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Abstract

Background

Planning and evaluating malaria control strategies relies on accurate definition of parasite
prevalence in the population. A large proportion of asymptomatic parasite infections can
only be identified by surveillance with molecular methods, yet these infections also contrib-
ute to onward transmission to mosquitoes. The sensitivity of molecular detection by PCR is
limited by the abundance of the target sequence in a DNA sample; thus, detection becomes
imperfect at low densities. We aimed to increase PCR diagnostic sensitivity by targeting
multi-copy genomic sequences for reliable detection of low-density infections, and investi-
gated the impact of these PCR assays on community prevalence data.

Methods and Findings

Two quantitative PCR (gPCR) assays were developed for ultra-sensitive detection of Plas-
modium falciparum, targeting the high-copy telomere-associated repetitive element 2
(TARE-2, ~250 copies/genome) and the var gene acidic terminal sequence (varATS, 59
copies/genome). Our assays reached a limit of detection of 0.03 to 0.15 parasites/ul blood
and were 10x more sensitive than standard 18S rRNA gPCR. In a population cross-section-
al study in Tanzania, 295/498 samples tested positive using ultra-sensitive assays. Light
microscopy missed 169 infections (57%). 18S rRNA gPCR failed to identify 48 infections
(16%), of which 40% carried gametocytes detected by pfs25 quantitative reverse-transcrip-
tion PCR. To judge the suitability of the TARE-2 and varATS assays for high-throughput
screens, their performance was tested on sample pools. Both ultra-sensitive assays cor-
rectly detected all pools containing one low-density P. falciparum—positive sample, which
went undetected by 18S rRNA gPCR, among nine negatives. TARE-2 and varATS qPCRs
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improve estimates of prevalence rates, yet other infections might still remain undetected
when absent in the limited blood volume sampled.

Conclusions

Measured malaria prevalence in communities is largely determined by the sensitivity of the
diagnostic tool used. Even when applying standard molecular diagnostics, prevalence in
our study population was underestimated by 8% compared to the new assays. Our findings
highlight the need for highly sensitive tools such as TARE-2 and varATS qPCR in communi-
ty surveillance and for monitoring interventions to better describe malaria epidemiology and
inform malaria elimination efforts.

Introduction

Accurate and sensitive detection of malaria parasites is a key factor in planning, targeting,

and evaluating malaria control efforts, and requires different strategies at different elimination
stages [1-3]. One major challenge is the identification of remaining reservoirs of human-to-
mosquito transmission in asymptomatic individuals carrying low-density infections. The true
extent of this predominantly submicroscopic reservoir became better defined with the wider
application of molecular detection techniques in epidemiological studies [4,5], and its relevance
to sustained malaria control has been brought into focus [1-3]. It was recently estimated

that submicroscopic but PCR-detectable infections make up 20% of all malaria infections in
high-transmission areas and as much as 70% in low-endemic areas, where they contribute

40% of all transmission to mosquitoes [5]. Mass drug administration (MDA) interventions
include treatment of these undetected carriers and can thereby reduce parasite prevalence for
several months in low- to moderate-prevalence settings, with even longer effects predicted at
low transmission levels [6,7]. According to modeling predictions, mass screening and treat-
ment (MSAT) strategies have a lower impact than MDA-based interventions [7], as MSAT is
limited by the sensitivity of the diagnostic tool used. A recent study in Burkina Faso found no
sustained effect of anti-malarial treatment on incidence of clinical episodes 9 mo after MSAT
using conventional diagnosis based on rapid diagnostic test (RDT) [8]. This finding is likely at-
tributable to the large proportion of undetected low-density infections. The true parasite bur-
den could be better defined using nucleic-acid-based diagnostics, but even then, very-low-
density infections might be missed. Such low-density infections might be particularly prevalent
in areas with a recent and drastic decline in the force of infection of Plasmodium falciparum,
where high parasite densities and disease are controlled by residual immunity. As more coun-
tries successfully reduce malaria prevalence [9], the proportion of low-density infections can be
expected to rise, and more sensitive diagnostics that surpass even conventional PCR are urgent-
ly needed to detect potential hidden reservoirs.

Of the current molecular detection methods available for malaria diagnosis (summarized in
Table 1), RNA-based techniques such as quantitative reverse transcription PCR (qRT-PCR)
[10-12], nucleic acid sequence-based amplification (NASBA) [13-15], and ELISA-like hybrid-
ization assays [16] reach the highest sensitivities by targeting the highly abundant 18S small
subunit ribosomal RNA (18S rRNA). However, because of the unstable nature of RNA, these
assays require dedicated and controlled sample collection and storage, and thus have only a
limited application in field settings. DNA-based techniques are generally more field-adaptable
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Table 1. Assay characteristics and limit of detection (LOD) of published P. falciparum detection assays.

Method Template Molecule Target Gene Quantification LOD (Parasites/pl Blood) Reference
Nested PCR DNA 18S rRNA, dhfr-ts, 28S rRNA, stevor No 0.1-10 [17-22]
PCR DNA mitochondrial DNA No 0.5 [42]

gPCR DNA 18S rRNA, cox1, cytb Yes 0.02-3 [23-31]
PCR-based DNA 18S rRNA, cox1 Yes/No 0.5-1 [19,37—41]
LAMP? DNA 18S rRNA, mitochondrial DNA No 1-10 [32-35]
RPA? DNA 18S rRNA No 4 [36]
gRT-PCR RNA 18S rRNA Yes 0.002-0.02 [10-12]
(QT-)NASBA? RNA 18S rRNA Yes/No 0.02 [13-15]

8lsothermal amplification process.
QT-NASBA, quantitative NASBA.

doi:10.1371/journal.pmed.1001788.t001

and include nested PCR [17-22], quantitative PCR (qPCR) [23-31], loop-mediated isothermal
amplification (LAMP) [32-35], isothermal recombinase polymerase amplification (RPA) [36],
and alternative PCR-based detection methods [19,37-41]. Of the DNA-based assays, only
qPCR allows one to robustly quantify copy numbers of the template DNA in the reaction as a
measure of parasite load in the sample.

Due to the lower number of target molecules in the sample, DNA-based techniques have a
reduced sensitivity compared to their RNA-based counterparts, but sampling for DNA-based
diagnosis is more robust. The most prominent molecular marker is the 18S rRNA gene, present
at 5-8 copies per genome, depending on the parasite strain [43]. In recent years, several at-
tempts have been made to increase DNA-based PCR sensitivity by sampling larger blood vol-
umes and concentrating the DNA [44], or choosing mitochondrial [19,27,32,42] or nuclear
multi-copy PCR targets [40,45]. Already in 1997, Cheng et al. designed a nested PCR that de-
tected the conserved region of the subtelomeric stevor gene group, with many copies per ge-
nome [46], which had improved sensitivity over single-copy PCRs [47].

We have taken this approach further and have chosen high-copy subtelomeric sequences
with the widest possible chromosomal distribution to develop novel qPCR assays for highly
sensitive detection and quantification of P. falciparum in low-density infections. The telomere-
associated repetitive element 2 (TARE-2) is a 1.6-kb-long block consisting of ten to twelve 135-
bp repeat units with slightly degenerate sequences, interspersed by two 21-bp sequences
[48,49]. The TARE-2 repeat is present at 24 of 28 subtelomeres in the 3D7 culture strain [49],
which amounts to approximately 250-280 copies per genome, and is specific to P. falciparum
strains [48].

The var gene family is located primarily in the subtelomere and was chosen to develop a sec-
ond qPCR with a multi-copy target. The genome of the 3D7 culture strain harbors 59 var genes
[49], and an estimated 50-150 copies are present in other parasite lines [50,51]. var genes en-
code the P. falciparum erythrocyte membrane protein 1 (PfEMP1) and possess a transmem-
brane domain and one intron, with exons 1 and 2 encoding the extra- and intracellular parts of
PfEMP1. In contrast to the highly variable extracellular domain, the intracellular var gene acid-
ic terminal sequence (varATS) comprises some well-conserved stretches and can thus be tar-
geted by qPCR [50,51].

With the aim of increasing test sensitivity at least 10-fold and improving the robustness of
parasite detection at low densities, we developed two novel qPCR assays using the multi-copy
TARE-2 and varATS sequences as targets. We then investigated the potential of both assays to
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detect ultra-low-density infections that are beyond the detection limit even of 18S rRNA
qPCR. We further hypothesized that the abundance of the PCR target in the parasite genome
would counterbalance the diluting effect of sample pooling, and thus tested the suitability of
our assays for application to sample pools.

Methods
Ethical Approval

Field samples used for these analyses were derived from a cohort study conducted in Maprik Dis-
trict, Papua New Guinea (PNG), from 17 August 2009 to 20 May 2010 [11] and a cross-sectional
survey conducted in Rufiji, Tanzania (TZ), in 2013. Scientific approval and ethical clearance for
the PNG cohort study was obtained from the Medical Research and Advisory Committee of the
Ministry of Health in PNG (MRAC no. 09.24) and the Ethics Commission of Basel Land and
Basel Stadt (no. 237/11). Approval for the TZ cross-sectional study was obtained from the Insti-
tutional Review Board of the Ifakara Health Institute, Dar es Salaam, TZ (no. 13-2013). Informed
consent was obtained from all study participants in PNG and TZ, for children from parents or
legal guardians prior to sampling.

Primer Design and gPCR Conditions

For varATS primer design, all 59 varATS sequences per P. falciparum genome (strain 3D7;
PlasmoDB) were aligned using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/). With-
in the size-polymorphic varATS domain (size range 1-1.5 kb), the most conserved domain was
selected for primer and MGB (minor groove binder) probe design. One wobble each was in-
serted into the forward primer and probe to improve annealing, whereas the reverse varATS
primer matched very well with all 3D7 varATS sequences. We expect that only about 40% of
3D7 sequences match sufficiently well with the selected oligonucleotides to yield an amplifica-
tion product. Attempts to further increase assay sensitivity by using additional wobbles and
combinations of primers were not successful. Primer and probe sequences, as well as qPCR
mixes and cycling conditions, are listed in SI Table.

The TARE-2 repeat region was identified in the genome of P. falciparum strains 3D7 (Na-
tional Center for Biotechnology Information) and IT (PlasmoD3B) using the Tandem Repeats
Finder tool (http://tandem.bu.edu/trf/trf.html). TARE-2 sequences of other P. falciparum
strains were retrieved by BLAST (http://blast.ncbi.nlm.nih.gov) search using 3D7 and IT repeat
units. All repeat units were aligned using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/
clustalo/), and primers were designed on the most conserved stretches so that eight nucleotides
prior to the 3’ end matched with the majority of repeat sequences. One wobble was inserted
into each primer for better annealing. Owing to repeat degeneration and therefore difficult
probe design, probe-free SYBR Green-based real-time quantification of amplicons was chosen.
Primer sequences and qPCR reaction and cycling conditions are specified in S1 Table. The
melt curves of amplicons were inspected in each experiment to detect false positivity. True pos-
itive samples differed clearly from primer dimer and unspecific PCR products based on the
amplicon’s melting temperature (T},; S1 Fig).

Samples were quantified using a standard curve of plasmid (varATS) or parasite genomic
DNA (gDNA; TARE-2). As varATS standard, the varATS amplicon was amplified from 3D7
gDNA and inserted into the TOPO TA vector (Invitrogen). The purified plasmid was diluted
to 10, 10% and 10° plasmids/ul in TE buffer. As TARE-2 standard, gDNA of a 10-fold dilution
of ring-stage 3D7 parasite culture was used (6.8 x 10 to 6.8 x 10> parasites/p; described in S1
Text).
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The reference 185 rRNA qPCR was performed as described previously [11,23], using a
MGB probe (6FAM-5'-ACGGGTAGTCATGATTGAGTT-3'-NFQ-MGB) in a total volume of
12 ul. DNA volume matched that of varATS and TARE-2 qPCRs. The amount of target DNA
in each sample was calculated from the C, value using a plasmid standard curve as described
above (18S rRNA amplicon inserted in TOPO TA vector [Invitrogen]). pfs25 qRT-PCR for ga-
metocyte detection was performed as described previously [11].

Analytical Specificity and Sensitivity

The analytical specificity of the TARE-2 and varATS qPCRs was assessed both in silico using
BLAST search and experimentally using human gDNA from a healthy, malaria-free volunteer
and P. malariae and P. ovale gDNA (three archived anonymized clinical patient samples each).
No amplification from non-falciparum Plasmodium or human DNA was observed using the
varATS and TARE-2 qPCRs.

For assessment of P. vivax cross-reactivity, 14 samples with a low to medium number of ge-
nomic P. vivax 18S rRNA copies (22-393 Pv18S rRNA copies/ul; light microscopy [LM]:
0-219 parasites/ul) were selected from a previously analyzed sample pool [11]. All 14 selected
P. vivax DNA samples had been diagnosed P. falciparum-negative by A18S qRT-PCR. All 14
samples were varATS- and TARE-2-negative.

Analytical sensitivity and qPCR efficiency were validated on dilution rows of (i) in vitro cul-
tured ring stages (3D7 strain) and (ii) the WHO international standard for P. falciparum DNA
nucleic acid amplification techniques (National Institute for Biological Standards and Control,
UK) [27,52]. Details on generation of the dilution rows are presented in SI Text. TARE-2 and
varATS qPCR efficiencies, determined on the 3D7 culture dilution row, were comparable to
that of 18S rRNA qPCR; however, all qPCR efficiencies were slightly outside the desirable effi-
ciency range of 90%-105% (Table 2). Efforts to optimize qPCR efficiency by varying primer
concentration, annealing temperature, and qPCR volume were not successful.

Field Samples and Nucleic Acid Extraction

In a pilot study, 60 DNA samples from PNG were used for assay validation. They were selected
from a larger pool of previously analyzed samples based on their positivity in 185 rRNA qPCR
(33 positives, 27 negatives), and we used 18S rRNA copy numbers in these samples to select a
wide range of parasite densities [11]. DNA of PNG samples was extracted using the FavorPrep
96-well Genomic DNA Extraction Kit (Favorgen) from blood cell fractions of 50-150 pl, eluted
in 200 pl of elution buffer, and stored at —20°C.

The 498 TZ samples were age-stratified randomly selected from the larger cross-sectional
sample set, so that each age category contained at least 40 samples. We intended to estimate

Table 2. qPCR details and efficiencies of the 18S rRNA, varATS, and TARE-2 assays.

Assay Slope Efficiency Intercept® R? Platform Amplicon Length® Amplified Copy Numbers in Genome
18S rRNA -3.63 88.5% 41.09 1.0 TagMan 221 bp 3

varATS -3.63 88.6% 34.50 1.0 TagMan 65 bp <59°¢

TARE-2 -3.75 84.7% 32.08 0.97 SYBR Green 93 bp <250-280°

@Intercept equals the C; value of the DNA equivalent of five parasites added to the gPCR reaction.

PLength of consensus sequence.

°Polymorphism in primer binding sites likely does not permit efficient amplification of all genomic copies. Number of target sequences present in parasite
genomes from field samples cannot be determined in absence of the respective genome data.

doi:10.1371/journal.pmed.1001788.t002
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the overall proportion of P. falciparum-positive individuals by each test with a precision given
by a CI of £5%. Samples were collected as 50 ul of whole blood in 250 pul of RNAprotect Cell
Reagent (Qiagen) to stabilize RNA. RNA extraction was performed as previously described
[11]. DNA was co-extracted during RNA extraction using the RNeasy Plus 96 Kit (Qiagen).
DNA was recovered from the gDNA eliminator column after two washing steps according to
the QIAamp 96 DNA Blood Kit protocol (500 ul of AW1 buffer, 500 ul of AW2 buffer) and
eluted in 100 pl of AE elution buffer.

TARE-2, varATS, and 18S rRNA qPCR were performed once on each TZ DNA sample. If
sample positivity did not agree between the three qPCR assays, each qPCR was repeated in du-
plicate for the discrepant sample, yielding a total of three qPCR replicates for all assays in the
discrepant samples. Samples were defined as positive for varATS, TARE-2, or 18S rRNA qPCR
if two out of three replicates were positive. For gametocyte detection, pfs25 qRT-PCR was per-
formed as previously described using 4 ul of RNA [11].

Generation of Pooled Samples

Low-density P. falciparum-positive samples (<2 parasites/pl by TARE-2 qPCR, LM negative)
were selected from the TZ collection and mixed with four or nine P. falciparum-negative
blood samples to create pools of five or ten samples. Negative samples were prepared by mixing
50 pl of blood from a malaria-negative blood donor with 250 pl of RNAprotect Cell Reagent
(Qiagen) to permit simultaneous DNA and RNA isolation. Per sample, 100 pl of whole blood
in RNAprotect Cell Reagent was added to the pool, resulting in a total sample volume of 500 pl
or 1 ml (for five- and ten-sample pools, respectively). DNA was extracted from the entire vol-
ume of these pools using the RNeasy Plus 96 Kit (Qiagen) as described above, and DNA was
eluted in 100 pl (five-sample pools) or 200 pl (ten-sample pools). In total we generated 20
pools of five samples, five of which contained a P. falciparum-positive sample, and ten pools of
ten samples, two of which contained a positive sample.

Statistical Analyses

Data analysis was performed using R v3.0.2 statistical software. The Mann-Whitney-Wilcoxon
test was used to compare for each parasite population (TZ and PNG) the mean T, of the spe-
cific amplicon versus primer dimer. The LOD of qPCR assays, i.e., the concentration at which
a sample is detected with 95% confidence, was calculated at using probit analysis of the dilution
row results. Proportions of samples positive for the TARE-2, varATS, and 185 rRNA qPCRs in
the TZ and PNG datasets were compared using McNemar’s Chi” test. Correlations of parasite
quantity per microliter or template copy number per microliter between assays were calculated
using Pearson’s product-moment correlation.

Results
Limit of Detection of varATS and TARE-2 gPCRs

Probit analysis was used to determine the LOD, i.e., the concentration at which a sample would
be detected with 95% confidence (Fig 1), based on qPCR results from dilution rows of parasite
culture and WHO standard material (S3 Table). The varATS and TARE-2 qPCRs were at least
10x more sensitive than standard 185 rRNA qPCR and reached LODs, calculated on the two
different dilution rows, of 0.06 and 0.15 parasites/pl (varATS; Clgs [0.02-1.07] and [0.05-4.37])
and 0.03 and 0.12 parasites/pl (TARE-2; Clgs [not defined] and [0.04-2.06]). Probit analysis of
the TARE-2 results using the WHO standard dilution row did not yield a 95% CI because of the
steep slope of the regression line. The LOD of 18S rRNA qPCR was calculated at 1.57 parasites/
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Fig 1. Limit of detection of TARE-2, varATS, and 18S rRNA gPCRs. Dashed lines: based of serial dilution
of WHO standard material [52]. Continuous lines: based on serial dilution of ring-stage 3D7 in vitro culture.
par, parasites.

doi:10.1371/journal.pmed.1001788.9001

ul (Clos [0.28-626.73]). The TARE-2 and varATS assays can therefore robustly detect as few as
6-24 and 12-30 parasites in 200 pl whole blood, respectively, which is the typical volume nor-
mally processed for DNA extraction from fingerprick blood samples without

sample concentration.

Detection of Ultra-Low-Density Infections in Maprik District, Papua New
Guinea

As pilot study, we compared the ability of the three qPCRs to detect low-density P. falciparum
infections in 60 DNA samples from PNG. All 33 samples that were positive in 185 rRNA qPCR
were also positive using both ultra-sensitive assays. Out of the 27 samples negative by 18S
rRNA gPCR, four were positive in varATS qPCR (McNemar’s Chi®, p = 0.181). The same four
samples plus five additional samples were positive by TARE-2 qPCR, resulting in a significant
gain in sample positivity (McNemar’s Chi’, p = 0.036). Since samples were not randomly se-
lected but chosen deliberately to include a wide parasite density range, this result does not re-
flect the true P. falciparum prevalence in Maprik District, PNG. Nevertheless the number of
additional samples positive for P. falciparum demonstrates that a considerable proportion of
infections may persist at ultra-low densities and remain undetected by standard qPCR.

Prevalence of Ultra-Low-Density Infections and Gametocyte Carriage in
Rufiji, Tanzania

P. falciparum prevalence in Rufiji, TZ, was assessed in 498 samples randomly selected from a
larger cross-sectional study conducted in 2013. P. falciparum prevalence was higher using
ultra-sensitive detection methods as compared to 18S rRNA qPCR, with borderline signifi-
cance (McNemar’s Chi?, Prare2 = 0.068, p,arats = 0.083). Prevalence values were 25% (Clos
[21%-29%]) by LM, 50% (Clos [45%—-54%]) by 18S rRNA qPCR, and 58% (Clys [53%-63%])
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Fig 2. P. falciparum prevalence and gametocyte carriage in Rufiji, Tanzania. (A) Overall P. falciparum prevalence by different diagnostic methods. Error
bars represent 95% Cls. (B) P. falciparum prevalence based on TARE-2, varATS, and 18S rRNA qPCRs by age (in years). Error bars represent 95% Cls.

(C) Venn diagram of positivity by varATS, TARE-2, and 18S rRNA gPCRs. (D) Proportion of gametocyte carriers by pfs25 qRT-PCR. Samples were
categorized according to the least sensitive method that identified them as P. falciparum—positive. In total, 13 of 126 LM-positive samples were not confirmed
by any gPCR, and 11 of these also were negative by RDT (SD Bioline Pan pLDH/PfHRP2), thus these samples should be considered false positive by LM.
Three samples had to be excluded from the gametocyte analyses because of missing RNA data.

doi:10.1371/journal.pmed.1001788.9002

by varATS qPCR or TARE-2 qPCR (Fig 2A). Applying ultra-sensitive techniques thus revealed
a larger submicroscopic infection pool than detected by the routinely used molecular method.
Despite a gain in prevalence of 25% over LM, 18S rRNA qPCR still underestimated the true
parasite prevalence by 8% without major differences across age groups (Fig 2B). In a total of
295 P. falciparum infections, 16% (48 samples) were not detected by 18S rRNA qPCR but only
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by varATS or TARE-2 qPCR (Fig 2C). Agreement between assays was very good in the subset
positive in 185 rRNA qPCR, with all samples positive in 185 rRNA qPCR detected also by
varATS qPCR and all but two by TARE-2 qPCR. The level of agreement between TARE-2 and
varATS qPCRs in this sample subgroup was also high, with 79% (38/48) of samples detected by
both ultra-sensitive assays.

Quantification of parasite load by varATS and TARE-2 correlated very well with 18S rRNA
qPCR quantification in field samples from Rufiji (Pearson’s correlation coefficient, R* = 0.98,
Clys [0.97-0.98], and R? = 0.95, Clys [0.94-0.96], respectively; Fig 3A), as well as with each
other (R* = 0.97, Clos [0.96-0.98]). Correlation of parasite load determined by qPCR and by
microscopy was similar for the three assays and ranged from 0.74 (18S rRNA, Clos [0.64-0.81])
to 0.66 (TARE-2, Clgs [0.54-0.75]; varATS: 0.68, Clos [0.57-0.80]; Fig 4). Despite the high num-
ber of target sequences and slight sequence degeneration, quantification of parasite load is thus
feasible using varATS and TARE-2 qPCRs. Parasite loads by TARE-2 qPCR in samples negative
by 18S rRNA qPCR were, except for few outliers, within the lowest quartile of all parasite loads
by TARE-2 quantification. The same was observed for varATS copy numbers of samples negative
by 18S rRNA. When stratified by age, parasite densities or target copy numbers were low in in-
fants up to 1y, peaked in 2- to 3-y-old children, and decreased thereafter, with the lowest parasite
loads observed in the oldest age group (Fig 3B).

The prevalence of gametocytes by pfs25 qRT-PCR was 40% in all study participants (Clos
[36%-45%]). The proportion of pfs25-positive samples was highest in samples that were posi-
tive by LM, of which 77% (Clys [69%-84%], 97/126) carried gametocytes (Fig 2D). Among
submicroscopic infections identified by 18S rRNA qPCR, gametocytes were detected in 63%
(Clgs [55%-72%], 85/134) of samples. In samples positive only by TARE-2 and/or varATS
qPCR, 40% (Clos [26%-56%], 18/45) carried gametocytes. These observations prove that mo-
lecularly determined gametocyte carriers are not predominantly found among LM-positive
individuals, but rather that an equal number of gametocyte carriers are present in study partici-
pants with submicroscopic infections. By use of a routinely used 18S rRNA assay, 16% of asex-
ual infections and 9% of gametocyte carriers would have been missed.

Performance on Sample Pools

To investigate the potential of our assays for a wider application in malaria surveillance or epi-
demiological field studies, we tested the power of all three qPCR assays to identify P. falcipa-
rum-positive samples in pools of five or ten samples, each containing one low-density P.
falciparum infection. 18S rRNA qPCR failed to identify the two positive ten-sample pools and
identified only one of five positive five-sample pools. In contrast, varATS and TARE-2 qPCR
correctly detected all positive five- and ten-sample pools. No amplification was observed from
negative control pools. Our ultra-sensitive assays thus proved suitable for detection of low-
grade infections after dilution in nine negative samples. These infections would be missed by
18S rRNA gPCR after pooling. In a setting with 2% P. falciparum prevalence, as simulated
here, the cost of sample processing and detection can therefore be reduced by at least 70% with-
out loss in sensitivity if ultra-sensitive assays are applied to pools of ten samples.

Discussion

Detecting Low-Density Infections Using Ultra-Sensitive Methods Is
Relevant for Malaria Control Efforts

Accurate data on parasite prevalence in the community are imperative for targeting antimalari-
al interventions and for monitoring their outcome. In this study, we provide first evidence of
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examined, and parasite density was calculated assuming 8,000 leucocytes/ul blood. Pearson’s product-
moment correlation was used to assess correlation strength, and Deming regression was used to calculate
regression lines.

doi:10.1371/journal.pmed.1001788.9004

very-low-grade infections in individuals who had previously been considered parasite-free,
even after molecular diagnosis, and show that a large proportion of these samples carry game-
tocytes. In Rufiji, a high-endemic area in TZ, microscopic and submicroscopic infections (by
standard 18S rRNA qPCR) each amount to roughly 40% of all P. falciparum infections; 16%
are of ultra-low density and detected only by TARE-2 and varATS assays. These ultra-low-
density infections potentially contribute to transmission, as they represent 9% of the molecu-
larly detected gametocyte carriers. In Maprik District, PNG, 18S rRNA qPCR failed to identify
similar quantities of ultra-low-density infections.

A meta-analysis of infection prevalence across the endemicity spectrum has indicated that
submicroscopic infections are generally more prevalent in low-transmission settings than in
high-transmission areas [5], probably as a result of a recently reduced force of infection and
the long duration of asymptomatic untreated infections [53-55]. In such areas, detection of in-
fection, rather than assessment of malaria-associated illness, could serve as a better measure of
the malaria burden and a better parameter for surveillance and evaluation [1,2]. Low-density
infections can be missed in cross-sectional studies even when using standard 18S rRNA qPCR
because parasitemia fluctuates and may occasionally fall below the detection threshold of the
assay. Waves of asexual parasitemia and gametocytemia were described in malaria therapy
data [56,57]. Accordingly, scanty infections may rise in density at a later time point and in-
crease gametocyte production to detectable levels, leading to higher transmission potential. Im-
proved measures of prevalence using tools for reliable detection of low-density infections can
contribute significant information and are important for accurate monitoring and evaluation
of malaria control activities, as well as for assessing the potential for onward transmission from
human hosts to mosquitoes.

Gametocyte Carriage in Low-Density Infections Emphasizes Their
Potential Contribution to Malaria Transmission

Few studies have investigated the transmission potential of submicroscopic infections. Micro-
scopically detectable infections with gametocyte densities below the microscopical threshold
can infect mosquitoes, albeit at lower rates than microscopically gametocyte-positive samples
(2.3% versus 13.2% infected mosquitoes) [58]. A meta-analysis of mosquito feeding assays con-
ducted in several African countries showed that 27.6% of individuals who lacked microscopi-
cally detectable gametocytes were capable of infecting mosquitoes [59]. Similarly, data from
the mid-20th century and from two recent studies showed that even blood from infections
without any microscopically detectable parasites resulted in 0.2%-3.2% infected mosquitoes
[5,60-62]. In a study performed in the Gambia, multiple parasite genotypes were detected in
oocysts after feeding mosquitoes on blood seemingly carrying a clonal infection [63]. In that
study, multiple gametocyte genotypes were detected in the same blood sample, suggesting that
parasite clones undetectable on DNA level produced gametocytes in quantities sufficient to
transmit to mosquitoes. Clustering of gametocytes, especially in infections with low gametocyte
densities, has been given as a possible explanation for why such infections are able to transmit
to mosquitoes [64-66]. A modeling analysis using data from Cameroon found that asexual
densities did not predict the proportion of infected mosquitoes, contrary to gametocyte
densities, which exhibited a complex and non-linear correlation with transmission success
[58,67,68]. Taken together, the available data suggest that all infections should be viewed as
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potentially relevant for transmission. The relative contribution of low-density infections to for-
ward transmission to mosquitoes hence may gain substantial importance in areas where these
account for a large proportion of infections [5,58]. In our TZ setting, the majority of infections
were submicroscopic and harbored 50% of gametocyte-positive samples. TARE-2 and varATS
assays identified a so far ignored extent of submicroscopic infective burden, with 40% of these
low-key infections carrying gametocytes. We thus argue for including ultra-low-grade infec-
tions into the evaluation of malaria interventions and for acknowledging their potential rele-
vance for maintaining transmission, a role that urgently needs experimental clarification.

Sensitivity as a Major Determinant of Prevalence Estimates: Advantages
and Limitations of the TARE-2 and varATS qPCRs

Our results highlight the fact that prevalence data are strongly dependent on the sensitivity of
the diagnostic technique applied. Even if parasite prevalence is measured using standard qPCR
protocols, many low-key infections remain undetected. Standard PCR is widely considered a
molecular gold standard of malaria diagnosis complementing LM, the traditional gold stan-
dard, yet our results suggest that this notion requires revision. It becomes increasingly clear
that the volume of blood analyzed [44] and the use of multi-copy markers to increase the
representation of a PCR template in the amplification reaction ([19] and this study) have great
influence on the prevalence outcome. Our findings shed new light on MSAT strategies for in-
terruption of transmission in elimination settings, particularly those that rely on RDT-based
diagnosis only, as it becomes clear that the ignored proportion of submicroscopic infections is
even larger than anticipated. Following a recent MSAT campaign in TZ, RDT-undetected in-
fections were given as a plausible explanation for the short-lived effect on malaria episode inci-
dence [69]. In that study, it was estimated that more than 45% of PCR-detectable infections
were missed by RDT, which, given our results, is very likely a substantial underestimation. A
major task now consists in adapting molecular methods with enhanced sensitivity to meet the
requirements of a robust, field-compatible diagnostic assay. Such tools are becoming increas-
ingly important to determine the infection burden irrespective of endemicity level.

We have presented here two ultra-sensitive qPCR assays for improved detection of low-
grade P. falciparum infections and their application to sample pools. The varATS qPCR is very
robust and highly specific, and allows fast and easy data analysis through the use of a sequence-
specific probe. The TARE-2 assay is more susceptible to changes in the chemical composition
of the DNA solution and requires melt curve analysis of amplicons, which is a potential draw-
back, particularly when performed by less-trained personnel. Both assays exhibited slightly
suboptimal amplification efficiency despite all optimization efforts, possibly because of a wob-
ble base introduced into primer and probe sequences to improve annealing to the target copies
in the genome. Regardless of this inherent low efficiency, sensitivity was superior to that of 18S
rRNA gPCR in field samples and on parasite dilution rows. Surprisingly, the TARE-2 qPCR
did not outperform the varATS assay despite substantially higher target numbers in the ge-
nome. This might be explained by the degenerate sequence of the TARE-2 repeat units or by
the clustered distribution of the repeats at chromosome ends. In the 3D7 genome, about ten
TARE-2 tandem repeats are present at 24 chromosome ends, and in this arrangement, they
may not be separated during DNA extraction. The 59 varATS targets of strain 3D7 also localize
to chromosome ends and a few intracellular loci. We assume an equal probability for both tar-
gets to be represented in a PCR reaction, but certainly both assays surpass 185 rRNA qPCR,
with three copies on different chromosomes targeted by our assay. Because of the need for ad-
vanced laboratory infrastructure and staff training, use of our TARE-2 and varATS qPCRs in
their current setup is not feasible in remote field settings. However, the assays are ideally suited

PLOS Medicine | DOI:10.1371/journal.pmed.1001788 March 3, 2015 13/21



@'PLOS | MEDICINE

Ultra-Sensitive gPCR for P. falciparum Prevalence Estimates

for use in reference laboratories, for example for quality assurance or for centralized processing
of large sample numbers in sample pools. Several strategies for pooling samples for malaria sur-
veys have been described, comprising one or several pooling steps before [70-72] or after
[73,74] DNA extraction. Pooling is severely limited by its inherent diluting effect and is there-
fore not recommended in the Malaria Eradication Research Agenda (malERA) strategy [1]. In
low-endemic settings, in particular, where pooling would be most cost- and labor-effective,
submicroscopic infections are highly prevalent [5] but are most likely missed in pools because
of their low densities. Our varATS and TARE-2 assays proved to be useful for testing pooled
samples as they counterbalance the diluting effect through multiple marker copies per parasite.
In our hands, even the lowest-density infections diluted with nine negative samples were still
detectable. This high sensitivity may be further enhanced by increasing the volume of blood
samples and concentrating material before qPCR [44]. The availability of ultra-sensitive assays
such as our TARE-2 and varATS qPCRs makes sample pooling without loss in sensitivity feasi-
ble and allows achieving higher throughput in the context of limited resources in large-scale
field studies. Once similar assays have been developed also for detecting the other human-in-
tecting Plasmodia, blood pooling followed by multiplex PCR will further reduce the per-sample
cost in studies requiring detection of all four Plasmodium species.

Conclusion

In conclusion, we encourage employing assays with enhanced sensitivity, such as the TARE-2
or varATS qPCRs, in any malaria survey aiming to obtain accurate prevalence data and for
monitoring intervention success, and recommend them particularly for screening of communi-
ty samples in areas of low endemicity. The fact that parasites are more prevalent than currently
thought has consequences for malaria control efforts, some of which are based on identifying
all infected individuals, and this fact must be acknowledged by all users of prevalence data such
as health officials, strategy planners, and mathematical modelers. Infections of ultra-low densi-
ties in our TZ samples carried gametocytes in 40% of cases, and thus it is highly probable that
they can be transmitted to mosquitoes at the time point of the survey or later. Until the infec-
tiousness to mosquitoes of low-density infections has been clarified, applying the most sensitive
tools is essential for better defining the true infection burden and informing

elimination strategies.
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S1 Fig. Melting temperature of TARE-2 amplicons using DNA samples from two different
sources (surveys in Tanzania and Papua New Guinea). Melting temperature (T',) of true pos-
itives (as in positive control/standards) differs significantly from false positive signals (primer
dimer, Welch’s t-test, p < 0.001). Owing to the degenerate character of the TARE-2 repeat
unit, PCR products vary in sequence composition, which is reflected in slight variations in the
T, of true positives (TZ, 68.6-72.2°C; PNG, 70.0-72.1°C). Different DNA extraction kits and
dilution buffers used in the PNG and TZ surveys cause shifts in T, for both specific amplicons
and primer dimer. The mean T, of true positives and primer dimer was significantly different
between the PNG and TZ samples (Welch’s t-test, p < 0.001), while qPCR amplicons amplified
from 3D7 DNA standard included on both the TZ and PNG qPCR plates showed no significant
differences in their mean T,. The T, of specific amplicons and primer dimer was hence estab-
lished separately for each of our two sets of field samples.
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Editors' Summary

Background

Nearly half the world's population is at risk of malaria, and more than 600,000 people die
from this mosquito-borne parasitic infection every year. Most of these deaths are caused
by Plasmodium falciparum, which is transmitted to people by night-flying Anopheles mos-
quitoes. These insects inject “sporozoites” into people, a parasitic form that replicates in-
side human liver cells. After a few days, the liver cells release “merozoites,” which invade
red blood cells, where they replicate rapidly before bursting out and infecting more red
blood cells. This increase in parasitic burden causes malaria's characteristic fever, which
needs to be treated promptly to prevent anemia and organ damage. Infected red blood
cells also release “gametocytes,” which infect mosquitoes when they take a blood meal. In
the mosquito, the gametocytes multiply and develop into sporozoites, thus completing the
parasite's life cycle. Malaria can be prevented by controlling the mosquitoes that spread
the parasite and by avoiding mosquito bites. Effective treatment with antimalarial drugs
also helps to reduce malaria transmission and is a key component of global efforts to con-
trol and eliminate malaria.

Why Was This Study Done?

Planning and evaluating malaria control and elimination efforts relies on having accurate
and sensitive methods to measure parasite prevalence—the proportion of a population in-
fected with parasites. It is particularly important to know how many people are carrying
low-density infections because although these individuals have no symptoms, they con-
tribute to malaria transmission. In the past, malaria was usually diagnosed by looking for
parasites in blood using light microscopy, but molecular tests based on “quantitative poly-
merase chain reactions” (QPCRs) are now available that detect much lower parasite densi-
ties in blood (submicroscopic infections). qPCRs detect parasite-specific DNA sequences
in patient blood samples, but reliable detection of low-density infections remains imper-
fect because the abundance of target sequences in patient samples limits the sensitivity of
current qPCR methods. Here, the researchers investigate whether the sensitivity of P. fal-
ciparum detection using qPCR can be improved by targeting multi-copy genomic se-
quences—DNA sequences that are repeated many times in the parasite's genetic blueprint.

What Did the Researchers Do and Find?

The researchers developed two new qPCRs for P. falciparum by using the telomere-associ-
ated repetitive element 2 (TARE-2; 250 copies/genome) and the var gene acidic terminal
sequence (varATS; 59 copies/genome) as target sequences. Direct comparison of these
qPCRs with the standard 18S rRNA qPCR for P. falciparum, which targets a gene present
at 5-8 copies/genome, indicated that the new assays were ten times more sensitive than
the standard assay and could detect as few as 0.03-0.15 parasites/ul blood. Next, the re-
searchers used light microscopy, 18S rRNA qPCR, and the two new qPCRs to look for P.
falciparum parasites in 498 samples randomly selected from a malaria survey undertaken
in Tanzania. Parasite prevalences were 25% by light microscopy, 50% by 18S rRNA qPCR,
and 58% by TARE-2 or varATS qPCR. Compared to TARE-2 or varATS qPCR, 18S rRNA
qPCR failed to identify 48 infections (16% of infections). Moreover, 40% of the positive
samples missed by 18S rRNA qPCR contained gametocytes (detected by a different PCR-
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based assay) and therefore came from individuals capable of transmitting malaria parasites
to mosquitoes. Finally, to test the suitability of the new ultra-sensitive assays for use in
high-throughput screens, the researchers tested performance of the assays on sample
pools. Both tests correctly identified all pools containing one low-density P. falciparum-
positive sample among nine negative samples, whereas 18S rRNA qPCR identified none of
these pools.

What Do These Findings Mean?

These findings provide evidence of low-density malaria infections in individuals previous-
ly thought to be parasite-free, even after testing with a molecular diagnostic. Notably, in
the population considered in this study, the standard 18S rRNA qPCR underestimated
parasite prevalence by nearly 10%. The assays developed in this study have some impor-
tant limitations, however. First, they detect only P. falciparum, and malaria control pro-
grams ideally need assays that detect all the Plasmodium species that cause malaria.
Second, because the TARE-2 and varATS qPCRs require advanced laboratory infrastruc-
ture, they cannot be used in remote field settings. Nevertheless, because low-density infec-
tions are likely to become increasingly common as countries improve malaria control,
these findings highlight the need for ultra-sensitive tools such as the TARE-2 and varATS
qPCRs for community surveillance and for monitoring the progress of malaria control
and elimination programs.

Additional Information

Please access these websites via the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001788.

o Information is available from the World Health Organization on malaria (in several lan-
guages), including information on malaria diagnosis; the World Malaria Report 2014
provides details of the current global malaria situation

o The US Centers for Disease Control and Prevention also provides information on all as-
pects of malaria; its website provides a selection of personal stories about malaria

o Information is available from the Roll Back Malaria Partnership on the global control of
malaria and on the Global Malaria Action Plan (in English and French)

 MedlinePlus provides links to additional information on malaria (in English and
Spanish)
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