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Ultra-simplified Single-Step 
Fabrication of Microstructured 
Optical Fiber
Cristiano M. B. Cordeiro1,2 ✉, Alson K. L. Ng2 & Heike Ebendorff-Heidepriem2,3

Manufacturing optical fibers with a microstructured cross-section relies on the production of a fiber 
preform in a multiple-stage procedure, and drawing of the preform to fiber. These processes encompass 
the use of several dedicated and sophisticated equipment, including a fiber drawing tower. Here we 
demonstrate the use of a commercial table-top low-cost filament extruder to produce optical fibers 
with complex microstructure in a single step - from the pellets of the optical material directly to the 
final fiber. The process does not include the use of an optical fiber drawing tower and is time, electrical 
power, and floor space efficient. Different fiber geometries (hexagonal-lattice solid core, suspended 
core and hollow core) were successfully fabricated and their geometries evaluated. Air guidance in a 
wavelength range where the fiber material is opaque was shown in the hollow core fiber.

Optical �bers revolutionized the way we communicate, being responsible for most of the actual global data tra�c. 
Today there are hundreds of millions of kilometers of optical �bers installed around the planet. �e data tra�c is 
doubling every two years what represents a 1000-fold increase in just 20 years.

Optical �bers had a signi�cant development at the end of the 1990s when structures with an internal micro-
structure cross-section were proposed and developed. Pioneered by Philip Russell from Univ. of Bath (UK) and 
his research team, the development of photonic crystal �bers (PCF), or microstructured optical �bers (MOF), 
expanded and revolutionized the whole �eld of guided optics1–3. �e presence of wavelength-scale structures with 
high index contrast (�ber material to air) opened the possibility to extensively control the optical properties of the 
�ber. Chromatic dispersion, modal area, cladding evanescent �eld, birefringence, and non-linearity, for example, 
can be very dependent on the speci�c holes distribution - size, shape, position1,2. Conventional optical �bers, on 
the other hand, have a small core/cladding index contrast, usually below 1%.

While �bers with a solid core and a holey cladding with a lower refractive index guide by total internal re�ec-
tion as traditional optical �bers, hollow-core �bers (HCFs) enabled new guiding mechanisms. Complex cladding 
designs allow the guidance via photonic bandgap. Simpler structures provide low loss transmittance via inhibited 
coupling4 or anti-resonance5.

While most traditional �bers and MOFs are made of silica due to their remarkable optical and physical prop-
erties, �bers can also be made of polymers and non-silica glasses. In the early 2000´s microstructured polymer 
optical �bers were developed6 extending the application of conventional polymer �bers.

In all cases, optical �bers are usually drawn in a multiple-stage process whose primary step is the manufacture 
of an enlarged version of the �ber, the preform. Di�erent approaches have been used to produce the macroscopic 
preform. Standard optical �bers rely on vapor deposition methods to produce low loss preforms. MOF pre-
forms with their characteristic air holes array, on the other hand, have been produced with di�erent techniques. 
Silica MOFs are typically made via the stack-and-draw technique1 where millimeter thick capillaries are manu-
ally stacked, forming the desired structure. �is is a convenient and versatile procedure when tubes are widely 
available commercially such as for silica and, also, for some borosilicate glasses (e.g. Duran7). However, stacking 
is time-consuming. So�-glass MOFs can also be produced with this procedure but with extra complexity due to 
the initial need to produce the tubes8.

Polymer MOFs have been manufactured by directly drilling the holes in the plastic rod6, a technique that 
has also been applied with glasses9,10. Like the stacking technique, drilling is limited to circular holes. It is also 
restricted to short preforms. An alternative is casting the �ber material in a pre-designed mold, a procedure used 
to form plastic11 and glass �bers12.

1“Gleb Wataghin” Institute of Physics, University of Campinas, Campinas, 13083-859, Brazil. 2Institute of Photonics & 
Advanced Sensing, The University of Adelaide, Adelaide, SA5005, Australia. 3ARC Centre of Excellence for Nanoscale 
BioPhotonics, Adelaide, SA, 5005, Australia. ✉e-mail: cmbc@ifi.unicamp.br

OPEN

https://doi.org/10.1038/s41598-020-66632-3
mailto:cmbc@ifi.unicamp.br
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-66632-3&domain=pdf


2SCIENTIFIC REPORTS |         (2020) 10:9678  | https://doi.org/10.1038/s41598-020-66632-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

So� glass and polymer preforms have also been prepared via billet extrusion, a direct and straightforward way 
to obtain structures with elaborate designs. Billet extrusion involves the preparation of a billet from the chosen 
optical material, heating the billet to reduce its viscosity (to typically 108-1010 dPa⋅s13) and, with the help of a ram, 
forcing the materials through a die with the desired pattern14. �e extrusion die comprises an initial section with 
holes to feed the material to be extruded and a posterior segment that has solid features for blocking the material 
�ow in pre-de�ned regions, allowing the extrusion of a preform with a holey pattern. �is technique was shown 
to be successful in producing high-quality MOFs from so�-glass14 (such as lead-silicate, tellurite, bismuth, �uo-
ride, chalcogenide, phosphate) and polymer (such as PMMA15,16).

For so� glasses, the billet extrusion rig has also been combined with �bre drawing by directly placing the rig 
on the top of a �ber drawing tower. In this case, the extruded preform is heated by the tower furnace and pulled 
to reduced diameter17. Extrusion of multimaterial preforms is also possible when the billet is formed by a stack 
of di�erent materials18.

Extrusion dies are typically CNC machined, and stainless steel is the most common die material. Recently it 
was shown that 3D metal printed Cr-Co-Mo and titanium dies are suitable to withstand the high temperature 
(560–600 °C) and high force (20 kN) involved in the extrusion process of commercial lead-silicate glass19 without 
any mechanical failure in the 3D printed part, opening up unprecedented freedom in die design via 3D printing. 
More recently20, a 3D printed titanium die was used to manufacture a multi-core MOF for imaging purposes. 
While in19 the �ber preform was extruded through the die and subsequently drawn to optical �ber, in20 �ber 
canes with four cores were extruded, then stacked forming a 100 cores structure and �nally drawn to �ber. It is 
important to note that 3D printed dies present a higher surface roughness when compared with machined ones, 
which can impact the extruded preform and �ber super�cial quality. �is can be particularly detrimental for the 
scattering loss of microstructured optical �bers depending, e.g., on the �ber material refractive index and core 
size. It was shown, however, that polishing just the last few millimeters of the internal surfaces of the die exit (that 
are accessible via the nozzle end tip) will solve the problem19 bringing the surface quality of the extruded optical 
samples similar to the ones produces with machined dies.

It should be noted that extrusion allows all cross-sectional features to be produced simultaneously, di�erent 
from the stack-and-draw and drilling procedures where the holes are formed sequentially. �e standard way, 
however, is to extrude the macroscopic preform that is subsequently pulled to the optical �ber stage, meaning a 
multi-stage process requiring sophisticated equipment.

Standard, all-solid, polymer �bers can be extruded in a single process where two materials are simultaneously 
fed, forming the �ber with two di�erent materials/compositions to allow the core-cladding interface. Here the 
raw material can be either polymer pellets or puri�ed monomers.

On the other hand, when glass or polymer MOFs are extruded, the raw material is a bulky billet instead of 
being in pellets form. �e billet is usually cut from a larger body of material or prepared by fusing the raw mate-
rials/pellets together completely to ensure high optical quality.

In the last few years, a completely new method to fabricate optical �bers preforms was developed based on 
the use of additive manufacturing processes. In this case, the preform itself is 3D printed, being subsequently 
drawn to optical �ber using a dedicated optical �ber drawing tower. Hollow core21,22 and solid core23 �bers were 
produced in this way using commercially available polymer �laments. Guidance in the visible and infrared was 
shown. Recently the technique was expanded to print glass samples with, e.g., borosilicate24, silica25, and chalco-
genide26. Step-index optical �bers27 were also produced via additive manufacturing in a multi-stage procedure.

Another disruptive development in this area was the idea of simplifying the procedure to manufacture MOFs 
by extruding it directly from a 3D printer using an acrylonitrile butadiene styrene (ABS) �lament and a special, 
micromachined nozzle28. A suspended core �ber was successfully manufactured, but just short lengths of �ber 
could be obtained before the holes collapsed. Despite this method combined extrusion and pulling in a continu-
ous process, the starting material, i.e., the polymer �lament, was prepared from pellets in a separate process with 
di�erent equipment.

In this work, a single continuous process from pellets to �nal MOF is achieved by simultaneous extruding 
pellets and pulling the extruded material, using a compact tabletop, horizontal, pellet-based extruder, originally 
aimed to produce �laments for 3D printers. �is process is fundamentally di�erent from current billet extrusion 
techniques used to manufacture MOFs, where multiple steps and equipment are involved, including forming a 
billet using a glass/polymer melting capability, extruding the billet to preform using a ram extruder, and �nally 
drawing the preform to �ber using a drawing tower. By contrast, our new single continuous process technique 
requires only one basic equipment to go directly from pellets to a MOF. Furthermore, our technique is also di�er-
ent from using the extruder of a 3D printer as the equipment, where the MOF is made from �laments via simul-
taneous extrusion and pulling28, whereas our simultaneous extrusion and pulling process uses pellets directly as 
starting material, thereby omitting the step of making a �lament from pellets via extrusion. In addition, the use 
of a compact �lament extruder to make a �ber directly from pellets allows improved process control and stability 
as such an extruder is already designed to produce �ber-like structures (i.e., 3D printing �laments). Our process 
permits the fabrication of complex �ber geometries while being cost, time, energy, and �oor space-e�cient. 3D 
metal printing is shown to be a powerful method to manufacture the nozzles employed for the MOF fabrication. 
�ree well established MOF geometries were chosen to demonstrate the viability of our new technique to manu-
facture a broad range of MOF structures. �e extruder �ow parameters were determined and the geometry of the 
�bers was characterized. �e optical guidance of a hollow-core �ber was analyzed, showing guidance is in the air 
core in a spectral range where the �ber material is opaque.

Polymeric materials: Zeonex and functionalized ABS
Two di�erent thermoplastic polymers were used in this work to fabricate the MOFs - Zeonex, and ABS.
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While PMMA is widely used to manufacture standard optical �bers and optical components, cyclic ole�n 
copolymers (COCs)29 are increasingly being applied to produce optical waveguides, including specialty optical 
�bers. �e most common COCs for optical �bers are Zeonex and Topas. �eir main advantages are the smaller 
water absorption, less brittle nature, easier moldability, smaller birefringence, higher chemical and thermal sta-
bility30, and higher transmittance in speci�c frequency ranges, like the THz30–32. Zeonex is also thermally compat-
ible with PMMA making it possible to draw �bers formed of both materials33. In this work, Zeonex 480 R grade 
commercially available34 pellets were used. �e material has a glass transition temperature (Tg) of 138 °C, a water 
absorption smaller than 0.01%, and a refractive index (at 589 nm) of 1.525.

ABS was also used to show the possibility of fabricating a doped MOF directly from a functionalized poly-
meric material. ABS is widely used for injection molding and extrusion in additive manufacturing. It can become 
whitish under stress due to crazing formation and recover a�er heating, a characteristic that can be explored 
in �ber optics sensing applications35. ABS is also highly soluble in acetone, allowing preparation of doped ABS 
powder via adding the dopant material to a diluted ABS solution, followed by evaporation of the solvent. For the 
proof-of-concept in this work, Rhodamine dye was used as dopant material to fabricate a luminescent MOF. �e 
details of the preparation of the doped ABS powder are described in Methods. Note that PMMA could follow 
precisely the same doping procedure as it also has a high solubility in acetone.

Selection of MOF structures
In order to show the versatility of the technique developed along with this work, three di�erent MOF types with 
distinct cross-sections and geometrical features were selected.

�e photonic crystal �ber (PCF) geometry is based on the well-known and widely explored, triangular matrix 
of air holes and a missing hole (defect) forming the core in the center. �e optical properties of PCFs, such as 
modal area, con�nement loss, chromatic dispersion, and birefringence can be widely tuned by adjusting the hole 
diameter (d) to holes pitch (Λ) ratio36. An endless single-mode �ber3 that guides just the fundamental mode can, 
for example, be obtained if the �ber holes are small enough (d/Λ < 0.43). In this work, PCF with a target d/Λ ratio 
of 0.5 was selected.

�e suspended core �ber (SCF) geometry is a widely studied and applied MOF type as it combines a simple 
design37 of a single material �ber with the presence of large air holes around the core area (which is di�erent, for 
example, to the triangular lattice PCF geometry). �is makes the SCF an attractive platform for devices based on 
the interaction of the optical mode evanescent �eld and �uid or �lm of interest9,38. In this work, an SCF geometry 
with three holes was selected.

Hollow core �bers (HCFs) allow the guidance in a low index core due to photonic bandgap or inhibited cou-
pling/antiresonance guidance. �ese structures present enormous advances in how an optical �eld can be manip-
ulated and open up a whole range of interesting fundamental and applied scienti�c opportunities. Fiber-based 
components are being extensively studied in the last two decades, from broadband, supercontinuum sources 
to pulse compressors, or high energy all-optical delivery channels. Gas-�lled hollow core �bers are a remarka-
ble platform for gas-based nonlinear optics39,40. New �ber designs are being extensively studied to broaden the 
transmittance window, reduce the loss or simplify the waveguide cross-section geometry. Recently, a HCF geom-
etry based on a single ring hexagon-shaped core linked to the �ber cladding via thin struts was proposed and 
demonstrated in lead-silicate glass. �e �ber was manufactured via a billet extrusion, and Raman sensing was 
shown41,42. A similar geometry with slightly more complex cladding structure, and whose fabrication was based 
on capillary stacking, was subsequently demonstrated in silica43,44. In this work, a HCF geometry with single ring 
hexagon-shaped core was selected.

Nozzle/die design and manufacturing, and the fiber extruder
A commercial horizontal �lament extruder (Filabot EX-2 model) was employed to fabricate three di�erent 
MOFs. �is extruder is initially designed for making polymer �laments (for use in fused deposition modeling 
3D printers) by feeding polymer powder or small pellets into a nozzle with circular ori�ce. By using customized, 
in-house made nozzles and pulling the material emerging from the nozzle, MOFs with di�erent geometries were 
made in one continuous process from pellets to �ber.

�e commercial horizontal �lament extruder is sketched in Fig. 1a and is based on a rotating screw that is 
heated while being fed with the polymer to be extruded. �e material should be in the form of pellets or powder. 
�e temperature of the heater around the end of the rotating screw connected to the nozzle is adjusted to match 
the polymer processing temperature. �e polymer is also heated due to the shear exerted by the screw rotation45. 
�e material feeding rate is controlled by the speed of the screw rotation. �e two puller wheels of the spooler sys-
tem, which is originally designed to pull and spool the extruded �lament, is used to draw the MOF directly from 
the material exiting the nozzle. �e pulling rate, and consequently the �ber diameter, is controlled by adjusting 
the speed of the puller wheels.

�e design of the internal structure of the nozzles is based on a previously developed extrusion die concept14. 
�e nozzle design comprises two segments in the direction of the material �ow. �e �rst segment, the so-called 
feeding chamber, contains an array of longitudinal holes to feed the material delivered by the rotating screw into 
the second segment, the so-called welding chamber, which contains an array of solid longitudinal pins to block 
the material �ow. �e obstruction of the �ow in the welding chamber results in the formation of the air holes in 
the material emerging from the welding chamber at the nozzle exit plane into free space. Pulling the material as 
it exits the nozzle leads �nally to the holes in the �ber. �e manufacturing process of the nozzles is described in 
the Methods section.

�e inset in Fig. 1a shows photographs of the three types of nozzles used for manufacturing the three types of 
MOFs in this work: solid core PCF with two rings of holes, HCF, and suspended core �ber SCF. For the sake of 
clarity, the types of nozzles will be referred to as “PCF nozzle” (nozzle exit diameter, D = 13 mm), “HCF nozzle” 
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(D = 12.2 mm), and “SCF nozzle” (D = 9 mm). Nozzles with more cross-sectional features (like the PCF one) were 
made a bit wider to avoid the pins to be too thin.

For the three nozzle types (PCF, HCF, SCF), the cross-sectional area, AF, of the �ow channels at the nozzle exit 
plane (from where the material emerges into free space) is 124, 66, and 41 mm2, respectively. �e �ow area frac-
tion, de�ned as the ratio of the �ow channel area, AF, to the total area of the nozzle exit plane, AT = π/4×D2, is 93, 
56, and 35%, respectively. AF determines the material feeding rate as described below. �e di�erence of the �ow 
channel area fraction to 100% is the �ow obstruction area fraction AO/AT, with AF + AO = AT. For the three nozzle 
types, the AO/AT values are 7, 44, and 65%, respectively. Note that the solid area, Asolid, and the air-�lling area, Aair, 
of the material cross-section exiting the nozzle equals the �ow channel area (Asolid = AF) and �ow obstruction area 
(Aair = AO) at the nozzle exit, respectively.

Pellet extrusion occurs at a viscosity where the material is molten (viscosity of ~100 dPa.s). Pulling the 
extruded material (i.e. the material emerging from the nozzle) to a �ber reduces the cross-sectional area of the 
material and also avoids the holes to collapse. �is is fundamentally di�erent from a bulk billet extrusion that 
occurs at a higher viscosity where the material is only so�ened (viscosity of ~108 dPa.s), and therefore no drawing 
force is necessary to keep the air holes open.

�e extruded mass �ow rate (µfeed = mass/time) was measured for the PCF and HCF nozzles to calculate the 
expected �ber diameter for a certain pulling rate. Zeonex polymer pellets were freely extruded without being 
pulled, while the speed of the screw rotation was adjusted via a knob on the extruder body. For each knob posi-
tion, �ve extruded samples were obtained, and their mass measured. �e extrusion time (in the 20-90 s range) was 
chosen for each position to allow each sample mass to be around 1.5 to 3.5 g. �e mass �ow rate of a certain knob 
position is the average of the mass �ow rates of all the samples made at this knob position.

Figure 2a shows the mass �ow rate in the range of 0.02 to 0.13 g/s increases linearly with the knob position 
(�tting slope = 0.0374), which is a measure for the screw rotation speed, for Zeonex extruded at 208 °C with the 
PCF and HCF nozzles. No noticeable di�erence was found for 215 and 222 °C extrusion temperature, indicating 
the screw rotation speed is the determining factor for the mass �ow rate.

With the experimentally obtained mass flow rate (µfeed = 0.02–0.13 g/s), the known polymer density 
(ρ = 1.01 g/cm3 for Zeonex), and the known �ow channel area at the nozzle exit (AF) the polymer feeding rate 
(vfeed) can be calculated using Eq. (1),
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For di�erent knob positions (0 to 3) and typical values of nozzle �ow channel area (AF = 35, 70 and 120 mm2), 
the calculated feeding rate is in the range of vfeed = 0.2 to 3.0 mm/s. Figure 2b shows that a larger AF value leads to 
a smaller feeding rate for the same mass �ow rate, i.e. for the same screw speed.

�e extruded polymer material exiting the nozzles can be pulled manually or with the pullers shown in Fig. 1. 
Assuming the air �lling fraction in the �ber cross-section is maintained relative to that at the nozzle exit as the 
material is being pulled, the mass conservation law allows calculation of the �ber diameter (d) from the known 
values of nozzle exit diameter (D), feeding rate (vfeed), and the �ber pulling rate (vpull).
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For typical values of D (10 mm), µfeed (0.03 and 0.12 g/s), AF (35 and 70 mm2), and ρ of Zeonex, Fig. 2c shows 
the calculated �ber diameter is <2 mm for pulling rates of 10-100 mm/s (i.e. 0.6–6 m/min) and feeding rates of 
0.4–3.4 mm/s (i.e. 25–204 mm/min). For a �xed pulling rate, the �ber diameter decreases with decreasing mass 
�ow rates and increasing the �ow channel area of the nozzle exit. In other words, it is easier to obtain a thinner 
�ber for slow feeding rate, large solid-�lling fraction of the �ber (i.e. small air �lling fraction), small nozzle exit 
diameter and fast �ber pulling rate.

Figure 1. (a) Schematic of the �ber extrusion setup with a commercial �lament extruder, a �lament pulling 
system, and a 3D printed specially designed nozzle. Inset shows images of the fabricated 3D printed nozzles, 
from le� to right, a two-ring photonic crystal �ber, a hollow-core �ber, and a suspended core �ber. (b) plane 
section view showing the polymer �ow (arrow in clear grey) through the feeding chamber (FC) and the welding 
chamber (WC).
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It is interesting to note that for pulling an optical �ber with a pellet-based extruder (this work), the typical 
feeding rate (~ 10–100 mm/min) is 1–2 orders of magnitude higher than the values used with a standard �ber 
drawing tower (~mm/min). �e main consequence is that, to obtain a �ber with similar diameter, a higher pulling 
rate is necessary with an extruder compared with a drawing tower due to the faster feeding rate of the extruder. 
�e main reason is the screw rotation control set by the extruder manufacturer originally designed for high 
throughput production of �laments and hence high mass �ow rates.

Figure 2d presents the calculated �ber diameter as a function of the pulling rate for the “PCF nozzle” design 
(D = 13 mm and AF = 124mm2) with two di�erent feeding rates: vfeed of 0.285 mm/s (knob position of 0.5, mass 
�ow rate of 0.035 g/s) and 0.74 mm/s (knob position of 2.0, mass �ow rate of 0.09 g/s). Fibers were produced with 
the 0.74 mm/s feeding rate, and their diameter manually characterized by a caliper. A good agreement between 
the calculated and measured �ber diameters is obtained (Fig. 2d).

Fabrication of characterization of MOFs
All manufactured �bers were hand cleaved with new razor blades without any procedure optimization. It is note-
worthy that heating the �ber and/or the razor blade46 or polishing the �ber end face47 a�er cleaving could enhance 
the cross-section smoothness.

Solid core PCF. A Zeonex solid core PCF with two rings of holes was produced using the nozzle shown in the 
inset of Fig. 1a (le� picture). �e 3D printed nozzle has 18 pins in its welding chamber to allow the air hole pattern 
to be formed. �ese pins are 0.8 mm thick and 1.55 mm away from each other, leading to a d/Λ ratio of 0.52. �e 
overall internal diameter is 13 mm.

Figure 3a shows the cross-section of �bers extruded at two di�erent temperatures (208 and 215 °C) and two 
di�erent feeding rates (0.45 and 0.75 mm/s) using a pulling rate around 20–50 mm/s. For higher temperatures 
and faster feeding rates, the cladding air �lling fraction (d/Λ) is substantially reduced due the partial collapse of 
the �ber cross-section that is being pulled at low viscosity. Figure 3b shows one �ber exemple with an external 
diameter of 1450 µm, average holes diameter of 200 µm and an average pitch of 270 µm (d/Λ~ 0.75).

As the solid core PCF geometry has a large �ow channel area (AF) in the nozzle design, and the printed nozzle 
a big diameter (D), to further reduce the �ber diameter some modi�cations in the extruder would be necessary. 
In particular, a higher pulling rate would help obtaining thinner �bers with this geometry.

Figure 2. (a) Measured extruder mass �ow rate using Zeonex and “PCF nozzle” and “HCF nozzle”; (b) 
calculated feeding rate for di�erent �ow channel areas (AF) at the nozzle exit plane; (c) calculated expected �nal 
�ber diameter for internal nozzle diameter of 10 mm, mass �ow rates of 0.03 and 0.12 g/s and nozzle die exit 
area of 35 and 70 mm2; (d) calculated expected �ber diameter when using the “PCF nozzle” (D = 13 mm, A = 
124mm2) for two di�erent feeding rates (0.285 and 0.74 mms), and experimentally measured diameters when 
using a feeding rate of 0.74 mm/s.
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Suspended core fiber (SCF). Two 3D printed suspended-core nozzles, whose unique di�erence is the 
thickness of the strut (0.5 or 0.8 mm), were used with transparent ABS pellets to manufacture polymeric sus-
pended core �bers. To optimize the fabrication parameters, the extruder screw speed was varied in order to adjust 
the feeding rate from 1.5 to 3 mm/s, and the results are summarized in Fig. 4. �e pulling rate was adjusted to 
produce �bers with similar diameters. To be able to vary the feeding rate, while maintaining the �ber diameter 
and not exceeding the maximum pulling rate, �bers with 2.0 mm diameter were manufactured.

�e results show that the �ber strut thickness increases with increasing feeding rate. Moreover, as expected, 
the nozzle with thicker struts (middle and bottom rows) generates �bers with thicker struts.

In order to keep the con�nement loss as low as possible, �bers with thinner struts are desired. From the results 
shown in Fig. 4, the ideal conditions are low feeding rate, temperature around 160 °C, and the use of the nozzle 
with 0.5 mm wide struts.

MOF fabrication usually involves the use of positive or negative pressure in the preform to control the holes 
size (and shape) during the pulling process. In this work, this concept was explored during the �ber pellets extru-
sion. A special die was developed, similar to the one shown in the inset of Fig. 1a (right picture), but with air 
channels in the �ow obstruction regions (picture in the center of Fig. 5). As a proof-of-concept experiment, one 
of the holes was pressurized during the extrusion of the Zeonex pellets. �e pressure was increased during the 
�ber drawing to show the enlargement of one of the holes and, in consequence, the core´s displacement from the 
center to the outer solid region. �e temperature was kept constant (at 234 °C) during the whole process. Optical 
images of 1500 µm thick �bers are shown in Fig. 5 with increased pressure from 0 mbar (Fig. 5a) to 20, 40 and 80 
mbar (Fig. 5b,c,d). As expected, the struts around the expanded hole become thinner.

An 835 µm diameter Zeonex �ber with 130 µm diameter core was also manufactured at 240 °C and at low 
feeding rate (Fig. 6a). �e �ber is several meters long without any signi�cant geometrical deformation. Using a 
cutback procedure and a He-Ne laser at 633 nm, coupled in the core of a 30 cm long �ber, the loss of the Zeonex 
SCF was measured to be 25 dB/m. Zeonex material loss is expected to be around few dB per meter32 in the visible 

Figure 3. (a) Optical images of the Zeonex polymer solid core PCFs made at di�erent temperatures and 
di�erent feeding rate. All �bers were pulled at 20–50 mm/s and have an external diameter between 1.5 and 
2.0 mm. (b) 1450 µm diameter �ber with 385 µm core diameter. �e white scale bars indicate 200 µm.

Figure 4. Optical images of ABS polymer SCFs extruded at 160 and 165 °C with di�erent feeding rates and 
using two “SCF nozzles” with di�erent strut thickness (0.5 and 0.8 mm). Fiber cracks are just super�cial and due 
to unoptimized cleaving procedure. �e white scale bar on the bottom right image is 200 µm, and the same for 
all nine images.
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range. �e higher loss in our result is expected to be related to the lack of thermal treatment in the pellets before 
the extrusion, a problem already faced by other groups32,48.

To demonstrate the possibility to readily manufacture a doped MOF with the technique summarized in Fig. 9 
(Methods), a Rhodamine B doped ABS �ber was extruded. Here 40 grams of ABS were dissolved in 250 ml of 
acetone, and 6 ml of Rhodamine B with 1,05*10−3 mol/l concentration were added to the solution. �e produced 
powder was extruded at 160 °C with a low feeding rate. �e �nal �ber has an external diameter of 1200 µm and 
a core diameter of 300 µm. To con�rm the luminescence of the dye-doped into the �ber material, a 532 nm CW 
laser was coupled to 3 cm long �ber with the help of a 10x objective lens. �e �uorescence signal was collected 
from the lateral surface of the �ber with a handheld spectrometer (Ocean Optics QE Pro). Figure 6b shows, 
together with the �ber cross-section, the dye luminescence centered at 570 nm and the pump laser peak at 532 nm. 
�is proof-of-concept experiment shows the ability to produce doped microstructured optical �bers easily.

Hollow core fiber (HCF). HCFs with six struts suspending the hollow core were made using 3D printed 
nozzles (internal diameter of 12.2 mm) like the one shown in the inset of Fig. 1a (middle picture). �e �bers 
were fabricated using an extrusion temperature of 220 °C. Figure 7 shows optical images of HCFs made using a 
nozzle with 0.8 mm (Fig. 7a,b) and 0.5 mm (Fig. 7c) struts. �e �ber shown in Fig. 7a,b has an external diameter 

Figure 5. �e center of the �gure shows a specially designed nozzle to control the internal holes pressure 
during extrusion. Optical images show a Zeonex polymer SCF with an external diameter of 1500 µm fabricated 
without applied pressure (a) and with increased pressure (from b–d). �e hole with positive pressure is 
indicated with a yellow dot. �e white scale bars indicate 200 µm.

Figure 6. (a) Optical image of 835 µm diameter Zeonex polymer SCF; (b) Luminescence signal measured when 
a Rhodamine B-doped ABS SCF (inset) is excited with a 532 nm laser.
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of 800 µm, core size of 230 µm and a core ring thickness of 21 µm. When using a nozzle with thinner struts, �bers 
with a thinner core ring are obtained (Fig. 7c). Here some struts are broken or are not straight due to the �ber 
cleaving process.

�e �ber transmittance was measured for an HCF with an external diameter of 1090 µm, core size of 300 µm, 
strut thickness of 32 µm, and length of 23 cm using a supercontinuum broadband source (NKT Photonic SuperK 
Extreme) and a 4x objective lens for launching the light into the �ber. �e light was coupled to the hollow core 
(Fig. 8, top) or to the solid outer region (Fig. 8, middle). In both cases, the �ber end face image was taken with 
a 10x objective lens and directed to the optical port of an optical spectrum analyzer. �e recorded spectra are 
presented in Fig. 8.

To determine the material transmittance, a 6.2 mm thick Zeonex disc was measured using a UV-vis spectrom-
eter (Cary 5000). �e transmittance in the wavelength range used for �ber characterization (1200–1700 nm) is 
presented in Fig. 8 (bottom) and shows the same pro�le as the outer solid region of the �ber (Fig. 8, middle). High 
transmittance of 86% is observed at 1330 nm, which represents an absorption coe�cient of 0.234 cm−1. At 1360 
and 1646 nm the transmittance is 73%, corresponding to an absorption coe�cient of 0.508 cm−1. According to 
these data, the transmittance di�erence from 1330 to 1360 nm is 27 dB for a 23 cm long �ber sample, in excellent 
agreement with the transmittance measured for the outer solid region of the �ber (Fig. 8, middle).

Due to the multimode characteristic of the �ber in the measured wavelength range of 1200–1700 nm, and the 
thick (32 µm) struts forming the core, the antiresonance transmittance spectrum signature is not as apparent as 

Figure 7. (a,b) Optical images of Zeonex polymer HCFs with external diameter of 800 µm, core size of 230 and 
core ring thickness of 21 µm; (c) Fiber with 4 µm core ring thickness and core diameter of 290 µm.

Figure 8. Transmittance of a Zeonex polymer HCF with core ring thickness and diameter of 32 and 300 µm, 
respectively. �e top �gure shows the spectrum when light is coupled into the hollow core, while the central 
�gure shows the case when light is coupled in the outer solid region. �e arrows at 1650 nm indicate 10 dB, 
and the images on the right are the far-�eld images of each case. �e bottom �gure presents the transmittance 
spectrum (in logarithmic scale) of a planar Zeonex sample with 6.2 mm thickness, and the image on the right is 
a photograph of the sample.
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for a single-mode waveguide. Nevertheless, noticeable transmittance peaks are observed when light is coupled 
into the air core. Of particular note is the >10dB peak at 1650 nm (shown by the dotted arrow with length of 
10 dB in Fig. 8a). �e �ber material itself is highly lossy at this wavelength, as shown by the spectrum when light 
is launched into the solid outer region of the �ber and by the spectrum of the Zeonex disc. �e high transmittance 
in the hollow core despite high material loss demonstrates the air core guidance.

Conclusions
A new ultra-simpli�ed optical �ber fabrication procedure is demonstrated. Instead of requiring multiple stages 
using di�erent and sophisticated equipment (such as an expensive optical �ber drawing tower), just a low-cost 
o�-the-shelf pellet-based �lament extruder is required. No preform fabrication is needed, meaning that drilling, 
capillary stacking, billet extrusion, or casting are not necessary to make the preform for �ber drawing. �erefore, 
our �ber fabrication procedure is time-e�cient, and a MOF can be produced in less than 30 minutes. �e process 
is also highly e�cient in terms of electrical power and used �oor-space, making straight-forward fabricating 
�bers in con�ned places and small laboratories with limited resources.

�e produced �ber total length is no longer restricted by the preform or billet dimensions but just on how long 
the extruder can run continuously. As the pellets could potentially be fed to the extruder hopper continuously, the 
limitation is just related to how long the extruder could run uninterruptedly. At an average feeding rate (0.06 g/s, 
see Fig. 2a), for example, one kilometer of 500 µm diameter �ber could be produced in an hour.

Apart from the virtually unlimited �ber length, the process is also versatile, allowing the quick production of 
a variety of di�erent �ber geometries by merely changing the nozzle. �e developed process opens the possibility 
to produce customized �bers on-demand, and with fast structural optimization to a speci�c target application.

3D printed titanium nozzles were used to fabricate three di�erent types of specially designed MOFs. �is 
demonstrates the �exibility of our new technique to manufacture di�erent �ber designs.

As a proof-of-concept of the ability to make functionalized �bers with our new technique, a Rhodamine B 
doped polymer SCF was demonstrated. In the future, doping with other materials of optical interest such as quan-
tum dots, or nanoparticles, will be explored.

For a fabricated HCF with hexagon-shaped core and single ring cladding, guidance in the near-IR spectral 
range, where the �ber material has high loss, was observed. �e excellent quality of the HCF cross-section geom-
etry quality, e.g., the struts uniformity, is remarkable for a polymer HCF considering the easy route followed for 
its fabrication. �e obtained high geometrical quality combined with a hollow core geometry, where the material 
loss has a small in�uence on light guidance, opens up the possibility to explore this platform for mid-IR or THz 
guidance22,49. A Zeonex HCF as-fabricated here is of particular interest for THz guidance due to the low loss of 
Zeonex in the THz frequency range31. In the future, negative curvature HCFs produced with our new technique 
will be investigated with the goal to reduce the �ber loss via smaller overlap between the optical mode and the 
�ber material. Recent developments already demonstrated – using vertical extruders - the feasibility to extrude 
negative curvature hollow-core �bers with specially designed nozzles50,51.

�e possibility to pressurize the internal structure of the �ber in real-time during its fabrication was shown. 
�is is, to the best of our knowledge, the �rst time a MOF is extruded with the possibility of real-time pressuriza-
tion. �is mimics the existing fabrication degree of freedom of an optical �ber drawing tower. For billet extrusion, 
such pressurization is not available, making it challenging to control hole size beyond selecting the size of the �ow 
obstructions.

�is work demonstrates a new route to easily fabricate specially designed optical �bers. �ere is room for 
overall optimization, including the extrusion parameters such as screw pro�le, di�erent hot zones temperatures 

Figure 9. functionalizing polymer process overview that starts with pieces of the chosen polymer and �nalizes 
with a polymer powder mixed with the desired material.
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along the screw, and pellets thermal treatment before the extrusion starts. �e nozzle design can also be ophmized 
to, for example, enhance the material �ow to the jacket section of the �ber leading to more robust structures.

�e ability to draw the �ber faster would, for example, simplify the process of obtaining thin �bers, which are 
made using nozzles with large exit area such as “solid core PCF” nozzles used here. A �ber tractor pulling system, 
e.g., would allow faster pulling rates with a smoother operation due to the large contact area between the pulling 
structure and the �ber ifself.

While this work focuses on polymer optical �bers, future progresses include the possibility to fabricate glass 
MOFs, following recent developments with 3D printing glassy materials.

Methods
Nozzle fabrication. �e nozzles were manufactured using 3D metal printer based on selective laser melting 
of titanium alloy (90% titanium) powder, with 85% of the particles having a diameter smaller than 35 µm. �e 3D 
metal printer uses a 300 W, 1070 nm �ber laser to melt the metal particles, making them fuse together and thus 
forming the metal structure layer-by-layer with a 30 µm resolution. �e 3D printing time for a nozzle is around 
3 hours. To release the built-in stress, the as-printed nozzle was heat-treated at 650 °C for two hours. It should be 
noted that each nozzle can be used multiple times, probably hundreds of times.

Each nozzle has a cylindrical outer shape with a typical length and diameter in the 20–25 mm range. �e 
polymer entrance side has an external thread to screw it into the �lament extruder. �e polymer exit side has a 
sophisticated internal structure, from which the optical �ber emerges into free space.

�e internal construction of the nozzle follows the same design concept of extrusion dies used to manufacture 
optical �ber preforms in a vertical billet extruder14. It includes an initial feeding chamber that directs the �ow of 
material towards the welding chamber, where the material emerging from the feed holes fuse together into a sin-
gle body of material. Solid obstructions (running parallel to the nozzle axis) in the welding chamber prevent the 
material �owing to these spaces, thereby forming holes in the fused material when exiting the nozzle. Figure 1b 
shows a lateral cut of one of the nozzles showing the polymer �ow in light grey with the feeding and welding 
chambers indicated.

Polymer functionalization. Initially, a commercial 1.75 mm thick 3D printed ABS �lament was cut in 
3–4 cm long sections, immersed in acetone (20 grams of ABS per 125 ml acetone), and stirred for 2 hours with a 
lid over the beaker. �is allows the formation of a homogeneous dissolved ABS “soup”.

The next step consists of adding the doping material and stirring an extra 30 min after which the lid is 
removed. With the lid o�, the solvent starts to evaporate, and the solution becomes thicker. A�er 90 minutes, the 
soup is poured in Petri dishes and let it dry overnight. �e dry �lms can easily be removed from the plates and 
fragmented in few pieces.

�e last step is cryogenic grinding52 the �lm to make �ne polymer powder to be used in the �lament extruder. 
�e process involves the use of dry ice (−78 °C) in a 2:1 mass ratio with ABS to cool down the polymer while this 
is being ground. �e dry ice avoids overheating that would, otherwise, melt the plastic, and sublimes to carbon 
dioxide. �e overall procedure to produce the doped ABS powder that will be used to feed the �lament extruder 
is summarized in Fig. 9.
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