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Ultradian rhythms in heart 
rate variability and distal body 
temperature anticipate onset 
of the luteinizing hormone surge
Azure D. Grant1, Mark Newman2 & Lance J. Kriegsfeld1,3,4,5*

The menstrual cycle is characterized by predictable patterns of physiological change across 
timescales. Although patterns of reproductive hormones across the menstrual cycle, particularly 
ultradian rhythms, are well described, monitoring these measures repeatedly to predict the 
preovulatory luteinizing hormone (LH) surge is not practical. In the present study, we explored 
whether non-invasive measures coupled to the reproductive system: high frequency distal body 
temperature (DBT), sleeping heart rate (HR), sleeping heart rate variability (HRV), and sleep timing, 
could be used to anticipate the preovulatory LH surge in women. To test this possibility, we used signal 
processing to examine these measures in 45 premenopausal and 10 perimenopausal cycles alongside 
dates of supra-surge threshold LH and menstruation. Additionally, urinary estradiol and progesterone 
metabolites were measured daily surrounding the LH surge in 20 cycles. Wavelet analysis revealed a 
consistent pattern of DBT and HRV ultradian rhythm (2–5 h) power that uniquely enabled anticipation 
of the LH surge at least 2 days prior to its onset in 100% of individuals. Together, the present findings 
reveal fluctuations in distal body temperature and heart rate variability that consistently anticipate 
the LH surge, suggesting that automated ultradian rhythm monitoring may provide a novel and 
convenient method for non-invasive fertility assessment.

�e fertility-awareness-method (FAM), a set of practices used to estimate the fertile and infertile days of the men-
strual cycle, is challenging to implement and to study, and existing studies of its e�ectiveness are  inconclusive1. 
However, an observation-based method of family planning or contraception has several potential bene�ts, includ-
ing a lack of hormonal disruption, personalization, and relatively low cost. One challenge inherent to current 
FAM practices is the reliance on historical basal body temperature and symptom trends (e.g., breast tenderness, 
libido, cervical �uid) that can vary substantially by individual, within-individual from cycle-to-cycle2, and that 
provide predominantly retrospective information. �e challenges of FAM have led the majority of those seeking 
to avoid pregnancy to adopt another form of contraception. Unfortunately, the most widely used method, female 
hormonal contraception, has short and long term risks for many users, including increased breast cancer  rate3,4, 
luteal phase  de�ciency5,  dysmenorrhea5,6, altered  cognition7,8, and depressed  mood9,10. �ese risks, combined 
with increasing recognition that many physiological systems vary in a structured manner across the menstrual 
 cycle11–14, provide the impetus to develop FAM approaches that employ high-temporal-resolution, non-invasive 
measures of physiology.

�e menstrual cycle is a continuous, rhythmic succession of endocrine, ovarian, and uterine events. Brie�y, 
the cycle begins with onset of menstruation, followed by rising levels of estradiol, follicular maturation, and 
proliferation of the uterine  lining15,16. Ovulation, which is triggered by numerous factors including estradiol, a 
surge of luteinizing hormone (LH), the presence of a mature Graa�an follicle, and likely time of  day17, frequently 
occurs between 1/2 and 3/4 of the way through the cycle in  humans18. Other physiological systems, including 
 metabolism19, 20 and autonomic  balance21, �uctuate with the menstrual cycle. An individual is mostly likely to 
become pregnant during the time leading up to, and shortly past, the ovulation event, making identi�cation 
of this peri-ovulatory period central for the successful use of the FAM. Although high-frequency hormone 
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measurements (e.g., daily estradiol from blood or urine) and ultrasound can provide information on when an LH 
surge and subsequent ovulation are likely to occur, such measurements are both laborious and expensive, limiting 
their widespread utility. Furthermore, at home tests available for measuring supra-threshold LH concentrations 
provide retrospective rather than prospective information about this event. Ideally, new methods of fertility 
awareness would accurately indicate the approaching peri-ovulatory period via relatively inexpensive and non-
invasive  means22. �is study aimed to develop such a preliminary indicator for future, larger scale investigation.

�e premise of the present investigation is that the presence of structured changes to peripheral biological 
rhythms across the menstrual cycle may allow for anticipation of the LH surge. Such a �nding would further 
support the notion that the state of one system (e.g., reproductive) can be inferred via measurements of another 
(e.g., autonomic or metabolic)14,23,56. Perhaps the most consistent biological rhythmic changes across the men-
strual cycle occur at the few hour (ultradian rhythm, UR)  timescale14,23–26. Most elements of the hypothalamic-
pituitary-ovarian axis, including gonadotropin releasing hormone (GnRH)27–29, LH 30–32,  FSH33–36,  estradiol30,37, 
 progesterone30,31,38–41, and  testosterone42 show URs that are coordinated with menstrual  phase14. Across species, 
timeseries of these neuropeptides and hormones exhibit an increase in ultradian frequency and inter-hormone 
coupling strength leading up to  ovulation29,31 and a decrease in ultradian frequency and stability in the luteal 
 phase29–32,37,40,41,43. Additionally, peripheral measures of distal body temperature (DBT) and heart rate variability 
(HRV) re�ect the activity of  reproductive44–46,  autonomic21,23, 47–52, and metabolic  systems23,53–55 and show both 
URs and menstrual  rhythms44. �ese peripheral and endocrine measures are proposed to operate as coupled 
oscillators at the ultradian timescale. Assessment of these peripheral measures could, therefore, potentially enable 
endocrine status assessment via timeseries  analysis14,23,56.

Recent animal work supports the idea that non-reproductive measures can be used to anticipate reproductive 
status. In rodents, the wavelet power of core body temperature URs exhibits a trough on the day of  ovulation12,13. 
�e translational capability of this method is supported by the association of gross timescale changes in DBT, 
heart rate (HR), and HRV by menstrual  phase11,19,44,45,53,57–61. However, it is unknown if human ovulatory cycle 
phase is associated with patterns of rhythmic change in non-reproductive outputs. Although the speci�c factors 
responsible for the changes in frequency of reproductive URs across non-human mammalian ovulatory cycles 
are not well understood, their consistency of change across species of widely varying cycle lengths suggests a con-
certed role in ovulatory cycle  function14. Finally, although the structure of some circadian rhythms (~ 24 h; CRs) 
is altered in the luteal phase, with estradiol acrophase advancing, and REM sleep exhibiting a modest decrease; 
structured sleep and circadian changes are not generally observed during the peri-ovulatory  period62. As both 
URs and CRs are tightly regulated across systems, monitoring their structure may enable more accurate assess-
ment of reproductive state than is possible using infrequently collected data (e.g., 1 temperature time point per 
day)26,63,64. Wearable devices o�er unprecedented ease of collecting the continuous, longitudinal data needed to 
assess URs and CRs across the menstrual  cycle65–68. To determine if rhythmic structure exhibits reliable changes 
leading up to the LH surge, we used a wearable device (the Oura Ring) to monitor DBT, sleeping HR, sleeping 
HRV (root mean square of successive di�erences; RMSSD), sleep timing, and duration. If endocrine, metabolic, 
and autonomic rhythms are su�ciently coupled at the ultradian and circadian timescales, then coordinated 
patterns should be observed across measures and potentially across the menstrual cycle. Such patterns would 
contribute to a growing body of work in “network physiology”69,70, which proposes that changes among endo-
crine, metabolic, and autonomic outputs are coupled under real world conditions. As mentioned above, implicit 
in this hypothesis is that one could infer the state of one system via measurements of another. Anticipation of 
female reproductive events is a test of the network physiology framework with potential for rapid translation.

Results
Demographics. Findings are reported for individuals with premenopausal cycles (n = 20, n = 45 cycles, 2–3 
cycles per individual) or perimenopausal cycles as (n = 5, n = 10 cycles, 2 cycles per individual) as de�ned in 
the Methods. Individuals who became pregnant (n = 3) during the study were excluded from the analyses. All 
premenopausal participants experienced menses, 1 or more supra-threshold LH readings per cycle, and a sub-
sequent, sustained rise in temperature deviation during all cycles. See Table 1 for participant age, ethnicity, cycle 
length, LH surge length, LH surge onset timing, LH surge onset relative to estradiol (E2) peak and progesterone 
rise, and percent of individuals with regular cycles. Some variability was observed in the day of LH surge onset 
relative to day of E2 peak(s), as previously  reported71.

Premenopausal and perimenopausal estradiol, luteinizing hormone and progesterone 
metabolites. Participants monitored LH for all 55 cycles, whereas daily urine samples were collected by 20 
women (n = 16 premenopausal, n = 4 perimenopausal) for the measurement of E2, α-Pregnanediol (αPg) and 
β-Pregnanediol (βPg). E2, αPg and βPg were collected to con�rm that hormone concentrations were within 
healthy ranges for pre-menopausal women and that LH surges were followed by a rise in progesterone metabo-
lites. For all 16 cycles, estradiol, αPg and βPg fell within normal ranges, with a pre-LH rise in E2 (2 days prior 
to LH onset through LH onset day were signi�cantly greater than all other days, p < 0.01 in all cases). Likewise, 
LH surge onset was concomitant with a signi�cant rise in αPg (p < 0.05 on LH onset, and < 0.01 6 days a�er 
LH onset and therea�er) (Fig. 1A−C) and βPg (p < 0.005 on LH onset, and < 0.001 3 days a�er LH onset; data 
not shown for βPg). �ese hormonal changes were associated with a rise in temperature deviation above zero 
and a non-signi�cant elevation of breathing rate around LH surge onset (Supplemental Fig. 1E–F). Consistent 
with previous  �ndings71, LH surge length was variable, with 42% of individuals exhibiting supra-threshold LH 
concentrations 2 days following surge onset, falling to 26% of individuals 3 days a�er surge onset (Fig. 1A). LH 
was tonically supra-threshold in perimenopausal women (n = 10 cycles, Fig. 1D). Perimenopausal individuals 
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exhibited a signi�cant increase in αPg and βPg only 6 days a�er midcycle (p < 0.05; data not shown for βPg), and 
a trend toward elevation of E2 prior to mid cycle (p = 0.176) (Fig. 1D−F).

Ultradian power of DBT, HRV, and LH surge onset. Ultradian (2−5 h) power of daytime DBT exhib-
ited a stereotyped pattern preceding LH surge onset in premenopausal (Fig.  2A,B), but not perimenopausal 
(Fig. 2C,D), cycles. Ultradian DBT power exhibited an in�ection point a mean of 5.82 (± 1.82) days prior to 
LH surge onset and a subsequent peak a mean of 2.58 (± 1.89) days prior to the surge onset. A second trough 
in UR power occurred a mean of 2.06 (± 1.02) days a�er surge onset (χ2 = 5.66, p = 0.0174,). �ese stereotyped 
changes were not present in perimenopausal cycles (χ2 = 0.37, p = 0.5354, for the same comparisons) (Fig. 2C). 

Table. 1.  Demographics of the QCycle cohort, including n values, age, ethnicity, and hormonal cycle 
characteristics.

Factor Premenopausal Perimenopausal

Number of participants 20 6

Number of cycles 45 10

Age range, mean (STDEV) years 21–38, 32 (4) 48–60, 55 (5)

Ethnicity (%) Caucasian: 94; African American 6 Caucasian: 100%

Cycle length 25–36, 27.78 (4.16) 22–50, 28.7 (8.87)

LH surge length range, mean (STDEV) days 1–5,1.95 (1.2) N/A; LH tonically high

LH surge onset day 10–29, 15.75 (3.4) N/A; LH tonically high

LH surge onset relative to E2 peak in days 0–4, 1.67, (1.38) N/A ; LH tonically high

LH surge day relative to progesterone rise day(n = 21) 0–5, 1.14, (1.95) N/A; LH tonically high

Regular cyclers (%) 88 0

Figure 1.  Ovulatory & Perimenopausal E2 and αPg. Linear plots of premenopausal (A–C) and perimenopausal 
(D–F) E2 and αPg. Mean ± standard deviation E2 (solid) and αPg (dashed) concentrations for premenopausal 
(A) and perimenopausal cycles (D) within one week of LH surge onset (N = 16 out of 45 premenopausal 
cycles, and N = 4 out of 10 perimenopausal cycles). # Indicates signi�cantly elevated pre-LH E2 concentrations 
(premenopausal p = 5.5 × 10–5; perimenopausal non-signi�cant p = 0.391), and * indicates signi�cantly elevated 
αPg a�er LH surge onset (premenopausal p = 4.71 × 10–31; perimenopausal, p = 0.028). Blue bars and text and 
indicate percent of cycles showing an LH surge a given number of days a�er onset, beginning on the day 
marked “LH” (e.g., 26% indicates that 26% of individuals were still surging on the 3rd day a�er LH surge onset). 
Representative E2 (gray) and αPg (black) from premenopausal (C) and perimenopausal (F) individuals relative 
to LH surge onset, and cycle mid-point, respectively.
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Ultradian power of sleeping HRV (RMSSD) also exhibited a stereotyped �uctuation preceding LH surge onset 
in premenopausal (Fig.  3A,B), but not perimenopausal (Fig.  3C,D), cycles. Ultradian HRV (RMSSD) power 
showed an in�ection point with a mean of 5.82 (± 1.53) nights prior to LH surge onset, a subsequent peak with 
a mean of 2.58 (± 1.59) nights prior to the surge onset and a trough a mean of 2.11 (± 1.27) days a�er surge 
onset. (χ2 = 4.91, p = 0.034). �ese stereotyped changes were not present in perimenopausal cycles (χ2 = 0.4797, 
p = 0.57) (Fig. 3C). Ultradian power of HR and circadian power of DBT did not show a signi�cant pattern of 
change preceding the LH surge (χ2 = 0.3 and 1.12, p = 0.581 and 0.2899), nor mid cycle in perimenopausal indi-
viduals (χ2 = 0.02 and 1.65, p = 0.8798 and 0.1984, respectively) (See Supplemental Figs. 2 and 3). No signi�cant 
trends were observed in sleep metrics captured once per night (See Supplemental Fig. 1). Linear means of nightly 
HR and HRV, and continuous DBT did not yield consistent patterns of change relative to surge onset or peri-
menopausal midcycle (Supplemental Figs. 4–6).  

Inflection point and subsequent peak of DBT and HRV ultradian power anticipate LH surge 
onset. In premenopausal women, the �rst in�ection point of DBT and HRV (RMSSD) UR power occurred 
between -8 and -2 days prior to surge onset, whereas the subsequent peak in UR power for both metrics occurred 
between -6 days before to 2 days a�er LH surge onset (Fig. 4). 85% of cycles exhibited the �rst in�ection point by 
4 days prior to the surge, with 100% showing this in�ection by 2 days prior to the surge. �e peak of UR power 
occurred at least 1 day prior to the surge in 82% of cycles. Together, these in�ection points and subsequent peaks 
in UR power of HRV (RMSSD) and DBT uniquely anticipated the LH surge days before its onset (see "Discus-
sion" for potential relevance to fertile window).

Figure 2.  Ultradian power of DBT anticipates LH surge onset. Mean DBT ultradian power 
(z-scored) ± standard deviation for premenopausal cycles (A) within one week of LH surge onset and 
perimenopausal cycles (C) within one week of mid cycle. DBT UR power peaks exhibit an in�ection point 5.82 
(± 1.82) days prior to LH onset, a peak a mean of 2.58 (± 1.89) before LH onset on average and a subsequent 
trough a mean of 2.6 (± 1.02) days a�er surge onset (χ2 = 5.66, p = 0.0174). Perimenopausal UR power shows no 
conserved peaks and troughs (χ2 = 0.37, p = 0.5354, for same comparisons). Representative individual example of 
raw DBT ultradian power within one week of LH surge onset in premenopausal (B) and within one week of mid 
cycle in perimenopausal (D) cycles. Black squares in (B) and (D) correspond to Boxes 1 & 2 and Boxes 3 & 4, 
respectively. Boxes show linear waking DBT from which ultradian power in B and D were generated; these days 
were selected to visually illustrate days of relatively high and low ultradian power in premenopausal cycles, and 
the same two days in perimenopausal cycles.
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Discussion
�e present �ndings reveal stereotyped �uctuations in DBT and HRV (RMSSD) UR power that anticipate 100% 
of LH surge onsets, a key component of female health and fertility. By contrast, changes in DBT circadian rhythm 
power were not predictive of the LH surge, suggesting that URs are uniquely coupled to the pre-ovulatory time 
of the menstrual cycle. Likewise, discrete, nightly behavioral and physiological measures did not anticipate the 
surge, suggesting that continuous measures of physiological output provide signals more amenable to LH surge 
anticipation. Finally, these features did not occur stereotypically in perimenopausal cycles with respect to mid 
cycle. �ese �ndings point to peripheral URs as oscillations that are coupled to menstrual cycle physiology and 
that have the potential to contribute to the development of tools for estimating the female fertile window.

Although the underlying physiological mechanisms that lead to systematic changes in UR power in DBT 
require further investigation, much is known about general changes in body temperature across the menstrual 
cycle. Estrogens lower, and progestins raise, body  temperature53,72. Accordingly, body temperature reaches a 
minimum, with minimum core circadian amplitude, during the late follicular phase and rises in the core, mouth, 
and skin following  ovulation73. Body temperature also broadly re�ects metabolic rate, which is elevated in the late 
follicular and luteal  phases74. In mice, the structure of core temperature URs allows for the detection of female 
reproductive state, with a high plateau of temperature and trough of UR power during the active phase indicative 
of the LH surge and  ovulation13,75. Most human studies to date have focused on core temperature, measured via 
an ingestible device that travels through the GI  tract73, intravaginal or rectal  sensor76, or oral  thermometer60. 
However, ultradian, circadian, and ovulatory rhythms in temperature are readily observed at the periphery, 
providing several advantages: (1) DBT has higher amplitude �uctuations than core body temperature, making 
URs and CRs easier to  detect77, (2) changes in DBT may correlate with sleep  stage78, and (3) DBT is in circadian 
antiphase to core temperature, but shows the same general trend across the menstrual cycle, suggesting com-
parable  reliability77. It is possible that rising UR power of DBT before the LH surge re�ects higher UR power of 
reproductive hormones during this time.

Figure 3.  Ultradian power of HRV (RMSSD) anticipates LH surge onset. Mean HRV (RMSSD) ultradian 
power (z-scored) ± standard deviation for premenopausal cycles (A) within one week of LH surge onset and 
perimenopausal cycles (C) within one week of mid cycle. Ultradian HRV (RMSSD) power in�ects an average 
of 5.82 (± 1.53) nights prior to LH surge onset, exhibits a subsequent peak an average of 2.58 (± 1.59) days prior 
to the surge onset and a trough an average of 2.11 (± 1.27) days a�er surge onset. (χ2 = 4.91, p = 0.034,). �ese 
stereotyped changes are not present in perimenopausal cycles (χ2 = 0.4797, p = 0.57). Representative individual 
example of HRV (RMSSD) ultradian power within one week of LH surge onset in premenopausal (B) and 
perimenopausal (D) cycles. Black boxes in (B) and (D) correspond to Boxes 1 & 2 and Boxes 3 & 4, respectively. 
Boxes show linear sleeping HRV (RMSSD) signal from which (B) and (D) were generated, illustrating days of 
relatively high and low ultradian power in ovulatory cycles, and the same two days in perimenopausal cycles.
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Whereas body temperature is the most commonly used non-hormonal output in menstrual cycle tracking, 
previous studies have found that HRV also changes by cycle phase and may therefore be a candidate for surge 
 anticipation79. Parasympathetic input to the heart dominates during the follicular phase, lowering resting heart 
rate and elevating HRV (RMSSD)57. Sympathetic input to the heart dominates during the luteal phase, elevating 
heart rate and depressing HRV (RMSSD)11,57. Consequently, HRV (RMSSD) varies ~ 10 ms from the follicular to 
the luteal  phase11, with a marked decrease in the latter portion of the  cycle52. �ese �uctuations may be more dif-
�cult to detect during a short daytime recording window, and are impacted by daytime activities, making sleep an 
ideal window over which to look for unmasked  features45. Natural negative controls illustrating reproductive and 
metabolic in�uences on HRV patterns are that (1) LH pulsatility is disrupted in obese and diabetic  women80,81, 
and (2) mid cycle and luteal �uctuations in HRV are absent in polycystic ovarian syndrome (PCOS), a leading 
cause of female  infertility58,59. In the present study, sleeping HRV (RMSSD) UR power rose in the late follicular 
phase, peaked near the LH surge, and dropped sharply before rising into the early luteal phase. Although the 
present study lacks su�cient power to evaluate other potential patterns that may be relevant to the menopausal 
transition, the preliminary absence of comparable features in perimenopausal individuals suggests that this 
group deserves further study. Together, signal processing of DBT and HRV could yield actionable information 
for individuals and clinicians wishing to estimate the “fertile window”. However, there are several challenges 
inherent to accurately de�ning the female fertile window.

�e fertile window (the time during which a woman may become pregnant) depends upon many factors, 
including (1) the timing of the LH surge, (2) the subsequent time of the release of the ovum or ovulation, (3) the 
presence of a viable corpus luteum releasing adequate  progesterone38, (4) the duration of time sperm can survive 
in the female body, which is dependent both on su�cient number and quality of sperm and on the appropriate 
vaginal environment (e.g., pH)22,82, and 5) quality of the uterine environment. Most investigations report the 
highest probability of fertility as the 5 days preceding ultrasound-determined day of ovulation (USDO)83, but 
actual days on which an individual may become pregnant are much more variable, with pregnancy occurring 
up to 11 days prior to ovulation to 5 days a�er  ovulation71.

Some of the reported variability in the fertile window likely results from discrepancies in language used to 
describe both human ovulation and the fertile window  itself84. Despite their namesake, home “ovulation tests” 
that identify supra-threshold LH concentrations do not measure ovulation, which may occur many days a�er 
and occasionally a few days before LH surge  onset71. Despite this variability, the fertile window is o�en treated 
as predictable, with de�nitions including the 5–6 days prior to the LH surge as a proxy for  ovulation85, the �rst 

Figure 4.  In�ection Points and Peaks of Ultradian Power Anticipate the LH Surge Within and Across 
Individuals. (A) Cumulative histogram indicates the proportion of cycles showing an in�ection point on 
a given day relative to LH surge onset (blue = HRV (RMSSD), maroon = DBT, dashed = in�ection point, 
solid = subsequent peak). Box indicates that on day LH—4, ~ 90% of individuals had shown the HRV and DBT 
�rst in�ection point. (B) Intra-vs. inter-individual range of days over which in�ection points (“UR In�ection”) 
and subsequent peaks (“UR Peak”) of ultradian DBT and HRV power occurred. �e range intra-individual 
range (2–3 cycles per individual) is 25% the size of the inter-individual range (45 total cycles).
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day of slippery clear cervical �uid through LH surge  onset86, the total days of slippery clear cervical  �uid87, day 
10–17 of the  cycle88, and retrospective measures of salivary  ferning85, basal body  temperature64,89, and proges-
terone metabolites (e.g.,90). Today, many online and app-based ovulation prediction algorithms are validated 
using day of cycle or LH data alone, in the absence of hormone measures or  USDO2,83,84,91. Additionally, extant 
data sets regularly report excluding 20–50% of collected data due to cycle irregularities, without determining 
if given cycles were hormonally  aberrant71,92–94. Together, the confounding of the LH surge with ovulation and 
the variable criteria used to de�ne the fertile window make it di�cult to accurately determine the variance, and 
contributors to variability, of fertility relative to the LH surge or ovulation. Despite these discrepancies, the pos-
sibility that UR features anticipate the onset of the LH surge by a few to several days suggests applicability for 
family planning. When one considers the additional time between LH surge onset and ovulation, these features 
may anticipate much to all of the fertile window. If con�rmed in larger cohorts, this method would constitute 
the earliest method of predicting a de�nitive event at any point within the fertile window.

Open source, non-invasive methods for predicting the LH surge as a marker of likely future ovulation are 
not currently  available71, but the present �ndings indicate that the onset of the LH surge may be anticipated days 
in advance by automated detection of changes in ultradian power of DBT and HRV (RMSSD). �ese changes 
consistently anticipate LH surge onset in women of a variety of ages, cycle lengths, surge timing and duration. 
�e frequency band of 2–5 h examined in the present investigation was not speci�cally selected for the present 
group of participants but chosen based on the peak frequency band observed across physiological  systems14,25,56, 
suggesting potentially broad applicability. Due to the high demand for accurate methods of fertility assessment, 
such novel methods carry the responsibility to clearly report the aspects of reproductive physiology that are 
detected and the methods by which detection is achieved once algorithms are tested on large  populations68,84,91.

Future work will determine the extent to which these ultradian rhythm-based methods of menstrual cycle 
monitoring generate accurate predictions in larger, more diverse cohorts. In particular, the study of a greater 
number of cycles within individuals may enable personalization of relevant features. With these data, methods 
such as empirical mode decomposition for selection of tailored ultradian bands, or machine learning based 
methods for assessment across many di�erent features at once, may result in greater speci�city or longer pre-
dictive windows. �ese features could potentially be used on their own, with minimal user input (e.g., tracking 
of dates of menstruation), or in combination with other FAM methods. Ideally, such methods could be widely 
employed on wearable devices such as the Oura Ring, or on future generations of convenient and precise body 
temperature and HRV sensors. Together, these �ndings may guide further research aimed at understanding how 
hormones, metabolism, and the autonomic nervous system temporally interact; and may aid the development 
of open-source, non-invasive methods of fertility awareness.

Methods
Ethical approval. �is study and all procedures were approved by the O�ce for the Protection of Human 
Subjects at the University of California, Berkeley. All participants gave informed consent. All research was per-
formed in accordance with relevant guidelines and regulations.

Participants and recruitment. Participants were recruited from the Quanti�ed Self community, a global 
group of individuals interested in learning through self-measurement95,96. Individuals attended a prospec-
tive discussion about the project at the 2018 Quanti�ed Self meeting in Portland, Oregon and contacted the 
experimenter via email if interested in participating. Prospective participants were contacted to discuss study 
structure, risks and bene�ts, and to review the informed consent form. Once informed consent was obtained, 
participants were instructed to complete an introductory questionnaire with their age, cycling status (regular, 
irregular, recovering from hormone/IUD use, perimenopausal, menopausal), and historical LH surge day(s), if 
known. Contact information was collected for the purposes of communication and delivery of study materials. 
Data from pregnancies (n = 3) that overlapped with the study were excluded from these analyses. Participants 
had not taken hormonal contraception within the prior year and did not have any known reproductive medical 
concerns. �ere were no age or parity restrictions, consistent with the principles of participatory  research96,97. 
See Table 1 for participant demographics.

Study design. Each of the 28 (n = 20 premenopausal, n = 5 perimenopausal, n = 3 premenopausal and 
became pregnant) participants collected 2 to 3 cycles of data for analysis. For all cycles, the Oura Ring, a DBT, 
HRV (RMSSD), HR, and sleep sensor, was worn continuously on the �nger, as previously  described65,98. For all 
cycles, LH was monitored via urinary test strips (Wondfo Biotech Co., Guangzhou, China) from day 10 (with 
�rst day of menstruation considered day 1) until a positive reading was detected, and subsequently until 2 days 
a�er LH fell below the limit of detection (see below for details on the Urinary Hormone Assay, Luteinizing Hor-
mone). Of the 55 total cycles collected (45 = premenopausal, 10 = perimenopausal), 20 were paired with daily, 
morning urine tests for E2, αPg and βPg, the major urinary progesterone metabolites (Precision Analytical, 
McMinnville, OR). �is study was designed using the principles of participatory  research96,99 in which individual 
participants maintain control of their own data prior to anonymization and came to the project with personal 
questions that could be answered with the data to be collected. All participants received a copy of their Oura 
Ring data.

Data collection and management. HR, HRV (RMSSD), DBT, sleep onset, sleep o�set, sleep duration, 
breathing rate, and nightly temperature deviation (described brie�y below) were collected using the Oura Ring 
(Oura Inc., San Francisco, CA; Oura Health Oy, Ltd., Oulu, Finland). �e Oura Ring is a small, wireless sen-
sor worn on the �nger. By using an LED light source and LED sensor to measure re�ection o� the skin above 
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the radial artery of the �nger, the Oura Ring calculates HR, HRV (RMSSD), and breathing rate. �e ring also 
contains 3 thermistors for detection of DBT. DBT is measured 24 h a day (binned in 1-min intervals). To avoid 
artifacts associated with activity, HR, and HRV (RMSSD) are only measured during sleep (binned in 5-min 
intervals), limiting our analyses of HR and HRV (RMSSD) to the sleeping period. All other metrics are cal-
culated once per night. Brie�y, the body temperature deviation for each night is the moving mean of nightly 
temperature between 10:00 pm and 8:00 am, minus the mean temperature of the previous 20 days. Oura Rings 
were loaned to the group by Oura Inc.

�e Oura Ring can be connected to a mobile phone application, Oura, via Bluetooth. At the start of the study, 
each participant downloaded the Oura application from either the Google Play Store (Google Inc., Mountain 
View, CA) or the Apple App Store (Apple Inc, Cupertino, CA) to their mobile phones and created an Oura 
account. Participants were able to view their own data provided by the application throughout the study. Par-
ticipants were asked to synchronize data from the ring to the application each morning. Uploaded data was 
automatically transferred via the internet to the study database in the Oura cloud service. In order to access data 
from the cloud, data were imported into the Open  Humans100 framework, which provides encrypted, password 
protected data access to researchers, with the participants’ revocable consent. In addition to data collected by 
the Oura Ring, participants uploaded personal spreadsheets that tracked days of menstruation, days of LH tests 
and results, days of urine collection, and notes (e.g., forgot to wear the Oura Ring) to Open Humans. Partici-
pants could opt out of the study and remove their data at any time. Data were anonymized by the researchers for 
analysis. Data, once anonymized at the end of the study, remained in the data set.

Hormone assays. For the assessment of E2, αPg and βPg, participants collected daily, �rst-morning urine 
samples across a cycle according to manufacturer’s instructions (Precision Analytical, Willamette, OR). Brie�y, 
a standardized piece of �lter paper with an attached label was submerged in the urine sample and dried for 
24 h. Filter paper was then frozen at ~ -18 C in participants’ home freezers until analysis. E2, αPg, and βPg were 
analyzed using proprietary in-house assays referred to as Dried Urine Testing for Comprehensive Hormones 
(DUTCH) on the Agilent 7890/7000B GC–MS/MS (Agilent Technologies, Santa Clara, CA, USA). �e equiva-
lent of approximately 600 μl of urine was extracted from the �lter paper using acetate bu�er. In the �rst week of 
the cycle, and from 3 days a�er LH surge completion until the end of the luteal phase, samples were pooled every 
2 days (a third day was pooled at the end of cycles in instances where the total number of remaining days a�er 
the surge was odd). Urine samples were extracted and analyzed as previously described, with previously estab-
lished ranges of hormone concentrations expected in urine by phase of cycle and during  menopause90,101. Brie�y, 
creatinine was measured in duplicate using a conventional colorimetric (Ja�e) assay. Conjugated hormones were 
extracted (C18 solid phase extraction), hydrolyzed by Helix pomatia and derivatized prior to injection (GC–MS/
MS) and analysis. �e mean inter-assay coe�cients of variation were 8% for E2, 12% for αPg, and 13% for βPg. 
�e mean intra-assay coe�cients of variation were 7% for E2, 12% for αPg and 12% for βPg. Sensitivities of the 
assays were as follows: E2 and αPg, 0.2 ng/mL; βPg, 10 ng/ mL.

Luteinizing hormone was measured using the commercially available WondFo (Wondfo Biotech Co., Guang-
zhou, China) Luteinizing Hormone Urinary  Test102, a validated at-home urine assay. Brie�y, the strip was sub-
merged by participants for 5 s in a fresh urine sample and laid horizontally for 5 min before reading. When 
samples were collected for E2, αPg and βPg, those same samples were used for LH testing. Each strip contains a 
positive control and a “test” line, indicating if LH is present in the urine at, or over a concentration of 25 MIU/
mL102. Test results were depicted as either + or – (no quantitative information provided) and were recorded in a 
personal spreadsheet by the participant. A photograph of each test was taken by participants to ensure accurate 
reading of the results.

Inclusion and exclusion criteria for collected cycles. Cycles were included in the premenopausal data 
set as likely ovulatory by four criteria a) one or more localized days of supra-threshold LH concentration, b) the 
presence of a rise in E2 (if collected) within typical range prior to or coincident with supra threshold LH, c) a 
subsequent rise in αPg and βPg (if collected), and d) positive values of DBT deviation, as previously  described98, 
within 2 days of surge onset until the end of the cycle (See Supplemental Fig. 1). Cycles without E2, αPg, and βPg 
data were included by meeting criteria a and d only. Cycles with missing data within sixteen days of the of the LH 
surge (de�ned as no HR/HRV/DBT data for a given night) were omitted in order to avoid erroneous estimation 
of rhythmic power (see Data Analysis below). Cycles were de�ned as “perimenopausal” by the presence of posi-
tive LH measured at least every other day across the cycle and age > 45 years. Four such cycles were paired with 
daily urinary hormone analysis for E2, αPg, and βPg, as described above.

Data analysis. All code and data used in this paper are available at Open Science Framework (https ://osf.
io/wzf47 /). Code was written in Matlab 2019b, Matlab 2020a and Python 3. Wavelet Transform (WT) code was 
modi�ed from the Jlab toolbox and from Dr. Tanya  Leise103. Brie�y, data were imported from the Open Humans 
framework to Python 3, where HR, HRV (RMSSD), and DBT data were extracted. Data were cleaned in Matlab, 
with any data points outside + /- 4 standard deviations set to the median value of the prior hour, and any points 
showing near instantaneous change, as de�ned by a local abs(derivative) > 105 as an arbitrary cuto�, also set to 
the median value of the previous hour.

Wavelet transformation (WT) was used to assess the structure of ultradian rhythms of DBT, HR, HRV 
(RMSSD), and circadian rhythms in DBT. As DBT shows high plateaus during the sleeping period, and URs 
during the day, DBT analyses here were used on data collected during the waking hours (see Supplemental 
Fig. 2). Conversely, as indicated previously, because the Oura Ring only collects HR and HRV (RMSSD) during 
sleep, wavelet analyses were restricted to the sleeping window for these metrics. In either case, the excerpted 

https://osf.io/wzf47/
https://osf.io/wzf47/
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data were compiled from all days of the cycle resulting in one continuous signal representing all days (DBT) or 
all nights (HR, HRV (RMSSD)). In contrast to Fourier transforms that transform a signal into frequency space 
without temporal position (i.e., using sine wave components with in�nite length), wavelets are constructed with 
amplitude diminishing to 0 in both directions from center. �is property permits frequency strength calculation 
at a given position. Wavelets can assume many functions (e.g., Mexican hat, square wave, Morse); the present 
analyses use a Morse wavelet with a low number of oscillations (de�ned by β and γ), analogous to wavelets used 
in previous circadian  applications103. Morse Wavelet parameters of β = 5 and γ = 3 describe the frequencies of the 
two waves superimposed to create the wavelet; Additional values of β (3–8) and γ (2–5) did not alter the �ndings 
(data not shown)104. �is low number of oscillations enhances detection of contrast and transitions. �e band 
of the wavelet matrix corresponding to 2–5 h rhythms were averaged in order to create a linear representation 
of UR WT power over time. �is band corresponded to the timescale of ultradian rhythmicity observed across 
physiological  systems14,25,56. Potential changes to circadian power of DBT (mean power per minute within the 
23–25 h band) were additionally assessed prior to extracting days for ultradian-only analyses, but no signi�cant 
changes across the cycle were detected (see Supplemental Fig. 3). Because WTs exhibit artifacts at the edges of the 
data being transformed, only the WT of the second through the second to last days of data were analyzed further. 
To enable comparisons across cycles of di�erent durations, premenopausal cycles were displayed from LH surge 
onset minus 7 days to LH onset plus 7 days. As perimenopausal individuals had tonically high LH, and therefore 
no surge onset to which all individuals could be aligned, each cycle’s midpoint was chosen for alignment.

LH surge anticipation features. Wavelet power in the 2–5 h band was calculated as described above. 
Extracted bands were smoothed using a daily moving average using the Matlab function “movmean”. �e Matlab 
function “�ndpeaks” was used to identify peaks as points at which either adjacent point had a lower UR power. 
�is function was run on the negative of the signal to identify troughs. Points at which the derivative of the signal 
crossed zero, indicating a change in direction of UR power (i.e., either increasing to decreasing or vice versa), 
were found using the matlab function “di� ”. �e �rst time the derivative crossed zero in the cycle (i.e., the �rst 
in�ection point), excluding the �rst �ve days of the cycle, during which LH is very unlikely to rise, was marked 
as the presence of the �rst feature for either HRV (RMSSD), DBT, or HR. Following this in�ection point, the next 
peak identi�ed by “�ndpeaks” was marked as the second feature. �ese methods of identifying peaks, troughs, 
and direction changes were used to ensure the di� function was identifying all visually identi�ed peaks.

Statistical analyses. Descriptive values are reported as means ± daily standard deviations (SD) unless oth-
erwise stated. For statistical comparisons of average ultradian power in premenopausal and perimenopausal 
cycles, Kruskal Wallis (KW) tests were used instead of ANOVAS to avoid assumptions of normality for any 
distribution to assess the trend in average UR power leading up to the surge as compared to a�er the surge. For 
KW tests, χ2 and p values are listed in the text. One-way repeated measures analysis of variance (rmANOVA) 
tests were used to compare peak average E2 to other days surrounding the surge, and baseline αPg and βPg 
(7  days prior to the surge) to other days surrounding the surge. For rmANOVAs, p values are listed in the 
text. Because the dominant trend was an in�ection point in UR power followed by a peak, slopes of individual 
signals were compared rather than raw values at each timepoint. �e same tests were applied to individuals, in 
addition to tests for signi�cance of raw power di�erences on peak and trough days, using 25 min centered on 
peaks and troughs, respectively. To avoid multiple comparisons and chance of a type I error, di�erences between 
individually-determined peak and trough values of UR WT power found using “�ndpeaks” were assessed using 
a KW test, such that each cycle contributed only 1 peak value and 1 trough value (N = 45 data points per group). 
Figures were formatted in Microso� PowerPoint 2019 (Microso� Inc., Redmond, WA) and Adobe Photoshop 
CS8 (Adobe Inc, San Jose, CA).

Data availability
Data and code used to generate the �ndings in this manuscript can be found on our Open Science Framework 
page at: https ://osf.io/wzf47 /
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