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Abstract
In this paper we study a paradigm to generalize online classification algorithms for binary classi-
fication problems to multiclass problems. The particular hypotheses we investigate maintain one
prototype vector per class. Given an input instance, a multiclass hypothesis computes a similarity-
score between each prototype and the input instance and sets the predicted label to be the index
of the prototype achieving the highest similarity. To design and analyze the learning algorithms
in this paper we introduce the notion ofultraconservativeness. Ultraconservative algorithms are
algorithms that update only the prototypes attaining similarity-scores which are higher than the
score of the correct label’s prototype. We start by describing a family of additive ultraconservative
algorithms where each algorithm in the family updates its prototypes by finding a feasible solution
for a set of linear constraints that depend on the instantaneous similarity-scores. We then discuss
a specific online algorithm that seeks a set of prototypes which have a small norm. The resulting
algorithm, which we term MIRA (for Margin Infused Relaxed Algorithm) is ultraconservative as
well. We derive mistake bounds for all the algorithms and provide further analysis of MIRA using a
generalized notion of the margin for multiclass problems. We discuss the form the algorithms take
in the binary case and show that all the algorithms from the first family reduce to the Perceptron
algorithm while MIRA provides a new Perceptron-like algorithm with a margin-dependent learn-
ing rate. We then return to multiclass problems and describe an analogous multiplicative family of
algorithms with corresponding mistake bounds. We end the formal part by deriving and analyz-
ing a multiclass version of Li and Long’s ROMMA algorithm. We conclude with a discussion of
experimental results that demonstrate the merits of our algorithms.

1. Introduction

In this paper we present a general approach for deriving algorithms for multiclass prediction prob-
lems. In multiclass problems the goal is to assign one ofk labels to each input instance. Many
machine learning problems can be phrased as a multiclass categorization problem. Examples to
such problems include optical character recognition (OCR), text classification, and medical anal-
ysis. There are numerous specialized solutions for multiclass problems for specific models such
as decision trees (Breiman et al., 1984, Quinlan, 1993) and neural networks. Another general ap-
proach is based on reducing a multiclass problem to multiple binary problems using output cod-
ing (Dietterich and Bakiri, 1995, Allwein et al., 2000). An example of a reduction that falls into the
above framework is the “one-against-rest” approach. In one-against-rest a set of binary classifiers
is trained, one classifier for each class. Therth classifier is trained to discriminate between therth

c©2003 Koby Crammer and Yoram Singer.



CRAMMER AND SINGER

class and the rest of the classes. New instances are classified by setting the predicted label to be
the index of the classifier attaining the highest confidence in its prediction. In this paper we present
a unified approach that operates directly on the multiclass problem by imposing constraints on the
updates for the various classes. Thus, our approach is inherently different from methods based on
output coding.

Our framework for analyzing the algorithms is the mistake bound model (Littlestone, 1988). The
algorithms we study work in rounds. On each round the proposed algorithms get a new instance and
output a prediction for the instance. They then receive the correct label and update their predication
rule in case they made a prediction error. The goal of the algorithms is to minimize the number of
mistakes they made compared to the minimal number of errors that an hypothesis, built offline, can
achieve.

The algorithms we consider in this paper maintain one prototype vector for each class. Given
a new instance we compare each prototype to the instance by computing the similarity-score be-
tween the instance and each of the prototypes for the different classes. We then predict the class
which achieves the highest similarity-score. In binary problems, this scheme reduces (under mild
conditions) to a linear discriminator. After the algorithm makes a prediction it receives the correct
label of the input instance and updates the set of prototypes. For a given input instance, the set of
labels that attain similarity-scores higher than the score of correct label is called theerror set. The
algorithms we describe share a common feature: they all update only the prototypes from the error
sets and the prototype of the correct label. We call such algorithmsultraconservativealgorithms.

We start in Section 3 in which we provide a motivation for our framework. We do that by re-
visiting the well known Perceptron algorithm and give a new account of the algorithm using two
prototype vectors, one for each class. We then extend the algorithm to a multiclass setting using
the notion of ultraconservativeness. In Section 4 we further generalize the multiclass version of the
extended Perceptron algorithm and describe a new family of ultraconservative algorithms that we
obtain by replacing the Perceptron’s update with a set of linear equations. We give a few illustrative
examples of specific updates from this family of algorithms. Going back to the Perceptron algo-
rithm, we show that in the binary case all the different updates reduce to the Perceptron algorithm.
We finish Section 4 by deriving a mistake bound that is common to all the additive algorithms in the
family. We analyze both the separable and the non-separable case.

The fact that all algorithms from Section 4 achieve the same mistake bound implies that there
are some undetermined degrees of freedom. We present in Section 5 a new online algorithm that
gives a unique update and is based on a relaxation of the set of linear constraints employed by the
family of algorithms from Section 4. The algorithm is derived by adding an objective function that
incorporates the norm of the new matrix of prototypes and minimizing it subject to a subset of the
linear constraints. Following recent trend, we call the new algorithm MIRA for Margin Infused
Relaxed Algorithm. We analyze MIRA and give a mistake bound related to the instantaneous mar-
gin of individual examples. This analysis leads to modification of MIRA which incorporates the
margin into the update rule. We describe a simple and efficient fixed-point algorithm that efficiently
computes a single update of MIRA and prove its convergence. Both MIRA and of the additive
algorithms from Section 4 can be combined with kernels techniques and voting methods.

In Section 6 we derive an analogous ultraconservative family ofmultiplicative algorithms for
multiclass problems. Here we describe two variants of multiplicative algorithms. The two vari-
ants differ in the way they normalize the set of prototypes. As in the additive case, we analyze
both variants in the mistake bound model. Analogously to the additive family of algorithms, the

952



ULTRACONSERVATIVE ONLINE ALGORITHMS FORMULTICLASS PROBLEMS

multiplicative family of algorithms reduces to Winnow (Littlestone, 1988) in the binary case. In
Section 7 we combine the ultraconservative approach with Li and Long’s (2002) algorithm to derive
a multiclass version of it.

In Section 8 we discuss experiments with synthetic data and real datasets that compare the
additive algorithms. Our experiments indicate that MIRA outperforms the other algorithms at the
expense of updating its hypothesis frequently. The algorithms presented in this paper underscore
a general framework for deriving ultraconservative multiclass algorithms. This framework can be
used in combination with other online techniques. To conclude, we outline some of our current
research directions.

Related Work A question that is common to numerous online algorithms is how to compromise
the following two demands. On one hand, we want to update the classifier we learn so that it will
better predict the current input instance, in particular if an error occurs when using the current clas-
sifier. On the other hand, we do not want to change the current classifier too radically, especially
if it classifies well most of the previously observed instances. The good old Perceptron algorithm
suggested by Rosenblatt (1958) copes with these two requirements by replacing the classifier with
a linear combination of the current hyperplane and the current instance vector. Although the al-
gorithm uses a simple update rule, it performs well on many synthetic and real-world problems.
The Perceptron algorithm spurred voluminous work which clearly cannot be covered here. For an
overview of numerous additive and multiplicative online algorithms see the paper by Kivinen and
Warmuth (1997). We also would like to note that the a multiclass version of the Perceptron algo-
rithm has already been provided in the widely read and cited book of Duda and Hart (1973). The
multicalss version in the book is called Kesler’s construction. We postpone the discussion of the
relation of this construction to our family of online algorithms to Section 4. We now outline more
recent research that is relevant to the work presented in this paper.

Kivinen and Warmuth (1997) presented numerous online algorithms for regression. Their al-
gorithms are based on minimization of an objective function which is a sum of two terms. The
first term is equal to the distance between the new classifier and the current classifier while the
second term is the loss on the current example. The resulting update rule can be viewed as a
gradient-descent method. Although multiclass classification problems are a special case of regres-
sion problems, the algorithms for regression put emphasis on smooth loss functions which might
not be suitable for classification problems.

The idea of seeking a hyperplane of a small norm is a primary goal in support vector ma-
chines (Cortes and Vapnik, 1995, Vapnik, 1998). Note that for SVMs minimizing the norm of the
hyperplane is equivalent to maximizing the margin of the induced linear separator. Algorithms
for constructing support vector machines solve optimization problems with a quadratic objective
function and linear constraints. Anlauf and Biehl (1989) and Friess, Cristianini, and Campbell
(1998) suggested an alternative approach which minimizes the objective function in a gradient-
decent method. The minimization can be performed by going over the sample sequentially. Algo-
rithms with a similar approach include the Sequential Minimization Optimization (SMO) algorithm
introduced by Platt (1998). SMO works on rounds, on each round it chooses two examples of the
sample and minimizes the objective function by modifying variables relevant only to these two ex-
amples. While these algorithms share some similarities with the algorithmic approaches described
in this paper, they were all designed for batch problems and were not analyzed in the mistake bound
model.
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Another approach to the problem of designing an update rule which results in a linear classifier
of a small norm was suggested by Li and Long (2002). The algorithm Li and Long proposed,
called ROMMA, tackles the problem by finding a hyperplane with a minimal norm under two linear
constraints. The first constraint is presented so that the new classifier will classify well previous
examples, while the second rule demands that the hyperplane will classify correctly the current
new instance. Solving this minimization problem leads to an additive update rule with adaptive
coefficients.

Grove, Littlestone, and Schuurmans (2001) introduced a general framework of quasi-additive
binary algorithms, which contain the Perceptron and Winnow as special cases. Gentile (2001) pro-
posed an extension to a subset of the quasi-additive algorithms, which uses an additive conservative
update rule with decreasing learning rates.

All of the work described above is designed to solve binary classification problems. These
binary classifiers can be used in a multiclass setting by reducing them to multiple binary problems
using output coding such as one-against-rest. Mesterharm (1999) suggested a multiclass online
algorithm which combines results from a set of sub-experts. Using this algorithm Mesterharm
derives a Winnow-like algorithm and provides a corresponding mistake bound. The multiclass
algorithm of Mesterharm is closely related to the multiplicative family of algorithms we present in
Section 6, though our family of multiplicative algorithms is more general.

The algorithms presented in this paper are reminiscent of some of the widely used methods for
constructing classifiers in multiclass problems. As mentioned above, a popular approach for solving
classification problems with many classes is to learn a set of binary classifiers where each classi-
fier is designed to separate one class from the rest of classes. If we use the Perceptron algorithm
to learn the binary classifiers, we need to maintain and update one vector for each possible class.
This approach shares the same form of hypothesis as the algorithms presented in this paper, which
maintain one prototype per class. Nonetheless, there is one major difference between the ultracon-
servative algorithms we present and the one-against-rest approach. In one-against-rest we update
and change each of the classifiersindependentlyof the others. In fact we can construct them one
after the other by re-running over the data. In contrast, ultraconservative algorithms update all the
prototypes in tandem thus updating one prototype has a global effect on the other prototypes. There
are situations in which there is an error due to some classes, but not all the respective prototypes
should be updated. Put another way, we might perform milder changes to the set of classifiers by
changing them together with the prototypes so as to achieve the same goal. As a result we get better
mistake bounds and empirically better algorithms.

2. Preliminaries

The focus of this paper is online algorithms for multiclass prediction problems. We observe a
sequence(x̄1,y1), . . . ,(x̄t ,yt), . . . of instance-label pairs. Each instance ¯xt is in R

n and each label
belongs to a finite setY of sizek. We assume without loss of generality thatY = {1,2, . . . ,k}. A
multiclass classifieris a functionH(x̄) that maps instances fromRn into one of the possible labels
in Y . In this paper we focus on classifiers of the formH(x̄) = argmaxkr=1{M̄r · x̄}, whereM is a
k×n matrix over the reals and̄Mr ∈ R

n denotes therth row of M . We call the inner product of̄Mr

with the instance ¯x, thesimilarity-scorefor classr. Thus, the classifiers we consider in this paper set
the label of an instance to be the index of the row ofM which achieves the highest similarity-score.
The margin ofH on x̄ is the difference between the similarity-score of the correct labely and the
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maximum among the similarity-scores of the rest of the rows ofM . Formally, the margin thatM
achieves on(x̄,y) is,

M̄y · x̄−max
r 6=y
{M̄r · x̄} .

The l p norm of a vector ¯u = (u1, . . . ,ul ) in R
l is

‖ū‖p =

(
l

∑
i=1

|ui |p
) 1

p

.

norm of the vector we get by concatenating the rows ofA, that is,

‖A‖p = ‖(Ā1, . . . , Āk)‖p ,

where forp = 2 the norm is known as the Frobenius norm. Similarly, we define the vector-scalar-
product of two matricesA andB to be,

A ·B = ∑
r

Ār · B̄r .

Finally, δi, j denotes Kronecker’s delta function, that is,δi, j = 1 if i = j andδi, j = 0 otherwise.
The framework that we use in this paper is the mistake bound model for online learning. The

algorithms we consider work in rounds. On roundt an online learning algorithm gets an instance
x̄t . Given x̄t , the learning algorithm outputs a prediction, ˆyt = argmaxr{M̄r · x̄t}. It then receives
the correct labelyt and updates its classification rule by modifying the matrixM . We say that the
algorithm made a (multiclass) prediction error if ˆyt 6= yt . Our goal is to make as few prediction errors
as possible. When the algorithm makes a prediction error there might be more than one row ofM
achieving a score higher than the score of the row corresponding to the correct label. We define the
error-set for (x̄,y) using a matrixM to be the index of all the rows inM which achieve such high
scores. Formally, the error-set for a matrixM on an instance-label pair(x̄,y) is,

E = {r 6= y : M̄r · x̄≥ M̄y · x̄} .

Many online algorithms update their prediction rule only on rounds on which they made a
prediction error. Such algorithms are calledconservative. We now give a definition that extends the
notion of conservativeness to multiclass settings.

Definition 1 (Ultraconservative) An online multiclass algorithm of the form H(x̄) = argmaxr{M̄r ·
x̄} is ultraconservative if it modifiesM only when the error-set E for(x̄,y) is not empty and the
indices of the rows that are modified are from E∪{y}.

Note that our definition implies that an ultraconservative algorithm is also conservative. For
binary problems the two definitions coincide.

3. From Binary to Multiclass

The Perceptron algorithm of Rosenblatt (1958) is a well known online algorithm for binary classi-
fication problems. The algorithm maintains a weight vector ¯w∈ R

n that is used for prediction. To
motivate our multiclass algorithms let us now describe the Perceptron algorithm using the notation
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Figure 1: A geometrical illustration of the update for a binary problem (left) and a four-class prob-
lem (right) using the extended Perceptron algorithm.

employed in this paper. In our setting the label of each instance belongs to the set{1,2}. Given
an input instance ¯x the Perceptron algorithm predicts that its label is ˆy = 1 iff w̄ · x̄≥ 0 and other-
wise it predicts ˆy = 2. The algorithm modifies ¯w only on rounds with prediction errors and is thus
conservative. On such rounds ¯w is changed to ¯w+ x̄ if the correct label isy= 1 and tow̄− x̄ if y= 2.

To implement the Perceptron algorithm using a prototype matrixM with one row (prototype)
per class, we set the first row̄M1 to w̄ and the second row̄M2 to−w̄. We now modifyM every time
the algorithm mis-classifies ¯x as follows. If the correct label is 1 we replacēM1 with M̄1 + x̄ and
M̄2 with M̄2− x̄. Similarly, we replaceM̄1 with M̄1− x̄ andM̄2 with M̄2 + x̄ when the correct label
is 2 and ¯x is misclassified. Thus, the row̄My is moved toward the misclassified instance ¯x while
the other row is moved away from ¯x. Note that this update implies that the total change to the two
prototypes is zero. An illustration of this geometrical interpretation is given on the left-hand side of
Figure 1. It is straightforward to verify that the algorithm is equivalent to the Perceptron algorithm.

We can now use this interpretation and generalize the Perceptron algorithm to multiclass prob-
lems as follows. Fork classes we maintain a matrixM of k rows, one row per class. For each input
instance ¯x, the multiclass generalization of the Perceptron calculates the similarity-score between
the instance and each of thek prototypes. The predicted label, ˆy, is the index of the row (prototype)
of M which achieves the highest score, that is, ˆy = argmaxr{M̄r · x̄}. If ŷ 6= y the algorithm moves
M̄y toward x̄ by replacingM̄y with M̄y + x̄. In addition, the algorithm moves each row̄Mr (r 6= y)
for which M̄r · x̄≥ M̄y · x̄ away fromx̄. The indices of these rows constitute the error setE. The
algorithms presented in this paper, and in particular the multiclass version of the Perceptron algo-
rithm, modify M such that the following property holds: The total change in units of ¯x in the rows
of M that are moved away from ¯x is equal to the change of̄My, (in units of x̄). Specifically, for the
multiclass Perceptron we replacēMy with M̄y+ x̄ and for eachr in E we replaceM̄r with M̄r− x̄/|E|.
A geometric illustration of this update is given in the right-hand side of Figure 1. There are four
classes in the example appearing in the figure. The correct label of ¯x is y= 1 and sinceM̄1 is not the
most similar vector to ¯x, it is moved toward ¯x. The rowsM̄2 andM̄3 are also modified by subtracting
x̄/2 from each one. The last row̄M4 is not in the error-set sincēM1 · x̄ > M̄4 · x̄ and therefore it is
not modified. We defer the analysis of the algorithm to the next section in which we describe and
analyze a family of online multiclass algorithms that also includes this algorithm.
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4. A Family of Additive Multiclass Algorithms

We describe a family of ultraconservative algorithms by using the algorithm of the previous section
as our starting point. The algorithm is ultraconservative and thus updatesM only on rounds with
predictions errors. The row̄My is changed toM̄y + x̄ while for eachr ∈ E we modify M̄r to M̄r −
x̄/|E|. Let us introduce a vector of weights̄τ = (τ1, . . . ,τk) and rewrite the update of therth row as
M̄r + τr x̄. Thus, forr = y we haveτr = 1, for r ∈ E we setτr = −1/|E|, and forr 6∈ E∪{y}, τr

is zero. The weights̄τ were chosen such that the total change of the rows ofM whose indices are
from E are equal to the change in̄My, that is, 1= τy =−∑r∈E τr . If we do not impose the condition
that for r ∈ E all the τr ’s attain the same value, then the constraints onτ̄ become∑r∈E∪{y} τr = 0.
This constraint enables us to move the prototypes from the error-setE away from x̄ in different
proportions as long as the total change is sum to one. The result is a whole family of multiclass
algorithms. A pseudo-code of the family of algorithms is provided in Figure 2. Note that the
constraints on̄τ are redundant and we could have used less constraints. We make use of this more
elaborate set of constraints in the next section.

Before analyzing the family of algorithms we have just introduced, we give a few examples of
specific schemes to setτ̄. We have already described one update above which setsτ̄ to,

τr =



− 1
|E| r ∈ E

1 r = y
0 otherwise.

Since all theτ’s for rows in the error-set are equal, we call this theuniformmulticlass update. We
can also be further conservative and modify in addition toM̄y only one other row inM . A reasonable
choice is to modify the row that achieves the highest similarity-score. That is, we setτ̄ to,

τr =



−1 r = argmaxs{M̄s · x̄}
1 r = y
0 otherwise.

We call this form of updatinḡτ themax-scoremulticlass update. The two examples above setτr for
r ∈ E to a fixed value, ignoring the actual values of similarity-scores each row achieves. We can
also set̄τ in promotion to the excess in the similarity-score of each row in the error set (with respect
to M̄y). For instance, we can setτ̄ to be,

τr =

{
− [M̄r ·x̄−M̄y·x̄]+

∑k
r=1[M̄r ·x̄−M̄·yx̄]+

r 6= y

1 r = y ,

where[x]+ is equal tox if x≥ 0 and zero otherwise. Note that the above update implies thatτr = 0
for r 6∈ E∪{y}.

We describe experiments comparing the above updates in Section 8. We proceed to analyze the
family of algorithms.

4.1 Analysis

Before giving the analysis of the algorithms of Figure 2 we prove the following auxiliary lemma.

Lemma 2 For any set{τ1, . . . ,τk} such that,∑k
r=1τr = 0 andτr ≤ δr,y for r = 1, . . . ,k, then∑r τ2

r ≤
2τy≤ 2 .
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Initialize: SetM = 0 (M ∈ R
k×n) .

Loop: For t = 1,2, . . . ,T

• Get a new instance ¯xt ∈ R
n.

• Predictŷt = arg
k

max
r=1
{M̄r · x̄t}.

• Get a new labelyt .
• SetE = {r 6= yt : M̄r · x̄t ≥ M̄yt · x̄t}.
• If E 6= /0 updateM by choosing anyτt

1, . . . ,τ
t
k that satisfy:

1. τt
r ≤ 0 for r 6= yt andτt

yt ≤ 1.

2. ∑k
r=1τt

r = 0.

3. τt
r = 0 for r /∈ E∪{yt}.

4. τt
yt = 1.

• For r = 1,2, . . . ,k update: M̄r ← M̄r + τt
r x̄t .

Output : H(x̄) = argmaxr{M̄r · x̄}.

Figure 2: A family of additive multiclass algorithms.

Proof Since forr 6= y the value ofτr cannot be positive we have,

‖τ̄‖1 =
k

∑
r=1

|τr |= τy +
k

∑
r 6=y

(−τr)

Using the equality∑k
r=1τr = 0 we get,

‖τ̄‖1 = 2τy .

Applying Hölder’s inequality we get,

k

∑
r=1

τ2
r =

k

∑
r=1

(τrτr)≤ ‖τ̄‖1‖τ̄‖∞ = 2τyτy≤ 2τy≤ 2 ,

where for the last two inequalities we used the fact that 0≤ τy≤ 1.

We now give the main theorem of this section.

Theorem 3 Let (x̄1,y1), . . . ,(x̄T ,yT) be an input sequence for any multiclass algorithm from the
family described in Figure 2 wherēxt ∈ R

n and yt ∈ {1,2, . . . ,k}. Denote by R= maxt ‖x̄t‖. Assume
that there is a matrixM ∗ of a unit vector-norm,‖M ∗‖ = 1, that classifies the entire sequence
correctly with margin

γ = min
t
{M̄∗yt · x̄t −max

r 6=yt
M̄∗r · x̄t}> 0 .

Then, the number of mistakes that the algorithm makes is at most

2
R2

γ2 .
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Proof Assume that an error occurred when classifying thetth example(x̄t ,yt) using the matrixM .
Denote byM

′
the updated matrix after roundt. That is, forr = 1,2, . . . ,k we haveM̄

′
r = M̄r + τt

r x̄t .
To prove the theorem we bound‖M‖22 from above and below. First, we derive a lower bound on
‖M‖2 by bounding the term,

k

∑
r=1

M̄∗r · M̄
′
r =

k

∑
r=1

M̄∗r · (M̄r + τt
r x̄

t)

=
k

∑
r=1

M̄∗r · M̄r +∑
r

τt
r

(
M̄∗r · x̄t) . (1)

We further develop the second term of Equation (1) using the second constraint of the algorithm(
∑k

r=1τt
r = 0

)
. Substitutingτyt =−∑r 6=yt τt

r we get,

∑
r

τt
r

(
M̄∗r · x̄t) = ∑

r 6=yt

τt
r

(
M̄∗r · x̄t)+ τyt

(
M̄∗yt · x̄t)

= ∑
r 6=yt

τt
r

(
M̄∗r · x̄t

)− ∑
r 6=yt

τt
r

(
M̄∗yt · x̄t

)
= ∑

r 6=yt

(−τt
r

)(
M̄∗yt − M̄∗r

) · x̄t . (2)

Using the assumption thatM ∗ classifies each instance with a margin of at leastγ and thatτy = 1
(fourth constraint) we obtain,

∑
r

τt
r

(
M̄∗r · x̄t

)≥ ∑
r 6=yt

(−τt
r

)
γ = τt

yt γ = γ . (3)

Combining Equation (1) and Equation (3) we get,

∑
r

M̄∗r · M̄
′
r ≥ ∑

r
M̄∗r · M̄r + γ .

Thus, if the algorithm madem mistakes inT rounds then the matrixM satisfies,

∑
r

M̄∗r · M̄r ≥ mγ . (4)

Using the vector-norm definition and applying the Cauchy-Schwartz inequality we get,

‖M ∗‖2‖M ‖2 =

(
k

∑
r=1

‖M̄∗r ‖2
)(

k

∑
r=1

‖M̄r‖2
)

≥ (M̄∗1 · M̄1 + . . .+ M̄∗k · M̄k)
2

=

(
k

∑
r=1

M̄∗r · M̄r

)2

. (5)

Plugging Equation (4) into Equation (5) and using the assumption thatM ∗ is of a unit vector-norm
we get the following lower bound,

‖M ‖2≥m2γ2 . (6)
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Next, we bound the vector-norm ofM from above. As before, assume that an error occurred when
classifying the example(x̄t ,yt) using the matrixM and denote byM

′
the matrix after the update.

Then,

‖M ′ ‖2 = ∑
r
‖M̄ ′

r‖2 = ∑
r
‖M̄r + τt

r x̄
t‖2

= ∑
r
‖M̄r‖2 +2∑

r
τt

r

(
M̄r · x̄t)+∑

r
‖τt

r x̄
t‖2

= ‖M‖2 +2∑
r

τt
r

(
M̄r · x̄t)+‖x̄t‖2∑

r
(τt

r)
2 . (7)

We further develop the second term using the second constraint of the algorithm and analogously to
Equation (2) we get,

∑
r

τt
r

(
M̄r · x̄t) = ∑

r 6=yt

(−τt
r)
(
M̄yt − M̄r

) · x̄t .

Sincex̄t was misclassified we need to consider the following two cases. The first case is when the
label r was not the source of the error, that is(M̄yt − M̄r) · x̄t > 0. Then, using the third constraint
(r /∈ E∪{yt} ⇒ τt

r = 0) we get thatτt
r = 0 and thus(−τt

r)
(
M̄yt − M̄r

) · x̄t = 0. The second case
is when one of the sources of error was the labelr. In that case(M̄yt − M̄r) · x̄t ≤ 0. Using the
first constraint of the algorithm we know thatτt

r ≤ 0 and thus(−τt
r)
(
M̄yt − M̄r

) · x̄t ≤ 0. Finally,
summing over allr we get,

∑
r

τt
r

(
M̄r · x̄t)≤ 0 . (8)

Plugging Equation (8) into Equation (7) we get,

‖M ′‖2≤ ‖M‖2 +‖x̄t‖2∑
r

(τt
r)

2 .

Using the bound‖x̄t‖ ≤ Rand Lemma 2 we obtain,

‖M ′‖2 ≤ ‖M‖2 +2‖R‖2 . (9)

Thus, if the algorithm madem mistakes inT rounds, the matrixM satisfies,

‖M ‖2 ≤ 2m‖R‖2 . (10)

Combining Equation (6) and Equation (10), we have that,

m2γ2≤ ‖M ‖2 ≤ 2m‖R‖2 ,

and therefore,

m≤ 2
R2

γ2 . (11)

We would like to note that the bound of the above theorem reduces to the Perceptron’s mistake
bound in the binary case (k = 2). To conclude this section we analyze the non-separable case by
generalizing Theorem 2 of Freund and Schapire (1999) to a multiclass setting. The proof technique
follows the proof outline of Freund and Schapire and is given in Appendix A.
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Initialize: SetM 6= 0 M ∈ R
k×n.

Loop: For t = 1,2, . . . ,T

• Get a new instance ¯xt .
• Predictŷt = argmaxr{M̄r · x̄t}.
• Get a new labelyt .
• Find τ̄t that solves the following optimization problem:

minτ̄
1
2 ∑r ‖M̄r + τr x̄t‖22

subject to : (1) τr ≤ δr,yt for r = 1, . . . ,k
(2) ∑k

r=1τr = 0

• Update :M̄r ← M̄r + τt
r x̄t for r = 1,2, . . . ,k .

Output : H(x̄) = argmaxr{M̄r · x̄}.

Figure 3: The Margin Infused Relaxed Algorithm (MIRA).

Theorem 4 Let (x̄1,y1), . . . ,(x̄T ,yT) be an input sequence for any multiclass algorithm from the
family described in Figure 2, wherēxt ∈R

n and yt ∈ {1,2, . . . ,k}. Denote by R= maxt ‖x̄t‖. LetM ∗

be a prototype matrix of a unit vector-norm,‖M ∗‖= 1, and fix someγ > 0. Define,

dt = max

{
0, γ−

[
M̄∗yt · x̄t −max

r 6=yt
M̄∗r · x̄t

]}
,

and denote by D2 = ∑T
t=1(d

t)2. Then the number of mistakes the algorithm makes is at most

2
(R+D)2

γ2 .

4.2 The Relation to Kesler’s Construction

Before turning to a more complex multiclass version, we would like to discuss the relation of the
family of updates described in this section to Kesler’s construction (Duda and Hart, 1973). Kesler’s
construction is attributed to Carl Kesler and was described by Nilsson (1965). The construction re-
duces a multiclass classification problem to a binary problem by expanding each instance inR

n into
an instanceRn(k−1). By unravelling Kesler’s expansion the resulting update in the original space
amounts to a succession of ourmaxupdate. Specifically, the update due to Kesler is ultraconser-
vative as it modifies only the prototypes whose indices constitute the error set. Given an example
(x̄t ,yt) Kesler’s update rule cycles through the labelsy 6= yt and if M̄t

y · x̄t > M̄t
yt · x̄t it applies the

max-update to the prototypes indexedy andyt . Therefore, the family of online algorithms presented
thus far is a generalization of Kesler’s construction in terms of the form of the specific update.

5. A Norm-Optimized Multiclass Algorithm

In the previous section we have described a family of algorithms where each algorithm of the family
achieves the same mistake bound given by Theorem 3 and Theorem 4. This variety of equivalent
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algorithms suggests that there are some degrees of freedom that we might be able to exploit. In this
section we describe an online algorithm that chooses a feasible vectorτ̄t such that the vector-norm
of the matrixM will be as small as possible.

To derive the new algorithm we omit the forth constraint (τy = 1) and thus allow more flexibility
in choosingτ̄t , or smaller changes in the prototype matrix. Previous bounds provide motivation for
the algorithms in this section. We choose a vectorτ̄t which minimizes the vector-norm of the new
matrix M subject to the first two constraints only. As we show in the sequel, the solution of the
optimization problem automatically satisfies the third constraint. The algorithm attempts to update
the matrixM on eachround regardless of whether there was a prediction error or not. We show
below that the algorithm is ultraconservative and thusτ̄t is the zero vector if ¯xt is correctly classified
(and no update takes place). Following the trend paved by Li and Long (2002) and Gentile (2001),
we term our algorithm MIRA for Margin Infused Relaxed Algorithm. The algorithm is described in
Figure 3.

Before investigating the properties of the algorithm, we rewrite the optimization problem that
MIRA solves on each round in a more convenient form. Omitting the example indext the objective
function becomes,

1
2∑

r
‖M̄r + τr x̄‖2 =

1
2∑

r
‖M̄r‖2 +∑

r
τr (M̄r · x̄)+

1
2∑

r
τ2

r ‖x̄‖2 .

Omitting 1
2 ∑r ‖M̄r‖2 which is constant, the quadratic optimization problem becomes,

min
τ

Q (τ̄) =
1
2

A
k

∑
r=1

τ2
r +

k

∑
r=1

Brτr (12)

subject to :∀r τr ≤ δr,y and ∑r τr = 0

where,
A = ‖x̄‖2 , (13)

and
Br = M̄r · x̄ . (14)

SinceQ is a quadratic function, and thus strictly convex, and the constraints are linear, the problem
has a unique solution.

We now show that MIRA automatically satisfies the third constraint of the family of algorithms
from Section 4, which implies that it is ultraconservative. We first prove the following auxiliary
lemma.

Lemma 5 Let τ̄ be the optimal solution of the constrained optimization problem given by Equa-
tion (12) for an instance-label pair(x̄,y). For each r6= y such that Br ≤ By thenτr = 0.

Proof Assume by contradiction that there is a vectorτ̄ which minimizes the objective function of
Equation (12) and for somes 6= y we have that bothBs≤ By andτs < 0. Note that this implies that
τy > 0. Define a new vector̄τ′ as follows,

τ′r =




0 r = s
τy + τs r = y
τr otherwise .
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It is easy to verify that two linear constraints of MIRA are still satisfied byτ̄′. Sinceτ̄′ andτ̄ differ
only at theirsandy components we get,

Q (τ̄′)−Q (τ̄) =
1
2

A(τ′s
2 + τ′y

2)+ τ′sBs+ τ′yBy

−
[

1
2

A(τs
2 + τy

2)+ τsBs+ τyBy

]
.

Expandingτ′ we get,

Q (τ̄′)−Q (τ̄) =
1
2

A(τs+ τy)2 +(τy+ τs)By

−
[

1
2

A(τs
2 + τy

2)+ τsBs+ τyBy

]
= Aτsτy + τs(By−Bs) .

From the fact thatτs < 0 and the assumption(Bs≤ By) we get that the right term is less than or
equal to zero. Also, sinceAτy > 0 we get that the left term is less then zero. We therefore get that
Q (τ̄′)−Q (τ̄) < 0, which contradicts the assumption thatτ̄ is a solution of Equation (12).

The lemma implies that if a labelr is not a source of error, then therth prototype,M̄r , is not
updated after(x̄,y) has been observed. In other words, the solution of Equation (12) satisfies that
τr = 0 for all r 6= y with (M̄r · x̄≤ M̄y · x̄).
Corollary 6 MIRA is ultraconservative.

Proof Let (x̄,y) be a new example fed to the algorithm. And letτ̄ be the coefficients found by the al-
gorithm. From Lemma 5 we get that for each labelr whose score(M̄r · x̄) is not larger than the score
of the correct label(M̄y · x̄) its corresponding valueτr is set to zero. This implies that only the indices
which belong to the setE∪{y} = {r 6= y : M̄r · x̄≥ M̄y · x̄}∪{y} may be updated. Furthermore, if
the algorithm predicts correctly that the label isy, we get thatE = /0 andτr = 0 for all r 6= y. In this
caseτy is set to zero due to the constraint∑r τr = τy + ∑r 6=yτr = 0. Hence,̄τ = 0 and the algorithm
does not modifyM on(x̄,y). Thus, the conditions required for ultraconservativeness are satisfied.

In Section 5.3 we give a detailed analysis of MIRA that incorporates the margin achieved on
each example, and can be used to derive a mistake bound. Let us first show that the cumulative
l1-norm of the coefficients̄τt is bounded.

Theorem 7 Let(x̄1,y1), . . . ,(x̄T ,yT) be an input sequence to MIRA wherex̄t ∈R
n and yt ∈{1,2, . . . ,k}.

Let R= maxt ‖x̄t‖ and assume that there is a prototype matrixM ∗ of a unit vector-norm,‖M ∗‖= 1,
which classifies the entire sequence correctly with marginγ = mint{M̄∗yt · x̄t −maxr 6=yt M̄∗r · x̄t}> 0.
Let τ̄t be the coefficients that MIRA finds for(x̄t ,yt). Then, the following bound holds,

T

∑
t=1

‖τ̄t‖1≤ 4
R2

γ2 .

The proof employs the technique used in the proof of Theorem 3. The proof is given for complete-
ness in Appendix A.
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5.1 Characteristics of the Solution

Let us now further examine the characteristics of the solution obtained by MIRA. In a recent pa-
per (Crammer and Singer, 2000) we investigated a related setting that uses error correcting output
codes for multiclass problems. Using these results, it is simple to show that the optimalτ̄ in Equa-
tion (12) is given by

τr = min{θ∗ − Br

A
,δy,r} , (15)

whereA = ‖x̄‖2 and Br = M̄r · x̄ is the similarity-score of(x̄,y) for label r, as defined by Equa-
tion (13) and Equation (14), respectively. The optimal valueθ∗ is uniquely defined by the equality
constraint∑r τr = 0 of Equation (12) and satisfies,

k

∑
r=1

min{θ∗ − Br

A
,δy,r}= 0 .

The valueθ∗ can be found by a binary search (Crammer and Singer, 2000) or iteratively by solving
a fixed point equation (Crammer and Singer, 2001).

We now can view MIRA in the following alternative light. Assume that the instance(x̄,y) was
misclassified by MIRA and setE = {r 6= y : M̄r · x̄≥ M̄y · x̄} 6= /0. The similarity-score for labelr of
the updated matrix on the current instance ¯x is,

(M̄r + τr x̄) · x̄ = Br + τrA . (16)

Plugging Equation (15) into Equation (16) we get that the similarity-score for classr on the current
instance is,

min{Aθ∗,Br +Aδy,r} .

Sinceτr ≤ δy,r , the maximal similarity score the updated matrix can attain on ¯x is Br +Aδr,y. Thus,
the similarity-score for classr after the update is either a constant that is common to all classes,Aθ∗,
or the largest similarity-score the classr can attain,Br + Aδr,y. The constantAθ∗ places an upper
bound on the similarity-score for all classes after the update. This bound is tight, that is at least one
similarity-score value is equal toAθ∗.

5.2 Using MIRA for Binary Classification Problems

In this section we discuss MIRA in the special case in which there are only two possible labels.
First, note that any algorithm that belongs to the family of algorithms from Figure 2 reduces to the
Perceptron algorithm in the the binary case. We now further analyze MIRA, assuming that the labels
are drawn from the sety∈ {−1,+1}. In this case the first row ofM corresponds to the labely= +1
and the second row to the labely =−1. We now derive the equations for the casey = +1. The case
y =−1 is derived similarly by replacing the indices 1 and 2 in all the equations. The constraints of
MIRA reduce toτ1 ≤ 1, τ2 ≤ 0 andτ1 + τ2 = 0. Thus, if the algorithm is initialized with a matrix
M such thatM̄1+ M̄2 = 0, this property is conserved along its execution. Therefore, we can replace
the matrixM with a single vector ¯w such thatM̄1 = w̄ andM̄2 = −w̄. The objective function of
Equation (12) now becomes,

Q =
1
2
‖x̄‖2(τ2

1 + τ2
2

)
+y(w̄· x̄)τ1 +y(−w̄· x̄)τ2 .
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Initialize: Setw̄ 6= 0.
Loop: For t = 1,2, . . . ,T

• Get a new instance ¯xt .
• Predictŷt = sign(w̄· x̄t).
• Get a new labelyt ∈ {−1,+1}.
• Defineτt = G

(
− yt(w̄·x̄t )
‖x̄t‖2

)
where:

G(x) =




0 x < 0
x 0≤ x ≤ 1
1 1< x

• Update:w̄← w̄+ τt yt x̄t

Output : H(x̄) = sign(w̄ · x̄).

Figure 4: Binary MIRA.

We now omit the label index and identifyτ with τ1 and−τ with τ2 to get the following optimization
problem,

min
τ

Q = ‖x̄‖2τ2 +2y(w̄ · x̄)τ (17)

subject to : 0≤ τ≤ 1 .

It is easy to verify that the solution of this problem is given by,

τ = G

(
−y(w̄ · x̄)
‖x̄‖2

)
, (18)

where

G(x) =




0 x < 0
x 0≤ x ≤ 1
1 1< x

.

Clearly, the binary version of MIRA is conservative since if ¯x is classified correctly
(

y(w̄·x̄)
‖x̄‖2 > 0

)
thenw̄ is not modified. Furthermore, the coefficientτ is equal to the absolute value of the normalized
marginy(w̄ · x̄)/‖x̄‖2, as long as this normalized margin is smaller than one. The bound on the norm
ensures that a new example does not change the prediction vector ¯w too radically, even if the margin
is a large negative number. The algorithm is described in Figure 4. Note that the algorithm is very
similar to the Perceptron algorithm. The only difference between binary MIRA and the Perceptron
is the function used for determining the value ofτ. For the Perceptron we use the function

S(x) =
{

0 x≤ 0
1 0< x

.

instead ofG(x). One interesting question that comes to mind is whether we can use other functions
of the normalized margin to derive other online algorithms with corresponding mistake bounds. We
leave this for future research.
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5.3 Margin Analysis of MIRA

In this section we further analyze MIRA by relating its mistake bound to the instantaneous margin
of the individual examples. Note that since MIRA was derived from the family of algorithms in
Figure 2 by dropping the fourth constraint. Therefore, Theorem 3 and 4 do no hold and we thus
need to derive an alternative analysis. The margin analysis we present in this section sheds some
more light on the source of difficulty in achieving a mistake bound for MIRA. Our analysis here also
leads to an alternative version of MIRA that incorporates the margin into the quadratic optimization
problem that we need to solve on each round. Our starting point is Theorem 7. We first give a lower
bound onτy on each round. If MIRA made a mistake on(x̄,y), then we know that maxr 6=yBr−By >
0, whereBr = M̄r · x̄ (see Equation (14)). Therefore, we can bound the minimal value ofτy by a
function of the (negative) margin,By−maxr 6=yBr .

Lemma 8 Let τ̄ be the optimal solution of the constrained optimization problem given by Equa-
tion (12) for an instance-label pair(x̄,y) with A≤ R2. Assume that the margin By−maxr 6=yBr is
bounded from above by−β, where0 < β≤ 2R2. Thenτy is at leastβ/(2R2).

Proof Assume by contradiction that the solution of the quadratic problem of Equation (12) satisfies
τy < β/(2R2). Note thatτy > 0 since maxr 6=yBr −By≥ β > 0. Let us define∆ = β/(2R2)− τy > 0
and lets= argmaxr Br (ties are broken arbitrarily). Define a new vectorτ̄′ as follows,

τ′r =




τs−∆ r = s
τy + ∆ r = y
τr otherwise.

The vector̄τ′ satisfies the constraints of the quadratic optimization problem becauseτ′y = β/(2R2)≤
1. Sinceτ̄′ andτ̄ differ only at theirsandy components we get,

Q (τ̄′)−Q (τ̄) =
1
2

A(τ′y
2 + τ′s

2)+ τ′yBy + τ′sBs

−
[

1
2

A(τy
2 + τs

2)+ τyBy+ τsBs

]
.

Substitutingτ̄′ we get,

Q (τ̄′)−Q (τ̄) =
1
2

A
[
(τy + ∆)2+(τs−∆)2]+By(τy + ∆)+Bs(τs−∆)

−
[

1
2

A(τy
2 + τs

2)+ τyBy + τsBs

]
= ∆ [A(τy− τs)+A∆ +By−Bs] .

Using the second constraint of MIRA(∑r τr = 0) we get that‖τ̄‖1 = 2τy and thusτy− τs≤ 2τy.
Hence,

Q (τ̄′)−Q (τ̄) ≤ ∆(A(2τy + ∆)+By−Bs) .

Substitutingτy + ∆ = β/(2R2) and using the assumption thatτy < β/(2R2) we get,

Q (τ̄′)−Q (τ̄) ≤ ∆
(

βA
R2 +By−Bs

)
.
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SinceBs−By≥ β for (x̄,y) we get,

Q (τ̄′)−Q (τ̄) ≤ ∆
(

βA
R2 −β

)

=
∆β
R2

(
A−R2) .

Finally, sinceA = ‖x̄‖2≤ R2 andβ∆ > 0 we obtain that,

Q (τ̄′)−Q (τ̄)≤ 0 .

Now, eitherQ (τ̄′) = Q (τ̄), which contradicts the uniqueness of the solution, orQ (τ̄′) < Q (τ̄) which
implies thatτ̄ is not the optimal value and again we reach a contradiction.

We would like to note that for the above lemma ifβ≥ 2R2 thenτy = 1 regardless of the margin
achieved. We are now ready to prove the main result of this section.

Theorem 9 Let(x̄1,y1), . . . ,(x̄T ,yT) be an input sequence to MIRA wherex̄t ∈R
n and yt ∈{1,2, . . . ,k}.

Denote by R= maxt ‖x̄t‖ and assume that there is a prototype matrixM ∗ of a unit vector-norm,
‖M ∗‖2 = 1, which classifies the entire sequence correctly with marginγ = mint{M̄∗yt · x̄t−maxr 6=yt M̄∗r ·
x̄t}> 0. Denote by nβ the number of rounds for which Byt−maxr 6=yt Br ≤−β, for some0< β≤ 2R2.
Then the following bound holds,

nβ ≤ 4
R4

βγ2 .

Proof The proof is a simple application of Theorem 7 and Lemma 8. Using the second constraint
of MIRA (∑r τr = 0) and Theorem 7 we get that,

T

∑
t=1

τt
yt ≤ 2

R2

γ2 . (19)

From Lemma 8 we know that whenever maxr 6=yt Br −Byt ≥ β then 1≤ 2R2

β τt
yt and therefore,

nβ ≤
T

∑
t=1

2R2

β
τt

yt . (20)

Combining Equation (19) and Equation (20) we obtain the required bound,

nβ ≤ 2
R2

β

T

∑
t=1

τt
yt ≤ 2

R2

β
2

R2

γ2 ≤ 4
R4

βγ2 .

Note that Theorem 9 still does not provide a mistake bound for MIRA since in the limit ofβ→ 0
the bound diverges. Note also that forβ = 2R2 the bound reduces to the bounds of Theorem 3 and
Theorem 7. The source of the difficulty in obtaining a mistake bound is rounds on which MIRA
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achieves a small negative margin and thus makes small changes toM . On such roundsτy can be
arbitrarily small and we cannot translate the bound on∑t τt

yt into a mistake bound. This implies that
MIRA is not robust to small changes in the input instances. We therefore describe now a simple
modification to MIRA for which we can prove a mistake bound and, as we later see, performs well
empirically.

The modified MIRA aggressively updatesM on every round for which the margin is smaller
than some predefined value denoted again byβ. This technique is by no means new, see for instance
the paper of Li and Long (2002). The result is a mixed algorithm which is both aggressive and ul-
traconservative. On one hand, the algorithm updatesM whenever a minimal margin is not achieved,
including rounds on which(x̄,y) is classified correctly but with a small margin. On the other hand,
on each update ofM only the rows whose corresponding similarity-scores are mistakenly too high
are updated. We now describe how to modify MIRA along these lines.

To achieve a minimal margin of at leastβ ≤ 2R2 we modify the optimization problem given
by Equation (12). A minimal margin ofβ is achieved if for allr we requireM̄y · x̄− M̄r · x̄ ≥
β or, alternatively,(M̄y · x̄− β)− (M̄r · x̄) ≥ 0. Thus, if we replaceBy with By− β, M will be
updated whenever the margin is smaller thanβ. We thus let MIRA solve for each example(x̄,y) the
following constrained optimization problem,

min
τ

Q (τ̄) =
1
2

Ã
k

∑
r=1

τ2
r +

k

∑
r=1

B̃rτr

subject to :∀r τr ≤ δr,y and ∑r τr = 0

where : Ã = A = ‖x̄‖2 ; B̃r = Br −βδy,r = M̄r · x̄−βδy,r .

To get a mistake bound for this modified version of MIRA we apply Theorem 9 almost verbatim
by replacingBr with B̃r in the theorem. Note that if̃By−maxr 6=y B̃r ≤−β thenBy−β−maxr 6=yBr ≤
−β and henceBy−maxr 6=yBr ≤ 0. Therefore, for any 0≤ β ≤ 2R2 we get that the number of
mistakes of the modified algorithm is equal tonβ which is bounded by 4R4/βγ2. This gives the
following corollary.

Corollary 10 Let(x̄1,y1), . . . ,(x̄T ,yT) be an input sequence to the aggressive version of MIRA with
margin 0≤ β ≤ 2R2, wherex̄t ∈ R

n and yt ∈ {1,2, . . . ,k}. Denote by R= maxt ‖x̄t‖ and assume
that there is a prototype matrixM ∗ of a unit vector-norm,‖M ∗‖2 = 1, which classifies the entire se-
quence correctly with marginγ = mint{M̄∗yt · x̄t−maxr 6=yt M̄∗r · x̄t}> 0. Then, the number of mistakes
the algorithm makes is bounded above by,

4
R4

βγ2 .

Note that the bound is a decreasing function ofβ. This means that the more aggressive we are
by requiring a minimal margin the smaller the bound on the number of mistakes the aggressively
modified MIRA makes. However, this also implies that the algorithm will updateM more often
and the solution will be less sparse. We conclude this section with the binary version of the ag-
gressive algorithm. As in the multiclass setting, we replace the non-aggressive version given by
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Initialize:
• Fix η > 0.

version 1
• SetM1

r,i = 1
n

version 2
• SetM1

r,i = 1
nk

Loop: t = 1,2, . . . ,T

• Get a new instance ¯xt ∈ R
n.

• Predictŷt = arg
k

max
r=1
{M̄t

r · x̄t}.
• Get a new labelyt .
• SetE = {r 6= yt : M̄t

r · x̄t ≥ M̄t
yt · x̄t}.

• If E 6= /0 updateM t :

– Choose anyτt
1, . . . ,τt

k subject to :

1. τt
r ≤ δr,yt for r = 1, . . . ,k.

2. ∑k
r=1τt

r = 0
3. τt

r = 0 for r /∈ E∪{yt}.
4. τt

yt = 1.
version 1

– Define :Zt
r = ∑i M

t
i,re

ητt
r xt

i

– Update :Mt+1
i,r ← 1

Zt
r
Mt

i,re
ητt

r xt
i

version 2
– Define :Zt = ∑i,r Mt

i,re
ητt

r xt
i

– Update :Mt+1
i,r ← 1

Zt Mt
i,re

ητt
r xt

i

Output : H(x̄) = argmaxr{M̄T+1
r · x̄}.

Figure 5: A family of multiclass multiplicative algorithms.

Equation (17) with the corresponding aggressive version and get,

min
τ

Q = ‖x̄‖2τ2 +[2y(w̄ · x̄)−β]τ

subject to : 0≤ τ≤ 1 .

Analogously to Equation (18) the solution of the problem is given by,

τ = G

(
−yt(w̄ · x̄t)− 1

2β
‖x̄t‖2

)
.

All the algorithms presented so far can be straightforwardly combined with kernel methods (Vap-
nik, 1998). Assume that we have determined a matrixM by learning the coefficients̄τ1, . . . , τ̄T from
a sequence{(x̄1,y1), . . . ,(x̄T ,yT)}. Formally, therth row ofM is,

M̄r =
T

∑
t=1

τt
r x̄

t .

To useM for classifying new instances we compute the similarity-score of an instance ¯x for classr
by multiplying x̄ with therth row ofM and get,

M̄r · x̄ =
T

∑
t=1

τt
r

(
x̄t · x̄) . (21)
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As in many additive online algorithms, the value of the similarity-score is a linear combination of
inner-products of the form(x̄t · x̄). We therefore can replace the inner-product in Equation (21) (and
also in the algorithms outlined in Figure 2 and Figure 3) with a general inner-product kernelK(· , ·)
that satisfies Mercer’s conditions (Vapnik, 1998). We now obtain algorithms that work in a high
dimensional space. It is also simple to incorporate voting schemes (Helmbold and Warmuth, 1995,
Freund and Schapire, 1999) into the above algorithms.

Before proceeding to multiplicative algorithms, let us summarize the the results we have pre-
sented so far. We started with the Perceptron algorithm and extended it to multiclass problems. By
replacing the specific update of the extended Perceptron algorithm with a relaxed set of linear con-
strains we obtained a whole family of ultraconservative additive algorithms. We derived a mistake
bound that is common to all the algorithms in the family. We then added a constraint on the norm
of the coefficients used in each update to obtain MIRA. By incorporating minimal margin require-
ments into MIRA we get a more robust algorithm. Finally, we closed the circle by analyzing MIRA
for binary problems. The result is a Perceptron-like update with a margin dependent learning rate.

6. A Family of Multiplicative Multiclass Algorithms

We now derive a family of ultraconservative multiplicative algorithms for the multiclass setting in an
analogous way to the additive family of algorithms. We give the pseudo code for the multiplicative
family in Figure 5. Note that two slightly different version are described. The difference in the
versions is due to the different normalization forM . In the first version we normalizeM after each
update such that the norm of each of its rows is 1, while in the second version the vector-norm ofM
is fixed to 1. The mistake bounds of the the two versions are similar as the next theorem shows.

Theorem 11 Let(x̄1,y1), . . . ,(x̄T ,yT) be an input sequence for either the first or the second version
of the multiclass algorithm from Figure 5, wherēxt ∈ R

n and yt ∈ {1,2, . . . ,k}. Assume also that
for all t ‖x̄t‖∞ ≤ 1. Assume that there is a matrixM ∗ such that either‖M̄∗r ‖1 = 1 for r = 1, . . . ,k
(first version) or‖M ∗‖1 = 1 (second version) and that the input sequence is classified correctly with
marginγ = mint{M̄∗yt · x̄t −maxr 6=yt M̄∗r · x̄t}> 0. Then there is someη > 0 for which the number of
mistakes that the algorithm makes is,

O
(

k2 log(n)
γ2

)
,

for the first version, and

O
(

log(n)+ log(k)
γ2

)
,

for the second version.

To compare the bounds of the two versions we need to examine the value of the minimal margin.
The first version normalizes each row separately while the second normalizes the concatenation of
the rows to 1. In the first version we therefore have that for allt, ‖M̄∗r ‖1 = 1 and thus, using our
definition of vector-norms we have‖M ∗‖1 = k. Thus, if we scale the margin in the second version
so that‖M ∗‖1 = k, the mistake bound becomes

O
(

k2 log(n)+ log(k)
γ2

)
,
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Initialize: SetM1 = 0.
Loop: For t = 1,2, . . . ,T

• Get a new instance ¯xt ∈ R
n.

• Predictŷt = arg
k

max
r=1
{M̄t

r · x̄t}.
• Get a new labelyt .
• SetEt = {r 6= yt : M̄t

r · x̄t ≥ M̄t
yt · x̄t}.

• If Et 6= /0 updateM t (otherwiseM t+1 = M t) :

• Choose anyτt
1, . . . ,τ

t
k which satisfy the constraints:

1. τt
r ≤ δr,yt for r = 1, . . . ,k.

2. ∑k
r=1τt

r = 0
3. τt

r = 0 for r /∈ Et ∪{yt}.
4. τt

yt = 1.

• SetM t+1 to be the solution of:

min 1
2‖M‖22

subject to : (1) ∑k
r=1τt

r (M̄r · x̄t)≥ 1
(2) M ·M t ≥ ‖M t‖22

(22)

Output : H(x̄) = argmaxr{M̄T+1
r · x̄}.

Figure 6: A multiclass version of ROMMA.

which is larger than the mistake bound of the first version by an additive factor ofk2 log(k)/γ2. We
prove the theorem for the first version. The proof for the second version is slightly simpler and
follows the same line of proof. Since the proof of both versions are fairly mundane, the proof is
deferred to Appendix A.

7. A Family of Relaxed Maximum Margin Algorithms

In this section we describe an analyze Li and Long’s (2002) Relaxed Online Maximum Margin
Algorithm (ROMMA) with our ultraconservative framework. The result is a third family of ultra-
conservative algorithms. We start with a review of the underlying ideas that motivated ROMMA
and then present our related family of multiclass algorithms.

ROMMA (Li and Long, 2002) is an elegant online algorithm that employs a hyperplane which
is updated after each prediction error, hence denoted ¯wt ∈ R

n. On roundt ROMMA is fed with
an instance ¯xt and its prediction is set to sign(w̄t · x̄t). In case of a prediction error,yt(w̄t · x̄t) < 0,
ROMMA algorithm updates the weight vector ¯wt as follows. The new weight vector ¯wt+1 is chosen
such that it is the vector ¯w which attains the minimal norm subject to the following two linear
constraints. The first constraint,yt(w̄· x̄t)≥ 1, requires that the prediction of the weight vector after
the update, ¯wt+1, onx̄t is correct and its is at least 1, namely,yt(w̄t+1 · x̄t)≥ 1. The second constraint,
w̄ · w̄t ≥ ‖w̄t‖2, imposes, rather tacitly, that the new vector ¯wt+1 classifies accurately theprevious
examples. Li and Long showed that the half-space{w̄ : w̄ · w̄t ≥ ‖w̄t‖2} contains the sub-space
∩t−1

i=1{yi(w̄ · x̄i)≥ 1}. Hence, the second constraint can be viewed as an approximation to the set of
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constraintsyi(x̄i · w̄) ≥ 1 for i = 1, . . . , t− 1. ROMMA is a conservative algorithm – on rounds it
predicts correctly it does not not modify the weight vector and simply set ¯wt+1 = w̄t .

We now describe how to construct an ultraconservative family based on ROMMA. As before,
the ROMMA-based algorithms maintain a prototype matrixM . Given a new instance ¯xt , any algo-
rithm in the family sets the predicted label to be the index of the prototype fromM which attains
the highest similarity-score,H(x̄t) = argmaxkr=1{M̄t

r · x̄t}. The prototype matrix is updates only on
rounds on which a prediction error was made. In such cases the new prototype matrixM t+1 is set
to be the matrixM with minimal vector-norm under the following two linear constraints. First, we
require that the new prototype-matrix classifies the instance ¯xt correctly with a margin of at least
one, that is,M̄yt · x̄t − M̄r · x̄t ≥ 1 for r 6= yt . Thesek− 1 linear constrains replace the first con-
straint of ROMMA. Second, we want the new prototype-matrix to classify accurately the previous
examples, thus, similarly to the second constraint of ROMMA we impose a second linear constraint
M ·M t ≥ ‖M t‖2, where the vector inner-product between two matrices is as defined in Section 2.

The result of the generalized version is a multi-class algorithm which finds a prototype matrix
of a minimal norm subject tok linear constraints in total. However, the algorithm is not necessarily
ultraconservative and it is there is no simple solution to this constrained minimization problem.
We therefore further approximate the constrained optimization problem by replacing the firstk−1
linear constraintsM̄yt · x̄t − M̄r · x̄t ≥ 1 for r 6= yt , with asinglelinear constraint as follows. We pick
a set of(k−1) negative coefficientsτt

1, . . . ,τ
t
k (excludingτt

yt ) which sum to−1 and define the linear
constraint to be,

∑
r 6=yt

(−τt
r)
(
M̄yt · x̄t − M̄r · x̄t)≥ ∑

r 6=yt

(−τt
r) ·1 = 1 .

This constraint is a convex combination of the abovek− 1 linear constraints. To further simplify
the last constraint we also defineτt

yt = 1 and rewrite the left hand side of the inequality,

∑
r 6=yt

(−τt
r)
(
M̄yt · x̄t − M̄r · x̄t)=

= ∑
r 6=yt

(−τt
r)
(
M̄yt · x̄t)+ ∑

r 6=yt

τt
r

(
M̄r · x̄t)

=
(
M̄yt · x̄t) ∑

r 6=yt

(−τt
r)+ ∑

r 6=yt

τt
r

(
M̄r · x̄t)

= τt
yt

(
M̄yt · x̄t)+ ∑

r 6=yt

τt
r

(
M̄r · x̄t)

= ∑
r

τt
r

(
M̄r · x̄t) .

Finally, to ensure that the solution yields an ultraconservative update we impose another constraint
on the coefficients̄τ. We again define the error set,Et = {r 6= yt : M̄t

r · x̄t ≥ M̄t
yt · x̄t}, to be the set of

indices of the rows inM which achieve similarity-scores that are higher than the score of the correct
labelyt . We now setτt

r to be zero forr /∈ Et ∪{yt}.
The family of multiclass algorithms based on ROMMA, which we call MC-ROMMA, is de-

scribed in Figure 6. We now turn to prove a mistake bound for this family by generalizing the proof
techniques of Li and Long to multiclass setting. In order to prove the mistake-bound we need a
couple of technical lemmas which are given below. The proofs of the lemmas generalizes the proof
of the original ROMMA algorithm and are deferred to Appendix A. We then prove in Theorem 15
that MC-ROMMA is indeed ultraconservative.
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Lemma 12 Let(x̄1,y1), . . . ,(x̄T ,yT) be a separable input sequence for MC-ROMMA, wherex̄t ∈R
n

and yt ∈ {1,2, . . . ,k}. If MC-ROMMA made a prediction error on the t’th example(Et 6= /0) then
∑k

r=1τt
r

(
M̄t+1

r · x̄t
)

= 1.

Lemma 13 Let (x̄1,y1), . . . ,(x̄T ,yT) be a separable input sequence for MC-ROMMA wherex̄t ∈ R
n

and yt ∈ {1,2, . . . ,k}. If MC-ROMMA makes a prediction error on the t’th example(Et 6= /0) for
t > 1 thenM t+1 ·M t = ‖M t‖2.

We are now ready to state and prove the mistake bound for MC-ROMMA.

Theorem 14 Let (x̄1,y1), . . . ,(x̄T ,yT) be an input sequence for MC-ROMMA wherex̄t ∈ R
n and

yt ∈ {1,2, . . . ,k}. Denote by R= maxt ‖x̄t‖. Assume that there is a matrixM ∗ which classifies the
entire sequence correctly with a margin of at least one,∀t = 1, . . . ,T, r 6= yt : M̄∗yt · x̄t − M̄∗r · x̄t ≥ 1.

Then, the number of mistakes that MC-ROMMA makes is at most2R2‖M ∗‖2.

Proof First, sinceM ∗ separates the data with a unit margin we have thatM ∗ ·M t ≥ ‖M t‖2 for t =
1, . . . ,T. Second, sinceM t+1 attains the minimal norm in the corresponding optimization problem,
we have‖M ∗‖ ≥ ‖M t‖ for all t. Also, sinceM1 = 0 we can combine Lemma 12 with the proof of
Lemma 13 and get thatM2 = a1, i.e.

M̄2
r =

τ1
r x̄1

‖x̄1‖2 [∑s(τ1
s)2]

.

Computing the vector-norm ofM2 we get,

‖M2‖2 =
1

‖x̄1‖2 [∑s(τ1
s)2]

.

Finally, by applying Lemma 2 and the assumption thatR≥ ‖x̄t‖ we get,

‖M2‖2 =
1

‖x̄1‖∑s(τ1
s)2 ≥

1
2R2 .

We show below that for allt > 1 whenever a prediction error occurred then‖M t+1‖2≥‖M t‖2+
1/(2R2). This implies that if MC-ROMMA madem mistakes on the sequence of instances and la-
bels then,‖MT+1‖2≥‖M1‖2+m/(2R2)= m/(2R2). Since‖MT+1‖2≤‖M ∗‖2 then,m≤ 2‖M ∗‖2R2 ,
which would complete the proof and therefore, it remains to show that‖M t+1‖2≥‖M t‖2+1/(2R2)
for any roundt > 1 on which MC-ROMMA made a prediction error.

To show that the bound on the growth of the normM t+1 with respect to the norm ofM t we exam-
ine the distanced(M t ,At) between the matrixM t and the set of hyperplanesAt = {M : ∑r τt

r (M̄r · x̄t) = 1}
which was defined in the proof of Lemma 13. We now use the assumption that thetth example was
misclassified (∑r τt

r (M̄r · x̄t) < 0) and Lemma 2 to get,

d(M t ,At) =
|∑r τt

r (M̄r · x̄t)−1|
‖x̄t‖

√
∑s(τt

s)2

≥ 1√
2‖x̄t‖

≥ 1√
2R

. (23)
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Also, since the new matrixM t+1 is in the setAt then the distance betweenM t andM t+1 is at least
as big as the distance betweenM t andAt , that is,

d(M t ,M t+1)≥ d(M t ,At) . (24)

Combining Equations (23) and (24) we get,

‖M t+1−M t‖2≥ 1
2R2 . (25)

We now expand the norm‖M t+1‖2,

‖M t+1‖2 = ‖(M t+1−M t)+M t‖2
= ‖M t+1−M t‖2 +‖M t‖2−2(M t+1−M t) ·M t

= ‖M t+1−M t‖2 +‖M t‖2−2
(
M t+1 ·M t −‖M t‖2)

Using Lemma 13 we know thatM t+1 ·M t −‖M t‖2 = 0 and thus,

‖M t+1‖2 = ‖M t+1−M t‖2 +‖M t‖2 . (26)

Combining Equations (25) and (26) we get,

‖M t+1‖2≥ ‖M t‖2 +
1

2R2 ,

which completes the proof.

Finally, we conclude this section by showing that MC-ROMMA is ultraconservative.

Theorem 15 MC-ROMMA is ultraconservative.

Proof We first show that the optimization problem given in Equation (22) can be re-rewritten as a
constrained optimization where the unknown variables can be grouped into a single matrix inR

n×k.
We replace the prototype-matrixM with the vector(M̄1, . . . ,M̄k) and the instance ¯xt with the vector
(τt

1x̄t , . . . ,τt
kx̄

t). It is straightforward to verify that the optimization problem of Equation (22) can
now be rewritten as,

min ‖(M̄1, . . . ,M̄k)‖2
subject to: (M̄1, . . . ,M̄k) · (τt

1x̄t , . . . ,τt
kx̄

t)≥ 1

(M̄1, . . . ,M̄k) · (M̄t
1, . . . ,M̄

t
k)≥ ‖(M̄t

1, . . . ,M̄
t
k)‖2 .

Applying Lemma 12 and Lemma 13 we get that that the optimum of Equation (27) is achieved when
the inequalities hold as equalities. The same property holds for the original version of ROMMA.
We therefore can use Li and Long’s closed form solution and get that the solution is of the form,

(M̄t+1
1 , . . . ,M̄t+1

k ) = ct(M̄t+1
1 , . . . ,M̄t+1

k )+dt(τt
1x̄t , . . . ,τt

kx̄
t) ,

for some valuesct > 0 anddt . Going back to the representation that employs multiple matrices we
get that the value of the prototype-matrix after the update is,

∀r M̄t+1
r = ct

(
M̄t

r +
dt

ct
τt

r x̄
t
)

. (27)
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Name No. of No. of No. of No. of
Training Examples Test Examples Classes Attributes

Chess-Board 10,000 10,000 8 2
MNIST 60,000 10,000 10 784
USPS 7,291 2,007 10 256
Letter 16,000 4,000 26 16

Table 1: Data sets learning problems used in the experiments

The updated given by Equation (27) can be decomposed into two stages. First, similar to the family
of additive algorithms of Figure 2 and to MIRA (Figure 3), the algorithm replaces the prototype
M̄t

r with the sumM̄t
r + (dt/ct)τt

r x̄
t . Using the third condition of MC-ROMMA (Figure 6) we get

that if the labelr was not one of the sources for an error thenτt
r = 0 and thereforeM̄t+1

r = M̄t
r .

Therefore the update is ultraconservative. After the additive change toM̄t
r , the MC-ROMMA scales

all the prototypes by a multiplicative factorct . Although all of the prototypes are modified in this
stage, including those which are not in the error set (r /∈Et), the classification functionH(x̄) induced
by M̄t

r is notaffected by this scaling and thus the update rule is can be viewed as ultraconservative.

8. Experiments

In this section we describe and discuss the results of experiments we performed with both synthetic
data and natural datasets. The experiments are by no means exhaustive and the main goal of these
experiments is to underscore the merits of the various online algorithms discussed in this paper.

Algorithms: We compared the following five algorithms. The first algorithm is a multiclass clas-
sifier based on the Perceptron algorithm obtained by training several copies of the Perceptron. Each
copy is trained to discriminate one class from the rest of the classes. To classify a new instance
we compute the output of each of the trained Perceptrons and predict the label which attains the
highest similarity-score. This approach can be viewed as a special case of error correcting output
codes (ECOC), used for reducing a multiclass problems into multiple binary problems (Dietterich
and Bakiri, 1995, Allwein et al., 2000). The next three algorithms belong to the family of algorithms
discussed in Section 4 and whose pseudo-code is given in Figure 2. Each of the three algorithms
corresponds to a different update. All the three algorithms replaceM̄y with M̄y + x̄ whenever the
prediction is incorrect. In addition each of the algorithms modify the set of prototypes constitut-
ing the error set. Specifically, the first update changes the prototypes in the error set in a uniform
manner by adding the vector−x̄/|E| to each prototype and is thus referred to as theuniformupdate.
The second update is more conservative and changes only two of the prototypes on each round: the
prototypeM̄y corresponding to the correct labely and the prototypeM̄r which attains the highest
similarity-score. This update is therefore referred to asmaxupdate. Last, the third update modifies
each prototype from the error-set in proportion to the similarity-score it attains (see Section 4 for
a formal description) an is abbreviated as theprop update. We ran all the algorithms above in an
aggressive fashion: on each round a value ofβ = 0.01 was deducted from the similarity-score of the
correct labely right before computing the error-set and the corresponding update. This modification
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Figure 7: The relative test error (left) and relative number of updates (right) of four of the algorithms
presented in this paper after one epoch (top row) and after three epochs (bottom row).

of the score forces the algorithms to perform an update even on rounds with no prediction error
as long as the margin is smaller thanβ = 0.01. The fifth algorithm that we tested is an aggressive
version of MIRA with a minimal margin requirement ofβ = 0.01. All of the algorithms were used
in conjunction with Mercer kernels. The kernels were fixed for each dataset we experimented with
and we did no attempt to tune their parameters.

Each of the five algorithms was fed with the training set in an online fashion, i.e. example
by example, and generated a multiclass classification rule. We then evaluated the algorithms by
applying their final set of prototypes to the test data and computed their test error. We repeated
these experiments multiple times. (The specific number of repetitions varies between the datasets
in is reported below.)

Data-Sets: We evaluated the algorithms on a synthetic dataset and on three natural datasets:
MNIST1, USPS2 and Letter 3. The characteristic of the sets are summarized in Table 1. A com-
prehensive overview of the performance of various algorithms on these sets can be found in a recent
paper by Gentile (2001).

1. Available fromhttp://www.research.att.com/ ỹann/exdb/mnist/index.html
2. Available fromftp.kyb.tuebingen.mpg.de
3. Available fromhttp://www.ics.uci.edu/ ˜mlearn/MLRepository.html
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Figure 8: Summary of the test error and the number of updates for various online Please refer to
the text for the exact setting used for each of the algorithms.

The synthetic data-set has eight classes. Each instances is a two dimensional vector from[0,1]×
[0,1]. We used the uniform distribution to randomly draw examples. Each example was associated
with a unique label according to the following rule. The domain[0,1]× [0,1] was partitioned into
8×8 = 64 squares of the same size. Each square was uniquely identified with a row-column index
(i, j). The label of all instances from a given square indexed(i, j) was set to be((i + j) mod 8)+1.
We then generated a training set and a test set, each of size 10,000.

Results: The complete results obtained in the experiments are summarized in Appendix B. The
appendix also cites performance results for ROMMA (Li and Long, 2002) and ALMA (Gentile,
2001). A graphical illustration that compares the algorithms described in this paper is given in
Figure 7. This figure contains four bar-plots. Each bar in the plots designates corresponds to a
ratio of a performance measure of one the algorithms and the Perceptron algorithm: the left two
plots show the relative test error and the right two plots show the relative number of updates each
algorithm performed. Formally, the height of each bar in the left two plots is proportional to(εa−
εp)/εp whereεp is the test error of the Perceptron algorithm andεa is the test error on one of the
other four algorithms (Uniform, Max, Prop and MIRA). Similarly, the height of each bar is the right
two plots is proportional to(ua− up)/up whereup(ua) is the number of updates the Perceptron
algorithm (one of the four algorithms; Uniform, Max, Prop and MIRA) made. The top two plots
refers to the results after cycling once through the training data and the bottom two plots refers to
the results after three cycles through the training data. In each plots there are four groups of bars,
one for each for one of the four multiclass algorithms described in this paper (Uniform, Max, Prop
and MIRA). The results for each consist of four bars corresponding to four datasets:Chess-Board ,
MNIST, USPSandLetter (from left to right).

From the figure we see that MIRA outperforms the other algorithms described in this paper, but
this improved performance has a price in terms of the sparseness of the solution. The test error of
the Perceptron is lower than the test error of the rest of the algorithms (Uniform, Max, and Prop)
but the Perceptron performs more updates than the three hence the resulting classifier is less sparse.
For instance, for the USPS dataset, the test error of Uniform, Max, and Prop is about 10% higher
than the error of the Perceptron while the test error of MIRA is around 20% lower than that of the
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Perceptron. The advantage of MIRA over the Perceptron is even more evident in theLetter dataset
where MIRA’s test error is lower by 50% than the Perceptron’s error. After three epochs the test
error of the Uniform update becomes only 8% higher than the error of the Perceptron algorithm on
three datasets and the Uniform update outperforms the Perceptron onMNIST. Whether one epoch or
three, MIRA outperforms all of the algorithms. However, MIRA makes many more updates which
results in large number of support patterns when kernel are used. The number of support patterns
used by MIRA after one epoch is about four times the number used by the Perceptron (two times on
theLetter data-set). Uniform, Max and Prop, on the other hand, makes about half of the number of
updates compared to the Perceptron algorithm. This behaviour does not change after three epochs.

Another perspective of the results on theMNIST data-set is illustrated in Figure 8. The plot on
the left hand side plot corresponds to results obtained after one epoch while the right hand side plot
corresponds to results obtained after three epochs. In each of the two plots thex-axis designates the
test error of an algorithm divided by the test error of the Perceptron algorithm and they-axis is the
number of updates the algorithm made divided by the number of updates of the Perceptron. Each of
the algorithm is thus associate with a coordinate in each plot. By definition, the Perceptron algorithm
is the point(1,1). We added to the plots the results obtained by two more algorithms: Li and
Long’s (2002) ROMMA algorithm and Gentile’s (2001) ALMA algorithm. These algorithms were
designed for binary classification problems and were adapted for multiclass problems using the one-
vs-rest reduction. Li and Long evaluated ROMMA onMNIST using a non-homogeneous polynomial
kernel of degree four in an aggressive manner. ALMA was evaluated using a non-homogeneous
polynomial kernel of degree six. In the experiments with these algorithm, each input instance was
normalized to have anl∞ of one. The plots appearing in Figure 8 further underscore the tradeoff
between accuracy and sparseness. While MIRA exhibits the lowest error rate, with the exception
of ROMMA, it is also the algorithm that makes the largest number of updates. Analogously, the
three updates from Figure 2 make far less updates at the expense of inferior performance. ROMMA
seems to exhibit somewhat poorer performance in terms of the accuracy versus number of updates
ratio while ALMA seems to be comparable in terms of that ratio. We would like to note these
performance differences might be attributed to the different pre-processing and different kernels
used in our experiments. Nonetheless, all algorithms do exhibit a natural tradeoff between accuracy
and sparseness of the solution.

9. Summary

In this paper we described a general framework for deriving ultraconservative algorithms for mul-
ticlass categorization problems and analyzed the proposed algorithms in the mistake bound model.
We investigated in detail an additive family of online algorithms. The entire family reduces to
the Perceptron algorithm in the binary case. In addition, we gave a method for choosing a unique
member of the family by imposing a quadratic objective function that minimizes the norm of the
prototype matrix after each update. We then gave an analogous family of multiplicative algorithms.
A question that remains open is how to impose constraints similar to the one MIRA employs in
the multiplicative case. We also described an ultraconservative version of Li and Long’s ROMMA
algorithm. We believe that the ultraconservative approach to multiclass problems can be also be
applied to to quasi-additive algorithms (Grove et al., 2001) and p-norm algorithms (Gentile, 2001).
Another interesting direction for research that generalizes our framework is the design and analysis
of algorithms that maintain more than one prototype per class. While this approach is clearly useful
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in cases where the distribution of instances from a given class is not concentrated in one direction, it
seems rather tricky to generalize the ultraconservative paradigm to the case of multiple prototypes.

We would like to note that this work is part of a general line of research on multiclass learning.
Allwein et al. (2000) described and analyzed a general approach for multiclass problems using error
correcting output codes (Dietterich and Bakiri, 1995). Building on that work, we (Crammer and
Singer, 2000) investigated the problem of designing good output codes for multiclass problems.
Although the model of learning using output code differs substantially from the framework studied
in this paper, a few of the techniques presented here build upon other results (Crammer and Singer,
2000). Finally, a few of the techniques used in this paper can also be applied in batch settings
to construct Multiclass Support Vector Machines (MSVM). The implementation details on how to
efficiently build MSVMs appear in another place (Crammer and Singer, 2001).
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Appendix A. Technical Proofs

Proof of Theorem 4:
The caseD = 0 follows from Theorem 3 thus we can assume thatD > 0. The theorem is proved
by transforming the non-separable setting to a separable one. To do so, we extend each instance
x̄t ∈ R

n to z̄t ∈ R
n+T as follows. The firstn coordinates of ¯zt are set to ¯xt . Then+t coordinate of ¯zt is

set to∆, which is a positive real number whose value is determined later; the rest of the coordinates
of z̄t are set to zero. We similarly extend the matrixM ∗ to W∗ ∈ R

k×(n+T) as follows. We set the
first n columnsW∗ to be 1

ZM ∗. For each rowr we setW∗r,n+t to dt

Z∆ if r = yt and zero otherwise. To
summarize, the structure ofW∗ is,

W∗ =
1
Z


 M ∗ δr,yt

dt

∆


 .

We choose the value ofZ so that‖W∗‖2 = 1, hence,

1 = ‖W∗‖22 =
1
Z2

(
1+

D2

∆2

)
which gives that,

Z =

√
1+

D2

∆2 .

We now show thatW∗ achieves a margin ofγZ on the extended data sequence. Note that for allr
andt,

W̄∗r · z̄t =
1
Z

(
M̄∗r · x̄t + δr,yt

dt

∆
∆
)

=
1
Z

(
M̄∗r · x̄t + δr,yt dt) .
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Now, using the definition ofdt we get,

W̄∗yt · z̄t −max
r 6=yt

{
W̄∗r · z̄t} =

1
Z

(
M̄∗yt · x̄t +dt)−max

r 6=yt

{
1
Z

(
M̄∗r · x̄t)}

=
1
Z

dt +
1
Z

[
M̄∗yt · x̄t −max

r 6=yt

{
M̄∗r · x̄t}]

≥ 1
Z

(
γ−
[
M̄∗yt · x̄t −max

r 6=yt

{
M̄∗r · x̄t}])

+
1
Z

[
M̄∗yt · x̄t −max

r 6=yt

{
M̄∗r · x̄t}]

=
γ
Z

. (28)

We also have that,

‖z̄t‖2 = ‖x̄t‖2 + ∆2≤R2 + ∆2 . (29)

In summary, Equation (28) and Equation (29) imply that the sequence(z̄1,y1), . . . ,(z̄T ,yT) is clas-
sified correctly with marginγ

Z and each instance ¯zt is bounded above byR2 + ∆2. Thus, we can use
Theorem 3 and conclude that the number of mistakes that the algorithm makes on(z̄1,y1), . . . ,(z̄T ,yT)
is bounded from above by,

2
R2 + ∆2( γ

Z

)2 . (30)

Minimizing Equation (30) over∆ we get that the optimal value for∆ is
√

DRand the tightest mistake
bound is,

2
(D+R)2

γ2 .

To complete the proof we show that the prediction of the algorithm in the extended space and in the
original space are equal. Namely, letM t andWt be the value of the parameter matrix just before
receivingx̄t andz̄t , respectively. We need to show that the following conditions hold fort = 1, . . . ,T
:

1. The firstn columns ofWt are equal toM t .

2. The(n+t)th column ofWt is equal zero.

3. M̄t
r · x̄t = W̄t

r · z̄t for r = 1, . . . ,k.

The proof of these conditions is straightforward by induction ont.

Proof of Theorem 7:
Let M be the prototype matrix just before roundt and denote byM

′
the updated matrix after round

t, that is,

M̄
′
r = M̄r + τt

r x̄t (r = 1,2, . . . ,k) .
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As in Theorem 3, we bound‖M‖22 from above and below. First, we develop the lower bound on
‖M‖22 by bounding the term,

k

∑
r=1

M̄∗r · M̄
′
r =

k

∑
r=1

M̄∗r · (M̄r + τt
r x̄

t)

=
k

∑
r=1

M̄∗r · M̄r +∑
r

τt
r

(
M̄∗r · x̄t

)
. (31)

We further develop the second term using the second constraint of MIRA. Substitutingτyt =−∑r 6=yt τt
r

we get,

∑
r

τt
r

(
M̄∗r · x̄t) = ∑

r 6=yt

τt
r

(
M̄∗r · x̄t)+ τyt

(
M̄∗yt · x̄t)

= ∑
r 6=yt

τt
r

(
M̄∗r · x̄t)− ∑

r 6=yt

τt
r

(
M̄∗yt · x̄t)

= ∑
r 6=yt

(−τt
r

)(
M̄∗yt − M̄∗r

) · x̄t .

Using the fact thatM ∗ classifies all the instances with marginγ we obtain,

∑
r

τt
r

(
M̄∗r · x̄t)≥ ∑

r 6=yt

(−τt
r

)
γ = τt

yt γ . (32)

Combining Equation (31) and Equation (32) we get,

∑
r

M̄∗r · M̄
′
r ≥ ∑

r
M̄∗r · M̄r + τt

rγ .

Thus, afterT rounds the matrixM satisfies,

∑
r

M̄∗r · M̄r ≥ γ∑
t

τt
r . (33)

Using the definition of the vector-norm and applying the Cauchy-Schwartz inequality we get,

‖M ‖2‖M ∗‖2 =

(
k

∑
r=1

‖M̄r‖2
)(

k

∑
r=1

‖M̄∗r ‖2
)

≥ (M̄1 · M̄∗1 + . . .+ M̄k · M̄∗k)2

=

(
k

∑
r=1

M̄r · M̄∗r
)2

. (34)

Plugging Equation (33) into Equation (34) and using the assumption thatM ∗ is of a unit vector-norm
we get the following lower bound,

‖M ‖2 ≥ γ2
(

∑
t

τt
yt

)2

. (35)
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Next, we bound the vector-norm ofM from above,

‖M ′ ‖2 = ∑
r
‖M̄ ′

r‖2

= ∑
r
‖M̄r + τt

r x̄
t‖2

= ∑
r
‖M̄r‖2 +2∑

r
τt

r

(
M̄r · x̄t)+∑

r
‖τt

r x̄
t‖2

= ‖M‖2 +2∑
r

τt
r

(
M̄r · x̄t

)
+‖x̄t‖2∑

r
(τt

r)
2 . (36)

Using the definition of MIRA (Figure 3) we know that̄τt are chosen to minimize‖M ′ ‖2. Note that
τ̄ = 0 satisfies the constraints of MIRA and thenM

′
reduces toM . Therefore we have that,

2∑
r

τt
r

(
M̄r · x̄t)+‖x̄t‖2∑

r
(τt

r)
2≤ 0 .

But ‖x̄t‖2 ∑r(τt
r)2 > 0 and finally we get,

∑
r

τt
r

(
M̄r · x̄t)≤ 0 . (37)

Plugging Equation (37) into Equation (36) while using the bound‖x̄t‖2 ≤ R2 and Lemma 2 we
obtain,

‖M ′‖2 ≤ ‖M‖2 +2‖R‖2(τt
yt

)2

≤ ‖M‖2 +2‖R‖2τt
yt . (38)

Thus, afterT round the matrixM satisfies,

‖M ‖2 ≤ 2‖R‖2∑
t

τt
yt . (39)

Combining Equation (35) and Equation (39) we obtain,

γ2
(

∑
t

τt
yt

)2

≤ ‖M ‖2 ≤ 2‖R‖2∑
t

τt
yt

and therefore,

∑
t

τt
yt ≤ 2

R2

γ2 .

Using the second constraint of the algorithm we get,

‖τ̄t‖1 = ∑
r
|τt

r r|=− ∑
r 6=yt

τt
r r + τt

ry
t = 2τyt ,

and therefore,

∑
t
‖τ̄t‖1≤ 4

R2

γ2 .
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Proof of Theorem 11:
Let

Φt =
k

∑
r=1

Dkl(M̄∗r ‖M̄t
r) ,

and define∆t = Φt+1−Φt . Note that these definitions imply that,

∆t = Φt+1−Φt

= ∑
r

[
∑

i

M∗r,i log

(
M∗r,i

Mt+1
r,i

)]
−∑

r

[
∑

i

M∗r,i log

(
M∗r,i
Mt

r,i

)]

= ∑
r

[
∑

i

M∗r,i log

(
Mt

r,i

Mt+1
r,i

)]
.

Recall that if no error was made on thetth example(ŷt = yt) thenτ̄t = 0, M t+1 = M t and∆t = 0.
We therefore further develop the expression for∆t for the case when there was a prediction error on
roundt,

∆t = ∑
r

[
∑

i
M∗r,i log

(
Zt

r

eητt
r xt

i

)]

= ∑
r

[
log(Zt

r)∑
i

M∗r,i−∑
i

M∗i ητt
r xt

i

]

= ∑
r

[
log(Zt

r)‖M̄∗r ‖1−ητt
r

(
M̄∗r · x̄t

)]
= ∑

r

(
log(Zt

r)‖M̄∗r ‖1
)−η∑

r
τt

r

(
M̄∗r · x̄t) .

Using the assumption‖M̄∗r ‖1 = 1 for all r = 1, . . . ,k we get,

∆t = ∑
r

log(Zt
r)−η∑

r
τt

r

(
M̄∗r · x̄t) . (40)

Let us now further develop both terms of the expression above. For the right term we use the second
constraint of the algorithm and substituteτyt =−∑r 6=yt τt

r to get that,

∑
r

τt
r

(
M̄∗r · x̄t)= ∑

r 6=yt

(−τt
r)
(
M̄∗yt − M̄∗r

) · x̄t .

Using the assumption thatM ∗ classifies all the instances with marginγ and the fourth constraint of

the algorithm
(

τt
yt = 1

)
we obtain,

∑
r

τt
r

(
M̄∗r · x̄t)≥ ∑

r 6=yt

(−τt
r)γ = γτt

yt = γ . (41)

To bound the left term we use the inequality :

∀η > 0 , x∈ [−1,1] eηx≤ 1+x
2

eη +
1−x

2
e−η .
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Since|τt
r | ≤ 1 and‖x̄t‖∞ ≤ 1 then|τt

r xt
i | ≤ 1 and thus,

Zt
r = ∑

i

Mt
r,ie

ητt
r xt

i

≤ ∑
i

Mt
r,i

[
1+ τt

r xt
i

2
eη +

1− τt
r xt

i

2
e−η
]

= ∑
i

Mt
r,i

eη +e−η

2
+∑

i
Mt

r,i
eη−e−η

2
τt

r xt
i

=
eη +e−η

2 ∑
i

Mt
r,i +

eη−e−η

2
τt

r

(
M̄t

r · x̄t)

=
eη +e−η

2
‖M̄t

r‖1 +
eη−e−η

2
(−τt

r)
(
M̄t

yt − M̄t
r

) · x̄t +
eη−e−η

2
τt

r

(
M̄t

yt · x̄t) .

Note that‖M̄t
r‖1 = 1 since the algorithm normalizes the rows of the matrix on every step. We

assumed that there is an error in classifying ¯xt and, as in the additive family of algorithms, we need
to consider two cases. The first case is when the labelr was not the source of the error, that is
(M̄yt − M̄r) · x̄t > 0. Then by using the third constraint of the algorithm we get thatτt

r = 0 and
thus (−τt

r)
(
M̄yt − M̄r

) · x̄t = 0. In the second case, if the labelr was a possible source of error,
then(M̄yt − M̄r) · x̄t ≤ 0. Using the first constraint of the algorithm we know thatτt

r ≤ 0 and thus
(−τt

r)
(
M̄yt − M̄r

) · x̄t ≤ 0. Sinceη > 0 we have that12(eη−e−η) > 0 and therefore we get,

Zt
r ≤

eη +e−η

2
+

eη−e−η

2
τt

r

(
M̄t

yt · x̄t) . (42)

Taking the log of Equation (42) we get,

log(Zt
r) ≤ log

[
eη +e−η

2
+

eη−e−η

2
τt

r

(
M̄t

yt · x̄t)]

= log

[
eη +e−η

2

(
1+

eη−e−η

eη +e−η τt
r

(
M̄t

yt · x̄t))]

= log

(
eη +e−η

2

)
+ log

[
1+

eη−e−η

eη +e−η τt
r

(
M̄t

yt · x̄t)] .

We use the fact the log(x) is concave and therefore log(1+ x) ≤ x for x ≥ −1. Since|τt
r | ≤ 1,

‖M̄t
yt‖1 = 1, ‖x̄t‖∞ ≤ 1 and ∣∣∣∣eη−e−η

eη +e−η

∣∣∣∣≤ 1 ,

we conclude that,

log(Zt
r)≤ log

(
eη +e−η

2

)
+

eη−e−η

eη +e−η τt
r

(
M̄t

yt · x̄t) . (43)

Plugging Equations (41) and (43) into Equation (40) we get that if there is an error on thetth instance
then

∆t ≤ ∑
r

log

(
eη +e−η

2

)
+∑

r

[
eη−e−η

eη +e−η τt
r

(
M̄t

yt · x̄t
)]−ηγ

= k log

(
eη +e−η

2

)
+

eη−e−η

eη +e−η

(
M̄t

y · x̄t)∑
r

τt
r −ηγ .
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Using the second constraint of the algorithm(∑r τt
r = 0) we obtain,

∆t ≤ k log

(
eη +e−η

2

)
−ηγ .

Therefore, if the algorithm makesm mistakes on the sequence(x̄1,y1), . . . ,(x̄T ,yT) then

T

∑
t=1

∆t ≤m

[
k log

(
eη +e−η

2

)
−ηγ

]
. (44)

On the other hand,

T

∑
t=1

∆t =
T

∑
t=1

(Φt+1−Φt) = ΦT+1−Φ1

≥ −Φ1 =−k log(n) . (45)

Combining Equations (44) and Equations (45) we obtain,

m

[
k log

(
eη +e−η

2

)
−ηγ

]
≥−k log(n) .

Solving form we get,

m≤ log(n)
η γ

k + log
( 2

eη+e−η

) .

Minimizing overη we obtain the required bound,

O
(

k2 log(n)
γ2

)
.

Proof of Lemma 12:
Note that the claim implies that the first inequality constraint of MC-ROMMA’s optimization

problem is satisfied with equality after the update. Assume, by contradiction that this is not the case.
That is, after an update we get,

∑
r

τt
r

(
M̄t+1

r · x̄t)> 1 . (46)

We now show that there exists a matrixM
′
which satisfies the constraints of the optimization prob-

lem, but achieves a norm which is smaller than the norm ofM t+1. This yields a contradiction to the
assumption thatM t+1 is the optimal solution.

Sincex̄t was misclassified we need to consider the following two cases for each labelr. The
first case is when the labelr was not the source of the error, that is(M̄t

yt − M̄t
r) · x̄t > 0. Then, using

the third constraint(r /∈ Et ∪{yt} ⇒ τt
r = 0) we get thatτt

r = 0 and thus(−τt
r)
(

M̄t
yt − M̄t

r

)
· x̄t = 0.

The second case is when one of the sources of error was the labelr, i.e. (M̄t
yt − M̄t

r) · x̄t ≤ 0. From
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the first constraint of the algorithm we know thatτt
r ≤ 0 and thus(−τt

r)
(

M̄t
yt − M̄t

r

)
· x̄t ≤ 0. Finally,

summing over allr we get,

∑
r 6=yt

(−τt
r)
(
M̄t

yt − M̄t
r

) · x̄t ≤ 0 . (47)

We further develop the left hand-side of the above equality using the second constraint of the algo-
rithm (∑r τt

r = 0) and get,

∑
r 6=yt

(−τt
r

)(
M̄t

yt − M̄t
r

) · x̄t = ∑
r 6=yt

τt
r

(
M̄t

r · x̄t)− ∑
r 6=yt

τt
r

(
M̄t

yt · x̄t)
= ∑

r 6=yt

τt
r

(
M̄t

r · x̄t
)
+ τyt

(
M̄t

yt · x̄t
)

= ∑
r

τt
r

(
M̄t

r · x̄t
)

. (48)

Combining Equations (47) and (48) we get,

∑
r

τt
r

(
M̄t

r · x̄t)≤ 0 . (49)

From Equations (46) and (49) we get that there existsα ∈ (0,1) andM
′
= αM t +(1−α)M t+1 such

thatM
′
satisfies the first constraint of the algorithm with equality, i.e.∑r τt

r

(
M̄
′
r · x̄t

)
= 1. Using the

definition ofM
′
and the convexity of the squaredL2 norm we get that,

‖M ′ ‖2≤ α‖M t‖2 +(1−α)‖M t+1‖2 . (50)

Note thatM t is the optimal solution of the quadratic optimization problem if we omit the first
inequality constraint given in Equation (22). In addition,M t does not satisfy that first constraint,
therefore‖M t‖2 < ‖M t+1‖2. Plugging this inequality into Equation (50) we get,

‖M ′ ‖2 < ‖M t+1‖2 .

Since bothM t andM t+1 satisfy the second inequality constraint of Equation (22) andM
′
is a con-

vex combination ofM t andM t+1, thenM
′
also satisfies the second constraint. Therefore,M

′
is a

feasible point and thus we get a contradiction.

Proof of Lemma 13:
Let At denote the set of all matrices which satisfy the first constraint with equality, that is,

At =
{

M : ∑
r

τt
r

(
M̄r · x̄t)= 1

}
.

From Lemma 12 we know thatM t+1 ∈ At . Define

āt
r =

τt
r x̄

t

‖x̄t‖2 [∑s(τt
s)2]

,

and let,

at =




āt
1
...

āt
k
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be the matrix whoserth row is āt
r . It is straightforward to verify thatat ∈ At . We now show that

it attains the minimal vector-norm among all of the matrices inAt . From the definitions above the
norm ofat is,

at ·at = ∑
r

τt
r x̄

t

‖x̄t‖2 [∑s(τt
s)2]
· τt

r x̄
t

‖x̄t‖2 [∑s(τt
s)2]

=
‖x̄t‖2

[
∑r(τt

r
2)
]

[‖x̄t‖2 ∑s(τt
s)2]2

=
1

‖x̄t‖2 [∑s(τt
s)2]

.

Also note that for everyM ∈ At we have,

M ·at = ∑
r

M̄r · āt
r

= ∑
r

M̄r · τt
r x̄

t

‖x̄t‖2 [∑s(τt
s)2]

=
1

‖x̄t‖2 [∑s(τt
s)2] ∑r

τt
r

(
M̄r · x̄t)

=
1

‖x̄t‖2 [∑s(τt
s)2]

,

where for the last equation we used the fact thatM ∈ At . Combining the last two equalities we get
that for allM ∈ At ,

‖M‖2 = ‖(M −at)+at‖2
= ‖M −at‖2 +‖at‖2 +2

(
M ·at −at ·at)

= ‖M −at‖2 +‖at‖2 +2

(
1

‖x̄t‖2 [∑s(τt
s)2]
− 1
‖x̄t‖2 [∑s(τt

s)2]

)
= ‖M −at‖2 +‖at‖2 . (51)

Since the term on the right side of Equation (51) is constant, the norm ofM is minimized when
the term on the left hand side equals zero, that isM = at . However,M t+1 ∈ At and it attains the
minimal norm. We therefore getM t+1 = at . We now assume by contradiction that the second
inequality constraint of the optimization problem does not hold with equality forM t+1, that is
M t+1 ·M t > ‖M t‖2. Plugging the value ofM t+1 = at into the inequality we get,

∑
r

τt
r x̄

t

‖x̄t‖2 [∑s(τt
s)2]
·M t > ‖M t‖2 .

Rearranging the terms we finally get,

∑
r

τt
r

(
x̄t ·M t)> ‖M t‖2‖x̄t‖2

[
∑
s
(τt

s)
2
]

.
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However,M t 6= 0 (sincet > 1), x̄t 6= 0 (since the input sequence is separable) and∑s(τt
s)2 > 0 (since

Et 6= /0), therefore,

∑
r

τt
r

(
x̄t ·M t)> 0 ,

which is a contradiction to the assumption that there was a prediction error on roundt.

Appendix B. Summary of Experimental Results

The results of the experiments are summarized in Tables 2 through 5. Each table contains results for
a different dataset. The datasets areChess-Board , MNIST, USPSandLetter . Each column gives
results after a single pass through the training set. Each row in the tables corresponds to a specific
algorithm. The top row in each pair of rows corresponds to the test error while the bottom row gives
the cumulative number of updates each algorithm made. Some of the tables also contain results
for ALMA (Gentile, 2001) and ROMMA (Li and Long, 2002). Both algorithms used the one-vs-
rest reduction of multiclass to binary. ROMMA was trained using a non-homogeneous polynomial
kernel of degree four and the data was normalized to have anl∞ norm of 1. See (Li and Long, 2002)
for further details. ALMA was designed and analyzed by Gentile (2001). ALMA was trained using
different kernels than in this paper, On theMNIST data-set is was trained using a non-homogeneous
polynomial kernel of degree six and the data was normalized to have anl∞ norm of 1. On theUSPS
data-set is was trained using a Gaussian kernel with a standard deviation of 3.5 and on theLetter
dataset is was trained using a ploy-Gaussian kernel. Further details are provides by Gentile (2001).

We used the prediction the last set of prototypes each algorithm outputs after cycling through
the training set. However, Gentile (2001) reports that better results can be obtained by combining
ALMA with a voting technique (Freund and Schapire, 1999). In the tables below we report results
that were obtained without any voting or averaging techniques.

Epochs
Algorithm 1 2 3 4 5

Perceptron 5.6 4.9 4.7 4.7 4.6
1891 2029 2050 2059 2062

Uniform 6.3 5.1 4.7 4.7 4.7
1745 1933 1966 1971 1973

Max 6.1 5.4 5.2 5.1 5.1
1758 1912 1936 1944 1947

Prop 6.2 5.3 5.2 5.1 5.1
1723 1900 1927 1934 1938

MIRA 4.3 4.0 3.9 4.0 4.0
7229 7259 7260 7261 7261

Table 2: Experimental results for Chess-Board data. The test error (top) and number of support
patterns (bottom) for five multiclass online algorithms afterj = 1, . . . ,10 epochs of training
on 10,000 examples.
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Epochs
Algorithm 1 2 3 Kernel

Perceptron 1.83 1.58 1.68 Homogeneous
5299 6633 7112 Polynomial

agg-ROMMA 2.05 1.76 1.67
30088 44495 58583 Non-Homogeneous

ALMA 2(0.9) 1.84 1.53 1.45 Polynomial
11652 13712 14598

Uniform 2.31 1.89 1.62
2726 3271 3458

Max 2.61 2.13 1.89 Homogeneous
2823 3423 3605 Polynomial

Prop 2.46 2.04 1.85
3050 3722 3957

MIRA 1.45 1.37 1.36
20162 23878 26176

Table 3: Experimental results for the MNIST data-set. The test error (top) and number of support
patterns (bottom) for five multiclass online algorithms afterj = 1, . . . ,3 epochs.

Epochs Kernel
Algorithm 1 2 3 4 5

Perceptron 5.93 5.63 4.98 4.78 4.83 Homogeneous
936 1167 1240 1266 1281 Polynomial

ALMA 2(0.95) 5.72 5.05 4.85
1752 2087 2239

ALMA 2(0.9) 5.43 5.06 4.90 Gaussian
2251 2606 2746

Uniform 6.73 5.53 5.38 5.48 5.43
492 578 603 614 621

Max 6.08 6.38 5.48 5.38 5.38 Homogeneous
527 607 639 645 647 Polynomial

Prop 6.63 5.98 5.73 5.58 5.43
494 575 600 612 615

MIRA 4.78 4.68 4.63 4.63 4.58
3242 3864 4250 4517 4726

Table 4: Experimental results for the USPS data-set.The test error (top) and number of support
patterns (bottom) for five multiclass online algorithms afterj = 1, . . . ,5 epochs.
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Epochs Kernel
Algorithm 1 2 3 4 5

Perceptron 7.45 5.13 4.60 4.32 3.95 Gaussian
4215 5635 6469 7023 7359

ALMA 2(0.8) 4.20 3.55 3.27 Poly-Gaussian
11258 13003 13673

Uniform 7.07 5.40 4.90 4.88 4.28
2202 2754 3057 3293 3432

Max 7.40 6.08 4.63 4.73 4.73 Gaussian
2334 2951 3313 3510 3635

Prop 8.00 7.03 4.98 4.83 4.45
2205 2784 3117 3336 3475

MIRA 3.68 3.08 2.70 2.50 2.38
8184 11964 14929 17453 19701

Table 5: Experimental results for the Letter data-set. The test error (top) and number of support
patterns (bottom) for five multiclass online algorithms afterj = 1, . . . ,5 epochs.
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