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Ultra-thin chips for high-performance flexible electronics
Shoubhik Gupta1, William Taube Navaraj1, Leandro Lorenzelli2 and Ravinder Dahiya 1

Flexible electronics has significantly advanced over the last few years, as devices and circuits from nanoscale structures to printed
thin films have started to appear. Simultaneously, the demand for high-performance electronics has also increased because flexible
and compact integrated circuits are needed to obtain fully flexible electronic systems. It is challenging to obtain flexible and
compact integrated circuits as the silicon based CMOS electronics, which is currently the industry standard for high-performance, is
planar and the brittle nature of silicon makes bendability difficult. For this reason, the ultra-thin chips from silicon is gaining interest.
This review provides an in-depth analysis of various approaches for obtaining ultra-thin chips from rigid silicon wafer. The
comprehensive study presented here includes analysis of ultra-thin chips properties such as the electrical, thermal, optical and
mechanical properties, stress modelling, and packaging techniques. The underpinning advances in areas such as sensing,
computing, data storage, and energy have been discussed along with several emerging applications (e.g., wearable systems, m-
Health, smart cities and Internet of Things etc.) they will enable. This paper is targeted to the readers working in the field of
integrated circuits on thin and bendable silicon; but it can be of broad interest to everyone working in the field of flexible
electronics.
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INTRODUCTION

Flexible electronics is changing the way we make and use
electronics. Many existing applications such as implantable
systems that require bendability to conform to the curved surface
of tisues1 are driving the progress in the field, which in turn is the
enabler for numerous futuristic applications such as mHealth,
wearable systems, smart cities, and Internet-of-Things (IoT).
Several initiatives from governments and industry have also
contributed to the progress and it is now estimated that the
market for flexible electronics will reach $300 billion by 2028,2,3

with growth from $29.28 billion in 2017 to over $63 billion in
20234 for printed, flexible and organic electronics alone. The high-
performance, at par with today’s complementary metal oxide
semiconductor (CMOS) electronics, will be critical to this growth in
flexible electronics as several current and future electronics would
need fast communication and computation. For example, large
drive currents and fast readout is needed in application such as
interactive flexible displays. Likewise, wireless communication in
mHealth or IoT (where wearable sensors patches are needed for
continuous measurements) will require data handling in fre-
quency bands up to ultra-high frequencies (0.3 – 3 GHz).5 The
faster communication, higher bandwidth, and efficient distributed
computation with very high clock speed will make the high-
performance requirement inevitable in connected objects. This
high-performance requirement calls for investigations into new
materials, fabrication technology, methodologies, and design
techniques6—all of which influence the device performance. For
example, the transistor switching frequency is influenced by the
mobility and channel length—while mobility is a material
property, the channel length depends on the technology. To
demonstrate how various materials link to performance, we have
compared in Table 1 some of the materials used in flexible

electronics. This comparison is in terms of carrier mobility (µ),
channel length (L), transit frequency (ft), and the Ion/Ioff ratio of
transistors that use these semiconducting materials as current
channel. Assuming fixed FET parameters such as channel width,
oxide capacitance etc. and the voltages such as terminal and
threshold voltage, the dependency of transit frequency (which is a
measure of transistor speed) boils down to mobility and channel
length and can be written as:

fT ¼ k
μ

L2
(1)

where k is the proportionality constant arising from above stated
assumption. Normalizing Eq. (1) with respect to the proportionality
constant, the normalized transit frequency can be written as:

fTnorm ¼
fT

k
¼

μ

L2
(2)

Thus, the fTnorm is directly proportional to the mobility and
inversely to square of channel length when the devices have
similar parameters other than the mobility and the channel length.
Putting the µ and L values from some of the recent works in Eq.
(2), the comparison in Table 1 shows that the monocrystalline
silicon based devices with channel length in nanoscale regime will
have high fTnorm and as a result they will outperform most of the
other semiconductor materials. Interestingly, the devices from
high mobility materials such as graphene, carbon nanotubes,7 and
some the 2D materials are slower than silicon. Clearly, the channel
length or device technology plays a significant role in the final
performance of devices. Therefore, instead of fixating on high-
mobility materials, a holistic view with inputs from both material
science and engineering is important. With technological
advances, the devices from high mobility materials such as
graphene, and carbon nanotube etc. could eventually catch up
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and possibly may have better performance than monocrystalline
silicon, but this is unlikely in next few year as related technology is
still in the nascent stage of development and is far from
commercialization.8,9 Considering these facts, the monocrystalline
silicon appears to be the best bet to meet immediate high-
performance needs of flexible electronic systems. This also
explains why silicon and other materials such as compound
semiconductors have attracted significant interest in recent years.
Nanostructures such as nanomembranes, nanoribbons, nanowires
etc. from these materials have been explored for flexible
electronics.10–12 Considering the challenges such as printing of
aligned nanostructures, poor density of printed nanostructures,
and difficulties in terms of obtaining very large-scale functional
integrated circuits (ICs), the silicon-based microelectronics is an
obvious choice.
The technology readiness to obtain devices down to nanoscale

dimensions and the possibility to exponentially scale the device
densities up to billions of devices per mm2, makes silicon based
microelectronics a good candidate for addressing immediate
high-performance needs in flexible electronics. For this the first
issue that need to be overcome is the lack of flexibility (and hence
conformability) of silicon wafers. This has been achieved by
thinning the wafers down to <50 µm using a range of
technologies, which are discussed here. Silicon chips from such
thinned wafers, or ultra-thin chips (UTCs), are ideal for high-
performance flexible electronics as they are physically bendable
and have stable electronic response for particular bending state.13

The excellent form factor of UTCs make their integration on
flexible substrates better than the conventional thick chips.
Further, due to reduced package volume and lower parasitic
capacitance, the UTCs have better high-frequency performances
and lower power consumption. With these features UTCs can
underpin advances in areas such as sensing, computing, data
storage, and energy (Fig. 1) and several emerging applications
(e.g., robotics, wearable systems, m-Health, smart cities and
Internet of Things etc.) they will enable.14,15

Given the wide scope of UTCs, a comprehensive review of
various technological and applied aspects will complement
several other reviews that have mainly focussed on organic
semiconductors and their processing techniques such as printing
or vacuum deposition etc.16–18 A few review articles have also
discussed layer transfer processes and thin film silicon for solar
cells.19,20 Related to UTCs, only a few review articles have been
published and they have covered limited areas such as wafer
thinning methods such as back grinding and integration on
flexible substrate using stretchable interconnects.21–24 The analy-
sis of UTCs covering topics such as changes in electrical-
mechanical-optical-thermal properties, packaging, and stress-
induced response variations, and comparison of various thinning
methods has not been reported thus far. The in-depth analysis

presented in this paper fills the above gaps in the literature and
provide a complete overview of the research related to UTCs.
This paper is organized into seven sections. The section

“Historical perspective” briefly provides the historical perspective
and introduces various developments including those related to
ultra-thin silicon (UTSi) over last 30 years or so. The section “Ultra-
thin chip properties” describes the major UTC properties with brief
discussion related to approaches, which have been used to study
the effect of thinning and bending on device performance.
Various technologies reported to obtain UTCs and their compara-
tive study is given in the section “Technologies for realizing UTC”.
The integration and packaging of UTCs on flexible substrate is
described in the section “Integration of UTCs on flexible
substrates”. Major application areas of UTCs and the potential
new application enabled by them are presented in the section
“Applications of UTCs“. Finally, a summary of key outcomes from
this review and outlook are given in the section “Conclusion”.

HISTORICAL PERSPECTIVE

The UTSi based devices has gained gradual increasing attention,
as can be noted from Fig. 2. Based on the data from Web-Of-
Science, the plot shows the trend in the growth of ultra-thin
semiconductor and related technologies. The trends are plotted
for articles having the phrase “thin silicon” or “thin chip” in their
titles. In the early days (in 1960s), the thin silicon was explored as
an active material to realize large flexible arrays of solar cells for
space applications.25 In late 90s, the interest in the field of thin
wafer or wafer thinning increased due to demands for 3D ICs.
Since then, thin Si was mainly pursued through Silicon-on-
Insulator (SOI) wafers. This involved bonding a Si wafer over
another oxidized Si wafer followed by grinding/thinning of one of
the wafers, through what we now know as bond and-etch-back
SOI (BESOI) process.26 A significant number of articles related to
SOI technology, but not having “thin-silicon” as a part of their title,
may have been excluded in our analysis. The SOI wafers have also
been used to realize UTCs with very precise thickness.27 However,
the high cost of SOI wafers (which is approximately an order of
magnitude higher than bulk wafers) is driving the researchers to
explore alternative techniques for low cost fabrication of UTCs.
Overall the field of flexible electronics has witnessed exponential
growth in number of publications and in comparison with this
overall growth, the thin-chip related research is still in the nascent
stage.28 Nonetheless, it is growing steadily as demand for high-
performance flexible electronics has gained momentum only
recently. This trend is on expected lines as the flexible electronics
research, which in the initial days focussed on tackling materials
and fabrication related issues, is now advancing towards system.
The requirements related to high-performance are mainly felt at
the system level. Importantly, the trend in Fig. 2 indicates that the
interest in UTCs will continue to grow as the field flexible

Table 1. Comparison between mobility, channel length and normalized transit frequency of transistors fabricated using different materials

Material Mobility (µ)
[cm2/V-s]

Channel length
(L) [nm]

Normalized transit
frequency (fTnorm) [GHz]

Ion/Ioff Ref.

Monocrystalline Si 300–1200 14 4250 109 169,170

Amorphous Si 5–32 12,500 0.00115 105 171,172

III–V Semiconductors 400–12,000 75 165 104 173–176

MoS2 700 300 42 108 177–180

WS2 234 6000 3.8 108 181,182

Pentacene 1.5 2000 0.0114 102 183–185

CVD Graphene 24,000 40 100 102 186–188
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electronics advances towards higher technology readiness levels
and embraces more applications.

UTC PROPERTIES

The physical dimensions could influence the material properties
and carrier transport mechanism and therefore could affect the
performance of electronics devices. Compared to their bulk
counterparts, the UTCs exhibit different behavior in terms of
mechanical flexibility, optical transmittance, and carrier surface
mobility (e.g., upon experiencing stress) etc. These variations can
be challenging to handle, for example when one attempts to
apply on UTCs the methods and designs developed for
conventional bulk silicon. At the same time, such variations also
offer multiple new opportunities, which are otherwise difficult
with bulk silicon. For example, Si starts to become optically

transparent for thicknesses below 10 µm—starting in the red
region and progressing towards blue region as the wafer gets
thinner. Such thinning led variations in optical transparency of Si
could be exploited to improve photodetectors and solar cells etc.,
as explained later in this section. An extensive analysis of
variations in properties with respect to thickness has not been
reported and this section should fill the gap in literature.

Mechanical properties
The thinning process impacts the mechanical properties of
thinned electronic substrate. For example, during thinning by
back grinding, the sub-surface damage (SSD) and deep cracks in Si
result in poor bendability and eventually lead to early breakage of
UTCs. Likewise, the etch pits and hillocks produced during
thinning by wet etching could lead to localized stress and can
decrease the breaking strength of Si. The localised stress or stress
distribution at different locations in UTCs are typically studied with
Finite Element Analysis29 and Micro-Raman Spectroscopy.30 The
FEM analysis can provide an estimate of the residual stress at
critical position like hinge and centre and the shift in Raman peak
could provide deep insight into localised mechanical stresses.
The physical parameters which are measure of strength of bulk

Si such as Young’s modulus (E) also change with thinning. The
Young’s modulus, which normally has a constant value, becomes
thickness dependent especially when the thickness hits the
nanometer regime. After a certain thickness, hb, the dependence
of Young’s modulus on the thickness can be described as:31

E ¼ 54:872 � h0:226
b (3)

For Si, the hb is about 80 nm and this value depends on
parameters such as in-plain strain, Poisson’s ratio and the Young’s
modulus of bulk Si. The nanometre range is hard to achieve with
mechanical grinding or wet etching of bulk Si wafer, nonetheless
with SOI wafers it is possible to obtain UTCs with nanometre
thickness.
The mechanical strength of UTCs is also influenced by their

thickness and the stress generated during the bending.

Fig. 1 Applications enabled by UTCs through underpinning research in areas such as sensing, computing, data storage, and energy.157–162

Figure reproduced with permission from: ref. 158, 2008 © NPG; ref. 157, 2009 © NPG; ref. 159, 2015 © NPG; ref. 160, 2011 © Wiley; ref. 161, 2008 ©
Wiley; ref. 162, 2016 © NPG

Fig. 2 Cumulative number of publications in major areas related to
thin-Si based electronics, including UTCs [Source: Web of Science]
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Mathematically this is expressed as:

σst ¼
E � h

2R
(4)

where h is thickness of UTC and R is the bending radius of
curvature. Under bending conditions, the stress is directly
proportional to the thickness of UTCs and inversely proportional
to the radius of curvature. The ultimate breaking strength of Si is 7
GPa.32 This means for the same stress; the thinner chip will have
lower radius of curvatures or can be bent more. This is also
indicated by Fig. 3a, where estimated values of bending strain
(calculated using MATLAB code based on equations in ref. 33) are
plotted against radius of curvature for Si with different thick-
nesses. The dashed line at 0.007 parallel to x-axis indicates typical
breaking strain for UTCs. However, in most of the cases, thin chips
are packaged over flexible substrate or flexible printed circuit
board (FPCB). In a packaged structure with UTC placed over a
flexible substrate, Stoney’s formula could be used to determine
the stress level. In the most common form, it is written as:

σf ¼
Est

2
s

6 1� νð ÞtfR
(5)

where ts, tf are substrate and film thickness, and ν is Poisson’s ratio.
The stress experienced by the top surface of UTCs is proportional
to Young’s modulus of substrate and its thickness. For this reason,
for applications requiring polymer substrate, the polydimethylsi-
loxane (PDMS) (E = 360–870 KPa) could be a better than polyimide
(PI) (E = 2.5 GPa). This is also reflected in Fig. 3b, which shows UTCs
over PDMS substrate can bend up to 6mm without breaking.
Often the neutral plane concept is proposed to reduce the stress
experienced by the electronics on UTCs. This can be achieved by
laminating or encapsulating the UTCs between two layers of

suitable thicknesses. In doing so one could improve the bending
limits, but in practical terms it is difficult to fabricate or integrate
UTCs in the neutral plane. Instead of minimizing or cancelling such
effects, it could be useful if an alternative strategy is devised to
exploit bending induced variations in the response of UTCs. As an
example, variations in the output of devices on UTCs could be
exploited to predict the state of bending (e.g., curvature) or the
shape of UTC under bending condition. This could be achieved by
developing models that accurately capture the electro-mechanical
variations in the response of devices on UTCs. The need to model
the behavior of electronics on flexible substrates has been felt
recently as reports in this field have started to appear.34–36

Thermal properties
Temperature is known to have significant impact on the
performance and reliable operation of electronics and therefore
discussion on thermal properties of UTCs gain importance. The
heat dissipation, particularly in the UTCs realized from SOI wafers
having top Si thickness in the nanoscale, significantly differ from
conventional bulk Si based chips. For example, the thermal
conductivity of <100 nm Si is half the value of undoped bulk Si
(~148Wm−1 K−1).37 The lower thermal conductivity means the
heat generated is not easily transferred to the package and
therefore appropriate heat management may also be needed for
UTCs, especially for high-performance flexible electronics. Another
important factor is the dependence of mobility on temperature,
which is determined by four types of scattering (phonon
scattering, surface roughness scattering, bulk charge coulombic
scattering, and interface charge coulombic scattering). The net
effect of this complex dependence is that higher the temperature,
lower is the mobility38 and therefore increase in the temperature

Fig. 3 a Plot showing the calculated bending strain vs. radius of curvature for various thicknesses of Si wafer. b Bending of Si membranes on
PDMS substrate showing breakage at R= 6mm.33 c COMSOL simulation of heat distribution in (i) 500 µm thick chip with area 1 mm2 showing
creation of hot spots—up to 45 °C for a low input power density of 1W/cm2.21 (ii) 100 µm thick with area 100mm2, showing temperature rise
of only 2 °C above ambient at same power density. d Absorptance percentage of light plotted against wavelength for different thickness of
silicon. e Transmittance and reflectance percentage of light plotted against wavelength for different thickness of silicon. f Plot of net-
absorptance vs. depth for different wavelength of light. Figure reproduced with permission from: c ref. 21, 2015 © Wiley
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due to low thermal conductivity of UTCs could degrade the
system performance. Likewise, the threshold voltage decreases
because the metal to semiconductor work function and fermi
potential decrease with temperature.39 The thermal issues can be
overcome by incorporating on-chip cooling architecture such as
micro-coolers and thermo-electric fluidic cooler.40 However, this is
cumbersome process and will typically require a liquid cooling
mechanism.41 A potential alternative is to use large size UTCs. As
an example, with COMSOL simulation (Fig. 3c)21 it has been shown
that a 1 mm× 1mm conventional chip (0.5 mm thick) on a 0.5 mm
thick polyimide can heat up the substrate to 40 °C even with a
small power density of 1 Wcm−2. However, in larger chips, the heat
is distributed over larger area and therefore local heating is
reduced. Applying the same argument to thin chips (~100 µm
thick) on polyimide substrates, with same power but bigger area
(10 mm× 10mm), the simulation result show only 2 °C more
temperature than ambient. This much increase in the local
temperature is within acceptable limit for applications such as
biomedical implants and wearables where higher temperatures
can damage tissues. Embedding of air-channels in thin chips could
alleviate the issue as it helps in the cooling of the chip. However,
such solutions put a restriction on the type of methodology used
to develop UTCs.

Optical properties
Owing to varying absorption coefficients at different wavelengths,
Si starts to become optically transparent as the thickness
decreases—starting with the red region and progressing towards
blue region. For relatively thicker Si (>10 µm), this behaviour could
be approximately explained with Fresnel equation of reflectance
(Eq. 6) and Beer-Lambert’s law (Eq. 7) as:42

R %ð Þ ¼ 100
nAir � nSiðλÞ

nAir þ nSiðλÞ

�

�

�

�

�

�

�

�

2

(6)

A %ð Þ ¼ 100 1� e�αSi λð Þx
� �

(7)

where, nAir and nSi are the refractive indices of air (~1.00) and Si
respectively, λ is the optical wavelength, αSi is the absorption
coefficient of Si at a given wavelength and x is the optical path
length. Figure 3d shows the optical reflectance and absorptance
vs. wavelength for ultrathin Si of various thicknesses. The
reflectance spectrum indicates that Si is more reflective in the
blue end. Figure 3e shows the net spectral transmittance for
ultrathin Si at various thicknesses. A noticeable difference is
observed for sub-10 µm Si where it starts to become transparent
in the red region. Figure 3f shows the optical net absorptance for
various depths of Si, particularly for the typical wavelengths (blue
—475 nm, green—510 nm, red—650 nm, and infrared—750 nm).
It can be noticed that 90% intensity of these wavelengths gets

absorbed within ~750 nm, 1.5 µm, ~7 µm, and 15.5 µm depths.
Semi-transparency can be obtained by introducing holes in the
wafer using XeF2 based isotropic dry etching and Al2O3 as
protective layer.43 For application such as photodetectors or solar
cells, where higher absorptance is required along with flexibility,
the optical path length in thin Si can be improved by using special
optical trapping techniques such as Lambertian trapping,44,45

texturing,46 antireflection coatings.47 Solar cells made from thin Si
with optimal surface passivation show higher open circuit voltage
as in this case the photo-generated carriers can be collected
effectively before they recombine. This property of varying optical
transmittance with thickness could also be exploited to monitor
and control Si etching process as the thickness could be seen as a
function of transmitted light. Back thinning also contributes to
achieving higher quantum efficiency in both charge-coupled
device (CCD) as well as active pixel sensor (APS) image sensors.48

However, their red and infrared response is decreased due to
thinning. Nonetheless this could be addressed with special optical
trapping techniques as described above. In addition to the change
in transmittance due to change in thickness, stress on thin Si
results in bandgap narrowing (BGN). This BGN and the change in
effective mass, which are related to intrinsic charge carrier
concentration, can lead to an increase in the dark current of
photodetectors.49 The changes in optical transparency with
thickness means the UTCs could also find use in applications
other than those requiring flexible electronics.

Electrical behaviour
The fundamental electrical properties of Si such as its bandgap,
dielectric constant, density of states, will not change until the
thickness reaches nanoscale.50 For most of the flexible electronics
applications, the flexibility requirements could be fulfilled with
UTCs having thickness in the range of 5–50 µm. Therefore, for
practical purposes the fundamental electrical properties of ultra
thin Si remains unchanged when they are realized by thinning
bulk Si. To reach <50 µm, the thickness of a conventional bulk
wafer or SOI wafer undergoes thinning process, which is known to
induce stress in Si. The Si chip could also be stressed by various
fabrication steps such as deposition of different material layers like
oxide, dielectrics, and metal etc., which have different elastic
modulus. On top of these, there is additional stress when the UTCs
are externally loaded or strained, for example, during bending.
Whereas the thinning and process induced stress are intrinsic to
chip, the bending induced stress during usage is external. These
stresses induce changes in the band structure and the piezo-
resistive property of Si, which eventually show up as variation in
the electrical response of devices on UTCs. Through electro-
mechanical tests and modelling, a few works have attempted to
capture the stress induced changes in electrical response of
devices. For example, in the case of uniaxial bending, n-type

Table 2. Change in device and circuit parameters realized on UTC under bending condition

Device/circuit Chip thickness
[µm]

Bending
radius [mm]

Evaluated parameter % Change Ref.

NMOS, PMOS 15 20 Drain current ~6 34

Inverter 40 15 Avg. propagation delay
Midpoint voltage

~7 ~ 2 189

NMOS current mirror 20 30 Output current ~5 51

Memory 40 5 Remnant polarization – 138

Ring oscillator 20 25 Output frequency ~1.15 190

Comparator 20 25 Standby current – 190

Ring oscillator [SOI] 0.006 6.3 Stage delay – 59
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MOSFETs show increase in mobility with increase in bending
stress. In n-type MOSFETs, this behaviour is independent of the
direction of bending, but variations in the response of p-type
MOSFETs is direction dependent.51 The models in these works
have taken into account the process strategies, dimensions of the
structure (active Si, dielectric, metal thicknesses, etc.), initial
substrate (e.g., Si, SOI, UTSOI, ETSOI etc.), mechanical strain etc.
The stressed induced changes could lead to significant deviations
in the response of device and circuits from their specified values,
as can be oberved from Table 2, where bending induced changes
in device and circuit parameters are reported. For complex circuit
design in flexible electronics and to predict their response under
different bending condition precisely, it is necessary to under-
stand these variations and implement predictive models in
electronics design tools.34,35 The variations in device response
could be reduced by using suitable compensation techniques in
the layout. On other hand, these changes in the device parameters
could also be seen as the signature for a particular bending state
and therefore could be used to predict or sense the state/shape of
bending.

TECHNOLOGIES FOR REALIZING UTC

A wide range of technologies have been explored for realizing
UTCs and a detailed discussion about some of are given in a few
review articles.21,22 For the sake of completeness, the technologies
involving either bulk Si wafer or SOI wafer are briefly discussed in
this section. Figure 4 also gives a summary of these technologies,
classified based on the fabrication stage at which the thinning is
carried out. For example, when the thinning is carried out after the
fabrication of electronic devices it is termed as post-processing,
and when wafer undergoes some processing before the device
fabrication then it is termed as pre-processing. Generally, the
thinning is carried out after the device fabrication is completed.
Following the discussion in previous section, the choice of
technological approach to realize UTC requires careful
consideration.

Using Si Wafer
UTC via post-processing techniques. In post-processing
approaches, the UTCs are typically obtained by physical removal
of electronic substrate such as Si through either grinding, dry
etching, chemical reaction or combination of these. In these
techniques, the crystal structure of active Si area (for example, in
the case of MOSFETs, the area up to well-depth) is unaffected and

therefore their electrical response is at par with their bulk
counterparts. However, as discussed in previous section the
possibility of mechanical degradation cannot be ruled out. The
techniques used as post-processing step can be broadly divided
into: (i) grinding, (ii) dry etching, and (iii) layer transfer.
Grinding: Back grinding is a popular and well established

method for wafer thinning. It is carried out in two steps as shown
in Fig. 5a—coarse grinding followed by fine grinding to obtain a
smooth surface. The protective tape, which holds the wafer to
chuck during grinding, plays a significant role in determining the
total thickness variation (TTV) as the wafer gets thinner. Wafers
with thickness as low as 3 µm have been obtained with this
technique.52 Back grinding is faster with respect to other
techniques, but it is also known to damage the crystal structure
deep inside the material. The sub surface damage could induce
high stress in the thinned wafer and can cause thin wafer or UTCs
to warp. This type of stress concentration can also lead to
breakage during handling, for example, while removing the thin
wafer from chuck or during dicing of thin wafer. Therefore, stress-
relieving techniques such as slow ion etching and chemical-
mechanical polishing are recommended after back grinding.
Dicing before grinding (DBG) is also sometime used to prevent
breakage of thinned wafers during dicing. In DBG, the wafers are
first partially-grooved and then grinded, as illustrated in Fig. 5c,
with die singulation occurring when the wafer is thinned below
the level of this cut.53 A major problem with grinding is that there
is high potential for the thin wafer getting damaged while it is
being delaminated from the protection tape. This issues could be
overcome by TAIKO technique (Fig. 5b) in which back-grinding is
done only for non-peripheral part of the rear side of wafer and the
periphery is left intact as a ring.54 The ring-shaped periphery
strengthens the overall structure and significantly reduces the
issue of warpage during handling.
Dry etching: Physical dislodging of Si atoms from the bulk

could also be achieved with high-energy ions and gaseous
reactive species. Depending on the mechanism, the process can
be classified as: (i) physical ion etching (PIE), and (ii) reactive ion
etching (RIE). In PIE, the atoms from the back of the substrate are
removed by bombarding it with energetic ions or gas assisted
etching.55 The etch rate depends on parameters such as scanning
style, substrate chuck table angle, beam angle etc. There is always
some re-deposition in this process, which reduces the effective
etch rate and selectivity. In the case of RIE, the high-energy ions
impacting the substrate remove the atoms physically and open-up
the area for chemical reaction as illustrated in Fig. 5d. RIE gives

Fig. 4 Classification of various thinning methodologies for realizing UTC
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high anisotropic behaviour but it comes with low level of
selectivity (in absence of any additive) and surface damage. A
few examples of RIE based UTCs include a 18 µm thick Si based
thermoelectric energy generators56 and Si probes of thickness 20
µm for floating chronic implantation in the cortex.57

Layer transfer processes: This method involves removal or
exfoliation of the top processed layer. Two major processes
developed based on this technique are: (i) proton-induced
exfoliation and (ii) controlled spalling. In the case of proton-
induced exfoliation, wafer is placed in a vacuum chamber after
device fabrication and exposed to a beam of hydrogen ions. When
heated, these ions which were implanted beneath the surface,
expand as microscopic hydrogen bubbles—thus causing a very
thin Si layer to detach from the surface, as shown in Fig. 5e. The
wafer can be reused to exfoliate another layer of ultra-thin Si.58

However, this method is not suitable for post-processing as
electronic devices may be damaged because of high-energy
proton exposure. Another layer transfer process is the controlled
spalling technique, which takes advantage of strained conditions

to obtain thin Si layer. Under specific strain conditions, a fracture
on the edge of a brittle substrate can propagate parallel to the
surface, as shown in Fig. 5f. This results in the detachment of thin
slice of the brittle. This process can be carried out at room
temperature and therefore it has advantages in terms of
integration on flexible substrates. The techniques has been
demonstrated with nanoscale flexible circuits (functional ring
oscillators and memory cells) on 60 Å thick ultrathin Si59 over the
oxide of SOI. One of the challenges with controlled spalling is that
it requires pre-calculation and monitoring of stress level to
minimize the spontaneous fracture. This can be overcome with
appropriate material and thickness of top film used as stress layer.

UTC via pre-processing techniques. Some technologies for
UTCs require processing of wafers before initiating the device
fabrication. These steps are termed as pre-processing steps
and the front-end fabrication follows thereafter. The techniques
for realizing UTCs which require pre-processing are discussed
below:

Fig. 5 a Illustration of Back Grinding. b TAIKO wafer vs. conventionally thinned wafer.163 c Steps involved in Dicing Before Grinding.164 d
Illustration of RIE and SEM image of trenches etched between released top layer and bulk substrate.165 e Proton-Induced Exfoliation technique
and blister created after heating hydrogen implanted wafer.166 f Illustration of controlled spalling and flexible wafer over polyimide.155 Figure
reproduced with permission from: b ref. 163, 2010 © Springer, c ref. 164, 2010 © Springer, d ref. 165, under a Creative Commons license (https://
creativecommons.org/licenses/by/4.0/), e ref. 166, 1999 © AIP Publishing LLC and f ref. 155, under a Creative Commons license (https://
creativecommons.org/licenses/by/3.0/)
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Anisotropic wet etching: This well-established technology has
been used traditionally to realize MEMS (microelectromechanical
systems) structures.60 The pre-processing steps for realizing UTCs
involve depositing suitable mask layers (usually a combination of
high quality SiO2 and Si3N4) at defined locations on the back side
of the wafer (Fig. 6a). This is followed by the device-processing
steps on the front-side, and then etching of wafer from backside.
The commonly used etchants for Si are hydrazine, EDP (Ethylene-
Diamine-Pyrocatechol), TMAH (Tetra methyl ammonium hydro-
xide), and KOH (potassium hydroxide). The etching duration can
be in hours depending on the concentration of etchant, the
temperature and thickness of the wafer. The contamination from
etchant and their CMOS compatibility is an important require-
ment,61 among others including modulating etching with dopants
or electrical bias, surface roughness, availability of suitable
masking films, health hazards, and disposal issues. TMAH is the

most commonly used etchant as it is IC-compatible, nontoxic, and
has very good anisotropic etching characteristics. One drawback
with TMAH is that it leads to higher undercutting than other
etchants such as KOH. To overcome this issue the isopropyl
alcohol (IPA) and surfactants are generally added to TMAH.62 The
wet etching can provide thin wafers at batch scale since many
wafers can be processed at once. The wafer scale UTCs with TMAH
etching and transfer to flexible substrate has been reported in
literature.13 The protection of front-side of the wafer from etchant
is a critical for this route to obtain UTCs as otherwise the etchant
may render the devices on the front side useless. To provide front-
side protection, a custom wafer holder made from etchant
resistant material or polymeric protection layer are used. The
concentration of etchant is maintained regularly during this
process to have better control over the total etch time leading to
UTCs with desired thickness. A potential solution for monitoring

Fig. 6 Illustration of pre-processing and post-processing modules of a Wet Etching, b ChipFilm,67 c various steps in epitaxial growth and
selective etching approach65 and d CirconFlex technique using SOI wafer.168 Figure reproduced with permission from: b ref. 167, 2010 ©
Springer, c ref. 65, 2010 © Springer, d ref. 168, 2010 © Springer
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the etch process is to exploit the change in optical transmittance
with thickness, as discussed in the section “Ultra-thin chip
properties”.
Epitaxial Si based UTCs: The UTCs with devices having higher

operating speed and better bipolar performance can be obtained
by lifting-off Si epitaxial layer from the substrate. The two key
approaches used for this purpose are: (a) Porous Si Approach, and
(b) Etch Stop Layer Approach. The porous Si method, developed in
1990s, involves creation of a porous layer between substrate and
the epitaxial layer.63 Examples for this approach included the
ChipFilm technology (Fig. 6b), which uses two layers of porous Si
with different porosity and results in ~15 µm thick UTCs.64 This
technology allows good dimensional control and the mother
wafer can be used repeatedly until exhausted. The yield of this
technology heavily depends on the design and pitch of pillars in
porous structure and hence the pre-processing step is critical.
While this method is well suited for die-size UTCs needed in 3D
ICs, the large area UTCs may not be practical due to cost
considerations and risk of breaking due to warpage. One possible
solution to address this issue is to use double transfer technique
(i.e., using flexible carrier and substrate) instead of pick-place tool.
The etch stop layer method, typically used in a MEMS, takes

advantage of the fact that doping could be used to stop etching. It
involves developing a highly doped (p++ type) film at certain
depth (roughly equal to desired thickness of UTCs) on the front
side of wafer, followed by lightly doped epitaxial layer which act
as active layer for device fabrication. Post device fabrication the
wafer is chemically etched from back side until the chemical hits
the p++ layer, which stops the etch process. The final thickness of
UTC is the equivalent to the thicknesses of the epitaxial and p++

layer.65 With a good control over the final thickness and
uniformity of UTCs, this method (Fig. 6c) offers an alternative
solution to the SOI wafer based approach. During growth process,
the diffusion of impurities between Si wafer and p++ film may
prevent the fabrication of an ideal step junction, which may lead

to lower switching current ratio and hence the poor performance
of electronics on UTCs. One way to control the impurity diffusion is
to adopt low temperature epitaxial growth with a trade-off
between high quality epitaxial film and higher impurity diffusion.

Using SOI wafer
SOI wafers provide a range of benefits relative to conventional
wafer, such as, lower parasitic capacitance, resistance to latch up,
lower leakage current, and immunity to radiation induced soft
errors. While these features of SOI wafers enable high-
performance electronics, their higher cost (~$1000 vs. ~$25 for a
6-inch bulk Si wafer) is a barrier. Nonetheless, despite this cost-
performance trade-off, the SOI wafers are used in many niche
applications such as low power high performance RF chips66 and
commercial devices such as IBM’s PowerPC,67 Global Foundry’s
22FDX,68 AMD’s dual core module.69 SOI wafer could also be used
for high performance UTCs with precise thickness. This is achieved
by fabricating electronic devices on the top active layer of SOI
wafer, followed either by: (a) etching the buried oxide layer (i.e.,
BOX removal), or (b) thinning the backside of the wafer up to the
required thickness or buried oxide (i.e., bulk removal) in which
case the oxide acts as the etch stop layer.70

BOX removal. In this method, the trenches are etched around the
chip on the front side and then etchant such as HF or XeF2 is
passed through these trenches to etch the oxide layer under-
neath, eventually detaching the top chip from the mother wafer.
Since the trench formation is critical, the area available for device
realization is limited and therefore well laid out design scheme is
needed. Moreover, it calls for proper support of top Si layer as
soon as it is detached from the bulk. Such challenges can be
overcome through transfer printing using PDMS or similar
intermediate carrier. Transfer printing of UTC based devices such
as transistors, logic gates, RF components has been demonstrated
for numerous applications.16,71–80

Table 3. Summary and comparison of various thinning techniques

Process Need for pre-
processing

Material removal
rate (µm/min)

Typical thickness of
semiconductor layer
(µm)

Challenges Ref.

Back grinding No 0.1–10 5–10 ●Deep scratches on backside
● Chipping at the edges

52,
191,192

TAIKO No 0.1–10 50–100 ●Dicing of membrane supported on ring can lead to
breakage

193

Dicing before
grinding

No 0.1–10 10–25 ●>15 µm sawlane is required
●No metal line over sawlanes

194,195

RIE/DRIE No 0.05–10 5–30 ●Non-uniform surface
● Chances of frontside contami- nation due to reactive

ions

196

Proton induced
exfoliation

No – 20–30 ●Need of specifically designed proton accelerator 197

Controlled spalling No – 0.006–10 ● Stress continuity across the lateral dimension is tough
to maintain

59,198

Anisotropic wet
etching

Yes 0.5–2 10–100 ● Sensitive to temperature and etchant concentration
●Micro-masking led hillocks formation

13,199

Epitaxial silicon over
porous silicon

Yes – 10–25 ● Stacking faults due to sintering
●Warpage on thin chip during detachment from

supporting pillars

200

Epitaxial growth and
selective etching

Yes 0.17–0.2 20–50 ● Low thermal budget in post-processing step due to
high temperature sensitivity of etch stop layer

● Extreme control over defects in p + layer

65

SOI box/bulk
removal

No – 12–20 ● Fixing and supporting the thin chip during transfer 168,201
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Bulk removal. In this process, the bulk Si is removed from
backside by wet etching until the etchant reaches the buried
oxide. In this case, the buried oxide acts as the etch stop layer and
UTC thickness is sum of active layer and BOX thicknesses. A variant
of this technique developed by Philips is named as Circonflex.
Based on substrate transfer technology, this process enables the
transfer of top functional layer of SOI wafer to practically any
flexible substrate as shown in Fig. 6d. The method has been
demonstrated for realizing 10 µm thick RF-ID tag chips.81

Table 3 summarises above methods with their key specifications
and associated challenges.

INTEGRATION OF UTCS ON FLEXIBLE SUBSTRATES

For fully flexible systems with reliable operation, the UTCs need to
be packaged over flexible substrates, sometimes with more than
one chip on the same substrate. The choice of substrate is critical
and depends on the inherent material properties and the
intended application. The materials which have been used as
flexible substrate can be broadly divided into two categories, i.e.,
polymeric and metallic (Table 4). An insulation coating is generally
needed for electrical isolation of UTCs and to connect them to
various components on flexible substrate and external connec-
tions. However, there are some exceptions such as solar cells
where the required common back contact is achieved by
transferring UTSi (Ultra-Thin Si) on flexible metallic or
conductive-material-coated polymeric substrates.82 The metallic
substrates for flexible electronics have an added advantage as
they can serve as heat sink or means for thermal reliefs. Further,
they can be useful in applications such as electrical waveguide or
where electromagnetic shielding is required. This can also be
achieved with polymeric substrates coated with a thin conductive
material including metals.83 However, metallic substrates have
inherent tendency towards retaining the shape on deformation,
which may not be desirable. In this regard, thin polymeric
substrates are advantageous as they are inherently elastic and
flexible with ability to regain their normal shape. An alternative
approach is to use a stack of both polymeric and metallic
substrates and engineer the structure to realize smart substrates
with desired properties. Thermal properties of substrate such as
coefficient of thermal expansion and thermal conductivity should
also be considered as they influence integration and thermal
management of UTCs. As the stress level in UTCs is influenced by
elastic properties of the substrate, generally a material with lower
Young’s Modulus is preferred. With the increasing interest in
health or bio related applications such as implantable systems,
bio-compatibility of substrate is also an important parameter to
consider. Bacterial cellulose membrane, collagen, silicone gel and

silk fibroin etc. have been used in such applications as they also
offer better integration with tissues.84–86 A comparison of various
flexible substrate used for UTCs is given in Table 4.
The most challenging task in the packaging of UTCs comes

when the contact pads on the chip are to be connected to the
extended pads on the substrates. Wire bonding technique, which
is widely used for traditional packaging is not suitable for UTCs,
which are fragile and can crack due to the impact of bonding
head-tool.87,88 Further, the bond wires protruding out of plane of
UTCs add to the thickness and affect the form factor. These
challenges are driving the search for suitable materials and
techniques for UTC packaging. The integration of UTCs on flexible
substrate have been achieved mainly by the following three
techniques.

Flip chip assembly on flexible substrate
In this style of packaging, UTCs in face down configuration are
assembled on polyimide or liquid crystal polymer (LCP) substrate
through flip chip bonder,89 as shown in Fig. 7a. In the case of
polyimide substrate, the solder bumped die are reflow soldered to
the patterned flex. In the case of LCP, vias are etched through to
expose the underside of contact pads. However, these solder
bumps become coarse due to ageing and the growth of
intermetallic compound, which eventually results in a changing
shear mode and increase of resistance.90 A right combination of
temperature and pressure at the curing step is needed during flip

Table 4. Comparison between various flexible substrates used for packaging UTC

Material Max. process
temperature [°C]

Coeff. of thermal
expansion [1/°C]

Thermal Conductivity
[W/m-K]

Young’s Modulus
[GPa]

RMS surface
roughness [nm]

Ref.

Stainless steel [304] 1023 16 14 190–203 33.8 202

Molybdenum 760 5 140 315–343 85 203

Polyethylene terephthalate 140 39 0.15–0.4 2.0–2.7 1000–1500 204

Polyimide 360 30–40 0.46 2.5 2 205

PDMS 150 310 0.15 360–870 × 10−6 0.88 206,207

Parylene C 109 38 0.08 3.2 13–25 208,209

Polyethylene naphthalate 155 20 0.15 5 0.64–0.68 210,211

Collagen 70 – 0.60 5.0–11.5 100 85,212

Silk fibroin 100 −1060 – 2.8 11.92 213–216

Fig. 7 Major schemes of packaging UTC: a Flip-Chip packaging of
UTC, b UTC lamination between two flexible layers and c UTC on
flexible substrate with screen-printed connection
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chip technique to get reliable electrical joints from bumps.91 The
major limitation of flip chip techniques is seen in the case of
packaging of sensors requiring their sensing area to be exposed,
as in the case of POSFET (Piezoelectric oxide semiconductor field
effect transistor), ISFET (ion sensitive field effect transistor) etc.92,93

This could be addressed by selectively removing the substrate
from sensing area.

Laminating UTCs between two flexible layers
This type of packaging generally aims to put UTCs in the neutral
plane by embedding it between the substrate and encapsulation
layer, as shown in Fig. 7b. The advantage of this approach is that it
leads to a reduced stress on UTCs and as a result the electrical
response of UTC is minimally affected by bending. The integration
of UTCs between two polyimide layers has been demonstrated for
conformable and wearable wireless ECG monitoring system.94,95 A
challenge with this type of packaging is that the heat produced
during device operation cannot escape to ambient. This could
lead to high local temperature and can damage or degrade the
device performance, as also discussed in the section “Ultra-thin
chip properties”. Moreover, the adhesion between the polyimide
and the Si may vary due to localized area of high temperatures
and this could lead to uneven adhesion of package or air bubbles
formation within the package.96 In this direction, the on-chip
cooling mechanism could be explored. For example, the
nanostructured super lattice-based thin-film thermoelectric mate-
rial (e.g., Be2Te3) integrated with Si based electronics results in
reduction of temperature by ~14.9 °C at target site.97 Similar
advances could be explored for UTCs to improve the reliability of
package. Recently, embedding of micro-air vertical channels in
UTCs have been reported for faster cooling and lower constant
load saturation temperature.98,99 Use of flexible materials with
high thermal conductivity (e.g., copper, graphene, etc.) and
structuring them as fins to act as a heat sink or using commercial
thermal conductive tape outside the package are other potential
solution.100,101

UTCs on foil with printed connections
In this approach, UTC are placed in the face-up configuration on
the flexible substrate using epoxy based adhesive. Conductive
wires are printed-on top of flexible substrate to realize electrical
connections between the chip and the substrate, as illustrated in
Fig. 7c. Screen printing or ink-jet printing is used to connect the
contact pads on chip to the external connections on the flexible
substrate. Silver based conductive ink and polymer based
conductive material like Poly (3,4-ethylenedioxythiophene): poly-
styrene sulfonate (PEDOT:PSS) have been used for this pur-
pose.102,103 The silver ink provides much higher conductivity than
PEDOT:PSS but it is susceptible to cracking during bending.16 On
other hand, PEDOT:PSS provides more flexibility than silver ink but
shows low conductivity. A durable connection by combining
screen printed silver grid with PEDOT:PSS could be a potential
solution.28,104 Although printing is simple and can be extended to
large area, due to poor resolution of printers the contact pads and
wires realized through printing are usually big in comparison to
contact pads on the chip. This issue will be overcome with
advances in printing technologies.
For fully flexible electronics system other materials may also be

used in conjunction with UTCs.105 For example a:Si/Poly-Si, inkjet
or transfer printed nanowires,106,107 3,3‴-didodecylquarterthio-
phene (PQT), solution processed organic/inorganic materials such
as peri-xanthenoxanthene (PXX),108 Lithium Super Ionic CONduc-
tor (LISICON),109 pentacene,110 dinaphthothienothiophene
(DNTT),111 copper hexadecafluorophthalocyanine (F16CuPc),112

PEDOT,113 and thixotropy materials,114 etc. could be used to
obtain advanced multifunctional flexible electronics systems.

APPLICATIONS OF UTCS

A wide range of applications require UTCs as through under-
pinning high-performance electronics they enable advances in
several areas, as illustrated in Fig. 1. The UTCs form the key
components of various smart systems as sensing units, data
processing or storage unit, driving or output unit and power or
energy management units etc. Depending on the application
requirements, the specification of electronics/sensing components
on UTCs may vary. Some of the applications where UTCs are used
as sensing units, data processing or storage unit, driving or output
unit, and power or energy management units are described
below.

Sensing/input
UTCs smart sensing units offer interesting solution for several
existing applications such as implantable systems, neurotechnol-
ogy, wearables, robotics and prosthetics etc. Futuristic applica-
tions such as body area network, body-dust, neural interfaces,
bidirectional prosthesis, internet of everything and smart homes
etc. will also benefit from UTCs based sensing units. As tactile
interface chip for flexible touch panel, the UTCs will bring
transformation in flexible portable devices (Fig. 1)115 and e-skin
for prosthesis or robotics (a flexible and transparent electronic skin
as illustration for sensing/input in Fig. 1).116–119 Portable devices
such as smartphones are expected to be flexible in the future, and
for this to happen various components including touch panel
should be flexible. In such cases, the active tactile layer could
comprise of large area flexible material such as graphene,116,120

but the sensory data from array of taxels will be processed locally
by a tactile interface IC or neuromorphic ICs before the data is
transferred to complex computing hardware. UTCs will strengthen
the capability of such systems by enabling features that require
high-performance such as multitouch sensing, 2D/3D gestures,
handwriting recognition, pen/stylus input, pressure sensitivity,
fingerprint recognition, and security operations.
In order to achieve biomimetic tactile sensing, about 250 MRs/

cm2 are required in the fingertip of prosthetic limb,121 which could
be achieved by high density tactile sensors such as flexible
POSFET that can conform to fingertips.122 Further, UTCs could be
useful for large area tactile skin based on planar off-the-shelf
electronics integrated on FPCBs.123 Lack of bendability of
electronics has often limited the use of large area skin to body
parts with large curvature. UTCs are ideal to address such
applications as besides high-performance sensing they could also
conform to the curved surface of prosthesis.
Implantable systems have brought a distinctive transformation

in the field of medical diagnosis and treatments.124 Flexible
microchips with integrated sensors or microelectrodes are
advantageous for applications such as brain interfaces as they
can conform to soft tissues and hence allow recording of reliable
data. Flexible UTCs with RFIDs encapsulated with biocompatible
liquid crystal polymers has been successfully implanted and
tested.80 UTCs also find application in video endoscopy, smart
catheters, diagnostic pills, sub-retinal implants, neural inter-
faces,125 swallowable smart pill126 and tactile functional prosthe-
tics etc.127,128 In the field of medical diagnosis, UTCs find
application as conformal retinal implant for blind vision, electro-
myographic and/or neural prosthetic implant, and blast sensor
patch in sports/military helmets to detect trauma injury.
Neurotechnology is another area which will greatly benefit from
electronics that bends, stretches and conforms to curved surfaces.
For example, complementing current in vivo studies, the flexible
and conformal microelectrode arrays will offer powerful new tool
in traumatic brain injury research. UTCs are attractive for such
applications as in addition to the active microelectrodes they
could also offer functionalities such as wireless communication.
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Thanks to the flexibility and conformability, the UTCs will be far
more comfortable for people using them.
In applications for health monitoring129 where the devices are

worn or wrapped around the body the high-performance and
compact electronics on UTCs could provide solutions such as
measuring human pulses on wrist, and orthodontic forces of
invisible aligners for dental treatment.130 The convergence of soft
and deformable textiles technologies with high-speed computa-
tional capacity of UTCs is another application.131 The rough and
uneven surface of fabric makes it difficult to have seamless
integration of UTC, which could be solved by using smoother
intermediate layer between textile and UTC. The UTCs can have
sensors, interconnects and processor for on-chip processing of the
data. This type of arrangement will greatly influence the
applications such as military garment devices, antibacterial
textiles, and personal electronics like MP3 jacket and smart
carpet.132

Data processing/storage
The consumer electronic devices such as smart phones, mobile
gaming systems, and ultrabook computers etc. have fueled the
growth of semiconductor industry in recent years. Consumer
prefer smaller, thinner, and lighter systems with additional
features such as wearable to meet their mobile lifestyles. Thanks
to Moore’s law and ITRS roadmaps,133,134 CMOS technology has
come a long way breaking many challenges with many material
and technology innovation leading to the current state-of-the-art.
Commercially, 14 nm technology FinFET based microprocessors
are available which operates at >4 GHz and now gearing to 10
nm.135 Considering the huge number of objects, with different
size, shape and rigidity, which will be connected in IoT
environment, high performance, and mechanical flexibility of
devices employed in these objects is inevitable. As discussed in
the section “Introduction”, the wireless communication in IoT will
require data handling ultra-high frequency range. UTCs will be
useful here as they could support faster communication, high
bandwidth, and efficient distributed computation with very high
switching speed. With interconnect schemes such as through-
silicon-vias, low power consumption and excellent high perfor-
mance, the UTCs have potential for 3D integrated circuits (3D ICs)
to handle large amount of data and processing in IoT
concept.136,137

Flexible portable devices, smart contact lenses or augmented
reality systems are some other areas where UTCs could trigger
advances as they could enable high-speed computation at lower
power and high-density storage. The Ferroelectric Random Access
Memory (FeRAM) based on flexible silicon shows superior
performance and can be good choice for flexible memory
applications for IoT.138 Emerging memory devices such as RRAM
(Resistive random-access memory), memristors, and other high
density nanoelectronic non-volatile memories could also be
integrated with UTC technology.
In applications such as bidirectional prosthesis at par with

human hand, the electronics on e-skin should process data from
18k mechanoreceptors (MRs) to mimic the glabrous palm area of a
hand. As number of sensory components increase, there is
demand to handle large data.139 The on-site processing and signal
conditioning of the raw data can be fulfilled by UTCs integrated
on the e-skin. While the active tactile layer could comprise of large
area flexible material such as graphene, the sensory data from
array of taxels should be processed locally by a tactile interface IC
before it is fed into the computing chip. The high-performance
UTC serve are ideal for such task. They could also reduce the load
on the computing block or could enable new features such as
multitouch input, 2D and 3D gestures, handwriting recognition,
pen/stylus input, pressure sensitivity, fingerprint recognition, and
security operations. In areas such as wearable systems, where

different modules need to communicate within and outside the
system, the UTCs could be used to develop components for body
area networks, and RF communication such as Bluetooth 4.0 low
energy communication etc.

Driving/output
The UTCs could also offer solution for efficient driving or output
unit for many applications such as optogenetics, flexible portable
devices, antenna, actuators. The drive units should provide precise
control on current and/or power and/or voltage and/or timing. As
an example, in optogenetics pulses of light with spatiotemporal
precision are needed to stimulate the neurons and UTCs could be
used to achieve this. Typically, optogenetic stimulation is carried
out by external light source with fiber-optics to deliver the light to
the targeted location. Typical driving requirements is such
application are precise temporal requirement i.e., rise time and
fall time (10–90% and vice-versa) of current pulses <100 µs and in
some specific applications <1 µs and current level up to 1.5 A.
Such an arrangement is cumbersome and involves tether. Tether-
free implantable miniaturized optogenetic systems are preferred
in such cases and UTCs based drivers could provide the required
temporal and spatial resolution. Further, with UTCs it will be
possible to achieve multi-wavelength and multi-array microLEDs
(µLED) targeting various optogenetic channels (corresponding to
various opsins) such as channelrhodopsin,140 halorhodopsin,141

archaerhodopsin,142 bacteriorhodopsin.143 The typical current
requirement for such µLED driving is 2–5 mA.144 Depending on
the requirements, the compound semiconductor layers for µLEDs
could also be grown or transfer printed on Si, from which UTC is
fabricated. Such implantable optogenetic chips can communicate
with external transceivers through RF communication in which
case UTCs could drive the antennas. Similarly the UTCs could
provide the drive/output unit in bidirectional prosthesis, treat-
ments for epilepsy, cardio-arrhythmias, drug addiction, and brain/
neural circuit mapping.145,146 UTC could also find application in
driving flexible pacemakers and defibrillators. For example, the
UTC chips integrated with EMG sensing electrodes could process
the signal in real-time to identify potential arrhythmia. Wherever
needed, they could drive the electrodes to provide stimulus for
pacing, cardioversion or defibrillation. UTCs could also drive
various components in wearable systems such as LED drivers for
pulse oximetry, electro-tactile stimulation, haptic communication
gloves for deaf-blind,147 bendable oral systems (for example to
control prosthesis148 or wheelchair,149) smart insole for health
monitoring and prosthesis control.
In applications such as smart portable display, there is a

growing interest in manufacturing portable devices with flexible
display that can undergo bending, flexing and rolling. While
flexible AMOLED display are commercially available,115 for flexible
smartphone various components such as battery, driving unit,
communication chip etc. are not bendable yet. Some of these
form the areas of active research, for example, flexible batteries.150

With high performance flexible circuits, UTC could remove the
current bottlenecks for flexible displays.

Power management and energy harvesting
Optimizing battery life for portable systems presents a significant
engineering challenge for system designers. While low power high
efficiency FETs help in achieving this goal to some extent,
alternative approaches are being explored by researchers to
harvest energy to develop energy autonomy.116 Current solutions
such as batteries require charging at regular intervals. However,
for applications such as health monitoring devices it is advanta-
geous to power the device with energy harvested from the
ambient, such as light, heat or motion.55,56,151,152 UTSi and UTC
technology could help in addressing the need for power
management and energy harvesting using high efficient flexible
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solar cells, buck or boost DC-to-DC convertors, power electronics
drivers. Photovoltaic technology is one area where thin Si was
initially used as explained in the section “Historical perspective”.
Due to continuous growth rate over the last decade, the
cumulative installed capacity of photovoltaics have exceeded
303 GW-peak by the end of 2016.153 Monocrystalline silicon based
PV with their long life span (up to 40 years) and high conversion
efficiency (15–26%) is a better choice.154 However, the higher cost
of monocrystalline silicon (compared to amorphous or micro-
crystalline silicon) makes it expensive. In this scenario, UTCs
present an interesting avenue.155,156 The solar grade large wafers
(>8” diameter) are best choice for manufacturing solar panels with
ultra-thin Si as active material. However, with lesser thickness the
special optical trapping techniques are required to harvest
maximum light energy as explained in the section “Ultra-thin
chip properties”. The energy harvesting component in Fig. 1
shows array of micro photovoltaic cells made of monocrystalline
Si.157 Further, a graphene based transparent coplanar capacitive
touch sensor combined with solar cells forming a smart energy
autonomous electronic skin system is also shown in Fig. 1.116

Thermal energy harvesting is another possibility, where a flexible
harvester realized on the top of thin Si has been reported to
produce around 30% more output power than that of realized on
bulk Si.56

Thus, with several applications, the UTCs could bridge the gap
between CMOS technology and several of the above mentioned
emerging applications of flexible electronics.

CONCLUSION

The international roadmap for semiconductors (ITRS) highlighted
the need for thin chips almost 15 years ago in context with 3D IC
staking for system-in-package. In fact, the 2005 ITRS report laid
emphasis on UTCs thinner than 20 μm as well as wafer thinning
and handling, small and thin die assembly and packaging of thin
chips. Until few years ago the demand for UTCs was primarily for
3D system integration, where multiple active dies having active
and lateral interconnects are vertically connected through silicon
vias. However, this is changing with emerging applications such as
mHealth, wearable systems, smart cities, and IoT. The high-
performance and flexibility of electronics needed in these
applications are primarily pushing the interest in UTCs. In fact,
these requirements have fuelled the research for high-mobility
materials such as graphene, which owing to excellent electrical,
mechanical and optical properties holds the promise for high-
performance flexible electronics. However, the technology for
these new high-mobility materials is not mature yet for large-scale
integration. The limited success of electronics from these high-
mobility materials and well-established Si based high-
performance electronics respectively act as the push and pull
factors of UTC research. A range of silicon based non-bendable
devices are already being used in ad hoc arrangements in a wide
ranging applications. With this background, this review article has
presented and compared the ways to make bendable Si and
variations in the response of devices on UTCs because of changes
in electrical, optical and mechanical behaviour. Tremendous
progress has been made for obtaining UTCs and a range of
thinning methods used for this purpose have been compared in
this paper.
Going forward, the major hurdles for UTCs will be in the areas

related to packaging, modelling and dealing with the effect of
stress and strain on electrical response of UTCs. The handling of
thin fragile wafers and packaging of UTCs needs more attention.
Unlike conventional chips, UTCs cannot be bonded easily with
wire-bonder because of high chances of cracks when the bonder
tip hits the bonding pad. Reliable and durable connection from
chip to the substrate is a challenging task because of the bumps
coarsening (in the case of flip-chip bonding) and chances of

electrical discontinuity (in the case of screen-printing). With
suitable thermal management and embedding the chip between
two layers of pre-patterned electrical connection it is possible to
overcome the bonding related issues. While much has been done
to realize UTCs, the stress induced effects and related models are
scarcely researched. A major reason behind the success of Si
technology was the availability of accurate models to predict
device response. However, this is challenging in the case of UTCs
as they experience stress because of external bending. The
modelling and simulation of devices on UTCs has not received
sufficient attention and this will pose major challenge to the
circuit designers. The cost of fabrication of UTCs is also argued as
an area that requires attention, especially when they are realized
from SOI wafer. However, with mass manufacturing of UTCs the
costs will come down and this is likely to be a non-issue. In
conclusion, despite many challenges the UTCs hold great promise
for advances in many areas where high-performance flexible or
conformable electronics are needed.
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