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Abstract

There exist two well-known succinct representations
of ordered trees: BP (balanced parenthesis) [Munro,
Raman 2001] and DFUDS (depth first unary degree
sequence) [Benoit et al. 2005]. Both have size 2n+o(n)
bits for n-node trees, which asymptotically matches the
information-theoretic lower bound. Many fundamental
operations on trees can be done in constant time on
word RAM, for example finding the parent, the first
child, the next sibling, the number of descendants,
etc. However there has been no single representation
supporting every existing operation in constant time;
BP does not support i-th child, while DFUDS does not
support lca (lowest common ancestor).

In this paper, we give the first succinct tree repre-
sentation supporting every one of the fundamental op-
erations previously proposed for BP or DFUDS along
with some new operations in constant time. Moreover,
its size surpasses the information-theoretic lower bound
and matches the entropy of the tree based on the distri-
bution of node degrees. We call this an ultra-succinct
data structure. As a consequence, a tree in which every
internal node has exactly two children can be repre-
sented in n + o(n) bits. We also show applications for
ultra-succinct compressed suffix trees and labeled trees.

1 Introduction
A succinct data structure is a data structure which
stores an object using space close to the information-
theoretic lower bound, while simultaneously supporting
a number of primitive operations to be performed on
the object in constant time. Here the information-
theoretic lower bound for storing an object from a
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fixed universe with cardinality L is log L bits1 because
in the worst case this number of bits is necessary to
distinguish two distinct objects. For example, that for
a subset of the ordered set {1, 2, . . . , n} is n because
there are 2n different subsets, and that for an ordered
tree with n nodes is 2n − Θ(log n) because there exist(
2n−1
n−1

)
/(2n − 1) = 22n/Θ(n

3
2 ) such trees [19]. Typical

succinct data structures are the ones for storing ordered
sets [23, 25, 24, 13], ordered trees [14, 19, 8, 9, 2, 22,
21, 3, 28], strings [10, 11, 6, 26, 31, 29], functions [21],
cardinal trees [2, 5], etc. The size of a succinct data
structure storing an object from the universe is typically
(1 + o(1)) log L bits2. Many fundamental operations on
the object can be done in constant time on the word
RAM model with word-length Θ(log n), for example,
counting the number of elements in a set which are
smaller than a given value, finding the parent of a node
in a tree, etc.

This paper considers succinct data structures for
ordered trees. Though there exist many such data
structures in the literature, they have the following
disadvantages.

1. No single succinct data structure supports all fun-
damental operations in constant time; the balanced
parenthesis representation [19, 8] (BP) does not
support i-th child, while the depth-first unary de-
gree sequence representation [2, 9] (DFUDS) does
not support lowest common ancestor (lca).

2. Though the space is asymptotically optimal in the
worst case, it is not optimal for certain classes of
trees. For example, any n-node tree whose internal
nodes have exactly two children can be encoded in
n bits by writing 1 for internal nodes and 0 for
leaves during the depth-first traversal of the tree,
whereas both the BP and the DFUDS use 2n bits.

These drawbacks cause severe problems for document
processing. Now many huge collections of documents
are available, for example Web pages and genome
sequences. To search such documents we use suffix

1The base of logarithm is 2 unless specified. We define
0 log 0 = 0.

2Some papers use a weaker definition of succinctness that
allows O(log L) bits.



trees [16] or compressed suffix trees [30] because they
support efficient queries. The compressed suffix tree
uses the BP (and some auxiliary information) to encode
the tree because lca is crucial. Then the size of the BP
is 4n+o(n) bits because the tree has 2n−1 nodes in the
worst case. On the other hand, if we use the Patricia
tree [17] to represent the suffix tree, its topology can
be encoded in 2n bits, though we do not know how to
support efficient queries. Therefore we pay 2n bits extra
for supporting efficient queries. This cost is enormous
for huge collections of documents.

Note that there exists no data structure for storing
any n-node tree using less than cn bits for c < 2
because it surpasses the information-theoretic lower
bound. However, if we consider only typical objects we
can expect to reduce the size. This is the concept of
data compression. We say a data structure storing an
object is ultra-succinct if its size varies according to the
object and the size achieves some entropy bound of the
object. In the literature, there exist such data structures
for strings [6, 10, 31] and ordered sets [24], but no such
data structures for ordered trees.

1.1 Our contributions In this paper we solve the
above problems by providing an ultra-succinct repre-
sentation of ordered trees with the following properties:

1. It supports all previously defined fundamental op-
erations on ordered trees listed in Section 2.2.1 in
constant time.

2. Its size surpasses the information-theoretic lower
bound and achieves the entropy of the tree defined
below.

We introduce the following definition for the tree degree
entropy of an ordered tree:

Definition 1. (Tree degree entropy) For an or-
dered tree T with n nodes, having ni nodes with i chil-
dren, the tree degree entropy H∗(T ) of T is defined as

H∗(T ) =
∑

i

ni

n
log

n

ni
.

This definition is natural because it matches the
information-theoretic lower bound for ordered trees
with a given degree distribution:

Lemma 1.1. (Rote [27]) The number of ordered trees
with n nodes, having ni nodes with i children, for i =
0, 1, . . . , is

1
n

(
n

n0 n1 · · · nn−1

)
,

if
∑

i≥0 ni(i − 1) = −1. If this equation does not hold,
there are no such trees.

Let L denote this number. Then log L ≈ nH∗(T ).
Our main contribution of this paper is an ultra-

succinct data structure for ordered trees whose size
asymptotically matches the tree degree entropy. Not
only is it smaller than the existing data structures, but
it supports any operation in the same time complexity
as the existing data structures. Our proof is not by
showing each operation separately; instead we prove a
more general result on the instant decodability of the
DFUDS:

Theorem 1.1. For any rooted ordered tree T with n
nodes, there exists a data structure using nH∗(T ) +
O(n(log log n)2/ log n) bits such that any consecutive
log n bits of DFUDS of T can be computed in constant
time on word RAM.

Note that nH∗(T ) ≤ 2n for any tree, implying that the
size of our data structure is never more than BP nor
DFUDS. Theorem 1.1 also implies that we can assume
we had the DFUDS in the original form. Then it is
obvious that any operation can be done on our ultra-
succinct data structure in the same time complexity as
the original DFUDS. Even if a new operation on the
DFUDS is proposed, it also works on our representation
in the same time complexity.

Another contribution of this paper is to give o(n)-
bit auxiliary data structures for computing lca, depth,
and level-ancestor on the original DFUDS. Though the
data structure of [9] supports depth and level-ancestor,
it does not support lca and it modifies the original
DFUDS. As a result it is not guaranteed that any algo-
rithm on the original DFUDS also works on the modi-
fied DFUDS. Moreover, we cannot apply our compres-
sion technique to the modified DFUDS. Therefore it is
important to support these operations on the original
DFUDS. We show the following:

Theorem 1.2. The lowest common ancestor between
any two given nodes, the depth and the level-ancestor of
a given node can be computed in constant time on the
DFUDS using O(n(log log n)2/ logn)-bit auxiliary data
structures.

Our new auxiliary data structures have another benefit.
Their size is smaller than the existing ones [8, 9] which
use O(n log log n/

√
log n) bits.

We also show applications of our succinct represen-
tation of ordered trees. The first one is space reduction
of the compressed suffix trees [30] which uses the BP.
We give operations on the DFUDS which are equiva-
lent to the ones on BP. As a result we can perform any
operation for the suffix tree on a more compact data
structure in the same time complexity as the original
compressed suffix trees. The next one is space reduc-
tion of the succinct representation of labeled trees [5].



We can further compress a labeled tree into the tree
degree entropy, while preserving the same query time
complexities.

1.2 Organization of paper The rest of the paper
is organized as follows. In Section 2 we review existing
succinct data structures. In Section 3 we propose sim-
ple and space-efficient auxiliary data structures for lca,
depth and level-ancestor on DFUDS, which is summa-
rized as Theorem 1.2. Section 4 gives the data structure
to compress the DFUDS into the tree degree entropy
and thus proves Theorem 1.1. In Section 5 we show ap-
plications of our new representation of trees for reducing
the size of labeled trees and compressed suffix trees.

2 Preliminaries
First we explain some basic data structures used in this
paper. For the computation model, we use the word
RAM with word-length Θ(log n) where any arithmetic
operation for Θ(logn)-bit numbers and Θ(log n)-bit
memory I/Os are done in constant time.

2.1 Succinct data structures for rank/select
Consider a string S[1..n] on an alphabet A with alpha-
bet size σ. We define rank and select for S as follows.
rankc(S, i) is the number of occurrences c in S[1..i], and
selectc(S, i) is the position of the i-th occurrence of c in
S. Note that rankc(S, selectc(S, i)) = i. We may omit
S if it is clear from the context.

There exist many succinct data structures for
rank/select [23, 25, 14, 18]. A basic one uses n + o(n)
bits for σ = 2 [18] and supports rank/select in con-
stant time on word RAM with word length O(logn).
The space can be reduced if the number of 1’s is small.
For a string with m 1’s, there exists a data structure
for rank/select using log

(
n
m

)
+ O(n log log n/ logn) =

m log n
m + Θ(m) + O(n log log n/ logn) bits [25]. This

data structure is called fully indexable dictionary or fid.
If m = O(n/ logn), the space is O(n log log n/ logn).
We extensively use fid in this paper to compress point-
ers. For general alphabets, there exists a data struc-
ture for constant time rank/select queries using n logσ+
o(n logσ) bits [7], though we do not use it in this paper.

The rank/select functions are extended for counting
occurrences of multiple characters [20]. For a pattern P
on the alphabet, rankP (S, i) is the number of occur-
rences of the pattern P whose starting positions are in
S[1..i], and selectP (S, i) is the starting position of the
i-th occurrence of P . Note that occurrences of P may
overlap in S. Both functions take constant time and the
size of the data structure is the same as that of fid if
the pattern length is constant.

For a dense subset such that n = m(log m)O(1),

rank1(S, i) and select1(S, i) are computed in constant
time using log

(
n
m

)
+ O(m(log log m)2/ log m) bits [23].

A crucial technique for succinct data structures is
table lookup. For small-size problems we construct a
table which stores answers for all possible queries. For
example, for rank and select, we use a table storing all
answers for all 0,1 patterns of length 1

2 log n. Because
there exist only 2

1
2 log n =

√
n different patterns, we can

store all answers in a table using
√

n ·polylog(n) = o(n)
bits, which can be accessed in constant time on word
RAM.

2.2 Succinct data structures for trees We con-
sider the set of all rooted ordered trees with n nodes.
There exist

(
2n−1
n−1

)
/(2n − 1) such trees [19]. Therefore

the information-theoretic lower bound of succinct data
structures is 2n − Θ(log n) bits. Many data structures
achieving a matching upper bound asymptotically have
been proposed [14, 19, 8, 9, 2, 22, 21, 3, 28].

2.2.1 Balanced parenthesis encoding (BP) The
most well-known representation of ordered trees is the
balanced parenthesis representation [19], which we call
BP in this paper. A tree is represented by a string
P of balanced parentheses of length 2n. A node is
represented by a pair of matching parentheses ( . . . )
and all subtrees rooted at the node are encoded in order
between the matching parentheses (see Figure 1 for an
example). To allow tree navigational operations, the
following operations are supported in constant time on
the word RAM [19]:
• findclose(P, x),findopen(P, x): find the index of the

closing (opening) parenthesis that matches a given
opening (closing) parenthesis P [x],

• enclose(P, x): find the index of the opening paren-
thesis of the pair that most tightly encloses P [x].

By using these operations, the following are sup-
ported [19, 21, 28, 3]:
• parent(x),firstchild (x), sibling(x): the parent, the

first child, the next sibling node of node x, respec-
tively,

• depth(x): the depth of x,
• desc(x): the number of descendants of x,
• rank(x): the preorder of x,
• select(i): the node with preorder i,
• LA(x, d): the ancestor of x with depth d (level-

ancestor),
• lca(x, y): the lowest common ancestor of nodes x

and y,
• degree(x): the number of children of x,
• child (x, i): the i-th child of x,
• childrank (x): return i such that x is the i-th child

of its parent.
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Figure 1: Succinct representations of trees.

These operations are done in constant time using o(n)-
bit auxiliary data structures, except for child and chil-
drank, which take O(i) time.

2.2.2 Depth-first unary degree sequence
(DFUDS) The DFUDS (depth-first unary degree
sequence) representation [2, 9] of an ordered tree
is defined as follows. A tree with only one leaf is
represented as (), which is the same as the BP. If a
tree T has k subtrees T1, . . . , Tk, the DFUDS of T is
the concatenation of k + 1 (, a ), and DFUDS’s of
T1, . . . , Tk, with the first ( for each T1, . . . , Tk being
omitted. Then the resulting DFUDS also forms a
balanced parenthesis sequence (see Figure 1 for an
example). The leftmost ( of the DFUDS of any tree
is considered as an imaginary superroot. Ignoring the
imaginary superroot, the DFUDS can be interpreted as
a preorder listing of the nodes where each node with
degree k is encoded by k (’s, followed by a ). We use
the position of the leftmost parenthesis of the encoding
of a node as its representative. Such parenthesis is (
for internal nodes, and ) for leaves. We assume the
position of parentheses begins with 0. Therefore the
position of the root node is 1. The DFUDS [2] uses the
same space as BP, and supports all of the operations
listed above in constant time, except for lca, depth, and
LA. However, depth and LA can be supported in a
modified variant of DFUDS [9].

2.3 Compressing succinct data structures
Sadakane and Grossi [31] proposed a general compres-
sion algorithm for strings.

Theorem 2.1. ([31]) A string S of length n with al-
phabet size σ can be compressed into at most nHk(S) +

O(n((k + 1) log σ + log log n)/ logσ n) bits for any k ≥ 0
so that any substring of S of length O(logσ n) (i.e.,
O(log n) bits) is decodable in constant time on word
RAM.

Here Hk(S) is the k-th order empirical entropy of S [15]
and Hk(S) ≤ Hk−1(S) ≤ · · · ≤ H0(S) ≤ log σ. This
theorem implies that we can regard the data structure
as the uncompressed string. Any algorithm on the un-
compressed string which does not change the string also
works on the compressed one in the same time com-
plexity. For example, the size of fid for a set S̃ ⊂
{1, 2, . . . , n} is reduced to nHk(S)+O(n log log n/ logn)
bits for any 0 ≤ k ≤ O(log log n) where S is a 0,1-string
such that S[i] = 1 ⇐⇒ i ∈ S̃, while the time com-
plexities for rank and select remain unchanged. Note
that Theorem 2.1 holds for any k ≥ 0 simultaneously.
The condition k ≤ O(log log n) is necessary to bound
the lower-order term by O(n log log n/ log n).

In their data structure, the string S is parsed into
distinct substrings called phrases which are stored in a
tree with at most c = n/ logσ n nodes. Therefore to
decode a substring of S, which consists of a number of
phrases, we extract paths in the tree that represent the
phrases. Decoding a phrase (or its substring of length
w = 1

2 logσ n) in constant time is done as follows. In a
subtree with at most w/2 nodes, we can obtain any path
in constant time by table lookups. Therefore we remove
all such subtrees from the tree. Then the remaining
tree has at most 2c/w leaves and 2c/w − 1 branching
nodes. For each branching node in the remaining tree,
we store the path of length w from the node to the root,
which enables us to obtain the path in constant time.
The space to store these paths is O(c) = o(n log σ) bits.
Other paths which do not include any branching node
can be obtained in constant time because they consist of
unary nodes and they are stored in consecutive regions
of memory. If a substring of S of length w contains
many short phrases, it is stored without compression.
In this paper, we slightly change this data structure in
Section 4.2.

2.4 Data structures for level-ancestors Bender
and Farach-Colton [1] proposed a simple O(n)-word
(O(n log n)-bit) data structure for constant time level-
ancestor queries. In their data-structure, the tree T is
broken into disjoint paths as follows. First, a longest
root-leaf path in T is found and removed from T . This
breaks the tree into disjoint subtrees. Recursively, every
subtree is partitioned into disjoint paths. Then for each
resulting path we extend it toward the root so that
the length of the path is doubled. More precisely, let
v1, v2, . . . , vh, vh+1, . . . , vd be the path from a leaf v1

to the root vd. If the disjoint path is v1, v2, . . . , vh,



we extend it to v1, v2, . . . , v2h. We call it a doubled
long-path ladder. Each doubled long-path ladder is
represented by an array of nodes; therefore the level-
ancestors on each ladder are easily found. The total
number of nodes on all ladders is at most 2n. We use
another data structure called jump-pointers, which are
pointers to nodes LA(v, �) from some selected node v of
T called macro nodes for � = d−1, d−2, d−4, d−8, . . .
where d = depth(v).

The query LA(v, �) is solved as follows. First find
v’s nearest ancestor w which is a macro node by table
lookups (for details refer to [1]). Then find the farthest
ancestor of w whose depth is no less than � by following
a jump-pointer. Then we reach a doubled long-path
ladder including LA(v, �). Therefore it is obvious how
to obtain LA(v, �).

3 New Operations on DFUDS

In this section we propose simple algorithms and data
structures for supporting lca, depth, level-ancestor and
childrank on the original DFUDS. The algorithm for
lca is completely new. For operations depth and level-
ancestor, Geary et al. [9] showed that the operations
can be implemented on a modified DFUDS. However,
the data structure is complicated and is difficult to
compress. On the other hand, we propose the first data
structures for depth and level-ancestor on the original
DFUDS. These data structures are much simpler than
those of [9]. More importantly, we improve the lower
order term of the size for level-ancestor. The previous
ones use O(n log log n/

√
log n) bits [9, 21], while our

new data structure uses O(n(log log n)2/ logn) bits. An
algorithm for childrank is also proposed in [9] for the
modified DFUDS. We provide a simpler algorithm for
the original DFUDS.

From here on, we identify the node with preorder x
with its starting position in DFUDS, which is computed
in constant time by (select )(x − 1)) + 1.

3.1 LCA Let U be the DFUDS of a tree T . The
excess sequence E of U is defined so that E[i] =
(number of ( in U [0..i]) − (number of ) in U [0..i]).
Note that for a BP sequence, the excess values corre-
spond to node depths, but that they have a slightly
different interpretation for a DFUDS sequence.

Consider an internal node v of T , which has k sub-
trees T1, . . . , Tk as its children. Suppose that U [l0..r0]
stores the DFUDS for v. We also assume that U [li..ri]
stores the DFUDS for Ti for 1 ≤ i ≤ k. Note that
li = ri−1 + 1. Let d = E[r0]. Then we have the follow-
ing property of the excess values.

Lemma 3.1.

E[ri] = E[ri−1] − 1 = d − i (1 ≤ i ≤ k)
E[j] > E[ri] (li ≤ j < ri)

Proof. By the construction of DFUDS, if we add a (
at the beginning of the parenthesis sequence U [li..ri]
for a subtree Ti, it becomes balanced. In a balanced
parenthesis sequence the number of open and close
parentheses are the same. Therefore in U [li..ri] the
number of close parentheses is one more than that of
open parentheses, and we have E[ri] = E[ri−1] − 1 for
1 ≤ i ≤ k. Because E[r0] = d, we have E[ri] = d − i.
The second property E[j] > E[ri] (li ≤ j < ri) is
obvious because the sequence is balanced if an open
parenthesis is added at the beginning. 
�

Lemma 3.2. The lowest common ancestor of nodes x
and y in an ordered tree can be computed in constant
time from their preorders using the DFUDS of the tree
and an O(n(log log n)2/ log)-bit auxiliary data structure.

Proof. The lca(x, y) (x < y) between nodes x and
y is computed by w = RMQE(x, y − 1), and then
z = parent(w+1), where RMQE(x, y−1) is called range
minimum query and returns the position of the smallest
element in E[x..y−1]. If there is a tie, RMQ returns the
leftmost position. RMQ can be computed in constant
time using an O(n(log log n)2/ log n)-bit auxiliary data
structure [28].

We now prove the correctness of this method. Let
v be the true lca(x, y), T1, . . . , Tk be the subtrees of v,
and U [li..ri] be the DFUDS for Ti (1 ≤ i ≤ k). Then
x and y are in some subtrees Tα and Tβ (α < β),
respectively. Assume that E[rβ ] = d. Then from
Lemma 3.1 E[rβ−1] = d + 1 and E[i] > d + 1 for
l1 ≤ i < rβ−1 and lβ ≤ i ≤ rβ − 2. There are two cases:
Case (1) If y < rβ (i.e., if y is not the rightmost leaf of
Tβ), E[y− 1] > d+1, and by the range minimum query
we obtain w = rβ−1. Case (2) If y = rβ , E[y−1] = d+1,
and therefore there are two minimum values d + 1 in
E[x..y − 1]. By the range minimum query we can find
the left one, which is rβ−1. In either case, we have
w + 1 = lβ , which is the position of a subtree of v. By
computing z = parent(w + 1), we obtain lca(x, y). 
�

3.2 Depth We use two-level data structures, but we
first explain the general data structure for both levels.
We partition the DFUDS U of a tree T into blocks of
size B. For a fixed subset M of the nodes of T , the data
structure for each level stores the following information.

For a node v, we denote by f(v) its farthest ancestor
that belongs to the same block as v. For every node
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v ∈ M , we need the relative pointer from v to f(v). We
also need the difference of depths between them. We
call this information I1.

Let p(v) denote the parent of node v, and B(v)
denote the block that contains v. We call an edge
(v, p(v)) of T a far edge if B(v) �= B(p(v)). We call
nodes p(v) of far edges far nodes. If there exist one
or more far edges (vi, p(vi)) (1 ≤ i ≤ k, vi ∈ M ,
v1 > v2 > · · · > vk) such that B(v1) = · · · = B(vk) and
B(p(v1)) = · · · = B(p(vk)), we say that p(v1), . . . , p(vk)
form a group and call p(v1) the pioneer of the group.
Note that p(v1) ≤ p(v2) ≤ · · · ≤ p(vk) because the
edges (vi, pi(v)) are nested. We need a relative pointer
from each far node p(vi) to its pioneer and the difference
of depths. We call this information I2.

We show that the number of pioneers is at most
2n/B − 3 as in [19, 8]. Consider a graph G = (V, E)
whose nodes correspond to all the blocks. For each pair
(p(f(v)), f(v)) such that v ∈ M and p(f(v)) is a pioneer,
we create an edge of G between nodes for B(p(f(v)))
and B(f(v)). Then the graph is outer-planar, and there
are no multiple edges. Therefore the number of edges
is at most 2n/B − 3, which is an upper-bound of the
number of pioneers. Figure 2 shows the pioneers for the
example tree in Figure 1. The bold arcs show the edges
of the graph.

Now we explain the two-level data structure. For
the lower level, we use block size BL = 1

2 log n and
ML is the set of all nodes of T . We call the blocks
small blocks. We call pioneers for small blocks lower
level pioneers. The information I1 is computed in
constant time using o(n)-bit tables. For I2, we store
the positions of lower level pioneers by fid. Let Js be
a bit-vector of length 2n such that Js[i] = 1 if U [i]
is a lower level pioneer. Because the number of lower
level pioneers is O(n/BL) = O(n/ logn), Js is stored in

1

U ((()((())))(()))
2 3 4 5 6 7 8

DFUDS

v
4
v
3
v
2
v
1

p(v
1
) p(v

2
)

p(v
3
)

p(v
4
)

pioneer pioneer

group

Figure 2: Pioneers for blocks of size B = 6 in the
DFUDS sequence for the tree shown in Figure 1.

O(n log log n/ log n) bits. The lower level pioneer of a
node v is computed by select1(Js, rank1(Js, v)) because
the tree nodes are encoded in depth-first order. Because
each far node and its lower level pioneer belongs to the
same small block of size BL = 1

2 log n, the difference of
depths between them can be computed in constant time
by table lookups.

For the upper level, we use block size BU = log2 n
and MU is the set of lower level pioneers defined above.
We call the blocks large blocks and pioneers for large
blocks upper level pioneers. Let fU (v) denote the
farthest ancestor of v inside the large block of v. For
information I1, we store for each node v ∈ MU the
relative pointer from v to fU (v) and the difference
of their depth explicitly. Because both v and fU (v)
belong to the same large block of size BU = log2 n, the
information can be stored in O(logBU ) bits. Because
there are |MU | = O(n/ logn) nodes we can store I1 in
O(|MU | log BU ) = O(n log log n/ logn) bits.

For information I2, we explicitly store the relative
pointers and the differences of depths between far nodes
and their pioneers. This information can be also stored
in O(n log log n/ logn) bits because each pair of far node
and its pioneer belong to the same large block. For
upper level pioneers we store their depths explicitly
using log n bits. Because the number of upper level
pioneers is at most 2n/BU − 3 = O(n/ log2 n), we need
only O(n/ logn) bits.

The query for a node v is done as follows. First
we find fL(v) which is the farthest ancestor of v in the
small block of v by table lookups. Then we compute
the parent w = p(fL(v)). We can determine if it is a
lower level pioneer by using fid. If it is not, its lower
level pioneer must be the closest one on U to the left,
because the graph is planar. Therefore we can find the
lower level pioneer z by rank and select. We can compute
the relative depth of w from z by table lookups. Next
we use data structures for large blocks. For the node z,
fU (z) is stored as a relative pointer from z. If p(fU (z))
is not an upper level pioneer, we move to the upper
level pioneer by using the pointer stored for the node.
Then we can obtain the depth of the upper level pioneer
because it is explicitly stored.

3.3 Level-ancestor We consider the DFUDS se-
quence U for a tree T , which is partitioned into blocks of
several sizes. We use a data structure similar to the one
by Bender and Farach-Colton [1] outlined in Section 2.4,
but we change it to a two-level data structure to reduce
the space to O(n(log log n)2/ log n). The lower level of
the data structure is for computing LA inside a block
of size log4 n (called huge block). The upper level is for
the whole tree.



Consider computing w = LA(v, d). Let z be the
lower level pioneer of p(f(v)) where f(v) is the farthest
ancestor of v that belongs to the same small block of
size 1

2 log n. If z is an ancestor of w, we can find w by
table lookups. Therefore it is enough to consider level-
ancestors only for the lower level pioneers for the small
blocks. Let M be the set of these pioneers.

The lower level data structure is to compute the
level-ancestor w = LA(v, d) if it belongs to the same
huge block as v. For each node v ∈ M , we store
its jump-pointers; we store level-ancestors with depths
d − 1, d − 2, d − 4, . . . , d − log4 n where d = depth(v).
For each lower level pioneer we need O((log log n)2) bits
and there are O(n/ logn) pioneers. Therefore we need
O(n(log log n)2/ log n) bits for all lower level pioneers.

For a doubled long-path ladders for a lower level
pioneer vi, we store a part of the ladder between vi and
f(vi), the farthest ancestor of vi that is in the same huge
block. For the ladder for a lower level pioneer vi, we use
two bit-vectors Di[0.. log4 n] and Mi[0.. log4 n] where Mi

is to indicate lower level pioneers on the ladder, and
Di is to encode the depths of the pioneers. If a lower
level pioneer v is on the ladder, Mi[v − f(vi)] = 1,
and Di[depth(v) − depth(f(vi))] = 1. Let ni be the
number of lower level pioneers on the i-th ladder. By
concatenating the vectors Di and Mi for all i and
compressing them by a data structure for rank/select
for dense sets [23] (see Section 2.1), the total space for
storing all ladders is

log
( n

log n · log4 n∑
i ni

)
+ o

(∑
i

ni

)
= O

(
n log log n

log n

)
.

Note that if the number of the pioneers is small, we can
add dummy elements to make the set dense.

To find LA(vi, �) for a lower level pioneer vi which
is on the i-th ladder, we find its farthest lower level
pioneer ancestor w with depth no less than � by w =
select1(Mi, rank1(Di, �)). Then we obtain LA(vi, �) by
table lookups if it belongs to the same huge block as vi.

If the level-ancestor is not in the same huge block
as v, we use a data structure for the upper level that is
similar to the lower level. Because there are O(n/ log4 n)
upper level pioneers for huge blocks, the data structure
is stored in O(n/ logn) bits.

3.4 Childrank To compute childrank(v), i.e., the i
such that v is the i-th child of its parent, proceed
as follows. First determine if v is the root, e.g., by
checking if select )(v) = 0, and if so, return 0. If v
is not the root, count the number of left siblings of v
by finding the opening parenthesis in the description of
the parent of v which matches the closing parenthesis
immediately before the current node, and then counting

how many opening parenthesis there are between this
position and the end of the description of the parent
node. More precisely, when v is not the root of the tree,
the childrank of v is given by the expression:

select )(rank )(findopen(v−1))+1)−findopen(v−1)

Each of the involved operations takes O(1) time,
so the running time for childrank(v) is O(1), and no
additional space is needed.

4 Compressed DFUDS
We now consider how to compress the DFUDS U of a
tree T with n nodes. Let σ be the maximum degree
of nodes in T . The basic idea is to convert the unary
degree encoding of DFUDS into a binary encoding. Let
S[1..n] be an integer array storing the degrees of nodes
of T in preorder. Each element of S is encoded in log σ
bits. Note that S is equivalent to U if we replace every
S[i] by a sequence of S[i] open parentheses ( followed
by a close parenthesis ). Hence, it is obvious how to
convert between S and U in O(n) time (see Figure 1).
We show how to compress S into nH∗(T ) + o(n) bits,
and how to retrieve any consecutive log n bits of U from
the compressed representation of S in constant time.

A similar approach is used in the original paper for
DFUDS [2] to encode cardinal trees. They use prefix
codes to encode node degrees for a special case σ = 4.
Below, we propose data structures for ordered trees
which achieve the entropy bound for a general alphabet.

4.1 Trees with constant maximum degrees First
we consider how to encode a tree with constant maxi-
mum degree, that is, the alphabet size of S is a constant.
We apply the method from Section 2.3 to compress S
into nHk(S) + O(n log log n/ logn) bits so that we can
obtain any consecutive log n numbers of S in constant
time. Therefore we can assume that we had S as in the
uncompressed form.

We give a data structure such that for any i, we can
decode U [i..i + w − 1], where w = 1

2 log n, in constant
time from S. Define a mapping f from U to S such
that if the unary code of S[i] is encoded in U [li..ri],
then f(j) = i for li ≤ j ≤ ri. (By a unary code, we
mean the sequence of consecutive open parentheses (
followed by a close parenthesis ) in S that encode a
particular node.) For each U [jw] (j = 1, 2, . . . , n/w) we
mark the position mj = f(jw) of S. We can use fid

to mark them using O(n log log n/ logn) bits. We also
store for each U [jw] the offset of the position jw from
the starting position of the unary code for S[mj ]. That
is, if d = S[mj ] is encoded in U [l..l+d] (l ≤ jw ≤ l+d),
the offset is jw−l. It is stored in O(log w) = O(log log n)
bits.
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Without loss of generality we can assume i is a
multiple of w. To decode U [i..i + w − 1], we first find
the position of the element S[mj] (j = i/w) that is
encoded around U [i]. The number of elements of S
corresponding to the substring of U of length w is at
most w, and the elements are stored in O(log n) bits.
Therefore we can convert them into a sequence of unary
codes in constant time using table lookups.

The size of the data structure is nHk(S) + O(n(k +
log log n)/ log n) bits for any 0 ≤ k ≤ O(log log n).
Because H0(S) = H∗(T ), the size is nH∗(T ) +
O(n log log n/ logn). Recall that any operation on the
original DFUDS can be done in the same time complex-
ity.

4.2 Trees with unbounded degrees First we di-
vide the alphabet A of S into two sets; A1 for values
larger than or equal to logn, and A2 for the rest. We
then define strings S1 and S2 which are the restrictions
of S to A1 and A2, respectively. The alphabet size of
S2 is σ = |A2| ≤ log n and each value is encoded in
log log n bits. We compress S1 and S2 in different ways.
To obtain a substring of U , we first extract substrings
of U which are from S1 and S2, and then merge them.

We first describe how to compress S1. We use a
bit-vector D1 of length n to indicate if S[i] ∈ A1 by
setting D1[i] = 1. Because there are at most n/ logn
values in A1, we can encode D1 in O(n log log n/ log n)
bits by using fid. We also use two bit-vectors D2 and
D3 which represent the starting and ending positions
of unary codes for the values in S1. Namely, if an
integer k is encoded in U [i..i+ k], then we set D2[i] = 1
and D3[i + k] = 1. These vectors are also stored in
O(n log log n/ logn) bits. From these vectors, we can
obtain a substring of U with length w which is from S1

in constant time.
Next, we describe how to compress S2. The aux-

iliary data structure used to decode U from S2 is the
same as the one for constant maximum degrees. How-
ever, in the worst case, we need log n log log n bits of S
to decode log n bits of U because each character of S
consists of log log n bits. Therefore the time complex-
ity to decode O(log n) bits of U would be O(log log n) if
we temporarily decode log n characters in uncompressed
form. We avoid this problem by changing the internal
encoding of the data structure of [31]. Recall from Sec-
tion 2.3 that using this scheme, S2 is parsed into phrases
and they are stored as paths in some tree. To decode
any path of log n bits in constant time, paths of length
w are stored explicitly for branching nodes. Originally
the paths are stored by fixed-length encoding, that is,
each character is encoded in log σ = log log n bits. See
[31] for details on how extract the paths. We change

this so that any integer i (i.e., a symbol from A2) is
encoded by a variable-length encoding in O(log(i + 2))
bits by using for example the gamma code or the delta
code [4]. We then extend the paths towards the root so
that each path contains the maximum number of char-
acters on the path towards the root that can be encoded
in 1

2 log n bits by the variable-length codes. The paths
on unary nodes are also stored by the variable-length
codes. For each substring of S containing many phrases,
which is stored explicitly, we also extend it so that it
stores the maximum number of characters that can be
stored in 1

2 log n bits. We can read any integer stored
by a variable-length code in constant time because we
can store pointers to the codes in O(n log log n/ logn)
bits by fid. It is obvious that any sequence of num-
bers encoded in 1

2 log n bits in DFUDS is also encoded
in O(log n) bits by the variable-length encoding. There-
fore we can obtain any log n-bit sequence of unary codes
of U from the variable-length encoding in constant time
by table lookups. The details will be given in the full
paper.

Finally, we merge the sequences of unary codes from
S1 and S2 as follows. To decode U [jw..(j + 1)w − 1],
first obtain positions of characters in S which is the first
and the last ones in the substring. Then we check if
there is a character in A1 between them. If so, compute
its position by using D2 and D3 and decode the unary
code. Because each integer in S1 is encoded in at least
log n bits in U , any log n-bit substring of U overlaps
with at most two integers in S1. Therefore it is easy to
concatenate the unary codes from S1 and S2 in constant
time.

The space for storing the compressed U is as follows.
For the string S1, we can store it using D1, D2 and D3

in O(n log log n/ logn) bits. The string S2 is encoded in
n′H0(S2) + O(n log log n/ logσ n) bits by Theorem 2.1
where n′ is the length of S2. Let ni be the number of
occurrences of integer i in S. Then

n′H0(S2) =
∑
i∈A2

ni log
n′

ni
≤
∑
i∈A

ni log
n

ni
= nH∗(T ).

Therefore the total space is nH∗(T ) + O(n log log n
logσ n ) =

nH∗(T )+O(n(log log n)2

log n ) bits. Note that the compressed
size may be much smaller than nH∗(T ) because we can
achieve nHk(S) ≤ nH0(S) = nH∗(T ).

Actually our compression technique works not only
for the degree sequence for a tree, but also for any
sequence of unary codes.

Corollary 4.1. For a sequence of n integers encoded
by unary codes, let ni denote the number of occurrences
of integer i ≥ 0. If the summation of all the integers



is O(n), the sequence is compressed in
∑

i ni log n
ni

+
O(n(log log n)2/ log n) bits so that any log n bits of the
sequence is retrieved in constant time on word RAM.

5 Applications

We describe some applications of our ultra-succinct
representation of ordered trees. The proofs will be given
in the full paper.

5.1 Labeled tree encoding Ferragina et al. [5] pro-
posed xbw, a transformation between a rooted, ordered,
edge-labeled tree T and two strings Sα and Slast. Each
label is in the alphabet A with alphabet size σ. Let n
be the number of nodes in T . The string Sα is a permu-
tation of edge labels of T and the string Slast is a 0,1-
string of length 2n representing the topology of T . They
showed that tree navigational operations can be done on
the strings. The size of the strings is n logσ + 2n bits,
which matches the information-theoretic lower bound.
They defined the k-th order entropy of the labels Hk(T )
and showed the string Sα is compressed into that en-
tropy:

Theorem 5.1. ([5]) Let C be a compressor that com-
presses any string w into |w|H0(w) + μ|w| bits. The
string xbw(T ) can be compressed in nHk(T ) + n(μ +
2)+o(n)+gk bits, where gk is a parameter that depends
on k and on the alphabet size (but not on |w|).

In the above theorem only the string Sα is com-
pressed. In this paper we consider to compress the other
string: Slast. It encodes the degrees of the nodes of T
by unary codes after the stable sort. Therefore by using
Corollary 4.1, we can compress it into the tree degree
entropy H∗(T ). We obtain the following theorem:

Theorem 5.2. The string xbw(T ) of a labeled tree T
can be compressed in nHk(T )+nH∗(T )+o(n logσ)+gk

bits, and any consecutive O(log n) bits of xbw can be
decoded in constant time on word RAM.

5.2 Ultra-succinct compressed suffix trees Suf-
fix trees [16] are useful data structures for string match-
ing. Here, a given string S of length s is preprocessed in
O(s) time to build its suffix tree so that for any pattern
P its occurrences in S can be determined quickly. Many
problems on string matching are solved efficiently using
the suffix tree [12], for example finding the longest com-
mon substring of any two strings in linear time, finding
the length of the longest common prefix of two suffixes
in constant time, etc. For this kind of problems, the
rich structure of the suffix tree is important.

A drawback of the suffix tree is that it requires
huge space. The size of the data structure is O(s log s)

bits, which is not practical for large collections of
documents. To reduce the size, compressed suffix trees
have been proposed [30]. The compressed suffix tree
for a string S consists of three components: the tree
topology, the string depths, and the compressed suffix
array [11] of S. Each occupies 2(s + t) + o(s) bits,
2s + o(s) bits, and |CSA(S)| bits, respectively, where
t ≤ s−1 is the number of internal nodes, and |CSA(S)|
denotes the size of the compressed suffix array of S. In
total, the compressed suffix tree for a string S has size
|CSA(S)| + 4s + 2t + o(s) bits [30].

For the size of the compressed suffix array, one
implementation achieves the asymptotically optimal
size sHk(S) + o(s) bits [10]. Below, we show how to
further reduce the size of the tree topology.

In the original compressed suffix tree for a string
of length s [30], the tree topology is encoded by the
BP in 2(s + t) bits. We change it to use the DFUDS
to compress the data structure into the tree degree
entropy. The following additional operations need to
be supported for a suffix tree T :
• string depth(v): the length of the path-label of a

node v (the characters on the path from the root
to v),

• sl(v): the node with path-label α if an internal node
v has path-label cα for some character c (the suffix
link of v).
To support the above functions, we need the follow-

ing in addition to lca [30], which can be also computed
on the DFUDS:
• leaf rank(v) = rank ))(v)
• leaf select(i) = select ))(i)
• preorder rank(v) = (rank )(v − 1 )) + 1
• preorder select(i) = (select )(i − 1 )) + 1
• inorder rank(v) = rank ))(second child(v) − 1)
• inorder select(i) = parent((select))(i)) + 2)
• leftmost leaf (v) = leaf select(leaf rank(v−1 )+1 )
• rightmost leaf (v) = findclose(enclose(v))

The DFUDS sequence for the suffix tree can be
compressed into the tree degree entropy. Furthermore,
if the alphabet is binary, the tree topology is encoded
in 2s + o(s) bits:

Theorem 5.3. The tree topology of the suffix tree T
with s leaves and t internal nodes can be encoded in
s log s+t

s + t log s+t
t + 2t + o(s) bits. Any operation on

the compressed suffix tree is done in the same complexity
as the one using the BP representation. Especially, if
σ = 2, the tree topology can be encoded in 2s+o(s) bits.

Note that s log s+t
s + t log s+t

t + 2t < 2(s + t) for any
0 < t < s. Therefore our representation is always
smaller than the BP.
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6 Concluding Remarks
In this paper we have given a natural definition of
the entropy of tree topology and proposed a succinct
data structure for storing a tree whose size matches
this entropy. Each fundamental operation on succinct
representation of ordered trees [19, 2] is done in constant
time. We also showed applications to reduce the size
of the compressed suffix trees [30] and labeled trees [5]
further. An open problem is to support complex queries
on DFUDS such as finding the nearest node to the right
having the same depth as the query node, which can be
computed on BP in constant time [21].

References

[1] M. Bender and M. Farach-Colton. The level ancestor
problem simplified. Theoretical Computer Science,
321(1):5–12, 2004.

[2] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman,
V. Raman, and S. S. Rao. Representing Trees of Higher
Degree. Algorithmica, 43(4):275–292, 2005.

[3] Y.-T. Chiang, C.-C. Lin, and H.-I. Lu. Orderly
Spanning Trees with Applications. SIAM Journal on
Computing, 34(4):924–945, 2005.

[4] P. Elias. Universal codeword sets and representation
of the integers. IEEE Trans. Inform. Theory, IT-
21(2):194–203, March 1975.

[5] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukr-
ishnan. Structuring labeled trees for optimal succinct-
ness, and beyond. In Proc. IEEE FOCS, pages 184–
196, 2005.

[6] P. Ferragina and G. Manzini. Indexing compressed
texts. Journal of the ACM, 52(4):552–581, 2005.

[7] P. Ferragina, G. Manzini, V. Mäkinen, and
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