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Abstract—In this paper, ultra-wideband (UWB) channel estima-
tion based on the theory of compressive sensing (CS) is developed.
The proposed approach relies on the fact that transmitting an
ultra-short pulse through a multipath UWB channel leads to a
received UWB signal that can be approximated by a linear com-
bination of a few atoms from a pre-defined dictionary, yielding
thus a sparse representation of the received UWB signal. The
key in the proposed approach is in the design of a dictionary
of parameterized waveforms (atoms) that closely matches the
information-carrying pulseshape leading thus to higher energy
compaction and sparse representation, and, therefore higher prob-
ability for CS reconstruction. Two approaches for UWB channel
estimation are developed under a data-aided framework. In the
first approach, the CS reconstruction capabilities are exploited to
recover the composite pulse-multipath channel from a reduced set
of random projections. This reconstructed signal is subsequently
used as a referent template in a correlator-based detector. In the
second approach, from a set of random projections of the received
pilot signal, the Matching Pursuit algorithm is used to identify the
strongest atoms in the projected signal that, in turn, are related
to the strongest propagation paths that composite the multipath
UWB channel. A Rake like receiver uses those atoms as templates
for the bank of correlators in the detection stage. The bit error
rate performances of the proposed approaches are analyzed and
compared to that of traditional correlator-based detector. Exten-
sive simulations show that for different propagation scenarios and
UWB communication channels, detectors based on CS channel
estimation outperform traditional correlator using just 1/3 of the
sampling rate leading thus to a reduced use of analog-to-digital
resources in the channel estimation stage.

Index Terms—Channel estimation, compressive sensing, detec-
tion, ultra-wideband.

I. INTRODUCTION

ULTRA-wideband (UWB) communications has emerged
as a promising technology for wireless communications

systems that require high bandwidth, low-power consumption
and shared spectrum resources with applicability ranging from
short-distance high-data-rate applications to long-distance
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low-data-rate applications like sensor networks and high preci-
sion location and navigation systems [1], [2].

In UWB impulse radio communications, an ultra-short du-
ration pulse, typically on the order of nanoseconds, is used as
the elementary pulse-shaping to carry information [3]. Trans-
mitting ultrashort pulses leads to several desirable character-
istics. Firstly, simplicity is attained in the transmitter since a
carry-less baseband signal is used for conveying information
[4]. Secondly, the transmitted signal power is spread broadly
in frequency having little or not impact on other narrowband
radio systems operating on the same frequency [5]. Finally, the
received UWB signal is rich in multipath diversity introduced
by the large number of propagation paths existing in a UWB
channel.

UWB receivers, however, face several challenges including
interference cancellation, antenna design, timing synchroniza-
tion, and channel estimation, among others [2]. Digital UWB
receiver architectures have been proposed in [6]–[8] as an alter-
native to implement UWB receivers since digital detectors offer
considerable flexibility and technology scaling benefits. How-
ever, the extremely high bandwidth of the received UWB signal
(up to 7.5 GHz) requires high-speed analog-to-digital converters
(ADCs). These speeds demand the use of interleaved flash ADC
[7] or a bank of polyphase ADCs with accurate timing control
[6]. The former approach, however, consumes a lot of power, has
relatively low resolution, and can be quite expensive, whereas
the latter requires precise timing to control the ADCs while in-
curring high circuit complexity. Furthermore, oversampling of
the received UWB signal may be required to improve timing
synchronization and channel estimation. For instance, in [4] the
required sampling rate is in excess of 25 GHz for accurate UWB
channel estimation. Such formidable sampling rates are not fea-
sible with state-of-the-art ADC technology. New approaches for
UWB receivers are needed to attain the required sampling rates
and bit resolution.

This paper focuses on this goal by casting the problem of
UWB channel estimation and detection into the emerging
framework of compressive sensing [9], [10]. Compressed
sensing (CS) is a new concept based on the theoretical results
of signal reconstruction with random basis coefficients. The
remarkable result of CS reveals that with high probability, a
signal, , with a large number of data points that is -sparse1

in some dictionary of basis functions or tight-frames, can
be exactly reconstructed using only a few number of random
projections of the signal onto a random basis that is in-
coherent with . The number of projections, in general, is
much smaller than the number of samples in the original signal

1ByM -sparse, a signal f can be written as a sum ofM known basis functions,
i.e., f = �  
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Fig. 1. Effect of UWB channel (indoor propagation in residential environments) on the transmitted pulse for two different propagation scenarios: (a) line-of-sight
(LOS); (b) non-line-of-sight (NLOS); (c) zoom-in of (a); and (d) zoom-in of (b). Transmitted pulse (– � –) is also shown in (c) and (d).

leading to a reduced sampling rate and, hence, to a reduced use
of ADCs resources [10]. Signal reconstruction from the set of
projections is obtained from the solution of a simplex convex
optimization problem that can be solved using fast iterative
algorithms [11]–[14].

We begin with the basic assumption that when the short du-
ration (high frequency) pulses used in UWB communications
propagate through multipath channels, the received signals re-
main sparse in some domain and thus compressed sensing is in-
deed applicable. To illustrate this concept, consider a Gaussian
monocycle as the information carrier UWB pulse having a dura-
tion of 0.65 ns [3]. Furthermore, consider the pulse propagating
through two different noiseless propagation scenarios. Fig. 1(a)
shows the received signal per frame for a UWB channel that
models an indoor residential environment with line-of-sight —
IEEE 802.15.4a channel model 1 (CM1) [15], while Fig. 1(b)
shows the received signal per frame for the same communica-
tion environment but with non-line-of-sight — IEEE 802.15.4a
channel model 2 (CM2) [15]. The time observation window is
100 ns, that is a typical frame time for UWB systems [2], [16].
Both propagation scenarios use the models in [15]. Fig. 1(c) and
Fig. 1(d) show a zoom-in of Fig. 1(a) and (b), respectively. For
comparative purposes, the transmitted pulse, has been rescaled
and also shown in these figures in dashed-dotted lines.

As depicted in Fig. 1(a)–(d), the received UWB signal is com-
posed of sets of spaced clusters of the transmitted pulse which,
in turn, captures the statistical characteristics of multipath ar-

rivals in a UWB channel [17], [18]. Upon closer examination
of these figures, it can be seen relatively long time intervals
between clusters and rays where the signal takes on zero or
negligible values. It is precisely this signal sparsity of the re-
ceived UWB signals that is exploited in this work aimed at UWB
channel estimation and detection.

In this paper, we show that the CS framework can indeed
be used for the processing of UWB signal. We not only show
that the received UWB signals can be reconstructed from
a set of random projections, leading to a reduced sampling
rate but also that the CS framework can be extended to other
statistical inference tasks suitable in UWB communications.
More precisely, two approaches for UWB channel estimation
are proposed that exploit the sparsity of the received UWB
signal. The first approach, named CS correlator, explores the
reconstruction capability of CS using the Matching Pursuit
(MP) algorithm. This approach first estimates the composite
pulse-multipath channel by randomly projecting a
set of received pilot waveforms for training. This reconstructed
signal is subsequently used as a template for correlator-based
detector that demodulates the transmitted information symbols.
In the second approach, a CS-based UWB channel parameter
estimation followed by a Rake like receiver is developed. In
this approach, the MP algorithm is used to approximate the re-
ceived pilot signal by a reduced set of elements of a pre-defined
dictionary. These elements are closely related to the signal
contribution of the strongest UWB propagation paths leading
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thus to a UWB channel parameter estimation approach that
determines the path gains and path delays of the most relevant
UWB propagation paths.

CS requires that the underlying signals are sparse in some
dictionary of basis or tight-frames. The key in the use of CS in
UWB communications is in the design of a dictionary of param-
eterized waveforms that closely match the information-carrying
pulseshape [19], [20]. Thus, the received UWB signal can be
compactly represented in this dictionary leading to a sparsity
signal model that is suitable for the CS framework.

To alleviate the effect of additive white Gaussian noise, a
data-aided framework is adopted in this paper where a set of
training symbols, also known as pilot signals, are used to es-
timate the channel parameters as in [4], [21] or to estimate a
referent template for subsequent correlation detection [2], [16],
[22]. In this light of work, we use the CS approach for template
reconstruction and UWB channel parameter estimation leading
naturally to new methods for signal detection.

II. ULTRA-WIDEBAND COMPRESSIVE SENSING

Compressive sensing is a novel theory recently introduced in
[9] and [10] that unifies signal sensing and compression into
a single task. In essence, CS theory has shown that a sparse
signal can be recovered, with high probability, from a set of
random linear projections using nonlinear reconstruction algo-
rithms. The sparsity of the signal can be in any domain (time do-
main, frequency domain, wavelet domain, etc.) and the number
of random measurements, in general, is much smaller than the
number of samples in the original signal leading to a reduced
sampling rate and, hence, reduced use of ADCs resources. Next,
we briefly describe the CS framework proposed in [9] and [10].

A. Compressive Sensing Overview

Suppose is the -point discrete-time representation of an
analog signal of interest. Also, suppose a set of measure-
ments, , are acquired that are linear combinations of the points
in . More precisely, , where is a matrix, here-
after called measurement matrix, whose rows are basis vectors
of the space . It can be shown that if is sparse, in the sense
that can be written as a superposition of a small number of
vector taken from a dictionary of basis
or tight-frames, such that

(1)

for , then can be recovered from , with high prob-
ability as long as the measurement matrix is incoherent with
the dictionary .

In (1), is a vector that contains
nonzeros coefficients where is the number of elements
(atoms) in the dictionary . The index of the nonzero coef-
ficient defines which element in the dictionary composes the
signal and the coefficient value the contribution of that element
in defining the signal .

The signal can be recovered from the solution of a convex,
nonquadratic optimization problem known as basis pursuit [19]

that yields the sparse vector . Formally, with very high proba-
bility, is the unique solution to

(2)

where denotes the norm and is the holographic
dictionary. It was shown in [23] that if the random measure-
ment matrix has i.i.d. entries taken from a normal distribution
and the number of random projection is greater than or equal
to , the probability of exact reconstruction ex-
ceeds , where and are some constants.

Note that the only a priori knowledge required is that is
sparse in some dictionary. Also, note that the measurements are
completely independent of the signal itself. That is, a fixed set
of random basis vectors are used to acquire the measurements
of any signal. Reconstruction then only requires the space in
which the signal is sparse. This space, referred before as dictio-
nary, is a collection of parameterized waveforms, called atoms,
and may contain Fourier basis, Wavelet basis, cosine packets,
chirplets basis, Gabor functions, or even a combination of basis
and tight-frame [19]. In general, the structure of the signal of in-
terest leads to the definition of the dictionary [20], for instance
if the signal is smooth, a Fourier basis dictionary will yield a
sparse representation of this kind of signal, whereas if the signal
is piecewise smooth a wavelet-based dictionary is more suitable.

Solving the optimization problem in (2) is computationally
expensive and is not suitable for real-time applications. Faster
and more efficient reconstruction algorithms exist that use iter-
ative greedy-based algorithms, at the expense of slightly more
measurements, among them, matching pursuit [11], orthogonal
matching pursuit [12] and tree-based matching pursuit [13],
[14].

In particular, MP is a computationally simple iterative
greedy algorithm that tries to recover the signal by finding,
in the measurement signal, the strongest component (atom
of a holographic dictionary), removing it from the signal,
and searching again the dictionary for the strongest atom
that is presented in the residual signal. This procedure is
iteratively repeated until the residual signal contains just in-
significant information. Signal reconstruction is then achieved
by linearly combining the set of atoms found in the measure-
ments. Table I shows in details the MP algorithm [11] where

is the holographic dictionary,
is the maximum number of algorithm iterations and sets the
minimum energy that is left in the residual error signal.

B. Processing UWB Signals Using CS

Consider the simple communications model of transmitting a
pulse throughout a noiseless UWB communication channel

. The received UWB signal can be modeled as

(3)

where is the ultra-short pulse used to convey information
with a time duration in the order of nanoseconds. Typically, a
Gaussian pulse or its derivatives are used as the UWB pulses.
Thus where is a polynomial of
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TABLE I
MATCHING PURSUIT ALGORITHM

degree that depends on the order of the derivative used.
controls the width of the pulse and is chosen to meet the

FCC spectral mask requirements [24]. The first, second and
fifth derivatives of the Gaussian pulse have been proposed
for UWB communications [3], [21]. In [21], for instance, the
fifth derivative is used with yielding a pulse
duration of 0.5 ns. The principles developed here are general
admitting arbitrary types of UWB pulses.

In (3), is the impulse response of the UWB channel and
has been modeled as

(4)

where is the dirac delta function, and are, respectively,
the delay and gain associated with the th path of the UWB
channel and is the number of propagation paths. Extensive ef-
forts have been devoted to the characterization of UWB channel.
The Saleh-Valenzuela model, in particular, provides a useful
analysis tool for indoor multipath propagation, where multipath
components arrive in Poisson-distributed clusters [17]. Further-
more, within each cluster, the path arrivals are also described
by a Poisson process. Both cluster interarrival times and path
interarrival times, are thus exponentially distributed with model
parameters that are experimentally determined [15], [18].

In our analysis, the set of delays and gains are generated ac-
cording to the models proposed by the IEEE 802.15.4a working
group in [15] for different communication environments: indoor
residential, indoor office, industrial, outdoor and farm environ-
ments; different propagation scenarios: line-of-sight (LOS) or
non-line-of-sight (NLOS); in an operating range greater than
10 m and up to few hundred meters for outdoor environments;
and for low data rates (less than a few megabits per second).
In the UWB channel model developed in [15], however, a fre-
quency-dependent path loss model is used to describe the per-
path pulse distortion yielding a UWB channel model with com-
plex coefficients. We restrict our analysis to real-valued UWB
channel models where there is not pulse distortion. Thus far, it is
not clear how our approach can be extended to deal with UWB
pulse distortion and it is an ongoing research topic that will be
reported elsewhere.

Note in (3) that the received UWB signal is composed of
scaled and time-delayed versions of the transmitted pulse. Note
also that the statistics of the arrival paths define the time-space
between pulses. Thus, if the averaged path interarrival time

is greater than the pulse duration, the received UWB signal
presents less pulse-overlapping and therefore more sparsity
is expected. On the other hand, for dense multipath UWB
channel, like NLOS propagation where the multipath compo-
nents arrive closely spaced, more pulse-overlapping is found.
This remark can be further observed on Fig. 1 where the pulse

is transmitted through two different propagation scenarios,
Fig. 1(a) depicts the received waveform for an indoor residen-
tial environment with LOS propagation (CM1), while Fig. 1(b)
shows the same communication environment but with NLOS
propagation (CM2). Note that more pulse-overlapping occurs
on the NLOS channel.

Next the CS framework is used to reconstruct the waveform
modeled by (3) which, as will be seen shortly, plays an important
role on signal detection. Hereafter, this waveform is called the
composite pulse-multipath channel.

1) UWB Signal Reconstruction Using Time Sparsity Model:
A first approach to reconstruct the composite pulse-multipath
channel from a set of random projections assumes that the signal
is sparse in the time domain. That is, transmitting an ultra-short
pulse through a UWB communications channel leads to a re-
ceived signal that has a few nonzero values. This signal model
is adequate for the UWB channel provided that there are only a
few propagation paths as is the case of UWB channels in indus-
trial environments with LOS propagation [15].

Let be a discrete-time representation of the composite
pulse-multipath channel. That is,

, where is the sampling period, the number of
samples and denotes the transpose operator. Define the
measurement matrix, , as random matrix with entries
i.i.d. taken from a normal distribution with zero-mean and unit
variance. Since we are assuming sparsity in the time domain,
the dictionary reduces to the identity matrix. Running the
matching-pursuit algorithm with the holographic dictionary

and the random projections yields the results
show in Fig. 2.

Fig. 2(a) shows the 2048-point composite pulse-multipath
channel for a realization of an indoor residential channel with
LOS propagation obtained from [15]. This is the signal targeted
for reconstruction from a reduced set of random projections.
Fig. 2(b) depicts the reconstructed signal obtained using 500
random measurements. Note that although CS is able to recover
the most significant values of the underlying signal, it fails to
recover many of the signal details yielding, in general, a poor
performance. Note also that several spurious components are
introduced in the reconstructed signal leading to a cumulative
square error of 0.9276.

To improve the CS reconstruction performance, one may be
tempted to increase the number of random projections since a
large number of random projections increases the probability of
exact reconstruction [9], [10], [12], [13]; this, however, leads
to a higher sampling rate, and therefore more demanding ADC
resources.

A more appealing approach is to design a dictionary of pa-
rameterized waveforms where the received UWB signal can be
compactly represented, increasing thus the sparsity of the un-
derlying signal. This approach is motivated by the fact that the
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Fig. 2. (a) Received UWB signal for a realization of an indoor residential channel with LOS propagation (CM1). (b) CS reconstruction using time-sparsity model,
with 500 random projections. (c) CS reconstruction using multipath diversity, with 500 random projections. (d) CS reconstruction using multipath diversity, with
250 random projections.

received UWB signal given by (3) can be thought of as a linear
combination of the signal contributions of the various propaga-
tion paths that compose the UWB multipath channel.

2) UWB Signal Reconstruction Using Multipath Diversity:
UWB channels in general are rich in multipath diversity moti-
vating the construction of basis functions offering higher energy
compaction, sparseness, and higher probability for CS recon-
struction. Since CS theory relies on the fact that the underlying
signal is sparse in some dictionary of basis or tight-frames, it
is important to define a suitable dictionary to represent the un-
derlying UWB signal. We can explore a great variety of dictio-
naries that have been defined in the context of atomic decompo-
sition to find the best basis that match our problem [19], [25].
Alternatively, we can generate a new dictionary just inspecting
the characteristic of the received UWB waveform. In particular,
the transmitted pulse shapes as well as their spread caused by
closely spaced channel taps, suggest the use of atom basis rep-
resentations (tight-frames) that can provide a better sparse rep-
resentation of the received UWB signals.

Since the received UWB signal is formed by scaled and de-
layed versions of the transmitted pulse and since the dictionary
should contain elements (atoms) that can fully represent the
signal of interest, it is natural to think that the elementary func-
tion to generate the atoms of the dictionary should be closely
related to the pulse waveform used to covey information, i.e.,
the Gaussian pulse or its derivatives. Therefore, the dictionary is

generated by shifting with minimum step the generating func-
tion, , leading to a set of parameterized waveforms given by

(5)

that define the dictionary . The
atoms in the dictionary are thus delayed versions of the UWB
transmitted pulse. Note that by setting greater than the time
support of the basic pulse, atoms in (5) become orthogonal
to each other. Although the orthogonal property is a desirable
characteristic of a basis to guarantee unique representation of
a signal, the rich multipath diversity introduced by the UWB
channel produces pulse spread that is better captured by a
redundant dictionary. Thus, is set such that overlapping
between atoms occurs.

Although (5) is expressed in terms of continuous time and
, in practice both parameters are discretized, setting to a

multiple of the sampling period. In particular, if is set to the
sampling period, the dictionary becomes a complete and redun-
dant dictionary of tight-frames [19], [20].

It should be pointed out that the use of Gaussian pulses and
their derivatives as generating functions to generate atoms in a
dictionary is not new. In [26], for instance, a two dimensional
overcomplete dictionary that has as generating functions the first
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and second derivatives of the Gaussian pulse is proposed to char-
acterize the edge component of images. Furthermore, defining a
dictionary that matches the signal of interest has been reported
in [20] in the context of processing acoustic waves scattered
from submerged elastic targets.

Having defined a suitable dictionary that matches the UWB
signal, we next return to the reconstruction problem.

Consider the composite pulse-multipath channel given by (3)
that has been sampled to define the discrete-time vector

. Furthermore, let be
the random projected signal where is the measurement
matrix with . The MP algorithm is then applied
on the random projected signal, , and the dictionary , where

is the discrete-time dictionary defined by uniformly sampling
the atoms of the dictionary .

Fig. 2(c) and (d) show the reconstructed signal using 500 and
250 random measurements, respectively. As it can be seen from
Fig. 2(c) and (d), CS successfully recovers the desired signal
from random projections yielding cumulative square errors of
0.0262 and 0.1110 using just 500 and 250 measurements, re-
spectively. Furthermore, comparing Fig. 2(b) and (c), it can
be seen that UWB signal reconstruction using multipath diver-
sity outperforms UWB signal reconstruction using time sparsity
model yielding a reconstruction error that is 35-fold smaller.
Therefore, by building a dictionary that is closely matched to the
underlying waveform, a notable performance gain is achieved in
the reconstruction.

Note that by having just 1/8 of the original samples, CS
can reconstruct each resolvable delay bin carrying significant
amount of energy in the composite pulse-multipath channel
waveform. This can be further seen as follows. By sampling the
random projected signal at a notably reduced sampling rate, it is
possible to reconstruct the unprojected signal with a very small
cumulative reconstruction error. Therefore, from a reduced set
of random projections, the composite pulse-multipath channel
at much higher sampling rate can be reconstructed. Obviously,
this leads to a reduced use of ADCs resources and improved
subsequent signal detection as it will be seen shortly.

Note also that the signal prior to the projection stage does
not have to be a discrete-time signal, since the random projec-
tions can be performed in the analogous domain by a bank of
synchronized high speed analog mixers with PAM waveform
random generators followed by low-rate sampling.

Next, the probability of successful reconstruction as a func-
tion of the number of measurements is presented. In order to
compute this probability, a signal is considered to be success-
fully reconstructed if the reconstruction error is less than 1% of
the signal’s energy, i.e., . Fig. 3 depicts
the probability of successful reconstruction as a function of the
number of measurements (averaged over 1000 trails) for two
different propagation scenarios (LOS and NLOS) in an indoor
residential environment. The same UWB channel realizations
used to obtain Fig. 1 are used in this simulation. As expected,
the NLOS propagation scenario requires more random measure-
ments than that required by the LOS propagation scenario. This
observation is in concordance with the fact that NLOS channels
are more dispersive and thus, have more multipath components

Fig. 3. Probability of success reconstruction for UWB signal for two different
propagation scenarios: LOS (- - -) and NLOS (—).

than LOS channels, consequently the NLOS received signal is
less sparse than LOS received signal demanding more measure-
ments. Note that to achieve 95% of success in reconstruction,
the MP algorithm needs about 500 random measurements for
LOS channels and about 900 random measurements for NLOS
channels.

C. UWB Channel Estimation Using CS

While CS research has focused primarily on signal re-
construction and approximation, the CS framework can be
extended to a much broader range of statistical inference tasks,
well suited for applications in wireless UWB communications.
UWB channel estimation is one of those applications which
will be used extensively in Section III and Section IV and it is
addressed next.

Consider the composite pulse-multipath channel, given by
(3), where the channel parameters related to the var-
ious propagation paths have to be estimated. The number of
multipath components in (4) that form the UWB channel can
be quite large, leading to a large time dispersion of the trans-
mitted pulse [3]. For instance, in an LOS indoor residential en-
vironment [15], the average number of multipaths for 1000 re-
alizations of the channel is about 1160 paths. This seems to lead
to an untractable channel model with 2320 channel parameters,
however many of those paths are negligible thus reducing the
channel complexity. In fact, for the above example, the average
number of paths capturing 85% of the energy is just 70 paths.
Therefore, we limit ourselves to estimate the most signifi-
cant paths that composes the UWB channel impulse response,
as in [4] and [21].

Furthermore, consider the UWB signal reconstruction
problem discussed in the previous section where the random
projections of the noiseless composite pulse-multipath wave-
form and the dictionary are input to the MP algorithm.

Upon closer examination of the MP algorithm, it can be
noticed that, the holographic dictionary is searched for the
strongest delayed version of the transmitted signal that is con-
tained in the residual signal (random projected signal for the
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first iteration). That delayed version of the transmitted pulse is
an atom of the tailored dictionary and is related to a propagation
path in the UWB multipath channel. Next, the signal contribu-
tion of that path is canceled out from the residual signal. This
searching-and-canceling stage is repeated iterations or after
a target residual error is reached. Finally, the MP algorithm
outputs a sparse vector that contains the
signal contribution of the various propagation paths.

Furthermore, the reconstruction step in the MP algorithm can
be thought of as a weighted sum of the elements in the dictio-
nary, that is . Since each element in the dictionary
is a shifted version of the transmitted pulse, it turns out that is
an estimate of the path gain related to the th propagation path.
Furthermore, the path delay is directly determined by observing
the time-location of the th atom found in the received UWB
signal. This leads naturally to a method to estimate the channel
parameters (path delays and path gains) of the most significant
paths using the MP algorithm, as follows.

Let be the sparse vector yielded by the
MP algorithm after iterations2. Let for
be the sorted elements of the set de-
fined such that ,

, and for . Further-
more, let be the index in the sparse vector of the th sorted
element. The estimate path gain and path delay for the th
propagation path are, respectively

(6)

for , where denotes the minimum shifting
step of the transmitted pulse as defined in (5). The number iter-
ations used in the algorithm is a parameter that has to be suit-
ably selected. At first glance it seems that it should be set equal
to the number of most significant paths, . However, is, in
general, unknown. Furthermore, it is quite possible that, as the
MP algorithm progresses, those previously selected atoms are
chosen again and the corresponding path gains are updated. As
it will be seen in Section III, a subsequent stage of a UWB re-
ceiver (symbol detection) provides a reliable criterion that can
be used to select the number of MP iterations.

Nevertheless, is set to a value much smaller than nec-
essary for reconstruction, since our motivation is not to fully
reconstruct the composite pulse-multipath waveform. Rather,
by using a dictionary that is closely matched to the underlying
transmitted pulse, we anticipate to find the most correlated
atoms in the dictionary that, in turn, are related to the strongest
propagation paths. This proposed approach is similar, in spirit,
to the successive cancelation algorithm introduced in [27] for
DS-CDMA channel estimation, where at each iteration the
parameters of a given path are estimated and a delayed version
of the transmitted signal corresponding to the estimated tap
is subtracted from the received sequence and the algorithm is
repeated.

2Since we are not interested in signal reconstruction, the target residual energy
is no longer used to end the MP algorithm.

III. ULTRAWIDEBAND DETECTION BASED

ON COMPRESSIVE SENSING

Thus far, we have focused on CS reconstruction of noiseless
UWB signals. Furthermore, a UWB channel estimation based
on CS has been also proposed that relies on the assumption that
the noiseless composite pulse-multipath waveform is sparse in a
pre-designed dictionary. In a more realistic UWB communica-
tion scenario, however, the received signal is contaminated with
noise and interferences, and the challenges fall in the design of
a UWB receiver with the ultimate goal of signal detection.

The CS theory can be further extended to address the detec-
tion problem under the framework of data-aided channel estima-
tion followed by symbol demodulation [2], [4], [16], [21], [22].
In this framework, a set of training symbols, also known as pilot
signals, are used to estimate the channel parameters [4], [21] or
to construct a referent template for subsequent correlation detec-
tion [2], [16], [22]. In this light of work, we use the CS frame-
work for template reconstruction and channel parameter estima-
tion leading naturally to new methods for signal detection.

A. UWB Signal Models

Consider a peer-to-peer UWB communication system where
the th binary information symbol is transmitted by sending
ultra-short pulses in the symbol interval , that is [22]

(7)

where is the frame time, i.e., the time interval be-
tween two consecutive pulses, and is the binary
information symbol that modulates the amplitude of the pulse
stream. is the pulse used to convey information with a pulse
duration, , much smaller than the frame time ,
hence nonoverlapped pulses are transmitted for each infor-
mation symbol.

Following [3], [4], [16], and [22], consider that the channel
is static during a burst of consecutive symbols, that is the
channel parameters, ’s and ’s in (4), remain invariant over
several data symbols. Thus, is assumed fixed during the
burst of symbols but it may vary during the subsequent
symbol burst. Furthermore, let such that there
is not interpulse interference between consecutive transmitted
pulses, where is the maximum delay spread of the multi-
path channel. The received waveform during the first frame of
the th transmitted information symbol can be expressed as

(8)

where denotes convolution and is a zero-mean additive
white Gaussian (AWG) noise that models thermal noise and
other interferences like multi-user interference for a large
number of users [4]. The received signal is thus made up of
a sum of attenuated and delayed replicates of the transmitted
pulse, . Furthermore, the ultra-short pulse of duration is
spread over the frame interval as a result of the multipath.
Note that the received UWB waveform in (8) is an amplitude



390 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 1, NO. 3, OCTOBER 2007

modulated version of the composite pulse-multipath channel
corrupted with AWG noise.

Since and the UWB channel is invariant
over several information symbol, the received signal during the

th information symbol can be represented by periodically re-
peating the noiseless part of every seconds, leading to
the received signal

(9)

The rich multipath diversity embedded in (9) by the UWB
channel has to be exploited at the receiver in some optimal
fashion. Two approaches have been commonly used to address
the detection problem. They are the correlator-based detector
[2], [16], [22] and the Rake receiver [3], [4], [21]. In the first
approach, the received UWB signal per frame, , is corre-
lated with a reference template to decode the transmitted infor-
mation symbol in the corresponding frame. The optimal tem-
plate for demodulation is the compose pulse-multipath channel,

. Thus, the receiver performs
frame-rate sampling on the correlator output to generate suffi-
cient statistics for the detection of the transmitted information
symbol [2], [3], [16], [22]. The second approach commonly
used for UWB detection is the RAKE receiver. In this case,
a bank of correlators exploit the multipath diversity cap-
turing the energy in the most significant propagation paths [3].
The correlators’ output are, then, combined via maximum ratio
combining (MRC) [28] to obtain sufficient statistics for symbol
detection.

In the UWB correlator-based detector, it is assumed that the
channel impulse response is completely known at the receiver
to define the reference template that is subsequently used in the
demodulation stage. Likewise, for the RAKE-based receiver the
channel taps related to the most significant prop-
agation paths are assumed to be known a priori to define the
set of templates for the bank of correlators and the weights for
MRC [28]. In either case, the need for UWB channel estimation
arises.

Impulse response estimation for UWB channels has been
developed in [16], where a data-aided framework is used to
estimate the optimal template in the analog domain. Their
approach employs analog delay units that delay and average
symbol-long segments of the received waveform, , during
the training stage to yield an symbol-long estimate of the com-
pose pulse-multipath channel. This estimate is subsequently
used as the correlator template to decode the received informa-
tion-conveying waveform at a symbol-rate sampling. Similarly,
in [2], [22] the correlator is implemented in the analog domain

after a previous estimate of the frame-long template based on
the received pilot waveforms. By sampling a frame rate, the
correlator output provides the statistic for detection. Although
these approaches avoid the path-by-path channel estimation
and do not require high sampling rate, their implementations
demand the use of analog delay units that consume high power.
Moreover, for low bit rate, these analog delay elements are not
available at the present time.

On the other hand, the estimation of UWB channel pa-
rameters, , has been addressed in [4] and [21]
following also a data-aided framework. In particular, in [4],
the maximum likelihood (ML) approach is used to derive the
optimal values for the path gains and path delays sampling
the received signal at subpulse rate. To achieve a good perfor-
mance, the ML channel estimator requires 12–25 samples per
monocycle pulse, leading to a sampling rate in the order of tens
of GHz. Such speeds mandate the use of a bank of polyphase
ADCs with accurate timing control that tends to consume high
power [5]. Furthermore, the computational complexity of the
ML channel estimator increases as the number of significant
multipath components increase and becomes prohibitively
expensive for a realistic NLOS propagation scenario.

Next, we address the problem of UWB channel estimation
using CS under the data-aided framework. The setting is as
follows. We use known pilots symbols in each packet to
estimate the channel impulse response. All pilots symbols are
transmitted at the beginning of the data packet3. Based on
these pilots, the channel is estimated either by CS template
reconstruction (Section II-B2) or CS channel tap estimation
(Section II-C). The remaining symbols that convey
information are decoded based on the acquired channel charac-
teristics. Under this setting, the received UWB signal (9) can
be conveniently rewritten as shown in (10), at the bottom of
the next page, where and are the pilot and the infor-
mation symbols, respectively, is the total number of pilot
waveforms given by , and is the time duration
of the pilot waveforms. denotes the greatest integer value
smaller or equal to . Note that for , (10) models
training data, whereas for , it models information-car-
rying signals. Furthermore, since pulses are transmitted for
each symbol (pilot or information), waveforms received
during seconds are available for channel estimation.

Consider that the received UWB signal is observed over
nonoverlapped time intervals for

. Assuming perfect timing synchro-
nization, each time interval encloses a modulated composite

3For clarity in the presentation, we assume that the pilot symbols are at the
beginning of each packet, however, they can be located anywhere in the packet
as in [22].

for

for
(10)
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pulse-multipath channel contaminated with AWG noise. Thus,
the received pilot waveform in a frame time is

(11)

With these settings, two channel-estimation approaches are
derived next that lead naturally to two different demodulation
schemes.

B. CS Correlator-Based Detector

A first approach exploits the CS reconstruction of the op-
timal template that is subsequently used by a correlator-based
detector. As was mentioned above, the optimal template for de-
modulation is the composite pulse-multipath channel given by
(3)[2], [16]. Furthermore, the received UWB signal is composed
of shifted versions of that template, modulated by the symbols
(pilot or information) and contaminated by AWG noise. There-
fore, by observing the received UWB signal in a frame-long in-
terval and random projecting the observed signal, a noisy tem-
plate can be recovered using MP algorithm. Since pilot
waveforms are used for channel estimation, the estimate com-
posite pulse-multipath channel is formed by averaging over
noisy templates. This approach is computationally demanding
as a noisy template is recovered for each received pilot wave-
form. Alternatively, the random projected signals corresponding
to the received pilot waveforms can be averaged and input to the
MP algorithm for template reconstruction. This latter approach
requires less computation since the MP algorithm is performed
just once. Furthermore, by ensemble averaging the random pro-
jected signals, the effect of AWG noise is mitigated.

Thus, CS template reconstruction is achieved by random pro-
jecting the frame-long received signals, ensemble averaging the
random projected signals, and using MP algorithm to recover an
estimate of the composite pulse-multipath channel.

Note that in the reconstruction of the optimal template
using the MP algorithm, a denoising operation is implicitly
performed. To be more precise, by building a dictionary that
is closely matched to the transmitted signal, we expect that
the dictionary will initially be most correlated with the un-
derlying transmitted pulse than to the noise. Furthermore,
since the reconstructed template is a linear combination of the
atoms in the dictionary, it does not contain any AWG noise
components. However, other type of errors may appear in the
reconstructed template coming from spurious atoms that may
have been wrongly identified in the received pilot signal as a
consequence of the AWG noise. In fact, the noise components
in the projected signal may drive the MP algorithm to find
erroneous atoms in the received pilot signal that are not part of
the noiseless signal. The signal contribution of those “wrong”
atoms add spurious components on the reconstructed template.

To overcome this limitation, the temporal correlation between
consecutive received pilot waveforms can be exploited by in-
creasing the observation window to enclose more than one re-
ceived pilot waveforms leading, thus, to the projection of several
received pilot signals at the same time4. The MP algorithm is

4In this case, the observation time interval reduces to kT < t < (k+W +
1)T , whereW is the number of consecutive received pilot waveform observed.

then suitably adapted such that the observed signal is compared
to each elements in the dictionary that is periodically repeated
several times to match the signal length. Thus, an atom is found
in the observed signal if its signal contribution appears periodi-
cally each seconds. Therefore, it is less likely that the noise
components erroneously drive the MP algorithm to find spu-
rious atoms in the received pilot signal, thus adding robustness
to the signal reconstruction. Note that, indeed, the MP algorithm
works on the projected signal using the holographic dictionary,

, however its effect can be better understood on the
original signal and dictionary.

Once the template has been estimated, it can be used as
correlator template to enable integrate-and-dump demodulation
at frame-rate sampling. Since each symbol is present in
frames, the decision statistics for the th symbol is formed
by adding up the correlator output samples related to the
transmitted symbol. That is

(12)

where is the CS estimate of the composite
pulse-multipath channel. In (12), the integral term implements
the correlation operation between the received UWB signal and
the estimate template. Note that the extension of this frame-rate
sampling detector to a symbol-rate sampling detector is
straightforward since the optimal symbol-long template is
generated by periodically extending every second,

times. This symbol-long template is then correlated with
the received signal (10), and the correlator output is sampled at
symbol-rate to derive the decision statistic for detection [16].

C. CS Rake Receiver

Rake-based detectors relies on the assumption that the UWB
channel parameters, path delays and path gains, related to the
most significant propagation paths are known at the receiver [4],
[21]. This calls for an extension of the CS channel parameter es-
timation approach described above to address the UWB channel
estimation problem in a noisy communication environment.

Consider the received pilot waveform given by (11) for
, where and are the UWB channel

taps to be estimated. At first, one may use each received pilot
waveform to estimate the channel parameters related to the
strongest propagation paths following the approach described
in Section II-C, thus yielding sets of noisy channel pa-
rameters, . Those sets are then averaged to form
estimates of path gains and path delays.

However, the noise component of the received pilot wave-
forms may drive the MP algorithm to misplacing the strongest
atoms in the received pilot signal and to a wrong estimate of
the atoms’ contribution to the signal. Consequently, this leads
to errors in the estimation of the UWB channel since each atom
found in the random projected signal represents the signal con-
tribution of a propagation path which, in turn, is related to a
couple of channel parameters .

To reduce the effect of AWG noise on the estimation of the
UWB channel parameters, the CS projected pilot signals are av-
eraged to obtain a reduced-noise projected signal that, in turn,
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is used in the MP algorithm to estimate the channel parame-
ters as described in Section II-C. Thus, CS channel estimation
is performed using the ensemble average of the random projec-
tions leading to a reduced computational cost and minimizing
the noise effect.

Having estimated the path delays and path gains related to the
strongest propagation paths, the CS Rake receiver is as follows.
Let be the channel parameters related to the
strongest paths obtained using CS channel estimation.

Much like in the traditional Rake receiver, in the CS Rake-
based detector, the received signal, , is fed to a bank of
correlators with templates given by the atoms for

. The outputs of these correlators contain the energy
captured by the strongest paths and are combined via maximum
ratio combining (MRC) [29] to obtain sufficient statistic for de-
tecting the th bit transmitted during the th frame. That is

(13)

Note that each correlator’s output, defined by the integral term
in (13), is weighted by the CS estimated path gains to form the
MRC output. Note also that the energy of the received signal is
captured by matching the received signal to delayed versions
of the transmitted pulse. Thus, by combining the information
of the strongest paths, the sufficient statistic is derived for
symbol detection. Furthermore, this two-step approach, corre-
lator followed by weighted combination, requires a frame-rate
sampling per correlator.

Recalling that pulses are used to transmit an informa-
tion symbol, the decision statistic for symbol detection is thus
formed by summing up the MRC outputs for consecutive
frames, leading to the estimate of the th transmitted informa-
tion symbol as

(14)

In presenting the CS Rake receiver, we have assumed that
the number of fingers (branches in the bank of correlators) is
equal to the number of strongest paths. In practice, the number
of fingers is a design parameter and is often chosen as a tradeoff
between complexity and performance. It is expected that a large
number of correlators will capture most of the energy distributed
on the various UWB propagation paths at expensive of more
complexity [4], [29]. In our approach, however, the complexity
in the channel estimation stage is driven by the complexity of
MP algorithm. It can be shown that the complexity of MP is
approximately , where is the number of MP iter-
ations and C is a constant that depends on the dictionary size
[13]. Therefore, UWB channel estimation using CS has a com-
plexity that increases linearly with the number of Rake’s fingers.
Furthermore, the number of MP iterations has to be set greater
than the number of Rake’s fingers, to allow the MP algorithm to
find the strongest path and possibly revisit those previously
selected paths for further updated.

IV. SIMULATION RESULTS

In this section, extensive numerical results are presented
showing the potential of CS for UWB signal detection. The
performance of the proposed CS-based detectors are compared
to that of a correlator detectors used in [16], [22]. All the UWB
communication environments (indoor residential, indoor office,
industrial and open outdoor environments) and propagation
scenarios (line-of-sight and non-line-of-sight) proposed by the
IEEE 802.154.4a in [15] are used as channel models for testing
the various UWB receivers. We use the average bit error rate
(BER) at the receiver as a function of signal-to-noise ratio
(SNR) as a performance criterion. The experimental setup used
in our simulation is as follows.

We select the first derivative of the Gaussian pulse as the
transmitted pulse waveform, , that has been normalized to
have unit energy and a pulse duration of 0.650 ns. Further, fol-
lowing [16] and [22], the transmitted parameters in (7) are set to

and . Furthermore, a 2-PAM modulation
scheme is adopted in our simulations where the information bits,

, are independent binary symbols with equal probability.
The sampling frequency before the projection stage in all the
simulation was 20 GHz, which is higher than the Nyquist rate.
Thus, the continuous-time signals are simulated with a time res-
olution of 50 ps.

The UWB multipath channel has been simulated following
the parameterized model proposed by the IEEE 802.15.4a
working group [15]. The channel parameters for the various
communication environments and propagation scenarios are
set according to the recommended values obtained from mea-
surement campaigns in [15]. For the sake of simplicity in our
simulation, the frequency-dependency path loss is taken out
from the model in [15], yielding thus UWB channels with
real-valued impulse responses. Furthermore, as in [22] the
negligible taps at the tail of the multipath impulse response are
cut off to make the maximum delay spread of the multipath
channel equal to 99.35 ns. The remaining channel taps are
normalized such that the channel energy is set to one.

We evaluate the performance of the proposed approaches over
a large number of channel realizations (200 random realizations
for each channel model). Thus, for each channel realization,
10 000 symbols are transmitted, of these symbols are used
as pilot symbols to estimate the channel parameters (CS-Rake)
or for template reconstruction (CS-Correlator). These estimated
channels are subsequently used for the corresponding receivers’
detector to demodulate the 10 000– information symbols.
The BER is determined by averaging the BER obtained on each
channel realization.

Furthermore, the parameters for the matching pursuit algo-
rithm are set as follows. The maximum number of MP iterations
is set to 400 and the target residual energy is set to 0.01% of the
energy of the projected signal, i.e., . Further, since
CS-Rake requires less iterations, the sparse vector is exam-
ined after iterations and is used to estimate the channel pa-
rameters as described above, where is the number of Rake’s
fingers. Thus, the MP algorithm is run once for both CS-based
detectors.
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Fig. 4. Indoor residential BER performance for CS-Correlator, CS-Rake, and
traditional correlator with K=N = 0:36:.

To compare the performance of the proposed UWB detec-
tors based on compressive sensing, the correlator-based receiver
used in [16], [22] is also implemented. In this case, the esti-
mate of the composite pulse-multipath channel is formed at the
receiver by averaging over the received pilot waveforms, that
is where is given by (11).
This estimate is then used as a correlator template to de-
modulate the transmitted symbol [16], [22]. Note that this ap-
proach—template-estimation followed by correlator-based de-
tector—is similar, in spirit, to the CS-Correlator. However, the
proposed CS approach performs template reconstruction from
the random projected signal sampled a significantly reduced
rate, avoiding thus the use of analog delay units needed to im-
plement the analog template-estimate approach.

Furthermore, all BER curves shown next are depicted as a
function of signal-to-noise ratio defined as , where is
the transmitted pulse energy and is the variance of the AWG
noise. For short notation, CS-Rake denotes the CS Rake re-
ceiver, CS-Correlator denotes the CS-Correlator based detector
and Correlator is the tradition correlator, i.e., analog-template
estimation followed by correlator-based detector.

1) BER Performance for Different Propagation Scenarios:
Fig. 4 depicts the BER performance of the proposed approach
for different propagation scenarios (LOS and NLOS). In these
simulations, the UWB communication channel is modeled as
an indoor residential environment, the number of measurements
is 36% of the samples in a frame-long interval, the number of
fingers for CS-Rake is set to 50, two pilot symbols are used
for channel estimation, and 200 channel realizations for each
propagation scenario.

As can be seen from Fig. 4, the CS-Correlator outperforms the
traditional correlator for all range of SNR tested for both prop-
agation scenarios. This shows that the reconstructed template
using CS framework, , is more reliable for symbol detec-
tion than the one obtained by averaging the received pilot signal,

. This performance is expected since a denoising operation
is inherently applied on the recovered signal yielding a tem-
plate that is a linear combination of the transmitted pulses. Fur-
thermore, note that the performance of CS-correlator for LOS

Fig. 5. BER performance for different number of pilot symbols, with K=N =

0:36.

channel is better than that for NLOS channel. This is also ex-
pected since NLOS channel introduces more multipath compo-
nents than LOS channel, yielding thus a received UWB signal
with less sparsity. Therefore, for the same number of random
projections, the CS-Correlator yields a reconstructed template
that is much closer to the optimal one for LOS channel than for
NLOS channel.

Note also that CS-Rake outperforms the correlator-based
detectors for LOS channel and yields competitive performance
to that yielded by the traditional correlator for NLOS channel.
As can be seen, CS-Rake degrades its performance for dense
multipath channel since the CS channel estimation is unable to
resolve the strongest paths among the multiple closely spaced
propagation paths. Furthermore, in a dense multipath UWB
channel, the energy is distributed over a large number of prop-
agation paths demanding more fingers to capture more energy
at the receiver.

2) BER Performance for Different Number of Pilot Symbols:
To evaluate the effect of the number of pilot symbols in the per-
formance of the proposed approaches, the same experiment as
described above is repeated for different number of pilot sym-
bols. Fig. 5 shows the performance of the various receivers as
the number of pilot waveform changes. Note that increasing the
number of pilot waveforms, improvement in the channel esti-
mation is achieved, leading to a performance gain on all the
methods. For instance, for a BER of , a performance gain
of approximately 3.5, 3.13, and 2.95 dB are achieved, respec-
tively, by the CS-Rake, CS-Correlator and tradition correlator
as the number of pilot symbols increases by a factor of 4. There-
fore, at the expense of a relatively low energy loss, the channel
estimation for all the methods improves notably.

3) BER Performance for Different Number of Projections:
Fig. 6 shows the BER performance of CS-Correlator for
different number of random projections. For comparative pur-
poses, the BER performance for the traditional correlator is
also shown in Fig. 6. As expected, the CS-correlator’s perfor-
mance improves as the number of projections increases. More
interestingly, by sampling the random projected signal at 30%
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Fig. 6. BER performance for different number of projections.

of the signal’s sampling rate, the CS-Correlator achieves the
same performance as that yielded by the traditional correlator.
Thus, with reduced ADC resources, the CS framework is able
to reconstruct a template as good as the one obtained sampling
the received UWB signal at a much higher sampling rate.

V. CONCLUSIONS

In this paper, we have introduced two novel ultra-wideband
channel-estimation approaches based on the theory of compres-
sive sensing. We have shown that a reduced number of random
projections of the received UWB signal contains most of the rel-
evant information useful not only for signal reconstruction but
also for UWB channel parameter estimation. We also show that
by CS reconstructing the composite pulse-multipath channel
from the set of random projections, a denoising operation is im-
plicitly applied yielding a performance improvement on a corre-
lator-based detector that uses the reconstructed signal as a ref-
erent template. Extensive numerical results show that this ap-
proach outperforms the traditional detector using just 30% of
the ADC resources.

Furthermore, by constructing a dictionary that closely
matches the information-carrying pulse-shape, the signal con-
tributions from the strongest paths of the UWB multipath
channel can be recovered from the set of random projections of
the received pilot signals, leading thus to an approach for UWB
channel-parameter estimation with the advantage of using a
reduced number of samples in the channel-estimation stage.

In this paper, the novel theory of Compressive Sensing has
been used for UWB channel estimation, and we believe that
the CS framework can be extended to a much broader range of
statistical inference tasks, well suited for applications in wire-
less UWB communications. One of those applications is UWB
symbol detection, which is an ongoing research topic that will
be reported elsewhere.
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