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Abstract—An emerging requirement for 5G systems is the
ability to provide wireless ultra-reliable communication (URC)
services with close-to-full availability for cloud-based applica-
tions. Among such applications, a prominent role is expected
to be played by mobile cloud computing (MCC), that is, by
the offloading of computationally intensive tasks from mobile
devices to the cloud. MCC allows battery-limited devices to run
sophisticated applications, such as for gaming or for the “tactile”
internet. This paper proposes to apply the framework of reliable
service composition to the problem of optimal task offloading in
MCC over fading channels, with the aim of providing layered,
or composable, services at differentiated reliability levels. Inter-
layer optimization problems, encompassing offloading decisions
and communication resources, are formulated and addressed
by means of successive convex approximation methods. The
numerical results demonstrate the energy savings that can be
obtained by a joint allocation of computing and communication
resources, as well as the advantages of layered coding at the
physical layer and the impact of channel conditions on the
offloading decisions.

Index Terms—Ultra-reliable communications, 5G, mobile cloud
computing, layered coding, call graph, application offloading.

I. INTRODUCTION

An emerging requirement for 5G systems is the ability to

provide wireless ultra-reliable communication (URC) services

with close-to-full availability for cloud-based applications (see,

e.g., [1]). Among such applications, a prominent role is

expected to be played by mobile cloud computing (MCC),

that is, by the offloading of computionally intensive tasks from

mobile devices to the cloud [2]. MCC allows battery-limited

devices to run sophisticated applications, such as for video

processing, object recognition, gaming, automatic translation

and medical monitoring, and can be an enabler of the “tactile”

internet [3], [4]. Well-known applications that are based on

MCC include Google Voice Search and Apple Siri.

Existing solutions for the optimization of the offloading

decisions for MCC generally abstract the contribution of the

underlying communication network by assuming reliable links

with fixed achievable rates (see, e.g., [2], [5] and references

therein). More recently, it was recognized that there is an
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Figure 1: An example of a call graph in the class of map-

reduce applications under study. Gray nodes correspond to

tasks that must be run at the mobile.

important interplay between the offloading decisions at the

application layer and the operation of the underlying com-

munication network, which can provide different trade-offs

between rate and energy expenditure at the mobile devices.

As a result, the inter-layer optimization of offloading decisions

and communication network parameters, such as transmission

powers, were studied in [6], [7] and references therein, as well

as in [8], [9]. In this line of work, the focus is on the resource

allocation of communication and computing functionalities,

and a key assumption is the reliability of the communication

links at the rates specified by current channel conditions and

by the power allocation. Furthermore, the applications to be

offloaded can be assumed to be unsplittable as in [6] or

splittable into constituent subtasks as in [8], [9].

The assumption of reliable communication is in practice too

strong when communication takes place over wireless fading

channels, especially when latency constraints prevent the use

of retransmission protocols to reduce the probability of error.

In light of this important motivation, this work aims at study-

ing the problem of joint optimization of offloading decisions

and communication system’s parameters by accounting for

the limited reliability of fading channels with given diversity

degrees.

At the application layer, we postulate, as in [10] (see also

[4]), that certain applications can be designed so as to ensure

service composition: the application can be run at different

levels of accuracy or quality of experience, with higher levels



requiring a larger number of CPU cycles. For example, in

an object recognition application based on video or image

frames, the first service level may correspond to identification

of dangerous obstructions, the second to the recognition of

landmarks, the third to the search of businesses of possible

interest, etc. We observe that the idea of service composition

is already implemented in scalable video coding and, more

generally, in successive refinement data compression. When

coupled with transmission with differentiated reliability levels

on the communication network, the approach will be referred

to as reliable service composition [10].

This paper proposes to apply the framework of reliable

service composition to the problem of optimal task offloading

in MCC over fading channels, with the aim of providing

layered, or composable, services at differentiated reliability

levels. We focus on a simple application call graph, exempli-

fied in Fig. 1, which is related to the popular “map-reduce”

programming model, in which multiple parallel tasks operate

between an input task that prepares the input (“map”) and an

output task that combines the outputs of the parallel tasks

“reduce”). In MCC, each one of the parallel task may be

offloaded or not. The application is designed, according to

the service composition principle, so that running the first

task T1, along with input and output tasks, ensures the basic

level of service, while the execution of successively more tasks

T2,T3, ... allows a higher-accuracy outcome to be obtained.

As an example, the parallel tasks may correspond to the

processing of different features to extract sufficient statistics

in a detection application.

For communication, we consider and compare both time

division (TD) transmission and superposition coding (SC),

where the latter has been widely studied for the transmission

successive refinement compression layers [11]. Inter-layer

optimization problems, encompassing offloading decisions and

communication resources, are formulated and addressed by

means of successive convex approximation methods [12].

The paper is organized as follows. In Section II, first the

system model is described and then optimization algorithms

over both offloading decisions and communication parameters

for TD and SC transmission are provided. Numerical results

are provided in Section III and the paper is concluded in

Section IV.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we define system model and problem for-

mulation.

A. System Model

We focus on the optimization of offloading decisions and

communication parameters for a given mobile user, which can

communicate to a base station (BS) via a fading wireless

channel. The BS is in turn connected to a cloud processor.

As discussed, the application to be run at the mobile is

characterized by a set of processing tasks that could be run

locally or remotely at the cloud.

Figure 2: Example of a compound call hypergraph.

Call Graph: A call graph is used to describe the relation-

ship between computing tasks (e.g., [2], [8]). In particular, in

this work, we focus on the class of “map-reduce”-type call

graphs, illustrated in Fig. 1, which is characterized by input

(“map”) task, to be run at the mobile; processing tasks Ti,

for i = 1, ...N , which may be offloaded; and an output task

(“reduce”) to be run at the mobile. As seen in Fig. 1, the

directed edge between input task and task Ti is labeled by the

size bIi in bits of the data needed for task Ti to run; while

the directed edge between each task Ti and the output task

is labeled by the number bOi of bits produced by the task.

Furthermore, each task Ti is labeled by the number of CPU

cycles vi required by its execution. Note that, if task Ti is

offloaded, bIi bits need to be transmitted in the uplink and bOi
bits should be received in the downlink direction.

Reliable Service Composition: According to the principle

of reliable service composition [10] (see also [4]), the output

task can provide services corresponding to different accuracy

or quality of experience levels depending on the number

of tasks Ti from which it receives data. In particular, it is

assumed that the tasks are ordered so that receiving from T1

allows to obtain a minimal acceptable performance, which is

referred to as Service Level 1 (SL(1)); processing the inputs

from T1 and T2 yields an enhanced performance, denoted as

SL(2); and so on for every subset {T1, ...,Ti} for i = 1, ..., N ,

which yields a service level SL(i), with full quality obtained

when the outputs of all tasks {T1, ...,TN} are available at the

output task. Note that extensions in which more general nested

subsets correspond to different quality of experience metrics

could be accommodated in the framework.

Reliable service composition requires that the ith service

level (SL(i)) be obtained with probability ri, with r1 ≥ r2 ≥
... ≥ rN . For example, in order to ensure ultra-reliability,

SL(1) may be provided with reliability r1 = 99%, while a

lower reliability may be sufficient for higher service levels.

We define also the parameters r̃i = ri/ri−1, with r̃1 = r1,

where r̃i measures the probability that SL(i) is realized given

that SL(i−1) is also attained. This follows from the definition

of SLs, which imply that SL(i) can only be realized if SL(i−1)

is.

Offloading: The offloading decisions are described by

binary variables Ii. Specifically, the ith task can be either

offloaded, which is indicated by setting Ii = 1, or computed
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locally, indicated as Ii = 0. The set of offloaded tasks is

represented by T , i.e., T = {i ∈ {1, ..., N} : Ii = 1}. If

task Ti is offloaded, a transmission power P I
i is allocated

to send bIi bits in the uplink, while PO
i is the allocated

transmission power to send bOi bits in the downlink direction.

Rayleigh fading is used to model the communication channel

between user and BS, with a diversity order of d in both uplink

and downlink. For the sake of simplicity and concreteness,

selection diversity is utilized to exploit the diversity. It is

assumed that mobile has no knowledge about the channel

while the BS has full knowledge. Channels in the uplink and

downlink direction are independent of each other. Furthermore,

we let fM and fC be mobile and cloud computing frequencies,

respectively, in CPU cycles per second. We also denote as PM

the power needed to compute locally at the mobile device.

Finally, the application latency constraint states that maximum

allowed delay, including the time need for communication and

computing, is Lmax second.

Compound Hypergraph: To simplify the interpretation

of the reliable service composition requirements, we now

introduce an alternative graphical representation that we refer

to as compound hypergraph. While this is not necessary for

what follows, we believe it to be a useful way to visualize the

reliability requirements. To elaborate, given a call graph as in

Fig. 1, a compound call hypergraph can be constructed in order

to represent the reliable service composition requirements as

follows:

• Set input node and edges between input task and tasks

Ti as in original call graph;

• Replicate the output task N times, the first corresponding

to SL(1), the second to SL(2) and so on. We refer to each

output node by the corresponding service level;

• Connect task Ti to the output nodes SL(j) with j =
i, ..., N via a directed hyperedge with head in Ti and

tail given by the set {SL(i),SL(i + 1),...,SL(N )}. The

hyperedge is labeled by the size of the output of task

Ti, namely bOi .

Fig. 2 is an example of a compound call hypergraph. The

hypergraph formalism is useful to capture the fact that, if

task Ti is offloaded, bOi bits need to be received for all the

connected SL output tasks.

Time-division vs. superposition coding Two transmission

modes are considered for offloading, namely:

• Time-division (TD) transmission: Input bits bIi for i ∈ T
on the uplink and output bits bOi for i ∈ T on the

downlink are transmitted in separate time slots, each

of duration length LI
i and LO

i , respectively. More in

detail, in a time slot of duration LI , the bits for all

the offloaded tasks are encoded into different codewords

of the same length that are summed, i.e., superimposed,

for transmission in the uplink. The same is done for the

downlink in a time-slot of duration LO.

• Superposition coding (SC): Input bits bIi for i ∈ T on the

uplink and output bits bOi for i ∈ T on the downlink are

transmitted using superposition coding in two separate

time-slots of length LI and LO, respectively. The BS

in the uplink and the mobile in the downlink decode in

lexicographical order starting from the bits corresponding

to the lower index i by means successive interference

cancellation.

B. Design Problem Formulation

We focus on the problem of minimizing the energy con-

sumption at the mobile subject to the mentioned maximum

latency constraint and reliability constraints, as well as power

constraints at the base station. The resulting optimization

problem is stated as:

minimize
∑N

i=1

(

IiP
I
i L

I
i +

(1−Ii)vi
fM PM

)

subject to
∑N

i=1

(

Ii(L
I
i + LO

i ) +
Iivi
fC + (1−Ii)vi

fM

)

≤ Lmax

ρIi (P
I , LI

i , I) ≥
√
r̃i for i ∈ T

ρOi (P
O, LO

i , I) ≥
√
r̃i for i ∈ T

PO
i ≤ PDL

max for i ∈ T
P I
i ≥ 0, PO

i ≥ 0, LI
i ≥ 0, LO

i ≥ 0
Ii ∈ {0, 1}

variables {Ii, P I
i , P

O
i , LI

i , L
O
i }

(1)

where P
I = (P I

1 , ..., P
I
N ) and P

O = (PO
1 , ..., PO

N ) are

the vectors of transmission powers in uplink and downlink

directions, respectively; I = (I1, ..., IN ) is the vector collect-

ing all the offloading decisions; LI
i and LO

i are the uplink

and downlink transmission times, respectively, as introduced

above. Note that problem (1) applies to both TD and SC

transmissions, with the only caveat that, with SC, we have

the additional constraint that LI
i = LI and LO

i = LO for all

i = 1, ..., N . The functions ρOi (P
O, LO

i , I) and ρIi (P
I , LI

i , I)
represent the probabilities of success for the transmissions in

the uplink and in the downlink, respectively, for the offloading

of task Ti. These functions depend on whether the transmission

takes place via TD or SC, as further discussed below.

The objective function in (1) is the sum of transmission

energy at the user, which accounts for the offloaded tasks, and

of the local computing energy, for tasks that are run locally. In

a similar manner, the first constraint accounts for the latency

of both transmission and computing. The following reliability

constraints in (1) are justified by the fact that the reliability of

SL(i), conditioned on SL(i−1), is given by the product of the

probabilities of success for uplink and downlink transmissions.

This is because task Ti ∈ T is successfully offloaded as long

as both uplink and downlink transmissions are successful. The

problem formulation in (1) is obtained by imposing equal

reliability requirements on uplink and downlink. A problem

formulation with a more general balancing could be easily

defined, but is not further considered here. Finally, the fourth

constraint imposes a power limit on the transmission of the BS,

due to the power-limited, rather than energy-limited, nature of

BS transmission.

Problem (1) is a mixed integer program. To solve this

problem, we perform an exhaustive search over the binary

variable Ii and adopt the successive convex approximation

method of [12] to optimize over the remaining variables



namely {P I
i , P

O
i , LI

i , L
O
i } for fixed offloading variables. This

method is invoked since, as further detailed below, for fixed

offloading variables, problem (1) is not convex. For instance,

the objective function of problem (1) is a non-convex bilinear

function in the optimization variables (P I
i , L

I
i ).

We now specialize problem (1) to TD and SC transmission.

1) Time Division Transmission: For TD transmission, using

outage capacity arguments, the probability of a successful

transmission for the uplink can be written as (see Appendix):

ρIi (P
I
i , L

I
i , Ii)=









1−






1− exp

(

− 2
bI
i

LI
i
WI − 1

γIP I
i

)







d








(2)

and analogously for the downlink by substituting the super-

script ”O” for ”I”. In (2), γI stands for average signal-to-noise

ratio (SNR) of the uplink channel for a unitary transmit power,

i.e., for P I
i = 1. We define the downlink average SNR γO in

a similar way. The original problem (1) can be seen to be

non-convex due to the bilinearity of the objective. Using the

successive convex approximation method in [12], the original

problem (1) is solved as outlined in Table I by means of an

iterative procedure in which the current iterate is denoted as

st = {pIi , lOi , lIi , lOi }, where t is the iteration index. At each

iteration, the following strictly convex problem is solved:

minimize
∑N

i=1

(

Ii

(

pIi (L
I
i − lIi ) +

τI
i

2 ∥LI
i − lIi ∥2

+lIi (P
I
i − pIi ) +

τP
i

2 ∥P I
i − pIi ∥2

)

+ (1−Ii)vi

fM PM

)

subject to
∑N

i=1

(

Ii(L
I
i + LO

i ) +
Iivi

fC + (1−Ii)vi

fM

)

≤ Lmax

2

bI
i

LI
i
WI

−1
γIP I

i

+ ln(1− (1−
√
r̃i)

1
d ) ≤ 0 for i ∈ T

2

bO
i

LO
i

WO
−1

γOPO
i

+ ln(1− (1−
√
r̃i)

1
d ) ≤ 0 for i ∈ T

PO
i ≤ PDL

max for i ∈ T
P I
i ≥ 0, PO

i ≥ 0, LI
i ≥ 0, LO

i ≥ 0
variables {P I

i , P
O
i , LI

i , L
O
i }.

(3)

Note that all the constraints in the problem above are convex.

Also, the second and third constraints are obtained from simple

algebraic manipulations from the corresponding constraints in

(1). In Table I, the step sizes are updated as λt+1 = λt(1−ϵλt)
for t ≥ 0 with λ0 ∈ (0, 1] and ϵ0 ∈ (0, 1). The algorithm in

Table I is repeated until convergence for every value of Ii.
The minimum value of the objective over all possible choices

of Ii is taken as the final solution.

2) Superposition Coding Transmission: With SC, the prob-

ability of success for uplink transmission can be written as (see

Appendix):

ρIi (P
I
i , L

I , Ii)=1−









1− exp









− 2
bI
i

LIWI −1

γIP I
i
−



2

bI
i

LIWI −1





∑

N
j=i+1

γIP I
j

















d

(4)

and analogously for the downlink. Note that here the trans-

mission periods LI and LO do not depend on the task i as

explained above. As for TD, the reliability constraint can be

expressed as

2
bI
i

LIWI − 1

γIP I
i

− 1

γI
∑N

j=i+1 P
I
j −

(

ln(1− (1−
√
r̃i)

1
d )
)−1 ≤ 0

(5)

for the uplink and analogously for the downlink. Unlike TD,

these constraints are non-convex. However, they can be written

as the difference of two convex functions, which may be

dealt with as explained in [12] in the successive convex

approximation method by linearizing the negative term. This

yields the approximate reliability function:

2
bI
i

LIWI −1
γIP I

i

− 1

γI
∑

N
j=i+1

pI
j
−

(

ln(1−(1−
√
r̃i)

1
d )

)

−1 +

γI

(

∑

N
j=i+1

γIpI
j
−

(

ln(1−(1−
√
r̃i)

1
d )

)

−1)2

(

∑N
j=i+1(P

I
j − pIj )

)

≤ 0

(6)

where {pIi } represents the previous iterate. Following Table

I, the problem to be solved at each iteration is then (3), with

LI
i = LI and LO

i = LO as well as with the constraint above,

and the corresponding downlink constraint, in lieu of the third

and fourth constraints in (3).

III. NUMERICAL RESULTS

In this section, we provide some numerical examples based

on the analysis developed in the previous sections. We set

PM = 0.4 Watts; fM = 109 CPU cycles/s (e.g., Apple iPhone

6 processor has maximum clock rate of 1.4 GHz); fC = 1010

CPU cycles/s (e.g., AMD FX-9590 has a clock rate of 5 Ghz);

bandwidth W I = 1MHz and WO = 1MHz; and SNR levels

γI = γO = 0 dB.

We start by considering just the basic service level, namely

SL(1), in order to simplify the interpretation of the results

and to gain insight into the role of the diversity level d
on the offloading decisions. The reliability of SL(1) is set

to r1 = 0.99. Note that, given the presence of only one

offloadable task, TD and SC yield the same performance.

Table I: Successive convex approximation algorithm for TD

Initialization: Set t = 0, s0={pIi , p
O

i , l
I

i , l
I
o} feasible

λ0 ∈ (0, 1], ϵ0 ∈ (0, 1)
Step 1) If st satisfies a termination criterion: STOP

Step 2) Compute ŝ(st) as the solution of (3).

Step 3) Set st+1 = st + λt(ŝ(st)− st).
(S.4) t← t+ 1 and go to step 1.
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Figure 3: Mobile energy expenditure versus latency constraint

for a single service level (v = 2× 109 CPU cycles and bI1 =
bO1 = 1.4× 105 bits).

Fig. 3 presents the mobile energy versus latency constraint

Lmax for different diversity orders. If the tolerable latency is

low, then it is necessary to offload the task to the cloud since

local computing here takes around 1.7 seconds. For diversity

d = 1, the energy required to offload is outside the range

shown in the Fig. 1. An increase of diversity order provides

more reliable communication between mobile and cloud, and

therefore the offload of the task can be performed with a lower

energy expenditure. In particular, if d = 3, then it is optimal

to offload the task even for latencies larger than 1.7 seconds.

We emphasize that the discontinuity in the curves is due to

changes in the optimal offloading decisions.

We now consider reliable service composition with two

service levels, namely N = 2, accounting for both TD and SC

transmission modes. The reliability for the second level is set

to r̃2 = 0.9 and the first is still r1 = 0.99. The corresponding

mobile energy versus latency trade-offs are shown in Fig.

4 and Fig. 5, respectively. Note that here computing both

tasks locally requires a latency of approximately 3.6 seconds.

Considering first TD transmission, we observe from Fig. 4

that achieving low latency requires tolerating a high energy

cost by offloading both tasks. When increasing the latency,

the mobile has incentive to first offload the task with higher

computation cost, here the first task, while the second task is

run locally due to the lower energy consumption. For d = 2
and higher latencies, when the first task can be run locally, it

becomes optimal to offload only the second task; while, when

the latency is large enough, both tasks should be run locally.

With a larger latency, instead, the solution (I1 = 1, I2 = 0)

turns out to be optimal over a larger range of latencies.

Comparing TD with SC, by observing Fig. 5, we note

that SC enables a drastic energy reduction for offloading and

hence makes the decision to offload both tasks optimal for all

latencies up to 3.6 seconds when d = 2, and for the entire

range of considered latencies when d = 3.

IV. CONCLUDING REMARKS

In this paper, the mobile energy versus latency tradeoff

was explored for mobile cloud computing applications over
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Figure 4: Mobile energy expenditure versus latency constraint

for a single service level (v1 = 2 × 109 CPU cycles, v2 =
1.6 × 109 CPU cycles, bI1 = bO1 = 1.4 × 105 bits and bI2 =
bO2 = 2.8× 105 bits).

fading channels by accounting for the principle of reliable

service level composition at the application layer. The aim of

this approach is providing layered, or composable, services at

differentiated reliability levels. Inter-layer optimization prob-

lems, encompassing offloading decisions and communication

resources, were formulated and addressed by means of suc-

cessive convex approximation methods. The numerical results

demonstrated the energy savings that may be obtained by a

joint allocation of computing and communication resources, as

well as the advantages of superposition coding at the physical

layer and the impact of channel conditions on the offloading

decisions.

APPENDIX: CALCULATION OF THE PROBABILITIES OF

SUCCESS

For TD transmission, assuming diversity d = 1 and

Rayleigh fading channel gain GI , the probability of success
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Figure 5: Mobile energy expenditure versus latency constraint

for a single service level (v1 = 2 × 109 CPU cycles, v2 =
1.6 × 109 CPU cycles, bI1 = bO1 = 1.4 × 105 bits and bI2 =
bO2 = 2.8× 105 bits).



is the complement of the outage probability, namely

Pr
[

LI
iW

I log(1 +GIP I
i γ

I) ≥ bIi
]

=

Pr



GI ≥ 2

bI
i

LI
i
WI

−1
γIP I

i



 = exp



− 2

bI
i

LI
i
WI

−1
γIP I

i



 .
(7)

Generalizing, with a diversity order d ≥ 1 and selection

diversity, we obtain

ρIi (P
I
i , L

I
i , Ii) = 1−



1− exp

(

− 2

bI
i

LI
i
WI

−1
γIP I

i

)





d

, (8)

and similar calculations apply for ρOi (P
O
i , LO

i , Ii).
For SC transmission, assuming for d = 1, following similar

arguments, we have

ρIi (P
I , LI , I)

= Pr
[

LIW I log2

(

1 +
GIP I

i γI

1+γIGI
∑

N
i=i+1

P I
i

)

≥ bIi

]

= Pr

[

GIPiγ
I ≥

(

2
bI
i

LIWI − 1

)

(

1 + γIGI
∑N

i=i+1 P
I
i

)

]

= Pr









GI ≥ 2
bI
i

LIWI −1

γIPi−



2

bI
i

LIWI −1



γI
∑

N
i=i+1

P I
i









= exp









− 2

bI
i

LI
i
WI

−1

γIPi−



2

bI
i

LIWI −1



γI
∑

N
i=i+1

P I
i









,

where all layers beyond i are treated as noise in the decoding.

With selection diversity, we obtain the reliability function

stated in the text.
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