
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

Ultra‑scalable spectral clustering and ensemble
clustering
Huang, Dong; Wang, Chang‑Dong; Wu, Jiansheng; Lai, Jian‑Huang; Kwoh, Chee‑Keong
2019
Huang, D., Wang, C.‑D., Wu, J.‑S., Lai, J.‑H., & Kwoh, C.‑K. (2020). Ultra‑scalable spectral
clustering and ensemble clustering. IEEE Transactions on Knowledge and Data
Engineering, 32(6), 1212‑1226. doi:10.1109/TKDE.2019.2903410
https://hdl.handle.net/10356/139670
https://doi.org/10.1109/TKDE.2019.2903410

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
https://doi.org/10.1109/TKDE.2019.2903410

Downloaded on 27 Aug 2022 11:09:36 SGT



1

Ultra-Scalable Spectral Clustering and
Ensemble Clustering

Dong Huang, Member, IEEE, Chang-Dong Wang, Member, IEEE, Jian-Sheng Wu, Member, IEEE,

Jian-Huang Lai, Senior Member, IEEE, and Chee-Keong Kwoh, Senior Member, IEEE

Abstract—This paper focuses on scalability and robustness of spectral clustering for extremely large-scale datasets with limited

resources. Two novel algorithms are proposed, namely, ultra-scalable spectral clustering (U-SPEC) and ultra-scalable ensemble

clustering (U-SENC). In U-SPEC, a hybrid representative selection strategy and a fast approximation method for K-nearest

representatives are proposed for the construction of a sparse affinity sub-matrix. By interpreting the sparse sub-matrix as a bipartite

graph, the transfer cut is then utilized to efficiently partition the graph and obtain the clustering result. In U-SENC, multiple U-SPEC

clusterers are further integrated into an ensemble clustering framework to enhance the robustness of U-SPEC while maintaining high

efficiency. Based on the ensemble generation via multiple U-SEPC’s, a new bipartite graph is constructed between objects and base

clusters and then efficiently partitioned to achieve the consensus clustering result. It is noteworthy that both U-SPEC and U-SENC

have nearly linear time and space complexity, and are capable of robustly and efficiently partitioning ten-million-level

nonlinearly-separable datasets on a PC with 64GB memory. Experiments on various large-scale datasets have demonstrated the

scalability and robustness of our algorithms.

Index Terms—Data clustering, Large-scale clustering, Spectral clustering, Ensemble clustering, Large-scale datasets, Nonlinearly

separable datasets.

✦

1 INTRODUCTION

DATA clustering is a fundamental problem in the field of
data mining and machine learning [1], whose purpose

is to partition a set of objects into a certain number of
homogeneous groups, each referred to as a cluster. Out of
the large number of clustering algorithms that have been
developed [1], spectral clustering in recent years has been
gaining increasing attention due to its promising ability
in dealing with nonlinearly separable datasets [2], [3], [4],
[5]. However, a critical limitation to conventional spectral
clustering lies in its huge time and space complexity, which
significantly restricts its application to large-scale problems.

Conventional spectral clustering typically consists of
two time- and memory-consuming phases, namely, affinity
matrix construction and eigen-decomposition. It generally
takes O(N2d) time and O(N2) memory to construct the
affinity matrix, and takes O(N3) time and O(N2) memory
to solve the eigen-decomposition problem [2], where N is
the data size and d is the dimension. As the data size N
increases, the computational burden of spectral clustering
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grows dramatically. For example, given a dataset with one
million objects, the N×N affinity matrix alone will consume
7450.58 GB of memory (with each entry in the matrix stored
as a double-precision value), which prohibitively exceeds
the memory capacity of a general-purpose machine, not to
mention the next phase of eigen-decomposition.

To alleviate the huge computational burden of spectral
clustering, a commonly used strategy is to sparsify the
affinity matrix and solve the eigen-decomposition problem
by some sparse eigen-solvers [2]. The matrix sparsification
strategy can reduce the memory cost of storing the affinity
matrix and facilitate the eigen-decomposition, but it still
requires the computation of all entries in the original affin-
ity matrix. Besides matrix sparsification, another widely-
studied strategy is based on sub-matrix construction [3], [4].
The Nyström method [3] randomly selects p representatives
from the original dataset and builds an N × p affinity
sub-matrix. Cai et al. [4] extended the Nyström method
and proposed the landmark based spectral clustering (LSC)
method, which performs k-means on the dataset to get p
cluster centers as the p representatives. However, these sub-
matrix based spectral clustering methods [3], [4] are typical-
ly restricted by an O(Np) complexity bottleneck, which has
been a critical hurdle for them to deal with extremely large-
scale dataset where a larger p is often desired for achieving
better approximation [4]. Moreover, the clustering results of
these methods heavily rely on their one-shot approximation
via the sub-matrix, which places an unstable factor on their
clustering robustness. Despite the considerable efforts that
have been made in recent years [2], [3], [4], [5], it remains
a highly challenging problem how to enable spectral clus-
tering to efficiently and robustly cluster extremely large-scale
datasets (which may even be nonlinearly separable) with
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rather limited computing resources.
In light of this, this paper focuses on scalability and

robustness of spectral clustering for extremely larger-scale
datasets. Specifically, this paper proposes two novel large-
scale algorithms, namely, ultra-scalable spectral clustering
(U-SPEC) and ultra-scalable ensemble clustering (U-SENC).
In U-SPEC, a new hybrid representative selection strategy
is presented to efficiently find a set of p representatives,
which reduces the time complexity of k-means based se-
lection from O(Npdt) to O(p2dt). Then, a fast approxima-
tion method for K-nearest representatives are designed to

efficiently build a sparse sub-matrix with O(Np
1

2 d) time

and O(Np
1

2 ) memory. With the sparse sub-matrix serving
as the cross-affinity matrix, a bipartite graph is constructed
between the dataset and the representative set. By taking
advantage of the bipartite graph structure, the transfer cut
[6] is utilized to solve the eigen-decomposition problem
with O(NKk + p3) time, where k is the number of clusters
and K is the number of nearest representatives. Finally, the
k-means discretization is adopted to construct the clustering
result from a set of k eigenvectors, which takes O(Nk2t)
time. As it generally holds that k,K ≪ p ≪ N , the
time and space complexity of our U-SPEC algorithm are

respectively dominated by O(Np
1

2 d) and O(Np
1

2 ). Further,
to go beyond the one-shot approximation of U-SPEC and
provide better clustering robustness, the U-SENC algorithm
is proposed by integrating multiple U-SPEC clusterers into
a unified ensemble clustering framework, whose time and

space complexity are respectively dominated by O(Nmp
1

2 d)
and O(Np

1

2 ). Extensive experiments have been conducted
on ten large-scale datasets (including five synthetic datasets
and five real datasets), which have shown the superiority of
our U-SPEC and U-SENC algorithms over the state-of-the-
art in terms of both clustering robustness and scalability.

To summarize, the main contributions of this paper are
listed as follows:

1) A hybrid representative selection strategy is pro-
posed to strike a balance between the efficiency of
random selection and the effectiveness of k-means
based selection.

2) A fast approximation method for K-nearest repre-
sentatives is designed, which is time- and memory-
efficient for constructing the sparse affinity sub-
matrix between objects and representatives.

3) A large-scale spectral clustering algorithm termed
U-SPEC is developed based on efficient affinity sub-
matrix construction and bipartite graph formula-
tion. Its time and space complexity are dominated

by O(Np
1

2 d) and O(Np
1

2 ) respectively.
4) By integrating multiple U-SPEC clusterers, a new

large-scale ensemble clustering algorithm termed U-
SENC is developed, which significantly enhances
the robustness of U-SPEC while maintaining high
scalability. Its time and space complexity are domi-

nated by O(Nmp
1

2 d) and O(Np
1

2 ) respectively.

The notations that are used throughout the paper are
summarized in Table 1. The rest of the paper is organized
as follows. The related work on large-scale spectral cluster-
ing and ensemble clustering is reviewed in Section 2. The
proposed U-SPEC and U-SENC algorithms are described in

TABLE 1
Summary of notations

X A dataset of N objects
xi The i-th object in X

N Number of objects in X

d Dimension
t Number of iterations in the k-means method
k Number of clusters in the clustering result
p′ Number of candidate representatives
p Number of representatives
R The set of representatives
ri The i-th representatives in R

RC The set of rep-clusters
rci The i-th rep-cluster in RC

yi Center of rci
z1 Number of rep-clusters in RC

z2 Average number of objects in each rep-cluster
K Number of nearest representatives
K′ Candidate neighborhood size around a representative

Dist(xi, rcj) Distance between object xi and rep-cluster rcj
G A bipartite graph between X and R

B Cross-affinity matrix of graph G.
bij The (i, j)-th entry of B
E Full affinity matrix of graph G
L Graph Laplacian of graph G
D Degree matrix of graph G
ui The i-th eigenvector of graph G
γi The i-th eigenvalue of graph G
GR A small graph with R as the node set
ER Affinity matrix of graph GR

LR Graph Laplacian of graph GR

DR Degree matrix of graph GR

vi The i-th eigenvector of graph GR

λi The i-th eigenvalue of graph GR

DX Diagonal matrix with its (i, i)-th entry being the
sum of the i-th row of B

T Transition probability matrix
Π The ensemble of m base clusterings
πi The i-th base clustering in Π
m Number of base clusterings in Π

U-SPECi The clusterer to generate the i-th base clustering
Ri The set of representatives in U-SPECi

rij The j-th representatives in Ri

ki Number of clusters in πi

kmin Minimum number of clusters in a base clustering
kmax Maximum number of clusters in a base clustering
τ Random variable in [0, 1]
C Set of all clusters in Π
Ci The i-th cluster in C

kc Number of clusters in C

G̃ A bipartite graph between X and C

B̃ Cross-affinity matrix of graph G̃.

b̃ij The (i, j)-th entry of B̃
ũi The i-th eigenvector of graph G̃

D̃X Diagonal matrix with its (i, i)-th entry being the
sum of the i-th row of B̃

GC A small graph with C as the node set
EC Affinity matrix of graph GC

LC Graph Laplacian of graph GC

DC Degree matrix of graph GC

ṽi The i-th eigenvector of graph GC

λ̃i The i-th eigenvalue of graph GC

Section 3. The experimental results are reported in Section 4.
Finally, the paper is concluded in Section 5.

2 RELATED WORK

In this section, we review the literature related to spectral
clustering and ensemble clustering, with special emphasis
on their recent large-scale extensions.
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2.1 Spectral Clustering

Given a dataset of N objects, conventional spectral cluster-
ing [2] first computes an N×N affinity matrix, in which each
entry corresponds to the similarity of two objects according
to some similarity metrics. Then, the eigen-decomposition is
performed on the graph Laplacian of the affinity matrix to
obtain the k eigenvectors associated with the first k eigen-
values. By embedding the datasets into the low-dimensional
space via the obtained k eigenvectors, the final clustering
can be achieved via k-means or some other discretization
techniques [2].

Although spectral clustering has shown promising ad-
vantages in finding clusters of arbitrary shapes from com-
plex data, its O(N3) time complexity and O(N2) space
complexity significantly restrict its application in large-scale
tasks. To alleviate the huge computational cost, some re-
searchers sparsified the affinity matrix by considering K-
nearest neighbors or ϵ-neighbors, and then solved the eigen-
decomposition problem by some sparse eigen-solvers [2],
which, however, still requires the computation of all the
entries in the original affinity matrix.

To avoid the computation of the full affinity matrix, the
sub-matrix based approximation has emerged as a powerful
and efficient tool for spectral clustering [3], [4], [5]. The
Nyström approximation [3] randomly selects p representa-
tives from the dataset and builds an N × p affinity sub-
matrix between the N objects and the p representatives.
The sub-matrix construction takes O(Npd) time and O(Np)
memory, which are much lower than the full affinity matrix
construction. Although the random representative selection
is very efficient, it is often unstable with regard to the
quality of the selected representatives (see Fig. 1). Moreover,
while it has been shown that a larger p is often favorable
for better approximation [3], the O(Np) memory cost of
the sub-matrix construction can still be a critical bottle-
neck when dealing with very large datasets. To address
the potential instability of random selection, Cai and Chen
[4] proposed the LSC algorithm, which first partitions the
dataset into p clusters via k-means and then uses the p
cluster centers as the representatives. With the N × p sub-
matrix constructed, they further sparsified it by preserving
the K-nearest representatives for each row and zeroing
out the others [4]. Despite its progress over the previous
methods, there are still three computational bottlenecks in
the LSC algorithm [4]. First, although the k-means based
selection often provides a better set of representatives, it
comes with the time complexity of O(Npdt). Second, the
calculation of all possible entries in the N × p sub-matrix is
still required before the sparsification, which comes with
the time complexity of O(Npd). Third, the computation
of the K-nearest representatives for all objects comes with
the time complexity of O(NpK). More recently, instead of
using p representatives, He et al. [5] used Fourier features
to represent data objects in kernel space, and built an N × p
sub-matrix between the N objects and the p selected Fourier
features, upon which the efficient eigen-decomposition can
be performed. The time and space complexity of the fast
explicit spectral clustering (FastESC) algorithm in [5] are
respectively O(Npd+p3) and O(Np), which are still restrict-
ed by the O(Np) complexity bottleneck. By incorporating a

newly-designed positive Euler kernel, Wu et al. [7] proposed
the Euler spectral clustering (EulerSC) method and proved
that the EulerSC is equivalent to the weighted positive
Euler k-means, which can be iteratively optimized with
O(Ndkt) time. However, EulerSC can only use the positive
Euler kernel to define the pair-wise similarity, and is not
feasible for the general spectral clustering formulation with
other similarity metrics. Moreover, its clustering robustness
heavily relies on the proper selection of the Euler kernel pa-
rameter, which is difficult to find without prior knowledge.

2.2 Ensemble Clustering

Ensemble clustering has been a popular technique in recent
years, which aims to combine multiple base clusterings
into a better and more robust consensus clustering [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18]. The existing
ensemble clustering algorithms can be mainly classified into
three categories.

The first category is the pair-wise co-occurrence based
methods [8], [9], [19]. Fred and Jain [8] proposed the evi-
dence accumulation clustering (EAC) method, which makes
use of the co-association matrix by considering the fre-
quency of pair-wise co-occurrence among multiple base
clusterings. With the co-association matrix treated as the
similarity matrix, the agglomerative clustering algorithms
[1] were then performed to obtain the consensus clustering.
Iam-On et al. [9] presented the weighted connected triple
(WCT) method, which extends the EAC method by refining
the co-association matrix via the common neighborhood
information between clusters.

The second category is the graph partitioning based
methods [11], [12], [16], [20]. Strehl and Ghosh [16] trans-
formed the multiple base clusterings into a hypergraph
representation, based on which three graph partitioning
based ensemble clustering methods were presented. Fern
and Brodley [20] built a bipartite graph structure by treating
both base clusters and data objects as graph nodes, and then
partitioned the graph via the METIS algorithm [21].

The third category is the median partition based method-
s [15], [22], which cast the ensemble clustering problem into
an optimization problem that aims to find a median clus-
tering (or partition) by maximizing the similarity between
this clustering and the multiple base clusterings. Franek and
Jiang [22] formulated the median partition problem into a
Euclidian median problem and solved it by the Weiszfeld
algorithm [23]. Huang et al. [15] cast the median partition
problem into a binary linear programming problem and
solved it by the factor graph model.

These ensemble clustering algorithms have shown their
advantages in improving clustering accuracy and robust-
ness. However, due to the efficiency bottleneck, most of
them are not suitable for very large-scale applications. Re-
cently some efforts have been made to (partially) address the
scalability problem for ensemble clustering. To reduce the
problem size, Huang et al. [11] exploited the microcluster
representation, which maps the N data objects onto N ′

microclusters (N ′ ≪ N ). Then, the set of microclusters are
treated as the primitive objects, based on which two novel
algorithms, i.e., the probability trajectory accumulation (P-
TA) and the probability trajectory based graph partitioning
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(PTGP), are proposed. Wu et al. [10] transformed the ensem-
ble clustering problem into a k-means based consensus clus-
tering (KCC) framework, which significantly facilitated the
computation of the consensus function. Liu et al. [14] proved
that the spectral clustering of the co-association matrix is
equivalent to an instance of weighted k-means clustering,
and presented the spectral ensemble clustering (SEC) algo-
rithm. While there are two phases in ensemble clustering
(i.e., ensemble generation and consensus function), these
algorithms [10], [11], [14] generally focus on the efficiency
of the consensus function. In ensemble generation, they
mostly exploited k-means to produce m base clusterings
[10], [11], [14]. Note that the time complexity of ensemble
generation by k-means is O(Nmdkt), which can still be
computationally expensive when dealing with very large-
scale datasets. Moreover, the performance of k-means may
significantly deteriorate when handling nonlinearly separa-
ble datasets, which has a critical influence on the robustness
of the ensemble clustering algorithms. Unlike the common
practice that typically exploits multiple k-means clusterers
as base clusterers, the proposed U-SENC algorithm inte-
grates a diverse set of large-scale U-SPEC clusterers into a
highly efficient ensemble clustering framework, which for
the first time, to our knowledge, simultaneously tackles
the scalability and nonlinear separability issues in both
the ensemble generation and consensus function phases in
ensemble clustering.

3 PROPOSED FRAMEWORK

In this section, we describe the proposed U-SPEC and U-
SENC algorithms in Sections 3.1 and 3.2, respectively.

3.1 Ultra-Scalable Spectral Clustering (U-SPEC)

To deal with extremely large-scale datasets, the proposed
U-SPEC algorithm complies with the sub-matrix based for-
mulation [3], [4] and aims to break through the efficiency
bottleneck of previous algorithms via three phases. Specifi-
cally, in the first phase, we present a hybrid representative
selection strategy to strike a balance between the efficiency
of the random selection and the effectiveness of the k-
means based selection. In the second phase, we develop
a coarse-to-fine method to efficiently approximate the K-
nearest representatives for each data object, and construct
a sparse affinity sub-matrix between the N objects and the
p representatives. In the third phase, the N × p sub-matrix
is interpreted as a bipartite graph, which can be efficiently
partitioned to obtain the final clustering result. These three
phases of U-SPEC will be described in Sections 3.1.1, 3.1.2,
and 3.1.3, respectively.

3.1.1 Hybrid Representative Selection

Let X = {x1, x2, · · · , xN} denote a dataset with N objects,
where xi ∈ R

d is the i-th object and d is the dimension. To
capture the relationship between all objects in X , an N ×N
affinity matrix can be constructed in conventional spectral
clustering [2], which consumes O(N2d) time and O(N2)
memory and is not feasible for large-scale datasets. To avoid
the computation of the full affinity matrix, the sub-matrix
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Fig. 1. Comparison of the representatives produced by (a) random
selection, (b) k-means based selection, and (c) hybrid selection.
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Fig. 2. Illustration of hybrid representative selection. (a) The dataset. (b)
Randomly select p′ candidates (p′ > p). (c) Obtain p representatives
from p′ candidates via k-means.

representation is often adopted in the literature of large-
scale spectral clustering [3], [4]. The sub-matrix representa-
tion generally exploits a set of representatives to encode the
overall structure of the dataset. These representatives play
a crucial role in the sub-matrix representation, and can be
selected by random selection [3] or k-means based selection
[4]. Though the random selection strategy [3] is highly
efficient, it suffers from the inherent randomness and may
lead to a set of low-quality representatives (see Fig. 1(a)). To
deal with the instability of random selection, the k-means
based selection [4] first groups the entire dataset into p
clusters via k-means and then uses the p cluster centers as
the representatives. However, the k-means based selection
brings in an extra time cost of O(Npdt), which restricts its
feasibility for very large-scale datasets.

In this paper, we propose a hybrid representative selec-
tion strategy, which is designed to find a balance between
the efficiency of random selection and the effectiveness of
k-means based selection. The process of the hybrid repre-
sentative selection strategy is illustrated in Fig. 2. Different
from the k-means based selection which attempts to cluster
the entire dataset even when the data size N is extremely
large, the proposed hybrid selection strategy first randomly
samples a set of p′ candidate representatives such that
p < p′ ≪ N . Then, upon the p′ candidates, we perform the
k-means method to obtain p clusters and exploit the p cluster
centers as the set of representatives. Empirically, the number
of candidates p′ is suggested to be several times larger than
p, e.g., p′ = 10p, so as to provide enough candidates while
still keeping p′ much smaller than N in large-scale datasets.
Formally, we denote the set of selected representatives as

R = {r1, r2, · · · , rp}, (1)

where ri is the i-th representative in R.
By introducing an intermediate stage of random pre-

sampling, the computational complexity of the k-means
based selection is reduced from O(Npdt) to O(p2dt). As
illustrated in Fig. 1, the set of representatives produced
by the hybrid selection can better reflect the data distri-
bution than the random selection while requiring much
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less computational cost than the k-means based selection.
To discuss this in more detail, quantitative evaluation of
the performance of the proposed hybrid selection strategy
against random selection and k-means based selection will
be provided in Section 4.6.

3.1.2 Approximation of K-Nearest Representatives

With the p representatives obtained, the next objective is to
encode the pair-wise relationship of the entire dataset via
the small set of representatives.

In the sub-matrix formulation of the Nyström algorithm
[3], the construction of the N × p affinity sub-matrix be-
tween objects and representatives takes O(Npd) time and
O(Np) memory, which is the main efficiency bottleneck
of the overall algorithm [3]. Given a dataset with ten mil-
lion objects and a set of one thousand representatives, the
storage of the N × p sub-matrix alone takes 74.51GB of
memory, while the later manipulations of the sub-matrix
even require more memory consumption. Cai and Chen
[4] proposed to sparsify the N × p affinity matrix by K-
nearest representatives (with K ≪ p), which, however, still
requires the computation of all the distances between the
N objects and the p representatives. Moreover, besides the
calculation of the total of Np entries, the sparsification step
also consumes O(NpK) time [4].

Before introducing our facilitation strategy, we first in-
vestigate the characteristics of the sparse sub-matrix be-
tween N objects and p representatives, where each object is
only connected to its K-nearest representatives. It is obvious
that there are K non-zero entries in each row of the matrix,
and NK non-zero entries in the entire matrix. Assume we
have p = 1, 000 and K = 5, the proportion of the non-
zero entries in the matrix will be 0.5%. However, to exactly
identify such a small proportion of useful entries via K-
nearest representatives, the entire matrix should first be
calculated, which unfortunately consists of 99.5% of inter-
mediate entries. To break the efficiency bottleneck, the key
problem here is how to significantly reduce the calculation
of these intermediate entries when building the sub-matrix
with K-nearest representatives.

In this section, our aim is to alleviate the computational
cost of the exact K-nearest representative calculation [4]
by designing a time- and memory-efficient approximation
method. Though the K-nearest representative approxima-
tion problem and the classical K-nearest neighbor (K-NN)
approximation problem [24], [25], [26] have some character-
istics in common, they are faced with very different com-
putational issues in actual applications. Different from the
conventional K-NN approximation scenarios, which mostly
deal with a general graph with an N × N affinity matrix,
our aim here is to find the K-nearest representatives in a
heavily imbalanced bipartite graph with an N × p affinity
sub-matrix, where p is generally far smaller than N . This
imbalanced nature is crucial to our K-nearest representative
approximation problem. On the one hand, it makes the
conventional K-NN approximation methods [24], [25], [26]
(which are typically designed for general graphs with N×N
affinity matrices) inappropriate here. On the other hand,
it may as well contribute to the design of our K-nearest
representative approximation strategy. To take advantage of
the imbalanced structure, it is intuitive to pre-process the

 xi

R={r1 , r2 , …,r20}

(a)

RC={rc1 , rc2 , …,rc6}

(b)

 xi

(c)

rcj

 xi

(d)

 xi

rcj

(e)

rl

 xi

(f)

 xi

(g)

 xi

(h)

Fig. 3. Approximate K-nearest representatives. (a) The representative
set R and an object xi ∈ X . (b) Partition the representatives into
several rep-clusters. (c) Compute the distances between xi and all the
rep-cluster centers. (d) Find the nearest rep-cluster rcj . (e) Compute
the distances between xi and all the representatives in rcj . (f) Find
the nearest rl ∈ rcj . (g) Compute the distances between xi and the
representatives in the K′-nearest neighborhood of rl (K′ > K). (h)
Obtain the approximate K-nearest representatives (K = 3).

graph on the side of the p representatives and minimize the
computation on the other side of the N objects.

In particular, we present a new K-nearest represen-
tative approximation method based on the coarse-to-fine
mechanism, and build the sparse affinity sub-matrix with

O(Np
1

2 d) complexity. The main idea of our K-nearest rep-
resentative approximation is to first find the nearest region,
then find the nearest representative (denoted as rl) in the
nearest region, and finally find the K-nearest representa-
tives in the neighborhood of rl. To efficiently implement the
approximation, two preprocessing steps are required, that is

• Pre-step 1. The set of representatives are grouped
into z1 rep-clusters via k-means (with z1 ≪ p). The
time complexity is O(pz1dt).

• Pre-step 2. For each representative in R, its K ′-
nearest neighbors are computed and stored (with
K ′ > K). The time complexity is O(p2(d+K ′)).

In pre-step 1, each rep-cluster consists of a certain
number of representatives, and can be regarded as a local
region of the representative set (see Fig. 3(b)). Formally, the
obtained z1 rep-clusters are denoted as

RC = {rc1, rc2, · · · , rcz1}, (2)

where rci is the i-th rep-cluster in RC. Given an object xi ∈
X and a rep-cluster rcj ∈ RC, their distance is defined as
the distance between xi and the center of rcj . That is

Dist(xi, rcj) = ∥xi − yj∥, (3)

yj =
1

|rcj |

∑

rl∈rcj

rl, (4)

where |rcj | denotes the number of representatives in the
rep-cluster rcj and ∥xi − yj∥ computes the Euclidean dis-
tance between two vectors xi and yj .

With the distance between objects and rep-clusters de-
fined, for each object xi ∈ X , we approximately find its
K-nearest representatives according to three main steps:

Step 1 Find the nearest rep-cluster of xi, denoted as rcj .
Step 2 Find the nearest representative of xi inside the

rep-cluster rcj , denoted as rl.
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Step 3 Out of rl and its K ′-nearest neighbors, find the
K-nearest representatives of xi.

More details are illustrated in Fig. 3. For a dataset with
N objects, the time cost of step 1 is O(Nz1d). The time cost
of step 2 is O(Nz2d) = O(N(p/z1)d), where z2 = p/z1
denotes the average size of the rep-clusters. The time cost
of step 3 is O(NK ′d+NK ′K). It is obvious that z1 + p/z1
reaches its minimum when z1 = z2 = p

1

2 . Thus, to minimize
the cost, z1 = ⌊p

1

2 ⌋ is used in this work, where ⌊·⌋ denotes
the floor of a value. The candidate neighborhood size K ′ is
suggested to be several times larger than K, which can be
set to K ′ = 10K in practice. Then, the total time complexity
of the K-nearest representative approximation is O(Nz1d+
N(p/z1)d + NK ′d + NK ′K), which can be re-written as
O(N(p

1

2 d + Kd + K2)). As K ≪ p ≪ N , the dominant
term in the complexity is O(Np

1

2 d).
With the K-nearest representatives of each object ob-

tained, a sparse N × p affinity sub-matrix can thereby be
constructed. In this paper, the Gaussian kernel is used as the
similarity kernel. Thus the sparse affinity sub-matrix can be
represented as

B = {bij}N×p, (5)

bij =

{

exp (−∥xi−rj∥
2

2σ2 ), if rj ∈ NK(xi),

0, otherwise,
(6)

where NK(xi) denotes the set of K-nearest representatives
of xi and the kernel parameter σ is set to the average
Euclidean distance between the objects and their K-nearest
representatives. Note that B is a sparse matrix which only
contains NK non-zero entries.

3.1.3 Bipartite Graph Partitioning

The affinity sub-matrix B reflects the relationship between
the objects in X and the representatives in R, which can be
naturally interpreted as a bipartite graph G = {X ,R, B},
where X ∪ R is the node set and B is the cross-affinity
matrix (as shown in Fig. 4). By taking advantage of the
bipartite graph structure, the transfer cut [6] can thereby be
used to efficiently partition the graph and achieve the final
clustering result.

To start, if we view the graph G as a general graph with
N + p nodes, then its full affinity matrix can be denoted as

E =

[

0 B⊤

B 0

]

. (7)

Spectral clustering seeks to partition the graph by solving
the following generalized eigen-problem [27]:

Lu = γDu, (8)

where L = D − E is the graph Laplacian and D ∈
R
(N+p)×(N+p) is the degree matrix. By treating G as a

general graph, it takes O((N + p)3) time to solve the eigen-
problem (8) [28], which is not computationally feasible for
very large-scale datasets.

By exploiting the bipartite structure, we resort to the
transfer cut [6] to reduce the eigen-problem (8) on the graph
G (with N+p nodes) to an eigen-problem on a much smaller
graph GR (with p nodes). Specifically, the graph GR is
constructed as GR = {R, ER}, where R is the node set,

�� � � �!

"� "# "$ 

�� �� 

"#"� "$""� 

% #

X 

R 

Fig. 4. Illustration of the bipartite graph G.

ER = B⊤DX
−1B is the affinity matrix (whose computation

takes O(NK2) time), and DX ∈ R
N×N is a diagonal matrix

with its (i, i)-th entry being the sum of the i-th row of B. Let
LR = DR −ER be the graph Laplacian, where DR ∈ R

p×p

is the degree matrix of GR. Then, the generalized eigen-
problem on the graph GR can be represented as

LRv = λDRv. (9)

It has been proved by Li et al. [6] that solving the eigen-
problem (8) on the graph G is equivalent to solving the
eigen-problem (9) on the graph GR. Let the first k eigen-
pairs for the eigen-problem (9) be denoted as {(λi, vi)}

k
i=1

with 0 = λ1 ≤ λ2 ≤ · · · ≤ λk < 1, and the first k eigen-
pairs for the eigen-problem (8) denoted as {(γi, ui)}

k
i=1 with

0 = γ1 ≤ γ2 ≤ · · · ≤ γk < 1. It has been shown that [6]

γi(2− γi) = λi, (10)

ui =

[

hi

vi

]

(11)

hi =
1

1− γi
Tvi, (12)

where T = D−1
X B is the transition probability matrix. It

takes O(p3) time to compute the first k eigen-pairs for the
eigen-problem (9). As B is a sparse matrix with NK non-
zero entries, it takes O(NK) time to compute ui from vi ac-
cording to Eqs. (10), (11), and (12). Therefore, the total cost of
computing the first k eigenvectors for the eigen-problem (8)
will be O(NK2)+O(NKk)+O(p3) = O(NK(K+k)+p3).

With the eigen-problem solved, the obtained k eigenvec-
tors are stacked to form an (N + p) × k matrix. By treating
each row of this matrix as a new feature vector, the N
rows corresponding to the N original objects are used, upon
which the k-means discretization can be performed to obtain
the final clustering result with O(Nk2t) time complexity.

3.1.4 Computational Complexity

In this section, we summarize the time and memory cost of
our U-SPEC algorithm.

The hybrid representative selection takes O(p2dt) time.

The affinity construction takes O(N(p
1

2 d+Kd+K2)) time.
The eigen-decomposition takes O(NK(K + k) + p3) time.
The k-means discretization takes O(Nk2t) time. With con-
sideration to k,K ≪ p ≪ N , the overall time complexity

of U-SPEC is O(N(p
1

2 d + K2 + Kk + Kd + k2t)), where
O(Np

1

2 d) is the dominant term. Table 2 provides a compar-
ison of time complexity of our U-SPEC algorithm against
several other large-scale spectral clustering algorithms.

Besides the time cost, the memory cost of U-SPEC can be

either O(NK) or O(Np
1

2 ), which depends on the actual
implementation of the K-nearest representative approxi-
mation. As the K-nearest representative approximation for
the N objects are independent of each other, one strategy
is to perform approximation for the N objects one after
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TABLE 2
Comparison of the time complexity of several large-scale spectral

clustering methods.

Method Representative
selection

Affinity
construction

Eigen-
decomposition

Nyström [3] / O(Npd) O(Np+ p3)
LSC-R [4] / O(Npd) O(Np2 + p3)
LSC-K [4] O(Npdt) O(Npd) O(Np2 + p3)

U-SPEC O(p2dt) O(Np
1

2 d) O(NK(K+k)+p3)

* The final k-means discretization is O(Nk2t) for each method.

the other (i.e., in a serial processing manner), where the
time cost is dominated by the storage of the cross-affinity
matrix with NK non-zero entries. Another strategy is to
first construct an affinity matrix between the N objects and

the z1 = ⌊p
1

2 ⌋ rep-cluster centers and then approximate
the K-nearest representatives for the N objects in a batch
processing manner. For some matrix-oriented software, such
as MATLAB, it will be much faster to perform the ap-
proximation in a batch processing manner (with optimized
matrix computation) than in a serial processing manner. To
facilitate the matrix computation, our implementation of U-

SPEC actually takes O(Np
1

2 ) memory. Similarly, the LSC
algorithm [4] also has a theoretically minimum memory
cost of O(NK), but the implementation1 provided by the
authors actually takes O(Np) memory, which is also due to
the matrix-computation consideration.

3.2 Ultra-Scalable Ensemble Clustering (U-SENC)

Starting from U-SPEC, this section proposes the U-SENC
algorithm to integrate multiple U-SPEC’s into a unified
ensemble clustering framework, aiming to further enhance
the clustering robustness while maintaining high efficiency.

3.2.1 Ensemble Generation via Multiple U-SPEC’s

Ensemble clustering has been a popular research topic in
recent years, due to its promising ability in enhancing clus-
tering robustness by incorporating multiple base clusterers
[10], [11], [12], [13], [14]. The general ensemble clustering
process consists of two phases. The first phase is the en-
semble generation, which involves producing a set of di-
verse and high-quality base clusterings. The second phase is
the consensus function, which involves combining multiple
base clusterings into a better and more robust consensus
clustering.

In ensemble generation, the previous ensemble cluster-
ing algorithms mostly use the k-means method to generate
an ensemble of multiple base clusterings [10], [11], [12], [13],
[14]. Though k-means has the advantage of high efficiency, it
typically favors spherical distribution and lacks the ability
to properly partition nonlinearly separable datasets. Some
researchers have exploited the spectral clustering technique
in ensemble generation [29], [30], but the large computa-
tional cost of conventional spectral clustering significantly
restricts its feasibility for scalable applications.

To address this, we utilize multiple instances of U-SPEC
as the multiple base clusterers in our ensemble clustering
framework. To generate an ensemble of m base clusterings, a
set of m U-SPEC clusterers are required, which are denoted
as U-SPEC1,U-SPEC2, · · · ,U-SPECm. The diversity which is

1. www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html

highly desired in ensemble generation is incorporated from
two aspects. First, the set of representatives for each base
clusterer is independently obtained by the hybrid selection
strategy. There are two components in hybrid selection,
i.e., random pre-selection and k-means based post-selection,
both of which are non-deterministic and can bring in diver-
sity for the multiple base clusterers. Second, the number
of clusters for each base clustering is randomly selected to
further enhance the diversity. Formally, given the dataset
X , the set of p′ candidate representatives for the i-th base
clusterer (i.e., U-SPECi) are randomly selected from X . Then
the k-means is used to partition the p′ candidates into p
clusters. After that, the p cluster centers will be used as the
set of p representatives for U-SPECi, denoted as

Ri = {ri1, r
i
2, · · · , r

i
p}. (13)

With the representatives obtained, the sparse affinity sub-
matrix Bi for U-SPECi can be built between the dataset X
and the representative set Ri via fast approximation of K-
nearest representatives.

By treating X
∪

Ri as the node set and Bi as the cross-
affinity matrix, the bipartite graph Gi is built and its first
ki eigenvectors are then computed via transfer cut [6]. Note
that the number of clusters ki is randomly selected as

ki = ⌊τ(kmax − kmin)⌋+ kmin, (14)

where τ ∈ [0, 1] is a random variable and kmax and kmin are
respectively the upper bound and lower bound of the cluster
number. Then, the obtained ki eigenvectors are stacked to
form a new matrix, upon which the k-means is applied to
construct the base clustering result for U-SPECi. With the m
U-SPEC clusterers, the ensemble of m base clusterings can
be generated, which are represented as

Π = {π1, π2, · · · , πm}, (15)

where πi denotes the i-th base clustering.

3.2.2 Consensus Function with Bipartite Graph

Having obtained the set of multiple base clusterings, this
section presents the consensus function with bipartite graph
for obtaining the consensus clustering.

Each base clustering consists of a certain number of
clusters. For clarity, we denote the set of clusters in the
ensemble of m base clusterings as

C = {C1, C2, · · · , Ckc
}, (16)

where Ci is the i-th cluster and kc is the total number of
clusters in Π. It is obvious that kc =

∑m
i=1 k

i.
By treating both objects and clusters as graph nodes, the

bipartite graph for the ensemble Π is defined as

G̃ = {X , C, B̃}, (17)

where X
∪

C is the node set and B̃ is the cross-affinity
matrix. In this bipartite graph, a (non-zero) edge exists
between two nodes if and only if one node is an object and
the other one is the cluster that contains it. Formally, the
cross-affinity matrix is constructed as follows:

B̃ = {b̃ij}N×kc
, (18)

b̃ij =

{

1, if xi ∈ Cj ,

0, otherwise.
(19)
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Inside the same base clustering, there is no intersection
between two different clusters, i.e., ∀i′ ̸= j′, if Ci′ ∈ πi

and Cj′ ∈ πi, then Ci′
∩

Cj′ = ∅. Obviously, each object
belongs to one and only one cluster in each base clustering,
and thus each object belongs exactly to m clusters in the
ensemble of m base clusterings. Therefore, there are exactly
m non-zero entries in each row of B̃. Although the cross-
affinity matrix B̃ is an N × kc matrix, it can be stored as a
sparse matrix with O(Nm) memory, which corresponds to
the exactly Nm non-zero entries in B̃. Besides the memory
cost, the time cost of constructing the matrix B̃ is O(Nkc).

As shown in Section 3.1.3, solving the eigen-problem for
the bipartite graph G̃ can be equivalent to solving the eigen-
problem for a much smaller graph GC = {C, EC}, that is

LC ṽ = λ̃DC ṽ, (20)

where EC = B̃⊤D̃−1
X B̃ is the affinity matrix, D̃X ∈ R

N×N

is a diagonal matrix with its (i, i)-th entry being the sum of
the i-th row of B̃, LC = DC − EC is the graph Laplacian,
and DC ∈ R

kc×kc is the degree matrix of GC .
Let ṽ1, ṽ2, · · · , ṽk denote the first k eigenvectors for the

eigen-problem (20), which can be computed with a time
cost of O(kc

3). Based on the k eigenvectors for GC , the first
k eigenvectors (denoted as ũ1, ũ2, · · · , ũk) for the bipartite
graph G̃ can be computed with O(Nm) time (see Eqs. (10),
(11), and (12)). Finally, by stacking the k eigenvectors to form
a new matrix, the consensus clustering result in U-SENC can
be obtained by k-means discretization with O(Nk2t) time.

3.2.3 Computational Complexity

This section summarizes the time and memory cost of the
proposed U-SENC algorithm.

The ensemble generation of the U-SENC algorithm takes

O(Nm(p
1

2 d +K2 +Kk +Kd + k2t)) time. The consensus
function of U-SENC takes O(N(kc +m + k2t) + kc

3) time.
With consideration to m, k,K ≪ p ≪ N , the dominant term
of the overall time complexity of U-SENC is O(Nmp

1

2 d).
Meanwhile, the memory costs of the ensemble genera-

tion and the consensus function of our U-SENC algorithm

are respectively O(Np
1

2 ) and O(Nm).

4 EXPERIMENTS

In this section, we conduct experiments on a variety of real
and synthetic datasets to compare the proposed U-SPEC and
U-SENC algorithms against several state-of-the-art spectral
clustering and ensemble clustering algorithms.

All experiments are conducted in Matlab 2016b on a PC
with an Intel i5-6600 CPU and 64GB of RAM2.

4.1 Datasets and Evaluation Measures

Our experiments are conducted on ten large-scale datasets
(including five real datasets and five synthetic datasets),
whose data sizes range from ten thousand to as large as
twenty million. Specifically, the five real datasets are PenDig-
its [31], USPS [32], Letters [31], MNIST [32], and Covertype

2. The MATLAB code and experimental data of this work are avail-
able at: https://www.researchgate.net/publication/330760669.

TABLE 3
Description of the real and synthetic datasets.

Dataset #Object Dimension #Class

Real

PenDigits 10,992 16 10
USPS 11,000 256 10
Letters 20,000 16 26
MNIST 70,000 784 10

Covertype 581,012 54 7

Synthetic

TB-1M 1,000,000 2 2
SF-2M 2,000,000 2 4
CC-5M 5,000,000 2 3

CG-10M 10,000,000 2 11
Flower-20M 20,000,000 2 13

-2

0

2

(a) TB-1M (0.1%)

-2

0

2

(b) SF-2M (0.1%)

-2

0

2

(c) CC-5M (0.1%)

-5

0

5

(d) CG-10M (0.1%)

-5

0

5

(e) Flower-20M (0.1%)

Fig. 5. Illustration of the five synthetic datasets. Note that only a 0.1%
subset of each dataset is plotted.

[31]. The five synthetic datasets are Two Bananas-1M (TB-
1M), Smiling Face-2M (SF-2M), Concentric Circles-5M (CC-
5M), Circles and Gaussians-10M (CG-10M), and Flower-20M.
The details of the datasets are provided in Table 3 and Fig. 5.

To evaluate the clustering results by different algorithms,
two widely used evaluation measures are adopted, namely,
normalized mutual information (NMI) [16] and clustering
accuracy (CA) [33]. To rule out the factor of getting lucky
occasionally, in each experiment, every test method will be
conducted 20 times and their average NMI, CA, and time
costs will be reported. Note that larger values of NMI and
CA indicate better clustering results.

4.2 Baseline Methods and Experimental Settings

In the experiments, we first compare our algorithms against
the classical k-means algorithm [34] as well as seven spectral
clustering algorithms (including the original algorithm and
six large-scale algorithms). The baseline spectral clustering
algorithms are listed as follows:

1) SC [2]: original spectral clustering.
2) ESCG [35]: efficient spectral clustering on graphs.
3) Nyström [3]: Nyström spectral clustering.
4) LSC-K [4]: landmark based spectral clustering using

k-means based landmark selection.
5) LSC-R [4]: landmark based spectral clustering using

random landmark selection.
6) FastESC [5]: fast explicit spectral clustering.
7) EulerSC [7]: Euler spectral clustering.

Besides these large-scale spectral clustering algorithms,
we also compare our algorithms against seven ensemble
clustering algorithms, which are listed as follows:
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Average NMI(%) scores (over 20 runs) by our methods and the baseline spectral clustering methods (The best score in each row is in bold).

Dataset k-means SC ESCG Nyström LSC-K LSC-R FastESC EulerSC U-SPEC U-SENC

PenDigits 66.66±1.76 59.36±0.00 76.41±2.26 65.67±1.16 79.73±2.09 78.13±2.20 65.31±0.71 58.59±0.73 80.30±2.18 85.34±0.91

USPS 44.11±1.24 63.44±0.01 48.41±3.53 44.91±1.28 66.86±1.58 58.64±1.31 41.36±1.80 40.31±1.91 63.47±0.97 73.89±1.82

Letters 34.86±0.60 10.43±0.50 35.80±1.72 39.02±0.83 43.41±0.81 40.98±0.93 35.92±1.41 31.76±0.92 42.53±1.32 45.90±0.58

MNIST 48.91±2.00 74.07±0.00 55.75±4.62 47.78±1.17 73.97±1.46 62.16±2.22 43.44±1.85 8.93±1.22 67.43±1.55 75.02±0.81

Covertype 6.17±0.00 N/A N/A 6.93±0.07 6.75±0.10 6.69±0.12 9.15±1.00 0.01±0.00 6.97±0.16 9.13±1.21

TB-1M 25.71±0.00 N/A N/A 24.06±0.01 0.10±0.11 0.20±0.24 24.01±2.72 25.94±0.01 95.86±0.48 97.48±0.05

SF-2M 47.34±0.23 N/A N/A 46.66±0.02 66.45±6.15 58.34±6.92 52.03±0.95 47.35±2.19 75.59±2.12 77.02±2.32

CC-5M 0.00±0.00 N/A N/A N/A N/A N/A N/A 0.00±0.00 99.87±0.01 99.91±0.00

CG-10M 63.20±1.59 N/A N/A N/A N/A N/A N/A 16.19±0.21 78.82±1.61 89.57±3.96

Flower-20M 64.19±2.56 N/A N/A N/A N/A N/A N/A 26.61±0.86 86.86±2.05 92.47±2.45

Avg. score - N/A N/A N/A N/A N/A N/A 25.57 69.77 74.57
N-Avg. score - N/A N/A N/A N/A N/A N/A 33.94 91.71 99.98

Avg. rank - 5.90 6.00 5.20 3.70 4.60 5.20 6.00 2.50 1.10
* Note that N/A indicates the out-of-memory error.
** The k-means method is listed for reference only; it doesn’t participate in the comparison of the spectral methods.

TABLE 5
Average CA(%) scores (over 20 runs) by our methods and the baseline spectral clustering methods (The best score in each row is in bold).

Dataset k-means SC ESCG Nyström LSC-K LSC-R FastESC EulerSC U-SPEC U-SENC

PenDigits 71.57±3.12 56.44±0.00 77.21±3.81 71.13±2.07 83.07±3.21 81.82±3.17 69.97±1.15 65.85±1.87 84.17±3.26 88.56±0.61

USPS 47.25±2.57 62.74±0.02 53.47±3.94 51.09±1.93 68.42±2.39 60.78±2.18 48.80±1.76 47.79±2.41 63.76±1.35 78.17±3.05

Letters 28.15±0.97 12.42±0.46 30.37±1.75 32.05±0.91 35.45±1.34 33.86±1.13 29.32±1.51 28.08±1.44 35.71±1.47 37.74±1.06

MNIST 58.48±2.67 74.46±0.00 63.32±4.64 59.72±1.75 79.45±1.02 69.24±2.75 55.93±2.41 24.06±1.53 74.31±2.28 80.58±1.75

Covertype 49.05±0.00 N/A N/A 49.21±0.11 49.45±0.16 49.32±0.25 48.88±0.18 48.76±0.00 49.76±0.35 50.73±0.62

TB-1M 78.93±0.00 N/A N/A 78.04±0.01 51.54±1.13 52.09±1.58 77.97±1.52 79.04±0.00 99.55±0.06 99.75±0.01

SF-2M 74.33±2.14 N/A N/A 69.58±0.05 85.34±5.70 78.26±7.43 74.13±0.32 76.93±2.17 93.60±1.00 93.46±2.27

CC-5M 52.96±0.00 N/A N/A N/A N/A N/A N/A 52.96±0.00 99.99±0.00 99.99±0.00

CG-10M 63.14±2.42 N/A N/A N/A N/A N/A N/A 32.81±0.67 81.32±2.00 93.99±3.25

Flower-20M 60.85±3.33 N/A N/A N/A N/A N/A N/A 33.75±0.56 88.89±2.85 93.79±3.21

Avg. score - N/A N/A N/A N/A N/A N/A 49.00 77.11 81.68
N-Avg. score - N/A N/A N/A N/A N/A N/A 62.12 94.26 99.99

Avg. rank - 6.10 5.90 5.30 3.50 4.40 5.90 5.80 2.10 1.10
* Note that N/A indicates the out-of-memory error.
** The k-means method is listed for reference only; it doesn’t participate in the comparison of the spectral methods.

TABLE 6
Time costs(s) of our methods and the baseline spectral clustering methods.

Dataset k-means SC ESCG Nyström LSC-K LSC-R FastESC EulerSC U-SPEC U-SENC
PenDigits 0.06 7.37 1.63 1.98 1.25 0.49 0.73 1.47 1.01 19.13

USPS 0.32 9.56 9.63 1.92 1.70 0.75 0.94 8.20 1.59 29.17
Letters 0.72 3.85 7.74 2.69 3.89 2.88 1.86 23.39 1.44 21.44
MNIST 8.79 1,231.68 1,211.54 6.40 16.51 6.38 3.82 125.35 7.48 131.60

Covertype 13.19 N/A N/A 33.11 101.12 53.46 19.55 116.96 14.08 174.49
TB-1M 3.25 N/A N/A 105.15 109.23 35.92 21.79 6.27 10.47 318.29
SF-2M 31.26 N/A N/A 226.77 254.98 102.55 51.07 80.44 27.06 658.82
CC-5M 94.76 N/A N/A N/A N/A N/A N/A 132.35 46.65 1,726.40

CG-10M 281.84 N/A N/A N/A N/A N/A N/A 963.29 318.93 3,603.08
Flower-20M 579.06 N/A N/A N/A N/A N/A N/A 3,397.57 764.09 7,225.83

* Note that N/A indicates the out-of-memory error.
** The k-means method is listed for reference only; it doesn’t participate in the comparison of the spectral methods.

1) EAC [8]: evidence accumulation clustering.
2) WCT [9]: weighted connected triple method.
3) KCC [10]: k-means based consensus clustering.
4) PTGP [11]: probability trajectory based graph parti-

tioning.
5) ECC [13]: entropy based consensus clustering.
6) SEC [14]: spectral ensemble clustering.
7) LWGP [12]: locally weighted graph partitioning.

There are several common parameters among the above-
mentioned algorithms. In our experiments, we comply with
the following experimental settings:

• The SC and ESCG methods need to take the N × N
affinity matrix as input. The affinity matrix is con-
structed using the same Gaussian kernel as Eq. (6)
with K-nearest neighbors.

• The U-SPEC, U-SENC, Nyström, LSC-K, and LSC-
R methods have a common parameter p. In the
experiments, p = 1000 is used for these methods.
Their performances with varying p will be further
evaluated in Section 4.5.1.

• The U-SPEC, U-SENC, LSC-K, and LSC-R methods
have a common parameter K. In the experiments,
K = 5 is used. Their performances with varying K
will be further evaluated in Section 4.5.2.

• For the ensemble clustering methods, the base clus-
terings are generated by k-means as suggested by
their papers [8], [9], [10], [11], [12], [13], [14]. The
number of clusters in each base clustering is ran-
domly selected in [20, 60]. The number of base clus-
terings, i.e., m, is set to 20. Their performances with
varying m will be further evaluated in Section 4.5.3.
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Average NMI(%) scores (over 20 runs) by our methods and the baseline ensemble clustering methods (The best score in each row is in bold).

Dataset U-SPEC EAC WCT KCC PTGP ECC SEC LWGP U-SENC

PenDigits 80.30±2.18 76.31±2.70 77.69±2.54 58.92±3.47 75.58±2.26 57.64±4.14 47.07±7.53 77.54±1.87 85.34±0.91

USPS 63.47±0.97 59.02±1.69 58.40±2.15 49.24±2.98 59.63±1.76 48.89±1.80 39.00±3.83 57.55±1.78 73.89±1.82

Letters 42.53±1.32 37.19±0.50 36.59±0.95 33.64±1.03 38.09±0.66 34.59±0.68 31.81±2.01 37.09±0.75 45.90±0.58

MNIST 67.43±1.55 66.19±1.49 65.60±0.96 54.34±3.38 59.93±2.23 56.01±2.25 34.19±4.61 65.06±0.95 75.02±0.81

Covertype 6.97±0.16 N/A N/A 5.86±1.84 6.42±0.44 5.70±0.77 5.26±2.82 7.44±0.31 9.13±1.21

TB-1M 95.86±0.48 N/A N/A 23.36±1.62 34.20±2.51 26.91±2.13 10.62±4.64 96.80±1.90 97.48±0.05

SF-2M 75.59±2.12 N/A N/A 42.72±7.11 45.17±2.66 41.61±6.01 27.05±7.73 69.88±4.45 77.02±2.32

CC-5M 99.87±0.01 N/A N/A 33.36±12.65 0.41±0.86 31.62±14.99 17.05±6.90 98.18±7.75 99.91±0.00

CG-10M 78.82±1.61 N/A N/A 64.78±5.08 63.75±0.61 62.79±4.91 49.70±6.08 78.08±2.43 89.57±3.96

Flower-20M 86.86±2.05 N/A N/A 61.18±2.43 67.92±1.99 60.61±2.37 50.37±6.32 78.55±2.31 92.47±2.45

Avg. score - N/A N/A 42.74 45.11 42.64 31.21 66.62 74.57
N-Avg. score - N/A N/A 59.69 64.12 59.51 45.35 87.82 100.00

Avg. rank - 5.40 5.60 4.90 3.60 5.40 6.70 2.80 1.00
* Note that N/A indicates the out-of-memory error.
** The U-SPEC doesn’t participate in the comparison of the ensemble methods.

TABLE 8
Average CA(%) scores (over 20 runs) by our methods and the baseline ensemble clustering methods (The best score in each row is in bold).

Dataset U-SPEC EAC WCT KCC PTGP ECC SEC LWGP U-SENC

PenDigits 84.17±3.26 81.04±4.02 82.97±3.17 63.33±4.06 78.33±2.91 62.36±4.12 51.60±5.93 81.96±2.77 88.56±0.61

USPS 63.76±1.35 63.39±2.76 62.72±3.14 53.46±3.51 62.68±1.92 53.67±2.21 45.38±3.20 59.73±3.30 78.17±3.05

Letters 35.71±1.47 30.28±0.58 30.17±1.01 26.90±1.23 31.50±0.89 27.53±0.72 26.12±1.93 30.76±0.84 37.74±1.06

MNIST 74.31±2.28 73.12±2.73 70.73±1.76 59.86±5.11 65.06±2.75 61.18±3.58 43.13±4.88 71.98±1.67 80.58±1.75

Covertype 49.76±0.35 N/A N/A 49.54±0.58 49.11±0.30 49.68±0.40 49.86±0.94 49.50±0.28 50.73±0.62

TB-1M 99.55±0.06 N/A N/A 70.05±1.21 82.94±1.08 72.50±1.48 60.12±3.64 99.65±0.31 99.75±0.01

SF-2M 93.60±1.00 N/A N/A 67.12±5.41 73.46±1.76 66.90±6.15 55.91±5.71 88.71±3.28 93.46±2.27

CC-5M 99.99±0.00 N/A N/A 66.76±6.24 52.96±0.00 62.71±5.38 61.91±5.49 99.30±3.07 99.99±0.00

CG-10M 81.32±2.00 N/A N/A 66.96±5.60 63.36±1.26 64.74±6.80 58.19±4.69 81.95±3.93 93.99±3.25

Flower-20M 88.89±2.85 N/A N/A 57.78±3.37 63.83±2.34 56.69±2.35 50.70±5.02 81.37±2.69 93.79±3.21

Avg. score - N/A N/A 58.18 62.32 57.80 50.29 74.49 81.68
N-Avg. score - N/A N/A 72.48 77.98 72.22 63.53 90.54 100.00

Avg. rank - 5.40 5.60 5.00 4.20 5.00 6.30 2.90 1.00
* Note that N/A indicates the out-of-memory error.
** The U-SPEC doesn’t participate in the comparison of the ensemble methods.

TABLE 9
Time costs(s) of our methods and the baseline ensemble clustering methods.

Dataset U-SPEC EAC WCT KCC PTGP ECC SEC LWGP U-SENC

PenDigits 1.01 8.89 47.01 8.97 11.94 13.56 5.27 5.46 19.13
USPS 1.59 13.11 48.45 15.87 59.71 23.53 10.15 10.25 29.17
Letters 1.44 29.60 177.11 33.91 137.46 53.04 16.06 15.58 21.44
MNIST 7.48 576.71 3,435.19 315.58 2,205.18 417.10 260.96 259.91 131.60

Covertype 14.08 N/A N/A 954.89 7,919.02 1,482.43 712.84 685.89 174.49
TB-1M 10.47 N/A N/A 1,308.54 1,276.82 2,100.02 1,000.30 989.10 318.29
SF-2M 27.06 N/A N/A 2,908.34 2,493.99 4,714.16 2,160.46 2,105.82 658.82
CC-5M 46.65 N/A N/A 6,833.38 5,027.91 11,202.43 5,130.84 5,070.21 1,726.40

CG-10M 318.93 N/A N/A 17,344.29 11,578.11 27,492.40 10,938.88 10,700.38 3,603.08
Flower-20M 764.09 N/A N/A 34,869.83 21,198.87 54,913.10 21,696.29 21,378.63 7,225.83

* Note that N/A indicates the out-of-memory error.
** The U-SPEC doesn’t participate in the comparison of the ensemble methods.

• The true number of classes on each dataset is used as
the number of clusters for all the test methods.

• Besides these common parameters, the other param-
eters in the baseline methods will be set as suggested
by the corresponding papers.

4.3 Comparison with Spectral Clustering Methods

In this section, we compare our U-SPEC and U-SENC
algorithms with several state-of-the-art large-scale spectral
clustering algorithms.

As the data sizes range from ten thousand to twenty
million, most of the baseline algorithms are not computa-
tionally feasible for ten-million-level datasets. Specifically,
we use N/A to indicate the out-of-memory error in the
results. As shown in Tables 4 and 5, the SC and ESCG
methods are not able to handle the datasets large than M-

NIST (which consists of 70,000 objects), due to the memory
consumption of constructing and manipulating the N × N
affinity matrix. The Nyström, LSC-K, LSC-R, and FastESC
methods can at most partition a dataset with two million
objects, and cannot deal with datasets larger than that. Out
of the total of nine spectral clustering methods, only three
methods (i.e., U-SPEC, U-SENC, and EulerSC) can deal with
all of the benchmark datasets. As shown in Tables 4 and
5, our U-SENC and U-SPEC methods achieve the best and
the second best scores, respectively, on most of the ten
benchmark datasets.

In Tables 4 and 5, we also provide the average score,
normalized average score (N-Avg. score), and average rank
of each method across the ten datasets. To obtain the nor-
malized average score, the scores in each row will first
be divided by the maximum score in this row, where it
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is obvious that the maximum score will become 100%.
Then we take the average of these normalized rows as the
normalized average score. Note that if a baseline method
cannot process all the datasets, it will not have the average
score and normalized average score information, but it will
still have the average rank information. For example, if only
three methods are efficient enough to process the CC-5M
dataset, then all the other infeasible methods will be treated
as equally ranked in the fourth position on this dataset. As
shown in Tables 4 and 5, our U-SENC method ranks in the
first position on nine out of the ten datasets, and achieves an
average rank of 1.10 w.r.t. both NMI and CA. Our U-SPEC
method achieves an average rank of 2.40 w.r.t. NMI and 2.00
w.r.t. CA. In terms of average score and normalized average
score, our U-SENC and U-SPEC methods also significantly
outperform the other methods.

Table 6 reports the time costs of different methods on the
benchmark datasets. The U-SPEC shows superior efficiency
on most of the datasets, especially on the datasets larger
than one million. The U-SENC requires a larger time cost
than U-SPEC, but it still provides better scalability than most
of the baseline methods and scales well for ten-million-level
datasets due to its memory efficiency. As U-SENC is a spec-
tral clustering algorithm and also an ensemble clustering
algorithm, in the following, we will further compare it with
other state-of-the-art ensemble clustering algorithms.

4.4 Comparison with Ensemble Clustering Methods

In this section, we compare our algorithms with several
state-of-the-art ensemble clustering algorithms.

Note that U-SPEC is not an ensemble clustering algo-
rithm; its clustering results are provided in Tables 7, 8, and
9 for reference only. As shown in Tables 7 and 8, our U-
SENC algorithm obtains the highest NMI and CA scores
on all of the ten datasets. In terms of average score across
the ten datasets, U-SENC achieves the best average NMI(%)
and CA(%) scores of 74.57 and 81.68, respectively while the
second best ensemble clustering method (i.e., LWGP) only
achieves average NMI(%) and CA(%) scores of 66.62 and
74.49, respectively. Similar advantages of U-SENC can also
be observed in the normalized average scores. In terms of
average rank, U-SENC obtains an average rank of 1.00 w.r.t.
both NMI and CA, while the second best method obtains an
average rank of 2.80 w.r.t. NMI and 2.90 w.r.t. CA.

In Table 9, the time costs of different ensemble clus-
tering methods are provided. As can be seen in Table 9,
the proposed U-SENC method has shown its advantage
in efficiency over the other ensemble clustering methods,
especially on the large-scale datasets whose data sizes go
beyond millions.

4.5 Parameters Analysis

In this section, we evaluate the performances of our algo-
rithms and several baseline algorithms with varying pa-
rameters. Because some important baseline methods (such
as Nyström, LSC-K, and LSC-R) can not go beyond two-
million-level datasets, in order to fairly test the influence
of some common parameters among them, we perform the
parameter analysis on four benchmark datasets, namely,
MNIST, Covertype, TB-1M, and SF-2M, which are the largest
four datasets whose sizes are no larger than two million.

TABLE 10
Average NMI(%), CA(%), and time costs(s) over 20 runs by different

methods with varying number of representatives p.

Dataset MNIST Covertype TB-1M SF-2M
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* On the SF-2M dataset, LSC-K cannot handle ≥ 1400 represen-
tatives (or landmarks), while Nyström cannot handle ≥ 1200
representatives (or landmarks), due to the memory bottleneck.

TABLE 11
Average NMI(%), CA(%), and time costs(s) over 20 runs by different

methods with varying number of nearest representatives K.

Dataset MNIST Covertype TB-1M SF-2M
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4.5.1 Number of Representatives p

The parameter p denotes the number of representatives (or
landmarks), which is a common parameter in the sub-matrix
based spectral clustering methods, such as Nyström, LSC-
K, LSC-R, and our U-SPEC and U-SENC methods. As can
be seen in Table 10, a larger p generally leads to better
performance, but also brings in an increasing time cost. In
terms of NMI and CA, our U-SENC method consistently
outperforms the other methods with varying parameter p
on all of the four datasets. The LSC-K outperforms U-SPEC
on the MNIST dataset. But on all the other three datasets,
U-SPEC achieves better or significantly better NMI and CA
scores than LSC-K. In terms of computational cost, the LSC-
K and Nyström methods cannot deal with p ≥ 1, 400 rep-
resentatives on the SF-2M dataset with two million objects.
On the benchmark datasets, U-SPEC is overall the fastest
method with varying parameter p (as shown in Table 10).
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TABLE 12
Average NMI(%), CA(%), and time costs(s) over 20 runs by different

methods with varying ensemble size m.

Dataset MNIST Covertype TB-1M SF-2M
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4.5.2 Number of Nearest Representatives K

The parameter K denotes the number of nearest representa-
tives (or landmarks), which is a common parameter in LSC-
K, LSC-R, and our U-SPEC and U-SENC methods. Note that
the Nyström method doesn’t have such a parameter K, but
we still illustrate the performance of Nyström in Table 11
just to use Nyström as a benchmark here. As illustrated in
Table 11, on the MNIST dataset, U-SENC and LSC-K are
respectively the best and the second best methods w.r.t. NMI
and CA, while U-SPEC is the third best method. On all of
the other three benchmark datasets, U-SENC and U-SPEC
are overall the best two methods w.r.t. both NMI and CA
with varying parameter K (as shown in Table 11).

4.5.3 Ensemble Size m

The parameter m denotes the number of base clusterings,
which is a common parameter in all of the ensemble clus-
tering methods, including U-SENC as well as the baseline
ensemble clustering methods. Note that U-SPEC is not an
ensemble clustering method and doesn’t have the parameter
m, but we still illustrate the performance of U-SPEC in
Table 12 for reference only. As shown in Table 12, U-SENC
outperforms, or even significantly outperforms, the other
ensemble clustering methods w.r.t. both NMI and CA on the
benchmark datasets with varying ensemble size m. Mean-
while, U-SENC consistently requires a lower computational
cost than the other ensemble clustering methods.

4.6 Influence of Representative Selection Strategies

In this section, we compare the performances of our al-
gorithms using different representative selection strategies.
Specifically, Table 13 illustrates the performances of U-SPEC
using hybrid selection (U-SPEC-H), U-SPEC using random
selection (U-SPEC-R), and U-SPEC using k-means based
selection (U-SPEC-K), whereas Table 14 illustrates the per-
formances of U-SENC using hybrid selection (U-SENC-H),
U-SENC using random selection (U-SENC-R), and U-SENC
using k-means based selection (U-SENC-K). As shown in
Tables 13 and 14, the random representative selection is
very efficient compared to k-means based selection, but
may degrade the clustering quality due to its inherent

TABLE 13
The NMI(%), CA(%), and time costs(s) by U-SPEC using different
representative selection strategies (H: hybrid selection; R: random

selection; K: K-means based selection).
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TABLE 14
The NMI(%), CA(%), and time costs(s) by U-SENC using different
representative selection strategies (H: hybrid selection; R: random

selection; K: K-means based selection).

Dataset MNIST Covertype TB-1M SF-2M
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instability. The k-means based selection generally leads to
better clustering quality than random selection, but brings
in a much larger computational cost. Compared to random
selection and k-means based selection, our hybrid selection
strategy strikes a balance between efficiency and clustering
robustness. It achieves comparable efficiency to the random
selection and significantly better efficiency than the k-means
based selection, and also yields competitive clustering qual-
ity as compared to the k-means based selection.

4.7 Influence of Approximate K-Nearest Neighbors

In this section, we compare our algorithms using
Approximate K-nearest representatives against using Exact
K-nearest representatives, where four variants are eval-
uated, i.e., U-SPEC(A), U-SPEC(E), U-SENC(A), and U-
SENC(E). The purpose of using approximate K-nearest
representatives (see Section 3.1.2) is to alleviate the time and
memory cost of the affinity sub-matrix construction while
maintaining the overall clustering quality. As shown in
Tables 15 and 16, using approximate K-nearest representa-
tives can achieve comparable clustering quality (w.r.t. NMI
and CA) with using exact K-nearest representatives while
alleviating the computational cost. As our approximation
of K-nearest representatives reduces the time complexity

from O(Npd) to O(Np
1

2 d), the improvement in efficiency is
more significant for high-dimensional datasets, such as the
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TABLE 15
The NMI(%), CA(%), and time costs(s) by U-SPEC using Approximate
K-nearest representatives against Exact K-nearest representatives.

Dataset MNIST Covertype TB-1M SF-2M
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TABLE 16
The NMI(%), CA(%), and time costs(s) by U-SENC using Approximate
K-nearest representatives against Exact K-nearest representatives.

Dataset MNIST Covertype TB-1M SF-2M
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MNIST dataset, whose dimension is 784. Even for the low-
dimensional datasets, such as TB-1M and SF-2M, the use of
approximate K-nearest representatives can still consistently
reduce the time cost. Besides the time efficiency, the approx-
imate K-nearest representatives also alleviate the memory
burden. Specifically, on a machine with 64GB memory, the
computation of conventional K-nearest representatives can
hardly go beyond five million objects, whereas the proposed
approximation method for K-nearest representatives can
scale well for even ten-million-level datasets.

5 CONCLUSION

This paper proposes two large-scale clustering algorithm-
s, termed ultra-scalable spectral clustering (U-SPEC) and
ultra-scalable ensemble clustering (U-SENC), respectively.
In U-SPEC, a new hybrid representative selection strategy
is designed to strike a balance between the efficiency of
random selection and the effectiveness of k-means based
selection. Then a new approximation method for K-nearest
representatives is presented to efficiently construct a bipar-
tite graph between the original data objects and the set of
representatives, upon which the transfer cut can be utilized
to obtain the clustering result. Starting from the U-SPEC
algorithm, we further integrate multiple U-SPEC clusterers
into a unified ensemble clustering framework and propose
the U-SENC algorithm. Specifically, multiple U-SPEC’s are
exploited in the ensemble generation phase to produce an

ensemble of diverse and high-quality base clusterings. The
multiple base clusterings are incorporated into a new bi-
partite graph, which treats both objects and base clusters as
graph nodes and is then efficiently partitioned to achieve the
final consensus clustering. Extensive experiments have been
conducted on ten large-scale datasets, which demonstrate
the scalability and robustness of our algorithms.
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