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Abstract— Ultra-reliability and low latency are two key1

components in 5G networks. In this letter, we investigate the2

problem of ultra-reliable and low-latency communication in3

millimeter wave-enabled massive multiple-input multiple-output4

networks. The problem is cast as a network utility maximiza-5

tion subject to probabilistic latency and reliability constraints.6

To solve this problem, we resort to the Lyapunov technique,7

whereby a utility-delay control approach is proposed, which8

adapts to channel variations and queue dynamics. Numerical9

results demonstrate that our proposed approach ensures reliable10

communication with a guaranteed probability of 99.99%, and11

reduces latency by 28.41% and 77.11% as compared to baselines12

with and without probabilistic latency constraints, respectively.13

Index Terms— 5G, massive MIMO, mmWave, ultra-reliable14

low latency communications (URLLC).15

I. INTRODUCTION16

CURRENTLY, millimeter wave (mmWave) and massive17

multiple-input multiple-output (MIMO) techniques are18

investigated to provide reliable communication with an over-19

the-air latency of few milliseconds and extreme throughput [1].20

While massive MIMO with large degrees of freedom provides21

high energy and spectral efficiency [2], mmWave frequency22

bands provide large bandwidth [3]. In addition, due to the short23

wavelength of mmWaves, large antenna array can be packed24

into highly directional beamforming, which makes massive25

MIMO practically feasible [4]. Thus far, most of existing26

works on mmWave-enabled massive MIMO systems focus27

mainly on providing capacity improvement [4], while latency28

and reliability are not addressed. Although latency and reli-29

ability are applicable to many scenarios (e.g. mission-critical30
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applications), in this work, we are interested in the integration 31

of mmWave communication and massive MIMO techniques, 32

which holds the promise of providing great enhancements of 33

the overall system performance [1], [2], [4]. Specifically, this 34

letter is concerned with addressing the fundamental question in 35

mmWave-enabled massive MIMO systems: “how to simultane- 36

ously provide order of magnitude capacity improvements and 37

latency reduction?" By invoking the Lyapunov optimization 38

framework, an utility-optimal solution is obtained to maximize 39

network throughput subject to queuing stability [5]. This solu- 40

tion establishes a utility-delay tradeoff, which achieves utility- 41

optimality at the price of large queuing delays [5]. To cope 42

with this shortcoming, in this letter the Lyapunov framework 43

is extended to incorporate probabilistic latency and reliability 44

constraints, which takes into account queue length, arrival 45

rate, and channel variations with a guaranteed probability. 46

By applying the drift-plus-penalty technique, the problem is 47

decoupled into a dynamic latency control and rate allocation. 48

Here, the latency control problem is a difference of convex 49

(DC) programming problem, which is solved efficiently by 50

the convex-concave procedure (CCP) [6]. 51

II. SYSTEM MODEL 52

Consider the downlink (DL) transmission of a single 53

cell massive MIMO system1 consisting of one macro base 54

station (MBS) equipped with N antennas, and a set, 55

M = {1, . . . , M}, of single-antenna user equipments (UEs). 56

We assume that N ≥ M and N � 1. Further, the co-channel 57

time-division duplexing (TDD) is considered in which the 58

MBS estimates channels via the uplink phase. We denote the 59

propagation channel between the MBS and the mth UE as 60

hm = √
N�

1/2
m h̃m , where �m ∈ CN×N depicts the antenna 61

spatial correlation, and the elements of h̃m ∈ CN×1 are 62

independent and identically distributed (i.i.d.) with zero mean 63

and variance 1/N . In addition, channels experience flat and 64

block fading, and imperfect channel state information (CSI) is 65

assumed. As per [9], the estimated channel can be modeled 66

as ĥm = √
1 − τ 2

mhm + τm
√

N�
1/2
m zm,∀ m ∈ M . Here, 67

zm ∈ CN×1 denotes the estimated noise vector which 68

has i.i.d. elements with zero mean and variance 1/N , and 69

τm ∈ [0, 1] reflects the estimation accuracy; in case of per- 70

fect CSI, τm = 0. Given the estimated channel matrix 71

Ĥ = [ĥ1, · · · , ĥM ] ∈ CN×M , the MBS utilizes the reg- 72

ularized zero-forcing (RZF) precoder with the precoding 73

1Our model can be extended to multi-cell massive MIMO systems in
which the problem of inter-cell interference can be addressed by designing a
hierarchical precoder at the MBS [7], to mitigate both intra-cell and inter-cell
interference, or by applying an interference coordination approach [8].
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matrix, V = [v1, · · · , vM ] ∈ CN×M , which is given by74

V = (
Ĥ†Ĥ + NαIN

)−1Ĥ†. Note that the regularization para-75

meter α > 0 is scaled by N to ensure the matrix Ĥ†Ĥ+ NαIN76

is well-conditioned as N → ∞ [7]. Denoting all allocated77

powers in the diagonal matrix P = diag(p1, · · · , pM), we have78

the constraint Tr
(
PV†V

) ≤ P , with P the maximum transmit79

power of the MBS. With the aid of the results in [9, Th. 1],80

the transmit power constraint is81

1

N

M∑

m=1

pm

�m
≤ P, and pm ≥ 0, ∀ m ∈ M , (1)82

where the parameter �m is the solution to �m =83

1
N Tr

(
�m

( 1
N

∑M
m=1

�m
α+�m

+ IN
)−1). By designing the pre-84

coding matrix V and transmit power P, the ergodic85

DL rate of UE m ∈ M is rm(P) = E[log2(1 +86

(pm |h†
mvm |2)/(1 + ∑M

k=1,k 
=m pk|h†
mvk |2))]. Here, we invoke87

results from random matrix theory in order to get the deter-88

ministic equivalence for the ergodic DL rate [9]. In particular,89

as N ≥ M and N � 1, for a small fixed α, the ergodic90

DL rate almost surely converges to rm(P)
a.s.−−→ log2

(
1 +91

pm(1 − τ 2
m)

)
, ∀m ∈ M , where

a.s.−−→ denotes almost sure92

convergence [7], [9, Th. 2]. Moreover, we assume that the93

MBS has queue buffers to store UE data [5]. The queue length94

for UE m at time slot t is denoted by Qm(t) which evolves95

as follows:96

Qm(t + 1) = [Qm(t) − rm(t)]+ + am(t), ∀m ∈ M , (2)97

where [x]+ � max{x, 0}, and am(t) is the data arrival rate of98

UE m. Further, we assume that am(t) is i.i.d. over time slots99

with mean arrival rate λm and upper bounded by amax
m [5].100

III. PROBLEM FORMULATION101

According to Little’s law [10], the average delay is propor-102

tional to limT →∞ 1
T

∑T
t=1 E[Qm(t)]/λm . We use Qm(t)/λm103

as a delay measure and enforce an allowable upper bound104

d th
m . Note that the delay bound violation is related to reli-105

ability. Thus, taking into account the latency and reliability106

requirements, we characterize the delay bound violation with107

a tolerable probability. Specifically, we impose a probabilistic108

constraint on the queue size length for UE m ∈ M as follows:109

Pr
{ Qm(t)

λm
≥ d th

m

}
≤ εm , ∀t . (3)110

In (3), d th
m reflects the UE delay requirement. Here, εm � 1111

is the target probability for reliable communication.112

To reduce latency, the intuitive way is to send as many113

data as possible. However, this might over-allocate resources114

to UEs, i.e., rm(t) � Qm(t). Hence, we enforce a maximum115

rate constraint rmax
m for each UE m. Moreover, we enforce the116

MBS to guarantee for all UEs a certain level of QoS, i.e., the117

minimum rate requirement rmin
m ,∀ m ∈ M .118

We define the network utility as
∑M

m=1 ωm f (r̄m) where the119

time average expected rate r̄m = limT →∞ 1
T

∑T
t=1 E[rm(t)]120

and the non-negative weight ωm for each UE m. Additionally,121

we assume that f (·) is a strictly concave, increasing, and122

twice continuously-differentiable function. Taking into account123

these constraints presented above yields the following network 124

utility maximization: 125

OP : max
P(t)

M∑

m=1

ωm f (r̄m) (4a) 126

subject to rmin
m ≤ rm(t) ≤ rmax

m , ∀ m ∈ M , ∀ t, 127

(1) and (3). (4b) 128

Our main problem involves a probabilistic constraint (3), 129

which cannot be addressed tractably. To overcome this chal- 130

lenge, we apply Markov’s inequality [11] to linearize (3) such 131

that Pr
{ Qm(t)

λm
≥ d th

m

} ≤ E[Qm(t)]
λmd th

m
. Then, (3) is satisfied if 132

E[Qm(t)] ≤ λmd th
m εm , ∀ m ∈ M , ∀ t . (5) 133

Thereafter, we consider (5) to represent the latency and 134

reliability constraint. Assuming that {am(t)|∀ t ≥ 1} is a 135

Poisson arrival process [11], we have that E[Qm(t)] = tλm − 136∑t
τ=1 rm(τ ) which is plugged into (5). Finally, we obtain 137

rm(t) ≥ tλm − λmd th
m εm −

t−1∑

τ=1

rm(τ ), ∀ m ∈ M , ∀ t, (6) 138

which represents the minimum rate requirement in slot t 139

for UE m for URLLC. Here, we transform the probabilistic 140

latency and reliability constraint (3) into one linear constraint 141

(6) of instantaneous rate requirements, which helps to analyse 142

and optimize the URLLC problem. Combining (4b) and (6), 143

we rewrite OP as follows: 144

max
P(t)

M∑

m=1

ωm f (r̄m) (7a) 145

subject to r0
m(t) ≤ rm(t) ≤ rmax

m , ∀ m ∈ M , ∀ t, and (1) 146

(7b) 147

with r0
m(t) = max{rmin

m , tλm − λmd th
m εm − ∑t−1

τ=1 rm(τ )}. 148

IV. LYAPUNOV OPTIMIZATION FRAMEWORK 149

To tackle (7), we resort to Lyapunov framework [5]. Firstly, 150

for each DL rate rm(t), we introduce the auxiliary variable 151

vector ϕ(t) = (ϕm(t)|∀ m ∈ M ) that satisfies 152

ϕ̄m = lim
T →∞

1

T

T∑

t=0

E
[
ϕm(t)

] ≤ r̄m, ∀ m ∈ M , (8) 153

ϕ0
m(t) ≤ ϕm(t) ≤ rmax

m , ∀ m ∈ M , ∀ t, (9) 154

with ϕ0
m(t) = max{rmin

m , tλm − λmd th
m εm − ∑t−1

τ=1 ϕm(τ )}. 155

Incorporating the auxiliary variables, (7) is equivalent to 156

LP : max
P(t),ϕ(t)

lim
T →∞

1

T

T∑

t=1

M∑

m=1

ωmE[ f (ϕm(t))] 157

subject to (1), (8), and (9). 158

In order to ensure the inequality constraint (8), a virtual queue 159

vector Y(t) = (Ym(t)|∀ m ∈ M ) is introduced, where each 160

element evolves according to 161

Ym(t + 1) = [Ym(t) + ϕm(t) − rm(t)]+, ∀ m ∈ M . (10) 162
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Subsequently, we express the conditional Lyapunov drift-plus-163

penalty for each time slot t as:164

E

[ M∑

m=1

[1

2
Ym(t+1)2− 1

2
Ym(t)2−νm(t)wm f (ϕm(t))

]∣∣Y(t)
]
.165

(11)166

In (11), νm(t) is the control parameter which affects the utility-167

queue length tradeoff. This control parameter is conventionally168

chosen to be static and identical for all UEs [5]. However, this169

setting does not hold for system dynamics (e.g., instantaneous170

data arrivals) and the diverse system configuration (i.e., dif-171

ferent delay and QoS requirements). Thus, we dynamically172

design these control parameters. From the analysis in the173

Lyapunov optimization framework [5], we can find Ym(t) ≤174

νm(t)ωmπm + amax
m with πm being the largest first-order175

derivative of f (x). Letting ωm = 1,∀ m ∈ M , we have176

the lower bound πmνm(t) ≥ ν0
m(t),∀ m ∈ M , for selecting177

the control parameters, where ν0
m(t) = max{Ym(t) − amax

m , 1}.178

Subsequently, following the straightforward calculations of the179

Lyapunov drift-plus-penalty technique we obtain180

(11) ≤ E

[ M∑

m=1

(
Ym(t)ϕm(t) − νm(t)ωm f

(
ϕm(t)

))
(12a)181

−
M∑

m=1

Ym(t)rm
(
P(t)

) + C
∣
∣Y(t)

]
. (12b)182

Due to space limitation, we omit the details of the constant183

value C which does not influence the system performance [5].184

We note that the solution to LP is acquired by minimizing185

the right-hand side (RHS) of (12a) and (12b) in every slot t .186

Further, (12a) is related to the reliability and QoS requirements187

while (12b) reflects optimal power allocation to UEs.188

A. Auxiliary Variable and Control Parameter Selection189

Considering the logarithmic fairness utility function,190

i.e., f (x) = log(x), minimizing the RHS of (12a) for each191

m ∈ M is formulated as:192

min
ϕm(t), νm(t)

Ym(t)ϕm(t) − νm(t) log
(
ϕm(t)

)
(13a)193

subject to πmνm(t) ≥ ν0
m(t), (13b)194

r0
m(t) ≤ ϕm(t) ≤ rmax

m . (13c)195

Before proceeding with (13), we rewrite −νm(t) log(ϕm(t)) in196

(13a), for any ϕm(t) > 0 and νm(t) > 0, as197

νm(t) log

(
νm(t)

ϕm(t)

)

︸ ︷︷ ︸
h0(ϕm , νm)

− νm(t) log
(
νm(t)

)

︸ ︷︷ ︸
g0(νm)

,198

in which both h0(ϕm, νm) (i.e., relative entropy function) and199

g0(νm) (i.e., negative entropy function) are convex functions.200

Since (13a) is the difference of convex functions while con-201

straints (13b) and (13c) are affine functions, problem (13)202

belongs to DC programming [12], which can be efficiently and203

iteratively addressed by the CCP [6]. The CCP algorithm to204

obtain the solution to problem (13) is detailed in Algorithm 1,205

which provably converges to the local optima of DC206

programming [6] (please refer to [6] for the formal proof).207

Algorithm 1 CCP Algorithm for Solving
Sub-Problem (13)

while m ∈ M do
Initialize i = 0 and a feasible point ν

(i)
m in (13b).

repeat
Convexify ĝ0(νm , ν

(i)
m ) = g0(ν

(i)
m ) + ∇g0(νm − ν

(i)
m ).

Solve:
min

ϕm ,νm
h0(ϕm , νm ) − ĝ0(νm , ν

(i)
m ) + Ymϕm

subject to (13b) and (13c),
Find the optimal ϕ

(i)�
m and ν

(i)�
m .

Update ν
(i+1)
m := ν

(i)�
m and i := i + 1.

until Convergence
end while

B. Power Allocation 208

The optimal transmit power in (12b) is computed by 209

min
P(t)

−
M∑

m=1

Ym(t)rm(P(t)) 210

subject to (1). 211

Here, the objective function is strictly convex for pm(t) ≥ 0, 212

∀ m ∈ M , and the constraints are compact. Therefore, the opti- 213

mal solution of P�(t) exists. 214

After obtaining the optimal auxiliary variable and transmit 215

power, we update the queues Qm(t + 1) and Ym(t + 1) as 216

per (2) and (10), respectively. 217

V. NUMERICAL RESULTS 218

We consider a single-cell massive MIMO system in which 219

the MBS, with N = 32 antennas and P = 38 dBm, is located 220

at the center of the 0.5 × 0.5 km2 square area. UEs (from 221

8 to 60 UEs per km2) are randomly deployed within the MBS’s 222

coverage with a minimum MBS-UE distance of 35 m. Data 223

arrivals follow a Poisson distribution with different means, 224

and the rate requirements are specified as rmax
m = 1.2λm, 225

rmin
m = 0.8λm,∀ m ∈ M . The system bandwidth is 1 GHz. The 226

path loss is modeled as a distance-based path loss with the line- 227

of-sight (LOS) model for urban environments at 28 GHz [13]. 228

d th and ε are set to 10 ms and 5%, respectively. The numerical 229

results are obtained via Monte-Carlo simulations over 10, 000 230

channel realizations. Furthermore, we compare our proposed 231

scheme with the following baselines: 232

1) Baseline 1 refers to the Lyapunov framework in which 233

the probabilistic latency constraint (3) is considered. 234

2) Baseline 2 is a variant of Baseline 1 without the prob- 235

abilistic latency constraint (3). 236

A. Impact of Arrival Rate 237

In Fig. 1, we report the average latency versus the mean 238

arrival rates λ = E[a(t)] for M = 16. At low λ, all schemes 239

do not violate latency constraints, and our proposed algorithm 240

outperforms other baselines with a small gap. At higher λ, 241

the average delay of baseline 2 increases dramatically as 242

λ > 1.8 Gbps, since baseline 2 does not incorporate the delay 243

constraint, whereas our proposed scheme reduces latency by 244

28.41% and 77.11% as compared to baselines 1 and 2, respec- 245

tively, when λ = 2.4 Gbps. When λ > 2.4 Gbps, the average 246

delay of all schemes increases, violating the delay requirement 247
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Fig. 1. Average latency versus mean arrival rates, M = 16 per km2.

Fig. 2. Tail distribution (CCDF) of latency.

Fig. 3. Average latency and avgUT versus number of users per km2.

of 10 ms. It can be observed that under a limited maximum248

transmit power, at very high traffic demand, the latency249

requirement could not be guaranteed. This highlights the trade-250

off between the arrival rate and latency. In Fig. 2, we report251

the tail distribution (complementary cumulative distribution252

function (CCDF)) of latency to showcase how often the system253

achieves a delay greater than target delay levels. In particu-254

lar, at λ = 2.4 Gbps, by imposing the probabilistic latency255

constraint (3), our proposed approach and baseline 1 ensure256

reliable communication with better guaranteed probabilities,257

i.e, Pr(delay > 7.5ms) < 10−4 and Pr(delay > 9.4ms) <258

10−4, respectively. In contrast, baseline 2 violates the latency259

constraint with a high probability, where Pr(delay > 10ms) =260

74.75%.261

B. Impact of User Density262

In Fig. 3, we compare the average user throughput (avgUT)263

and average latency of our proposed approach with the two264

baselines under the impact of user density, when λ = 2 Gbps. 265

Additionally, we consider the weighted sum rate maximization 266

(WSRM) case. The WSRM case is to find the system through- 267

put limit but suffers from higher latency. Since all users share 268

the same resources, the average delay (“solid lines”) increases 269

with the number of users M, whereas the avgUT (“dash 270

lines”) decreases. Fig. 3 further shows that when M > 24, 271

the delay of all schemes increases dramatically and is far- 272

above the latency requirement. Hence, only a limited number 273

of users can be served to guarantee the delay requirement, 274

above which, a tradeoff between latency and network density 275

exists. Our proposed approach achieves better throughput and 276

higher latency reduction than baselines 1 and 2, while the 277

WSRM case has the worst delay performance as expected. 278

Moreover, our proposed approach reaches Gbps capacity, 279

which represents the capacity improvement brought by the 280

combination of mmWave and massive MIMO techniques. 281

VI. CONCLUSION 282

In this letter, we have investigated the problem of mmWave- 283

enabled massive MIMO networks from a latency and relia- 284

bility standpoint. Specifically, the problem is modeled as a 285

NUM problem subject to the probabilistic latency/reliability 286

constraint and QoS/rate requirement. Numerical results show 287

that our proposed approach reduces the latency by 28.41% and 288

77.11% as compared to current baselines. 289
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