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Abstract  59	

Background: Circulating free DNA sequencing (cfDNA-Seq) can portray cancer 60	

genome landscapes but highly sensitive and specific technologies are necessary to 61	

accurately detect mutations with often low variant frequencies.  62	

Methods: We developed a customizable hybrid-capture cfDNA-Seq technology 63	

using off-the-shelf molecular barcodes and a novel duplex DNA-molecule 64	

identification tool for enhanced error correction.  65	

Results: Modelling based on cfDNA-yields from 58 patients showed this technology, 66	

requiring 25 ng cfDNA, could be applied to >95% of patients with metastatic 67	

colorectal cancer (mCRC). cfDNA-Seq of a 32-gene/163.3kbp target region detected 68	

100% of single nucleotide variants with 0.15% variant frequency in spike-in 69	

experiments. Molecular barcode error correction reduced false positive mutation 70	

calls by 97.5%. In 28 consecutively analyzed patients with mCRC, 80 out of 91 71	

mutations previously detected by tumor tissue sequencing were called in the cfDNA. 72	

Call rates were similar for point mutations and indels. cfDNA-Seq identified typical 73	

mCRC driver mutations in patients where biopsy sequencing had failed or did not 74	

include key mCRC driver genes. Mutations only called in cfDNA but undetectable in 75	

matched biopsies included a subclonal resistance driver mutation to anti-EGFR 76	
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antibodies in KRAS, parallel evolution of multiple PIK3CA mutations in two cases, 77	

and TP53 mutations originating from clonal hematopoiesis. Furthermore, cfDNA-Seq 78	

off-target read analysis allowed simultaneous genome-wide copy number profile 79	

reconstruction in 20 of 28 cases. Copy number profiles were validated by low-80	

coverage whole genome sequencing. 81	

Conclusions: This error-corrected ultra-deep cfDNA-Seq technology with a 82	

customizable target region and publicly available bioinformatics tools enables broad 83	

insights into cancer genomes and evolution. 84	
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Introduction 85	

Many tumors release cell free DNA (cfDNA) into the circulation, allowing the 86	

analysis of cancer genetic aberrations from blood samples [1-6]. Such ‘liquid 87	

biopsies’ can inform tailored therapies [7] or predict recurrences after surgery [8, 9]. 88	

cfDNA analysis also permits subclonal mutation detection that is often missed by 89	

biopsies due to spatial intratumor heterogeneity [10, 11]. Genetic techniques with 90	

high analytical sensitivity and low false positive error rates are crucial for accurate 91	

cfDNA-Seq due to low tumor-derived cfDNA fractions and low abundances of 92	

subclonal mutations. Digital droplet PCR (ddPCR) and BEAMing assays can 93	

accurately detect point mutations present at frequencies ≤0.1% but are restricted to 94	

the analysis of a small number of genomic loci [8, 12]. Targeted next generation 95	

sequencing (NGS) can interrogate larger regions such as gene panels but the error 96	

rate of NGS complicates the calling of mutations with variant allele frequencies 97	

(VAFs) <5% [13]. Error correction through random molecular barcodes (MBC) has 98	

been incorporated into NGS cfDNA assays to reduce this error rate [14, 15] and has 99	

enabled mutation calling with VAFs ≤0.1%. However, these methods have often 100	

used amplicon sequencing, which can hamper coverage of entire genes due to 101	

primer design restrictions. Some methods have employed solution hybrid-capture, 102	

which is ideal to target entire genes, but used bespoke or proprietary rather than off-103	

the-shelf reagents and publicly available bioinformatics tools, limiting their broad 104	

application for clinical or research purposes.  105	

Here we assessed how novel, commercially available off-the-shelf MBC 106	

reagents combined with customized capture-based target enrichment technology 107	

could be optimized for ultra-deep error-corrected cfDNA-Seq. We developed a 108	
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duplex-DNA molecule calling tool to improve the calling accuracy and assessed 109	

concordance of mutation calls from cfDNA with clinical grade tumor tissue 110	

sequencing in patients with metastatic colorectal cancer (mCRC).  111	

METHODS 112	

Patients and samples 113	

 Plasma samples and clinical data were available from the FOrMAT trial 114	

(Feasibility Of Molecular characterization Approach to Treatment [16], Chief 115	

Investigator: N Starling ClinicalTrials.gov NCT02112357). Healthy donor (HD) cfDNA 116	

was obtained through the Tissue Collection Framework to Improve Outcomes in 117	

Solid Tumours (Chief Investigator: T Powles). Both trials were approved by UK 118	

ethics committees and all patients provided written informed consent. Details of 119	

clinical trials, patients, samples, sample processing and experimental techniques are 120	

provided in the online Supplemental Methods file. 121	

 122	

cfDNA sequencing  123	

SureSelectXT-HS (Agilent) was used to prepare sequencing libraries using our 124	

optimized protocol (online Supplemental Methods file) and a custom designed 125	

SureSelect bait-library (online Supplemental Table 1). Sequencing libraries were 126	

clustered using the cBot and sequenced with paired-end 75 reads on an Illumina 127	

HiSeq2500 in rapid mode.   128	

SureCall software (version 4.0.1.45, Agilent) was used to trim and align fastq 129	

reads to the hg19 reference genome with default parameters and for MBC de-130	

duplication, permitting one base mismatch within each MBC. Consensus families 131	
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comprising of single reads were removed, on-target depths were assessed and 132	

variants were called with SureCall SNPPET. 133	

 To identify variants supported by duplexes we developed the freely available 134	

duplexCaller bioinformatics tool [17].  135	

 All variant positions identified in patient cfDNA were assessed in six HD 136	

samples using bam-readcount [18]. Most called variants were absent in HD samples 137	

(online Supplemental Table 2) but mutations with VAF less than double that of an 138	

identical variant in HD were removed as false positives.  139	

BAM files resulting from MBC de-duplication before removal of single-read 140	

consensus families were used to generate genome-wide DNA copy number profiles 141	

with CNVkit [19], with Antitarget average size set to 30 kb. HD samples were used 142	

as the normal reference pooled dataset.  143	

 144	

Low coverage whole genome sequencing (lcWGS) 145	

Genomic libraries were constructed from 10 ng cfDNA with the NEBNext Ultra 146	

II kit and sequenced with 100bp single-end reads on HiSeq2500 in rapid mode 147	

(0.42x median coverage). Data was aligned (hg19 reference genome) with Bowtie 148	

(v0.12.9), and processed as described [20]. logRatios were normalised against a 149	

gender-matched pooled dataset from HD cfDNA (9 male, 8 female) before 150	

segmentation and median centering.  151	

 152	

ddPCR 153	
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ddPCR was performed in case 8 (BRAF V600E) and to validate discordant 154	

variants between cfDNA and tumor tissue. 4 of 11 such cases had sufficient 155	

remaining cfDNA to validate subclonal variants (online Supplemental Methods file).  156	

 157	

cfDNA sequencing with a commercial kit 158	

25 ng, 17 ng and 25 ng cfDNA (cases 3, 15, and 23, respectively) were 159	

processed using the Roche AVENIO Expanded kit as per the manufacturer’s 160	

protocol.  Libraries were sequenced with 151 bp paired-end reads on Illumina 161	

NextSeq500 to 2,689-6,420x depth after de-duplication. Data was analyzed using 162	

the Roche AVENIO ctDNA Analysis Software v1.0.0 with default parameters.  163	

 164	

RESULTS 165	

cfDNA sequencing optimization 166	

Modelling based on cfDNA yields from 58 patients with mCRC showed that 25 167	

ng of cfDNA could be extracted from 20-30 ml blood from >95% of cases (online 168	

Supplemental Figure 2C). 25 ng was therefore chosen as our standard cfDNA input 169	

quantity. We designed a solution hybrid-capture panel targeting 32 genes including 170	

all major CRC driver genes, (163.3 kb, online Supplemental Table 1) and used 171	

Agilent SureSelectXT-HS kit, which tags each DNA strand with a random 10-base 172	

MBC, for sequencing library preparation. The SureSelectXT-HS protocol was optimized 173	

to perform reliably with 25 ng cfDNA input (online Supplemental Methods file). The 174	

fraction of on-target reads is usually low when using small targeted sequencing 175	

panels and low input DNA, so we first assessed how the on-target fraction could be 176	

optimized by varying the stringency of the post-capture wash. Two library 177	
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preparations were started in parallel from each of four cfDNA samples, using the 1.5 178	

h fast-hybridization protocol. Then, post-capture washes were performed at 65°C in 179	

one library and at 70°C in the other. Sequencing generated similar read numbers 180	

(65°C: 92,820,887; 70°C: 102,582,694 median reads/sample) and the on-target 181	

fraction significantly (p=0.0011) increased from 30-35% to 71-74% with the 70°C 182	

protocol (Figure 1A). Hence, the more stringent conditions were chosen for our 183	

standard protocol. Target exon coverage was even with this solution hybrid-capture 184	

technique and was not subject to the gaps commonly seen with commercial 185	

amplicon sequencing designs (online Supplemental Figure 3). This would be 186	

particularly advantageous for the analysis of tumor suppressor genes where driver 187	

mutations often spread across large parts of the gene.  188	

We next used MBCs to de-duplicate sequencing data and perform error 189	

correction. SureCall creates families of reads with matched MBC that also align to 190	

the same genomic position and then identifies the most likely consensus sequence 191	

for each family (Figure 1B). This reduces random errors arising during PCR and 192	

sequencing, as these are not common to all reads of a family. Consensus families 193	

contained a median of 8 to 15 supporting reads in samples sequenced with the 194	

optimized protocol (online Supplemental Figure 4), which was within the optimal 195	

range for barcode error correction [21].  After MBC de-duplication, the median on-196	

target depth with the 70oC protocol was 1,782x. This was theoretically sufficient to 197	

achieve a detection limit as low as 1 mutated DNA fragment in 1,782 molecules 198	

(0.056%). However, the analytical sensitivity for de novo mutation detection is lower 199	

in practice since more than one read is required to support robust bioinformatics 200	

calling. Thus, we designed a mixing experiment to test the ability to detect and 201	

bioinformatically call mutations with low VAFs.  202	
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Assay sensitivity and specificity 203	

cfDNA from two donors that differed in 16 homozygous single nucleotide 204	

polymorphisms (SNPs) within the targeted region were used to prepare a dilution 205	

series with 0.15%, 0.075% and 0.0375% cfDNA from donor A spiked into cfDNA 206	

from donor B. Sequencing a median of 74,030,118 reads/sample generated a 207	

median on-target depth of 21,651x before de-duplication. Data from each sample 208	

was then processed in two ways: first, we used MBCs for de-duplication and calling 209	

of consensus sequences; second, we performed standard de-duplication using only 210	

the genomic position of each read pair. The median on-target depth was higher after 211	

MBC de-duplication (MBC 2,420x versus 1,587x with standard de-duplication; Figure 212	

1C). This was anticipated as different MBCs tag distinct DNA fragments that would 213	

otherwise be counted as duplicates. For example, the forward and reverse strands of 214	

each original ‘duplex’ dsDNA molecule were separately tagged by MBC and so were 215	

retained as independent consensus families (Figure 1D). Standard de-duplication 216	

cannot distinguish these reads from PCR duplicates.  217	

We first investigated whether the spiked-in SNPs could be re-identified in the 218	

MBC de-duplicated BAM files using the Integrative Genomics Viewer (IGV) [22] and 219	

tried to understand patterns associated with true positive variants. All 16 SNPs were 220	

detected in the 0.15% mix, 14/16 at 0.075% and 11/16 at 0.0375% mixing ratios 221	

(Figure 1E). Thus, our ultra-deep cfDNA-Seq assay allowed robust detection of 222	

variants at 0.15% and retained a high detection capability at 0.075%. We then 223	

assessed if MBC error correction improved the bioinformatics calling accuracy of 224	

ultra-low frequency variants, which is more challenging than re-identification of 225	

known variants. While interrogating sequencing data manually in IGV, we had 226	

observed that all true variants were at least supported by two consensus families 227	
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mapping to the same genomic position but differing in whether the variant was seen 228	

in read 1 or read 2 in paired-end sequencing (Figure 1D). These were highly likely to 229	

represent the forward and reverse strand of the double-stranded input cfDNA 230	

molecule as observed previously [15]. Based on this observation, we developed the 231	

duplexCaller bioinformatics tool that identified variants supported by duplex reads 232	

(online Supplemental Methods file) and added the requirement for such a ‘duplex-233	

configuration’ to be present to accept a mutation as genuine. The presence of a 234	

variant in at least one additional family with a different alignment position was also 235	

added to the post-call filters to assure high specificity. Thus, a variant had to be 236	

present in ≥3 consensus DNA families in order to be accepted as a mutation call in 237	

the MBC de-duplicated data. For a meaningful comparison, mutations in the 238	

standard de-duplicated data were also required to be present in ≥3 reads.  239	

We then compared SureCall calls for the mixing experiment on standard- 240	

versus MBC-deduplicated data and quantified how many of the homozygous SNPs 241	

from sample A that were present at 0.15% in the cfDNA mixture were called. 242	

Although samples A and B differed at 16 homozygous SNP positions, only the 9 243	

variant SNPs in spiked-in sample A could be assessed for capability to call at low 244	

frequency against the reference genome. The other 7 SNPs were reference wild-245	

type in spiked-in sample A and so could not be called. Mutation calling after standard 246	

de-duplication with low stringency caller settings (variant call quality threshold 247	

[VCQT]=40) detected 5/9 homozygous SNPs (Figure 1F) but also generated 156 248	

additional calls. These additional variants were likely false positives, since they had 249	

not been identified by deep sequencing of the individual cfDNA samples used in the 250	

mixing experiment. Stepwise increase of the VCQT reduced false positives but this 251	

was accompanied by a loss of analytical sensitivity. When the same data were called 252	
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using MBCs and a low stringency VCQT=40 (Figure 1F), 4 of the spiked-in SNPs 253	

were called with only 2 likely false positive variants. We assessed why calling with 254	

MBC error correction failed to identify the 5 other SNPs. Each of these had VAFs 255	

<0.1% when visualized in IGV [23], which was below the minimum VAF of 0.1% that 256	

can be called by SureCall. We also assessed the number of false positive calls in 257	

standard de-duplicated data at the maximum VCQT that identified the same four true 258	

positive variants detected with MBC: 81 likely false positives were called compared 259	

to just 2 using MBC. Hence at the same analytical sensitivity, de-duplication using 260	

the MBCs dramatically decreased false positives by 97.5%.  Mutation calling in 6 HD 261	

samples subjected to cfDNA-Seq only identified heterozygous and homozygous 262	

SNPs but no mutations with lower frequency (online Supplemental Table 3), further 263	

supporting the high analytical specificity of this MBC technology. 264	

Concordance of cfDNA- and tumor-sequencing in mCRC patients  265	

cfDNA from 28 patients with mCRC were consecutively analyzed. Seven were 266	

sequenced with the 65°C protocol and 21 with the 70°C protocol. The median 267	

sequencing depth was higher with 70°C (2,087x) than 65°C (1,205x) (Figure 2A).  268	

We then analyzed the concordance and discordance of mutation calls within 269	

the target regions common to the tumor biopsy sequencing assay and our cfDNA-270	

Seq panel. Biopsies of 23 cases had been sequenced with the FOrMAT NGS panel 271	

(online Supplemental Table 4) and four biopsies had been subjected to routine 272	

clinical amplicon sequencing of 5 genes (BRAF, KRAS, NRAS, PIK3CA and TP53). 273	

One case had failed tissue sequencing.  274	

88% (80/91) of all mutations that had been found by tumor sequencing were 275	

called in the cfDNA (Figure 2A). All 11 mutations not called in cfDNA were from only 276	
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3 cases. Inspection of the sequencing data on IGV revealed that 5/11 mutations 277	

were present in cfDNA at VAFs below the SureCall detection limit (Figure 2B). 278	

Sufficient cfDNA remained from case 8 for orthogonal analysis by ddPCR. Using 279	

manufacturer-validated ddPCR-probes for the BRAF V600E mutation we identified 280	

2,830 wild type DNA fragments but no mutated fragments (data not shown). This 281	

confirmed that the absence of sufficiently abundant tumor-derived cfDNA molecules, 282	

rather than technical failure, explained the inability to detect mutations.  283	

We next assessed mutations called by cfDNA-Seq in genes that had not been 284	

sequenced in corresponding tumor tissue. APC mutations were detected in each of 4 285	

cases whose tumors had only been analyzed with the 5-gene amplicon panel (Figure 286	

2A). Furthermore, one mutation was found in each of FBXW7, CTNNB1, TCF7L2, 287	

ATM and SMAD4. We also detected mutations in APC, TP53 and KRAS in case 28 288	

that had failed prior tumor tissue sequencing attempts. In total, 11 of these 13 289	

mutations (85%) encoded protein changes previously reported in the COSMIC 290	

cancer mutation database [24] and all variants in the tumour suppressor genes APC 291	

and FBXW7 were truncating and hence likely driver mutations. This demonstrated 292	

that our assay could detect biologically and clinically important cancer mutations 293	

directly from cfDNA. 294	

We then investigated mutations that had been called in cfDNA but were 295	

absent when the same gene had been analyzed in tumor tissue: 7 in TP53, 7 in 296	

ATM, 3 in PIK3CA, 2 in SMAD4 and one each in KRAS, FBXW7 and TCF7L2. All 297	

four mutations called in the oncogenes KRAS and PIK3CA were canonical cancer 298	

driver mutations. 8/18 mutations (44%) located in tumor suppressor genes were 299	

nonsense mutations or encoded for amino acid changes found recurrently in cancer 300	

[24], suggesting that these were also driver mutations. Together, 54.5% (12/22) of 301	



14	

	

variants detected only in cfDNA were likely cancer driver mutations. The VAFs of 302	

mutations that were only detected in cfDNA but not in tumor tissue were a mean 303	

105-fold lower than the VAF of the most abundant mutation detected in the same 304	

cfDNA sample (online Supplemental Figure 1); these variants likely originated from 305	

small cancer subclones. However, two TP53 mutations present in cfDNA but not in 306	

matched tumor tissue (Cases 9, 13) were also detected with similar VAF in DNA 307	

from blood cells (online Supplemental Table 5). These TP53 mutations hence 308	

originated from a clonal expansion of blood cells [9], termed clonal hematopoiesis 309	

[25, 26].  310	

An activating mutation in KRAS (Q61H) was detected with a VAF of 0.37% in 311	

cfDNA but not in the matched tumor (case 10). This was the only patient that had 312	

received treatment with the anti-EGFR antibody cetuximab prior to blood collection 313	

and the KRAS mutation was likely a driver of acquired resistance that evolved during 314	

therapy [27]. ddPCR testing of cfDNA provided orthogonal validation (Figure 2C), 315	

showing that our technology is suitable for the detection of subclonal resistance 316	

driver mutations. Suspected driver mutations in PIK3CA were frequently discordant 317	

with 3/7 mutations only detectable in cfDNA (E545K, H1046R, R1023*). Two cases 318	

(17,26) harbored parallel evolution events, as further activating PIK3CA mutations 319	

were present in the tumors and the cfDNA. These results are consistent with studies 320	

showing that intratumor heterogeneity of PIK3CA mutations is common in mCRCs 321	

whereas heterogeneity is rare for mutations in APC and, in tumors not previously 322	

treated with anti-EGFR antibodies, for KRAS, NRAS and BRAF mutations [28].  323	

Mutations in ATM tumor suppressor gene were called in 8/28 cfDNA samples. 324	

Sequencing of matched tumor showed wild-type sequence in seven of these and 325	

one tumor had only been sequenced with the 5-gene panel. All ATM mutations had 326	
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low VAFs (median: 0.17%) and only 2/8 encode protein changes previously 327	

catalogued in cancer [24], making it difficult to interpret their functional relevance. No 328	

ATM mutations were called in 6 healthy donors, indicating that the mutation calls in 329	

cfDNA from mCRC patients are unlikely the result of a high false positive call rate in 330	

this gene.  331	

Next, we used ddPCR to validate further subclonal mutations called in cfDNA 332	

but not in tumor tissue. All subclonal variants with VAF <2% from samples where 333	

sufficient cfDNA material was available and where a custom ddPCR-assay could be 334	

designed were assessed (online Supplemental Methods file). ddPCR validated all 6 335	

tested mutations and VAFs were similar to those found by our error-corrected cfDNA 336	

technology (Figure 2D, online Supplemental Table 6).  337	

Additionally, we re-sequenced three cfDNA samples containing low VAF 338	

(<2%) mutations (cases 3, 15, 23) with the commercially available AVENIO ctDNA 339	

kit. 9/10 point mutations in genes targeted by both panels were concordant (online 340	

Supplemental Table 7). The low frequency TP53 R175H variant in case 3 was not 341	

called by AVENIO software but was seen to be present upon manual review of the 342	

BAM file. Three indels in APC (cases 3,23) were not called by AVENIO analysis. 343	

This comparison further confirmed the reliable performance of our customizable 344	

cfDNA assay. 345	

Genome wide DNA copy number aberration analysis 346	

We finally assessed if we could maximise the information gain from a targeted 347	

cfDNA assay through simultaneous reconstruction of genome-wide copy number 348	

aberration (CNA) profiles. Applying the CNVkit-package [19] that uses off-target 349	

reads to infer copy number changes, we generated genome-wide CNA profiles for 350	
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20/28 cases (71%) (Figure 3A-B). Chromosome arm losses (Chr17p and 18q) and 351	

gains (Chr1q, 7, 8q, 13 and 20), which are typical for mCRC, were observed [29]. All 352	

8 samples with a flat CNA profile had very low maximum VAFs ≤5.6%. A high-level 353	

targetable amplification involving the ERBB2 oncogene was detected despite a low 354	

tumor-derived cfDNA fraction (8.6% VAF) in case 11 (Figure 3C). This amplification 355	

had also been detected in the matched tumor, validating the ability to profile CNAs 356	

with our cfDNA-Seq technology. No other amplifications had been detected in tumor 357	

biopsies with the FOrMAT NGS panel. Low-coverage whole genome sequencing is 358	

an established approach for genome wide copy number profiling and we applied this 359	

to 18 samples with sufficient cfDNA. This independent validation showed a median 360	

weighted Spearman correlation of 0.886 with the profiles generated from cfDNA-Seq 361	

using CNVkit (online Supplemental Figure 5). 362	

DISCUSSION 363	

  Our ultra-deep and error-corrected cfDNA-Seq protocol that uses off-the-shelf 364	

MBCs in combination with a custom-designed solution hybrid capture panel detected 365	

100% of the known variants with VAFs of 0.15% in a mixing experiment. The use of 366	

MBC error correction and the requirement for variants to be supported by a duplex-367	

pair of consensus families reduced false positive mutation calls by 97.5% while 368	

maintaining true positives. We developed the DuplexCaller bioinformatics tool, which 369	

can be run directly after MBC de-duplication to facilitate mutation calling; all 370	

bioinformatics tools for the analysis of data generated with this technology are hence 371	

freely available. Our approach did not rely on background error correction models 372	

that are constructed from large numbers of healthy donor samples and are therefore 373	

impractical for applications requiring frequently changing custom gene panels, 374	

including clinical assay development.  375	
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Importantly, the 1.5 h fast-hybridization step (standard protocol: 16h) used in 376	

our assay dramatically reduces library preparation time which is advantageous when 377	

fast turnaround is critical. Increasing the wash temperature after capture dramatically 378	

reduced off target reads. The higher temperature likely relaxes the target/bait-bond 379	

in hybridised molecules with a higher number of mismatches, reducing the non-380	

specific carry over of DNA fragments into the library.  381	

cfDNA-Seq of 28 mCRC patients demonstrated that 88% of mutations 382	

detected by clinical grade tumor tissue sequencing were also called in cfDNA. This 383	

detection capability is similar to that reported for MBC-error corrected cfDNA-Seq 384	

with a 5-gene assay using amplicons (87.2%) [1] and a 54-gene assay using target-385	

capture (85%) [14, 30].  Furthermore, indels are more difficult to call than point 386	

mutations. Yet, our cfDNA assay called 23/26 indels (88.5%) that were known based 387	

on tumor sequencing, showing a similar performance to point mutation detection 388	

(87.7% called).  389	

cfDNA-Seq detected several additional driver mutations not reported by tumor 390	

sequencing. Seven were in TP53. Two were also observed in the matched blood 391	

cells, indicating that they originated from clonal hematopoiesis. The discovery of 392	

clonal hematopoiesis in 7% of our cohort demonstrates the importance of 393	

sequencing DNA extracted from blood cells to avoid misinterpreting such variants as 394	

cancer-associated mutations. In one patient who received cetuximab therapy, we 395	

detected a KRAS Q61H variant that was absent from the matched tumor and likely 396	

represents the evolution of a drug resistant subclone. Multiple PIK3CA activating 397	

mutations detected in two anti-EGFR therapy naive patients represent parallel 398	

evolution events. These examples show that our cfDNA assay can provide insights 399	

into cancer evolution. Because the minimally invasive nature of cfDNA-Seq allows 400	
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application at multiple time-points, this could be used to monitor the evolution of 401	

subclonal drug resistance driver mutations without prior knowledge of specific loci 402	

where resistance mutations will occur. We finally demonstrate that cfDNA-Seq allows 403	

genome-wide CNA reconstruction and validate this against low-coverage genome 404	

sequencing. As the number of targeted therapies increases, custom target 405	

enrichment panels that can be readily adapted and scaled for the tumor type and 406	

therapeutic agent in question could be used to investigate the full tumor genomic 407	

landscape of point mutations, indels and CNAs. This would facilitate the identification 408	

of novel resistance mechanisms. Importantly, this ultra-sensitive cfDNA-Seq 409	

technology can also address the subset of 20% of patients with mCRC who cannot 410	

be molecularly profiled due to unobtainable or inadequate biopsy tissues [16, 31].  411	

In conclusion, this cfDNA-Seq approach with customizable and off-the-shelf 412	

reagents showed a similar performance to published techniques that use bespoke 413	

reagents and more complex analyses.  414	

 415	

 416	

 417	

 418	

 419	

 420	

  421	
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Archive (SRA submission code SUB3510375).  424	
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Figures 

 

Figure 1. (A) Percentage of reads on-target before de-duplication in samples 

prepared with 65°C vs 70°C post-capture washes. (B) Graphic depicting the 

principles of MBC error correction. Reads with the same MBC that map to the 

identical genomic location are grouped into a consensus family. If a variant (pink) 

occurs in all reads then the consensus read sequence will be variant for that base 

(top). However if a variant (green) is only detected in a small fraction of the reads in 

the family, it will be disregarded and the consensus read sequence will be wild-type 

(bottom). (C) cfDNA mixing experiment: 25 ng mixes of donor A spiked into donor B 

at 0.15%, 0.075% and 0.0375%. (D) Illustration of duplex read pair detection. A 

double stranded cfDNA fragment (black) containing a variant (green) is depicted, 

ligated to Y-shaped MBC-tagged adapters (grey). (E) Expected and observed variant 

allele frequencies (VAF) and genomic positions for the 16 SNPs in the cfDNA mixing 
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experiment. (F) Impact of MBC error correction on true positive and false positive 

calls. The top panels show the number of true positive variants (expected SNPs) that 

were bioinformatically called in the mixing experiment with standard de-duplication 

(left) and MBC de-duplication (right) using different variant call quality thresholds. 

The lower panel shows the number of likely false positive variant calls (not observed 

in the deep sequencing of either cfDNA sample used in the mix) for standard de-

duplication (left) and MBC de-duplication (right). 
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Figure 2 (A) Concordance of mutations identified by cfDNA-Seq and by sequencing 

of tumor material. Mutations identified in both cfDNA-Seq and tumor sequencing are 

colored green. Novel variants called by cfDNA-Seq and not by tumor sequencing are 

colored blue. Variants not detected by cfDNA-Seq that were detected in tumor 

sequencing are colored orange. Pink indicates clonal hematopoiesis. Red outlines 

indicate mutations reported as tumorigenic in COSMIC. Variants in grey have been 

identified in the cfDNA of patients that either had been sequenced using the limited 

5-gene amplicon panel or failed FOrMAT sequencing. Percentages indicate VAF in 

cfDNA. (B) Read depth and number of consensus family reads supporting each of 

the 11 variants in cases 7, 8, and 21 that had not been called in cfDNA but had 

previously been detected in tumor tissue. Median VAF 0.066%. (C) ddPCR validation 
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of the KRAS c.183A>C mutation that results in the amino acid change Q61H in case 

10. Green dots: droplets with wild-type DNA, blue dots (outlined by the red 

quadrant): droplets with mutant DNA, black dots: droplets that have no incorporated 

DNA. (D) ddPCR validation of 6 subclonal mutations called in cfDNA but not in tumor 

tissue. 
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Figure 3 (A) Genome wide copy number aberrations can be detected from targeted 

cfDNA-Seq, even where tumor content is low. Representative log copy ratio plots for 

five cases (green number) in our cohort with tumor content ranging from 53.5% to 

8.6% (red number indicates max VAF) are shown. (B) Genome wide heat map of 

segmented copy number raw log ratio data after amplitude normalization. Gains are 

red and losses are blue. Profiles are ordered (left to right) from highest to lowest 

tumor content (based on maximum VAF) for all 20 cases that had a visible CNA 
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profile. (C) Focused log copy ratio plot of chromosome 17 for case 11 which had a 

high level amplification of ERBB2.  

 

 

 


