiatric or severe paediatric disease (appendix).  93 
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Procedures 94 

Sequencing was performed at the Institute for Genomic Medicine, Columbia University (New 95 

York City, NY, USA). Samples were exome sequenced using the Agilent All Exon (50MB or 96 

65MB; Agilent Technologies, Santa Clara, CA, USA) or the Nimblegen SeqCap EZ V2.0 or 97 

3.0 Exome Enrichment kit (Roche NimbleGen, Madison, WI, USA) or whole genome 98 

sequenced using HiSeq 2000 or 2500 (Illumina, San Diego, CA, USA) sequencers according 99 

to standard protocols.  100 

The sequence data from patients with epilepsy and controls were processed using the same 101 

Institute for Genomic Medicine bioinformatics pipeline (appendix). We focused on 18,668 102 

consensus coding sequence (CCDS; release 14) protein-coding genes. On average, at least 103 

10-fold coverage was achieved for 95.8% (familial GGE), 96.8% (familial NAFE), 97.1% 104 

(sporadic NAFE) and 95.6% (controls) of the 33.27 Mbps of the CCDS. For each protein-105 

coding site in the CCDS—inclusive of two base intronic extensions to accommodate 106 

canonical splice variants—we determined the percentage of cases and controls that had ≥10-107 

fold coverage at the site. To alleviate confounding due to differential coverage we used a site-108 

based pruning strategy similar to our previously described exon-pruning strategy.
17

 Individual 109 

CCDS sites were excluded from analysis if the absolute difference in the percentage of the 110 

cases compared to controls with adequate coverage of the site differed by greater than 5.19% 111 

(familial GGE vs. controls), 5.14% (familial NAFE vs. controls) and 6.39% (sporadic NAFE 112 

vs. controls) (appendix). Site-based pruning resulted in 8.9% (GGE), 8.3% (familial NAFE) 113 

and 8.3% (sporadic NAFE) of the CCDS bases excluded from the respective analyses to 114 

alleviate issues from differential coverage. Thus, all gene tests were performed on the pruned 115 

CCDS where cases and controls had similar opportunity to call gene variants (appendix). 116 

 117 
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STATISTICAL ANALYSIS 118 

To search for genes that confer risk for common epilepsy syndromes, we implemented a 119 

genic collapsing analysis,
17

 in which only a single affected individual (the index case) from 120 

each family was included. We applied standard procedures to address potential bias due to 121 

relatedness and population stratification (appendix). The analyses focused on CCDS protein-122 

coding sites with minimal variability in coverage between the case and control populations.  123 

As in our earlier work,
17

 the term “qualifying variants” has been adopted to refer to the subset 124 

of variation within the sequence data that meets specific criteria designed to enrich for 125 

pathogenic variants. We defined qualifying variants in four ways (Table 1). Our primary 126 

analysis focused on ultra-rare variants where a combination of internal (the test samples) and 127 

external data (the Exome Variant Server [EVS]
18

 and Exome Aggregate Consortium [ExAC; 128 

release 0.3]
19

). The test cohort was used to identify variants with a minor allele frequency 129 

(MAF) <0.05% among our combined case and control population being tested. The EVS and 130 

ExAC external databases were used to identify variants found among the test samples and 131 

absent (i.e., MAF=0%) among the two external reference control cohorts. The MAF was set 132 

to <0.05% in the combined case and control test collection to accommodate the possibility of 133 

multiple instances of a risk variant among cases. The two freely available EVS and ExAC 134 

external databases were solely used to support the rarity of the identified variants and did not 135 

contribute as control samples to the tests themselves. 136 

For the primary analysis, functional annotation focused on single nucleotide substitution and 137 

insertion or deletion variants annotated as having a loss-of-function, inframe insertion or 138 

deletion, or a “probably damaging” missense effect by PolyPhen-2 (HumDiv).
20

 Three 139 

secondary analyses were performed to evaluate the contribution to epilepsy risk from: rare 140 

loss-of-function variants with an internal and external population MAF up to 0.1%; rare non-141 

synonymous variation in the general population with an internal and external MAF up to 142 
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0.1%; and a presumed neutral model that imposed similar MAF thresholds as our primary 143 

analysis, but focused specifically on protein-coding variants predicted to have a synonymous 144 

effect. The purpose of the presumed neutral model was to further confirm that no cryptic 145 

factors might be increasing qualifying variant calling among one of the groups. 146 

For each of the four models, we tested the complete list of 18,668 CCDS genes. For each 147 

gene, an indicator variable (1/0 states) was assigned to each individual based on the presence 148 

of at least one qualifying variant in the gene (state 1) or no qualifying variants in that gene 149 

(state 0). We used a two-tailed Fisher’s exact test to identify genes where there was a 150 

significant enrichment of qualifying variants in the case or control group. To control for the 151 

type-I error rate within each epilepsy phenotype, we defined study-wide significance as 152 

p=8.9x10
-7

, correcting for 18,668 CCDS genes studied across three models (0.05/[3x18668]). 153 

We did not correct for the neutral control model. 154 

All collapsing analyses were performed using an in-house package, Analysis Tool for 155 

Annotated Variants (ATAV). Binomial tests were used to evaluate whether there was an 156 

enrichment of previously reported pathogenic variants among the case collection of 157 

qualifying variants. Hypergeometric tests were performed to assess whether among the 158 

collapsing analysis results the known epilepsy genes preferentially achieved lower p-values 159 

relative to the rest of the genome. Cochran-Mantel-Haenszel tests were adopted to combine 160 

the results of the gender stratified sex chromosome collapsing analyses.  161 

We also used the primary analysis results from each of the patient groups to assess 162 

enrichment among six biologically informed gene-sets that were chosen and described in our 163 

earlier studies of the epileptic encephalopathies,
5, 21

 including a list of 43 established 164 

dominant epilepsy genes (appendix).
3
 To account for background variation in gene-set tests 165 

we applied a logistic regression model (appendix). 166 

https://redmine.igm.cumc.columbia.edu/projects/atav
https://redmine.igm.cumc.columbia.edu/projects/atav
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To assess the contribution to epilepsy risk coming from variants with increasing minor allele 167 

frequencies (MAF), we developed a multivariable logistic regression model that focuses on 168 

the known epilepsy genes and relates disease risk to the presence of variants among 169 

increasing MAF bins (appendix).  170 

These additional binomial, hypergeometric, Cochran-Mantel-Haenszel, and logistic 171 

regression tests were completed using R package ‘stats’ version 3.2.2.  172 

ROLE OF THE FUNDING SOURCE 173 

The funders of the study had no role in study design, data collection, data analysis, data 174 

interpretation or writing of the report. The corresponding author had full access to the data in 175 

the study and had final responsibility for the decision to submit for publication. 176 

 177 

RESULTS 178 

We sequenced the exomes of 1,827 patients with epilepsy—640 unrelated individuals with a 179 

diagnosis of familial GGE and 525 unrelated individuals with a diagnosis of familial NAFE 180 

of European ancestry. We also sequenced an additional 662 individuals with sporadic NAFE. 181 

We compared these three groups of patients with epilepsy to 3,877 controls, who were 182 

unrelated individuals of European ancestry with no known epilepsy diagnosis.  183 

 184 

Among our familial GGE cohort, no individual gene achieved study-wide significant 185 

enrichment for qualifying variants (Figure 1, appendix). Of the total 76,313 qualifying 186 

variants in the GGE primary analysis, 15.0% were found among cases in the familial GGE 187 

cohort. We then found that among the 76,313 qualifying variants, four unique variants 188 

overlapped a codon previously reported to have a pathogenic-classified epilepsy variant 189 
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based on the disease-associated variant catalogues of ClinVar, the Online Mendelian 190 

Inheritance in Man (OMIM), or the Human Gene Mutation Database (HGMD). All four 191 

variants (two SCN1A, one GABRG2, and one SCN1B; appendix) were found among the 192 

familial GGE cohort, an improbable enrichment given the expected proportion of 15.0% 193 

(p=5.1x10
-4

, two-tailed exact binomial test). Through an evaluation of the scientific literature, 194 

these four cases were confirmed as unrelated to those families reported in the literature. 195 

 196 

While no single gene attained study-wide significance in the familial GGE analysis, three 197 

known epilepsy genes (KCNQ2, GABRG2, and SCN1A), were among the top ten case-198 

enriched genes in the primary analysis (Figure 1). A hypergeometric test was run at each of 199 

the gene ranks occupied by one of the 43 established epilepsy genes (appendix), and we 200 

found that the enrichment was greatest at rank 151 whereby seven of the 43 known epilepsy 201 

genes had been accounted for (hypergeometric p=5.8x10
-8

; appendix). 202 

 203 

 When we assessed enrichment among six biologically informed gene-sets, we found that the 204 

familial GGE cohort had a significant enrichment of ultra-rare functional variation among 43 205 

known dominant epilepsy genes (p=9.1x10
-8

, OR=2.3 [95% C.I. 1.7–3.2]; Table 2) and a 206 

subset of 33 genes known to contribute to epileptic encephalopathy (p=2.6x10
-7

, OR=2.6 207 

[95% C.I. 1.8–3.6]).
3
 We confirmed that the signal of enrichment for qualifying variants 208 

among known epilepsy genes was consistently greater than the control rate across groupings 209 

of the familial GGE cohort, reflecting the number of affected relatives (appendix). While they 210 

did not achieve study-wide significance (defined as p< 8.9x10
-7

), we also investigated 211 

qualifying variant enrichment among the fragile X mental retardation protein associated 212 

genes,
22

 the genes encoding the NMDA receptor (NMDAR), and neuronal activity-regulated 213 
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cytoskeleton-associated protein, postsynaptic signalling complexes,
23

 mouse seizure-214 

associated orthologs,
24

 and ion channel protein-coding genes
25

 (Table 2). None of these gene-215 

set tests reported enrichment of neutral variation.  216 

 217 

Among the primary analysis of our familial NAFE cohort (figure 2A), DEPDC5 achieved 218 

study-wide significance (OR 8.1 [95% C.I. 3.6–18.3], p=1.8x10
-7

). LGI1 did not achieve 219 

study-wide significance (OR 29.9 [95% C.I. 6.0–288.0], p=1.4x10
-6

). Established epilepsy 220 

genes PCDH19 (OR 22.4 [95% C.I. 4.0–226.4], p=6.4x10
-5

), SCN1A (OR 5.5 [95% C.I. 2.3–221 

12.9], p=9.0x10
-5

) and GRIN2A (OR 7.5 [95% C.I. 2.2–25.1], p=5.3x10
-4

) occupied the 3
rd

 – 222 

5
th

 genome-wide ranks (appendix), but were not study-wide significant after correcting for 223 

the 56,004 tests (Bonferroni corrected p = 1). A hypergeometric test indicated that it was 224 

highly improbable for five of the 43 known dominant epilepsy genes to occupy the top five 225 

positions of the primary analysis by chance (p=5.7x10-14) (appendix).  226 

 227 

Of 74,272 qualifying variants identified in the primary analysis of 525 individuals with 228 

familial NAFE and 3,877 controls, 9,092 (12.2%) of these were found among the familial 229 

NAFE cases. Among the 74,272 qualifying variants, nine variants overlapped a codon of a 230 

ClinVar, OMIM, or HGMD literature-reported pathogenic variant in a confirmed unrelated 231 

family. All nine unique variants (three DEPDC5, three PCDH19, one CHRNB2, one GRIN2A 232 

and one LGI1 variant; appendix) were found among nine distinct NAFE cases of the 233 

combined 4,402 unrelated samples used in the familial NAFE collapsing analysis, despite the 234 

expected proportion being 12.2% (exact binomial test p=6.2x10
-9

). 235 

The known dominant epilepsy gene-set (OR=3.6 [95% CI 2.7–4.9], p=1.1x10
-17

) and the 236 

epileptic encephalopathy gene-set (OR=3.3 [95% CI 2.3–4.7], p=5.0x10
-11

) were study-wide 237 

significantly enriched for qualifying variants among the primary analysis of familial NAFE 238 

cases (Table 2). As observed in the familial GGE cases, the signal of enrichment for 239 
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qualifying variants among known epilepsy genes remained consistently greater than the 240 

control rate across groupings of the familial NAFE cohort stratified by the number of affected 241 

relatives (appendix). Presumably neutral variation was not significantly enriched among any 242 

gene-set. Under the loss-of-function model, DEPDC5 achieved study-wide significance 243 

(OR=53.07, [95% C.I. 12.1–481.3], p=9.6x10
-12

), with 14 (2.7%) of familial NAFE cases 244 

having a DEPDC5 loss-of-function variant compared to only two (0.05%) controls. Focusing 245 

solely on PolyPhen-2 ‘probably damaging’ missense DEPDC5 qualifying variants showed 246 

that they were non-significant for enrichment (3 [0.6%] of 525 cases vs. 12 [0.3%] of 247 

3877controls; OR=1.9 [95% C.I. 0.3–6.9], p=0.41; Figure 2B and appendix). Results from 248 

the list of 43 known dominant epilepsy genes that achieved an uncorrected p<0.05 in the 249 

primary or loss-of-function models are listed in the appendix.  250 

 251 

Sanger sequencing was used to validate a subset of qualifying variants found among 19 252 

established and 13 candidate epilepsy genes (appendix). Our rate of Sanger validation was 253 

97.0% (128/132) of the qualifying variants identified through the collapsing tests (appendix). 254 

When available, we also Sanger sequenced qualifying variants among affected first-degree 255 

relatives of index cases used in the collapsing analyses. We looked at six genes where we had 256 

enough affected first-degree relatives to be sufficiently powered to achieve an uncorrected 257 

p<0.05 from a test of preferential segregation (appendix). Comparing to the expected rate of 258 

50%, SCN1A (88.2% co-occurrence; p=1.2x10
-3

), DEPDC5 (100% co-occurrence; p=4.9x10
-

259 

4
) and GRIN2A (100% co-occurrence; p=7.8x10

-3
) had significant co-occurrence among 260 

affected first-degree family members, after correcting for the six studied genes (adjusted 261 

α=8.3x10
-3

; appendix).  262 

 263 
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To explore which variants, as a function of MAF, are most important to the observed risk 264 

signal we performed conditional analyses (appendix). These analyses show that among the 265 

observed epilepsy risk signal, beyond the ultra-rare qualifying variants (i.e., absent in EVS 266 

and ExAC) there is no significant contribution from variants with minor-allele frequencies up 267 

to 0.1% population MAF. This was true for both the familial GGE and familial NAFE 268 

populations (Figure 3; appendix).  269 

 270 

Comparing 662 sporadic NAFE cases to controls did not identify study-wide significant 271 

genes across any of the three models (appendix). Of the five previously described familial 272 

NAFE top ranked genes, we found that only LGI1 achieved an uncorrected p-value of less 273 

than 0.05, (OR 8.8 [95% C.I. 1.0–105.7], p=0.025). None of the tested gene-sets were 274 

significantly enriched with qualifying variants among sporadic NAFE cases (Table 2, Figure 275 

3). 276 

 277 

DISCUSSION 278 

In this study, we demonstrate the presence of clear genetic risk signal for common epilepsies 279 

across genes established as responsible for familial and rare severe epilepsies. In our analysis 280 

of a cohort of individuals with familial NAFE, we found that five established epilepsy genes 281 

(DEPDC5, LGI1, PCDH19, SCN1,A and GRIN2A) occupy the top five positions genome-282 

wide, and after correcting for background variation, the collection of these five genes 283 

contribute to approximately 8% of patients with familial NAFE. Sampling from a similarly 284 

sized familial GGE collection identified three established epilepsy genes (KCNQ2, SCN1A, 285 

and GABRG2) ranking among the top ten genes. Power estimates highlight the potential for 286 

new epilepsy gene discovery using this framework on larger sample sizes (appendix). Using 287 
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the example from LGI1, while we found only two qualifying variants among 3,877 controls 288 

(0.05%), identifying eight familial NAFE case carriers in the primary analysis (1.5% of the 289 

familial NAFE cohort) was still inadequate to achieve study-wide significance (p<8.9x10
-7

) 290 

for this known familial NAFE gene. Assuming the sampled rates for LGI1 case and control 291 

carriers remain the same, we estimate that LGI1 would achieve study-wide significance with 292 

the inclusion of approximately twice as many controls and 70 more unrelated familial NAFE 293 

cases. 294 

As in earlier studies, our data show that SCN1A contributes to risk in both the familial GGE 295 

and familial NAFE epilepsy cohorts
11

 and this enrichment is not explained by diagnoses of 296 

generalized epilepsy with febrile seizures plus (GEFS+). SLC9A2 was also among the top 20 297 

genes in both the familial NAFE and familial GGE cohort analyses; however, it did not reach 298 

study-wide significance.No clear risk signal for epilepsy was found among the sporadic 299 

NAFE cohort. This might be explained by the possibility that non-genetic (acquired) causes 300 

play a more important role among individuals with sporadic NAFE, leading to substantially 301 

reduced power but otherwise similar genetics. Other unexplored genetic contributions to the 302 

sporadic NAFE cohort include somatic mutations arising later in development, limited to the 303 

brain or at undetectable levels in blood-extracted DNA using conventional whole-exome 304 

sequencing.  305 

Among the most important findings in this work is our ability to identify clear risk signal in 306 

these data and subsequently show that the observed risk signal is concentrated among the 307 

rarest variants in the human population. In fact, among the 43 established dominant epilepsy 308 

genes we have shown that there is no evidence of risk contribution from variants observed at 309 

greater than 0.005% allelic frequency. This, however, does not preclude any other 310 

contributions to risk being present among currently unrecognized epilepsy risk genes. This 311 

work not only illustrates the value of large reference control variant databases,
19

 but provides 312 
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clinically relevant information concerning the frequency spectrum of risk variants for a 313 

common complex disease. 314 

A new paradigm is emerging for the treatment of rare devastating epilepsies, where 315 

treatments are being targeted to the precise genetic cause of disease.
3, 26-28

 For example, 316 

children with KCNT1 gain-of-function mutations have been treated with quinidine
27, 29

 while 317 

patients with GRIN2A gain-of-function mutations have been treated with memantine, a 318 

specific NMDA receptor blocker.
28, 30

 As this paradigm becomes more established, a critical 319 

question for the field is whether the approach will also apply to common epilepsies. If so, the 320 

field, which is currently accustomed to undertaking large randomised controlled trials in 321 

broad phenotypes, needs to rapidly develop a framework for classification based on ultra-rare 322 

variants in what is effectively a collection of rare genetic diseases. The work presented here 323 

demonstrates that many genes responsible for devastating rare and familial epilepsies also 324 

contribute to more common epilepsies, and it is still the ultra-rare variants that are relevant in 325 

those genes. This suggests that the emerging precision medicine paradigm of targeting 326 

treatments to the underlying causes of disease in the rarest epilepsies may also find 327 

application among the common epilepsies.   328 
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RESEARCH IN CONTEXT 329 

Evidence before this study 330 

The genetic underpinnings of the common epilepsies are largely unknown, especially the 331 

relative contributions of common variants of small effect size versus rare variants of large 332 

effect, where opportunities for novel therapeutic strategies may be greater.  We searched 333 

PubMed for the terms “exome sequencing” and “common epilepsy” for reports published 334 

before June 28, 2016, with no language restrictions. There were no reports of exome 335 

sequencing of large case collections of common complex epilepsies. Although exome 336 

sequencing studies have been successful in implicating numerous genes and finding the 337 

relevant mutations for individuals with rare severe paediatric epilepsies, including epileptic 338 

encephalopathies, estimating the risk contribution from the ultra-rare protein-coding variants 339 

has been less clear for many of the common epilepsy syndromes. 340 

Added value of this study 341 

We used whole-exome sequencing on a large collection of two common epilepsy syndromes, 342 

genetic generalized epilepsy (GGE) and non-acquired focal epilepsy (NAFE), to search for an 343 

excess of ultra-rare deleterious qualifying variants, and compared the qualifying variant rates 344 

found among cases to background rates estimated from sequenced controls. Among familial 345 

index cases sampled from the common epilepsies, we found a significant excess of ultra-rare 346 

deleterious variation within known epileptic encephalopathy genes. We also demonstrate that 347 

the epilepsy risk signal observed in the known epilepsy genes is accounted for by the ultra-348 

rare class of variants that are absent among large reference control cohorts, such as ExAC and 349 

EVS. Variants in known epilepsy genes that were predicted to be deleterious, but found at 350 

very low frequencies among the population reference cohorts, showed no evidence of 351 

contribution to the observed epilepsy risk signal.  352 
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Implications of all the available evidence 353 

The present findings provide three key conclusions important to our understanding of the 354 

common epilepsies. First, identifying significant enrichment of ultra-rare deleterious variants 355 

among established epilepsy genes illustrates that there are genuine signals to be found using 356 

the analysis framework presented here. Secondly, we showed that the precision medicine 357 

framework that is emerging for rare epilepsies can be expected to find applications among 358 

more common epilepsies. Finally, we showed that the risk signals among the common 359 

complex forms of epilepsy come from the rarest variants in the human population, providing 360 

the clearest insight currently available into the genetic variants underlying this common 361 

complex disorder. Further research is warranted to understand to what extent these findings 362 

can be applied to clinical practice. 363 

 364 

  365 
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Cohort Model 

Internal 

MAF(%) 

External 

MAF(%) 

Variant Effects 

# Genes with >0 

qualifying variant(s) 

CCDS represented 

in the tests (%) 

Familial 

GGE  

Primary^ 0.05% 0% 

LoF 

inframe insertions or deletions  

PolyPhen-2 (HumDiv) “probably” damaging 

15,515 

30.3Mbp (91.1%) 

LoF 0.1% 0.1% LoF 10,712 

Common 

(0.1% MAF) 

0.1% 0.1% 

LoF 

inframe insertions or deletions 

PolyPhen-2 (HumDiv) “probably” damaging 

17,118 

Presumed 

Neutral 

0.05% 0% Synonymous substitution 14,959 

Familial 

NAFE 

Primary^ 0.05% 0% 

LoF 

inframe insertions or deletions  

PolyPhen-2 (HumDiv) “probably” damaging 

15,438 

30.5Mbp (91.7%) 

LoF 0.1% 0.1% LoF 10,601 

Common 

(0.1% MAF) 

0.1% 0.1% 

LoF 

inframe insertions or deletions 

PolyPhen-2 (HumDiv) “probably” damaging 

17,089 

Presumed 0.05% 0% Synonymous substitution 14,871 
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Neutral 

Sporadic 

NAFE  

Primary^ 0.05% 0% 

LoF 

inframe insertions or deletions  

PolyPhen-2 (HumDiv) “probably” damaging 

15,507 

30.5Mbp (91.7%) 

LoF 0.1% 0.1% LoF 10,729 

Common 

(0.1% MAF) 

0.1% 0.1% 

LoF 

inframe insertions or deletions 

PolyPhen-2 (HumDiv) “probably” damaging 

17,108 

Presumed 

Neutral 

0.05% 0% Synonymous substitution 14,956 

Table 1. Qualifying variant criteria in the four models. 528 

^Primary analysis permits minor allele frequency (MAF) to be up to 0.05% (i.e., up to four alleles in the combined case and control test population) to accommodate for possible 529 

recurrent pathogenic variants that might be relevant to multiple cases. GGE = genetic generalized epilepsy. NAFE = non-acquired focal epilepsy. LoF = loss-of-function. MAF 530 

= minor allele frequency. CCDS = consensus coding sequence 531 

 532 
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Group Gene set 
Number 

of genes 

Average 

qualifying 

variants
a
 

Qualifying variants 

enrichment p-value  

(Odds Ratio [95% CI]) 

Neutral 

variation 

enrichment 

p-value 

Enrichment after 

removing the 43 

epilepsy genes 

p-value 

Familial 

GGE  

Known 43 0.052 
p = 9.1x10

-8  

(OR=2.3 [95% CI 1.7 - 3.2]) 
p = 0.86 N/A 

Known 

(EE) 
33 0.037 

p = 2.6x10
-7

  

(OR=2.6 [95% CI 1.8 - 3.6]) 
p = 0.34 N/A 

Ion 

Channel 
209 0.264 

p = 0.028
 

(OR=1.2 [95% CI 1.0 - 1.5]) 
p = 0.73 p = 0.21 

FMRP 823 1.481 
p = 0.034

 

(OR=1.3 [95% CI 1.0 - 1.6]) 
p = 0.94 p = 0.04 

NMDAR 

& ARC 
78 0.067 

p = 0.004
 

(OR=1.6 [95% CI 1.1 - 2.1]) 
p = 0.80 p = 0.007 

MGI 

Seizure 
235 0.269 

p = 0.003
 

(OR=1.3 [95% CI 1.1 - 1.6]) 
p = 0.97 p = 0.17 

Familial 

NAFE  

Known 43 0.055 
p = 1.1x10

-17 

(OR=3.6 [95% CI 2.7 - 4.9]) 
p = 0.87 N/A 

Known 

(EE) 
33 0.037 

p = 5.0x10
-11

 

(OR=3.3 [95% CI 2.3 - 4.7]) 
p = 0.65 N/A 

Ion 

Channel 
209 0.264 

p = 1.9x10
-4 

(OR=1.5 [95% CI 1.2 - 1.8]) 
p = 0.47 p = 0.05 

FMRP 823 1.466 
p = 0.77 

(OR=1.0 [95% CI 0.8 - 1.2]) 
p = 0.77 p = 0.38 

NMDAR 

& ARC 
78 0.061 

p = 0.43
 

(OR=0.8 [95% CI 0.5 - 1.3]) 
p = 0.62 p = 0.40 

MGI 

Seizure 
235 0.261 

p = 0.05
 

(OR=1.2 [95% CI 1.0 - 1.5]) 
p = 0.81 p = 0.87 

Sporadic 

NAFE 

Known 43 0.045 
p = 0.27 

(OR=1.2 [95% CI 0.8 - 1.8]) 
p = 0.27 N/A 

Known 

(EE) 
33 0.030 

p = 0.79 

(OR=0.9 [95% CI 0.5 - 1.5]) 
p = 0.49 N/A 

Ion 

Channel 
209 0.251 

p = 0.34 

(OR=0.9 [95% CI 0.7 - 1.1]) 
p = 0.88 p = 0.25 

FMRP 823 1.461 
p = 0.95 

(OR=1.0 [95% CI 0.8 - 1.2]) 
p = 0.92 p = 0.94 

NMDAR 

& ARC 
78 0.063 

p = 0.65 

(OR=1.1 [95% CI 0.8 - 1.5]) 
p = 0.49 p = 0.70 

MGI 

Seizure 
235 0.254 

p = 0.36 

(OR=0.9 [95% CI 0.7 - 1.1]) 
p = 0.33 p = 0.33 

Table 2. Gene-set enrichment tests. P-values are from a logistic regression model that regresses the 533 

case/control status of a sample on the presence (1) or absence (0) of at least one qualifying variant among the 534 

corresponding gene set (Primary model). Reported p-values are uncorrected; the study-wide multiplicity-535 

adjusted significance threshold α = 8.9x10
-7

. All tests use the individual’s gender, exome-wide tally of 536 

qualifying variants, and the individual’s gene-list-specific tally of rare neutral (synonymous) variation as 537 

correction factors (appendix). Known = 43 established dominant human epilepsy genes.
3
 Known (EE) = A 538 

subset of genes securely implicated with epileptic encephalopathies. Ion Channel = genes coding for ion 539 
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channels.
25

 FMRP = fragile X mental retardation protein  associated genes.
22

 NMDAR & ARC = NMDA 540 

receptor and neuronal activity-regulated cytoskeleton-associated protein synaptic transmission genes .
23

 MGI 541 

Seizure = mouse orthologs linked with seizure phenotypes in the Mouse Genome Database.
24

  
a
Average number 542 

of qualifying variants in the corresponding gene set, per sample in the test population.   543 
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Figure 1: Familial GGE primary model analysis. 15,515 genes had at least one case or control 544 

carrier (table 1). Qualifying variants were defined as a minor allele frequency <0.05% in internal case 545 

and control, and absent among external reference cohorts. Variants are annotated as loss-of-function, 546 

inframe insertions or deletions, or missense predicted to be “probably damaging” by PolyPhen-2 547 

(HumDiv). No gene achieved study-wide significance (adjusted α < 0.05/[18668 * 3] = 8.9x10-7
). 548 

549 
  550 
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Figure 2: Familial NAFE primary model analysis. (A) 15,438 genes had at least one case or control carrier (table 1). Qualifying variants have a minor allele 551 

frequency <0.05% in internal case and control, and are absent among external reference cohorts. Variants are annotated as loss-of-function, inframe insertions or 552 

deletions, or missense predicted to be “probably damaging” by PolyPhen-2 (HumDiv). Only DEPDC5, achieved study-wide significance (adjusted α < 553 

0.05/[18668 * 3] = 8.9x10
-7

). (B) 10,601 genes had at least one case or control carrier (table 1). Qualifying variants are variants with a population MAF<0.1% and 554 

annotated as loss-of-function effects. Only DEPDC5 achieved study-wide significance.    555 

 556 
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Figure 3: Enrichment of qualifying variants among 43 known epilepsy genes across increasing 557 

minor allele frequency bins. The ultra-rare variation bin reflects qualifying variants from the 558 

primary analyses. The 0.005% MAF (conditional) bin represents qualifying variants with a MAF 559 

greater than 0% but no greater than 0.005% in ExAC. The 0.1% MAF (conditional) bin represents 560 

qualifying variants with a MAF greater than 0.005% but no greater than 0.1% in ExAC. The neutral 561 

(synonymous)bin represents ultra-rare putatively neutral variants across the 43 epilepsy genes. 562 

Multivariate conditional analyses for the (A) familial GGE population (B) familial NAFE population 563 

(C) sporadic NAFE 564 

 565 
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