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We realize a two-dimensional kagome lattice for ultracold atoms by overlaying two commensurate

triangular optical lattices generated by light at the wavelengths of 532 and 1064 nm. Stabilizing and tuning

the relative position of the two lattices, we explore different lattice geometries including a kagome, a one-

dimensional stripe, and a decorated triangular lattice.We characterize these geometries usingKapitza-Dirac

diffraction and by analyzing the Bloch-state composition of a superfluid released suddenly from the lattice.

The Bloch-state analysis also allows us to determine the ground-state distribution within the superlattice

unit cell. The lattices implemented in this work offer a near-ideal realization of a paradigmatic model of

many-body quantum physics, which can serve as a platform for future studies of geometric frustration.
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Geometrically frustrated systems with a large degener-
acy of low-energy states are of central interest in
condensed-matter physics [1,2]. The kagomenet—apattern
of corner-sharing triangular plaquettes—presents a particu-
larly high degree of frustration. Such frustration impacts the
kagome quantum antiferromagnet, for which the ground
state, proposed to be a quantum spin liquid or valence
bond solid [3–10], remains uncertain despite decades of
work. Resolving such uncertainty by experiments on solid-
state kagomemagnets [11,12] is complicated by the signifi-
cant magnetic disorder or anisotropy of such materials. For
this reason, more faithful realizations of quantum many-
body physics in the kagome lattice are needed.

Ultracold atoms trapped within optical lattices offer
clean realizations of exotic phases of matter in
condensed-matter physics [13]. Recently, nonprimitive op-
tical lattices with multiple lattice sites per unit cell have
been realized in the honeycomb [14] and checkerboard
[15] geometries, and double-well superlattices [16,17],
revealing nontrivial ordering and dynamics arising from a
low-energy orbital degree of freedom [18]. The kagome
lattice with ultracold atoms has attracted significant inter-
est in this context as well [19,20], but it has not been
experimentally demonstrated to our knowledge.

In this Letter, we present the realization of the kagome
geometry in a two-dimensional optical superlattice for
ultracold 87Rb atoms. The kagome lattice is obtained by
eliminating every fourth site from a triangular lattice of
spacing a=2, with the eliminated sites forming a triangular
lattice of spacing a. The remaining sites generate three
connected s-orbital bands within a bandwidth on the order
of the intersite tunneling energy. Intriguingly, the frustra-
tion besetting antiferromagnetic interactions also implies
that one of these bands be nondispersing. Such flat bands,
distinguishing the kagome configuration from other non-
primitive lattices [14–17], accentuate the role of interpar-
ticle interactions, leading possibly to crystalline ordering

[21] and supersolidity [22] for scalar bosons, and ferro-
magnetism of itinerant fermions [23]. Furthermore, geo-
metric frustration of the kagome lattice shows macroscopic
degeneracy of lowest-energy classical states with XY-type
antiferromagnetic interactions in contrast to the triangular
lattice [24]. Our work therefore opens the door to inves-
tigations of how geometric frustration affects both orbital
and magnetic properties of materials.
Our kagome lattice is formed by overlaying short-

wavelength (SW) and long-wavelength (LW) triangular
lattices, formed with light at the commensurate wave-
lengths of 532 and 1064 nm, respectively [25]. In a
single-wavelength lattice, formed by three plane waves
of light of equal intensity I and wave vectors (and linear
polarizations) lying in a plane and intersecting at equal
angles, one obtains a triangular lattice of points with zero
intensity, and a honeycomb lattice of points with maximum
intensity 9

2 I separated by a triangular lattice of intensity

saddle points with intensity 4I. Our SW-lattice light is blue
detuned from the principal atomic resonances of rubidium,
so that atoms are attracted to the triangular lattice of
zero-intensity sites with a lattice spacing of a=2 ¼
ð2=3Þ � 532 nm ¼ 355 nm. The LW lattice is red-
detuned, so that its zero-intensity points are potential-
energy maxima for rubidium atoms. A unit cell of the
LW lattice contains four sites of the SW triangular lattice,
labeled A, B, C and D in Fig. 1. Aligning the positions of
the LW potential maxima to coincide with sites D lowers
the potential energies VA;B;C at the other sites by equal

amounts �V ¼ VD � VA;B;C ¼ 8
9VLW,where VLW is the

maximum scalar potential depth of the LW lattice (we
ignore the �1% vector shift in this lattice [26]). As �V
is increased, atoms are excluded from sites D, while the
remaining sites form the kagome optical lattice. The ka-
gome geometry persists until VLW > 9VSW, at which point
atoms become preferentially confined in the LW honey-
comb lattice.
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Compared with previous proposals [19,20], our simpler
approach to creating a kagome lattice allows one to tune
the lattice geometry, thereby controlling its degree of
frustration. Aligning the LW potential maxima with the
SW-lattice saddle points disfavors population in two sites
of the four-site unit cell (e.g., VB;C < VA;D) producing a

one-dimensional (1D) stripe lattice [Fig. 1(c) or Fig. 3(a)].
Aligning the LW potential maxima with the SW potential
maxima disfavors population in three sites of the unit cell
(e.g., VA;B;D > VC), producing a decorated triangular lat-

tice with lowest-energy sites forming a triangular lattice
while the remaining sites form a kagome lattice of local
potential minima.

Experiments were conducted with scalar Bose-Einstein
condensates of�3� 105 87Rb atoms produced at tempera-
tures of 80 nK in a red-detuned crossed optical dipole
trap with trap frequencies of ð!x;!y;!zÞ ¼ 2��
ð60; 30; 350Þ Hz, with !z applying vertically. The large
�100 �m beam-waist diameters of the lattice beams en-
sured that the lattice potential modified the trapping fre-
quencies by less than 10%. Laser alignments and relative
intensities were tuned to produce sixfold symmetric dif-
fraction patterns of condensates released from LW- and
SW-only lattices. The relative displacement of the LWand
SW lattices was measured using two two-color Mach-
Zehnder interferometers, one for beams 1 and 2 and the
other for beams 1 and 3, and stabilized using piezo-
actuated mirrors in the optical paths [27]. A tilted glass
plate within each interferometer introduced a relative shift
between the two lattice colors that, following stabilization,
was imparted onto the optical lattice.

We employed atom optics to characterize the lattice as it
is tuned between various geometries. The atom-optical
tools presented in this work may be useful for the charac-
terization of other superlattices and for superlattice-based
atom interferometry. The first of these tools is Kapitza-
Dirac diffraction [28,29], for which the lattice potential is
suddenly pulsed on for a duration �, after which the con-

densate is imaged after a time of flight. Neglecting kinetic
energy during the brief pulse, the condensate wavefunction
acquires an imprinted phase �VðrÞ�=@ proportional to the
potential VðrÞ.
The corresponding momentum-space distribution is sen-

sitive to the relative displacement of the LW and SW
lattices. To exhibit this sensitivity we blocked one of the
incident bichromatic lattice beams and examined the re-
sulting one-dimensional superlattice, with potential energy
given as VðxÞ ¼ VLW sin2½qðxþ �xÞ=2� � VSW sin2ðqxÞ
where 2�=q ¼ 614 nm is the 1D LW-lattice spacing, and
�x is the distance between the LW and SW intensity
minima. The atomic populations at wave vectors �q are
given as

P�q / j � iJLW�1 J
SW
0 þ JLW�1 J

SW
�1 e

�i2q�xj2; (1)

where Jn is the nth-order Bessel function evaluated at
�LW;SW ¼ VLW;SW�=2@, and where we consider terms up

to second order in�LW;SW. The lack of inversion symmetry

of the lattice produced by an incommensurate value of �x
appears as a left/right momentum asymmetry in the dif-
fracted matter wave (Fig. 2).
A second method to characterize the optical superlattice

is the momentum-space analysis of a superfluid occupying
the ground state of the lattice potential. Here, the optical
lattice potential depth was ramped up from zero over 90ms,
held constant for 100 ms, and then suddenly switched off to
allow for time-of-flight expansion of the trapped gas. For
the momentum-space analysis, the maximum SW potential
depth was kept constant at VSW=h ¼ 40 kHzð¼ 8:8ERÞ,
where ER is the recoil energy of the SW triangular lattice.
We observed no significant decay of the diffraction peak
holding up to 150 ms in the optical superlattices.
Varying the relative position of the two lattices we

identify the three high-symmetry lattice configurations
[Fig. 3(a)]. Given that the scalar condensate occupies the
ground state of the lattice potential, its wave function
can be taken as real and positive; thus, its momentum

FIG. 1 (color). Three bichromatic light beams intersecting at 120� form a kagome optical lattice for ultracold 87Rb atoms, with the
two-dimensional potential VðrÞ shown in (a). Profiles of the potential of the SW, LW, and combined lattices are shown in (b). SitesD of
the SW lattice are emptied as �V exceeds the chemical potential, so that the remaining sites A, B and C form the kagome geometry.
(c) Different lattice geometries are created for intermediate LW-lattice depths (VLW < 9VSW) by displacing the potential maxima of the
SW lattice to the high-symmetry points X, Y or Z within the unit cell. For higher LW-lattice depths, a honeycomb geometry prevails.
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distribution is symmetric under inversion. Expansion from
both the kagome and the decorated triangular lattices
shows the threefold rotational symmetry of the optical
superlattice. In the 1D stripe geometry, one expects equally
weak occupation of two sites (e.g., A and D), and equally
strong occupation of the other two sites (B and C) of the
superlattice unit cell. Such a distribution is (nearly) invari-
ant under displacements of a=2 along the A-D axis, and
condensate diffraction along that axis should reflect the
shorter periodicity of the SW lattice. The momentum
distribution should also be symmetric under reflection
about the A-D axis. Both traits are observed
experimentally.

The Bloch-state momentum distributions allow one to
quantify the ground-state wave function within a unit
cell of the superlattice, which we express as c ðrÞ ¼P

�c �w�ðr� s�Þ, where w�ðrÞ is the normalized
Wannier state wave function, s� the position, and jc �j2
the fractional atomic population of site � 2 fA; B;C;Dg of
the unit cell. At low VLW=VSW, we approximatew� ¼ w as
cylindrically symmetric, Gaussian, and identical for all �.
From the momentum-space populations PGi

(i 2 f1; 2; 3g)
in the three first-order diffraction peaks of the LW lattice
[30]—corresponding to the inner hexagon of peaks in time-
of-flight images—and that at zero wave vector P0, one
determines the distinct quantities

~P i ¼
PGi

þ P�Gi

2P0

j ~wð0Þj2
j ~wðGiÞj2

¼ jc � þ c � � c � � c 	j2
jP� c �j2

;

(2)

where ~wð0Þ and ~wðGiÞ are now Fourier components of the
Wannier function, and �, �, � and 	 label the four sites

so that Gi � ðs� � s�Þ ¼ 0. The Wannier state Fourier

components in Eq. (2) are determined from the second-

order diffraction populations as j ~wð0Þj2=j ~wðGiÞj2 ¼
½2P0=ðP2Gi

þ P�2Gi
Þ�1=4. Together with the normalization

P
�jc �j2 ¼ 1 these quantities determine the atomic distri-

bution in the unit cell [31].
We measured the population ratios ~Pi as the superlattice

geometry was gradually tuned. Translating the relative
position of the two lattices [Fig. 3(b)], one advances
from the kagome geometry, with equal population in the
three ratios, to the 1D stripe geometry, with two identically
small ratios, and then to another kagome-geometry lattice.
Our data agree with a calculation of the single-particle
ground-state for the known lattice depths.

FIG. 2 (color). Atom diffraction patterns, formed by a � ¼
8 �s pulse of the lattice potential (with VSW=h� 80 kHz and
VLW=h� 50 kHz) followed by 26 ms time of flight, exhibit left/
right momentum asymmetry [defined as ðPþq � P�qÞ=
ðPþq þ P�qÞ] that varies with the displacement �x between

the LW- and SW-lattice intensity minima, in close agreement
with the predicted behavior (solid line).

FIG. 3 (color). The real- and momentum-space composition of
a superfluid for various lattices. (a) The kagome and decorated
triangular lattices maintain threefold rotational symmetry in
configuration and momentum space, while the symmetry of
the 1D stripe lattice is reduced to a parity symmetry (left-right
in the images). For each setting, a schematic distinguishes
between sites of high (green) and low (red) atomic population.
The expected momentum distribution for measured values of
VSW=h ¼ 40 kHz and �V=h ¼ 14 kHz is shown with the area
of the black dot reflecting the fractional population.
(b) Translating the LW-lattice potential maxima (marked as a
star in the schematic) along the A-D axis tunes the lattice
between kagome and 1D stripe geometries, as revealed by the
population ratios ~Pi identified according to the inset. The data
(averages of 4–5 measurements) agree with calculations of the
single-particle ground state (solid lines) with the lattice depth
used in the experiment. Interaction effects are neglected since
�V was higher than the chemical potential �� h� 3:5 kHz of
the condensate in the SW-only lattice.
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We focus finally on the kagome-geometry lattice align-
ment, and examine the transition between the triangular
and kagome geometries (Fig. 4). At zero VLW, the atoms
are confined in a SW triangular lattice, and the first-order
LW-lattice diffraction orders are absent, indicating a
unit-cell population of ðA; B;C;DÞ ¼ ð14 ; 14 ; 14 ; 14Þ. As the

LW-lattice depth is increased, the population ratios ~Pi

increase and the kagome geometry is achieved by gradu-
ally expelling atoms from one site of the unit cell. The
population ratios tend toward a limiting value of 1=9 that is
a hallmark of diffraction from a kagome lattice wherein the
atoms are distributed as ðA; B; C;DÞ ¼ ð13 ; 13 ; 13 ; 0Þ.

Here, the ground state of the kagome lattice does not
suffer from frustration. In the future, effects of frustration
may be explored by transferring bosons into the excited
s-orbital flat band, or by changing the sign of the hopping
energy [32] so that the flat band becomes the lowest in
energy. The present choice of wavelengths also yields
kagome lattices for the fermionic isotopes 6Li and 40K.
Introducing fermions into the lattice at the appropriate
fillings would place the Fermi energy within the flat
band, allowing for studies of flat-band ferromagnetism
due to repulsive interactions [23] or enhanced Cooper
pairing for attractive interactions [33]. Also, the demon-
strated tunability of the superlattice opens new possibilities
to emulate both ideal and deliberately distorted kagome
lattices, potentially stabilizing the various candidate
ground states of the kagome quantum antiferromagnet.
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