
Ultradilute Low-Dimensional Liquids

D. S. Petrov1 and G. E. Astrakharchik2
1LPTMS, CNRS, Univ. Paris Sud, Université Paris-Saclay, 91405 Orsay, France

2Departament de Física, Campus Nord B4-B5, Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain
(Received 24 May 2016; revised manuscript received 28 July 2016; published 1 September 2016)

We calculate the energy of one- and two-dimensional weakly interacting Bose-Bose mixtures
analytically in the Bogoliubov approximation and by using the diffusion Monte Carlo technique. We
show that in the case of attractive inter- and repulsive intraspecies interactions the energy per particle has a
minimum at a finite density corresponding to a liquid state. We derive the Gross-Pitaevskii equation to
describe droplets of such liquids and solve it analytically in the one-dimensional case.
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According to van der Waals’ theory the fundamental
property of a liquid to form self-bound states with free
surface is due to the shape of the interaction potential which
typically has a repulsive core and a more extended
attractive part. Usual liquids are dense and almost incom-
pressible since particles prefer to be at the potential minima.
A qualitatively different type of liquid, dilute one, has very
recently been observed in a Bose-condensed Dy gas
characterized by anisotropic dipolar interactions [1,2]
and a similar phenomenon has been predicted to occur
in three-dimensional Bose-Bose mixtures with isotropic
contact interactions [3]. In both cases the system, collaps-
ing from the mean-field viewpoint, is stabilized by quantum
many-body effects; each particle feels the attractive mean-
field interaction proportional to the density n compensated
by the positive Lee-Huang-Yang correction ∝ n3=2 [1–5].
Such liquids and their finite-size droplets remain dilute and
weakly interacting allowing for a well-controlled pertur-
bative description. They also have quite peculiar features:
their very existence is a direct manifestation of beyond
mean-field effects, they require no trapping and their bulk
density and shape are tunable by changing interactions, in
the absence of external trapping they can reach zero
temperature by evaporation, etc.
In this Letter, motivated by the enhanced role of beyond-

mean-field effects in low dimensions [6], we consider two-
and one-dimensional Bose-Bose mixtures and show that
with decreasing the dimensionality the liquid phase not
only persists, but becomes more ubiquitous and remark-
able. We find that in the two-dimensional case the energy
per particle is proportional to n½lnðn=n0Þ − 1� (n0 is the
equilibrium density), the liquid state exists as long as the
interspecies interaction is weakly attractive and the intra-
species ones are weakly repulsive. This contrasts the three-
dimensional case where a critical interspecies attraction is
needed to liquefy the mixture. Interestingly, we find that a
three-dimensional mixture in the gas phase can become
liquid if confined to the quasi-two-dimensional geometry.
In the one-dimensional case the liquid phase originates

from the competition of a repulsive mean-field term ∝ n
and attractive beyond mean-field correction ∝ −n1=2.
Counterintuitively, this means that a one-dimensional
mixture, stable from the mean-field viewpoint, is actually
unstable towards the formation of a liquid droplet. We
analytically describe its shape and other properties.
Consider two equal-mass bosonic species (σ ¼ ↑;↓),

with densities n↑ and n↓, governed by the Hamiltonian

H ¼
X
σ;k

k2

2
â†σ;kâσ;k

þ 1

2

X
σ;σ0;k1;k2;q

â†σ;k1þqâ
†
σ0;k2−q

Uσσ0 ðqÞâσ;k1
âσ0;k2

; ð1Þ

whereUσσ0 are short-range interaction potentials and we set
m ¼ ℏ ¼ 1. As usual [7,9,10], one substitutes Uσσ0 by
effective potentials, characterized by the same scattering
amplitudes for relevant collision energies but more suitable
for perturbative expansions.
We first discuss the two-dimensional case and take

Uσσ0 ðqÞ ¼ gσσ0 ¼ const ≪ 1 for jqj < κ and Uσσ0 ðqÞ ¼ 0
for jqj > κ. The coupling constants gσσ0 and the cutoff κ are
related to the two-dimensional scattering lengths aσσ0 > 0

by gσσ0 ¼ 4π= lnðϵσσ0=κ2Þ, where ϵσσ0 ¼ 4e−2γ=a2σσ0 and γ
is Euler’s constant. This relation ensures that at low
energy, z ≪ κ2, the scattering t matrix behaves as tσσ0 ðzÞ ≈
4π= lnð−ϵσσ0=zÞ [7,11] consistent with the Born series
expansion tσσ0 ðzÞ ≈ gσσ0 ½1 − gσσ0 lnð−κ2=zÞ=4π þ � � ��.
One can see that the perturbation series in terms of jtσσ0 j ≪
1 and jgσσ0 j ≪ 1 are equivalent as long as κ2 is larger but not
exponentially larger than the typical interaction energy z
which is the product of the density n and the t matrix (with
the logarithmic accuracy one can simply use z ∼ n). An
appropriate value of κ can always be found in the weakly-
interacting regime where the scattering lengths are expo-
nentially small (repulsion) or large (attraction) compared to
the mean interparticle separation.
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In order to calculate the ground-state energy of the
mixture up to second order terms in g we do the standard
Bogoliubov theory (see, for example, Ref. [10]). Namely,
we assume a macroscopic condensate population
âσ;0 ≈

ffiffiffiffiffi
nσ

p
, expand (1) up to bilinear terms in the operators

â†σ;k, âσ;k for k ≠ 0, and diagonalize the bilinear form
arriving at the ground-state energy density

E ¼ 1

2

X
σσ0

gσσ0nσnσ0 þ
1

2

X
�

X
jkj<κ

½E�ðkÞ − k2=2 − c2��; ð2Þ

where E�ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2�k

2 þ k4=4
p

are the Bogoliubov modes
with sound velocities c� defined by

c2� ¼
g↑↑n↑ þ g↓↓n↓ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg↑↑n↑ − g↓↓n↓Þ2 þ 4g2↑↓n↑n↓

q
2

:

ð3Þ

The momentum integration in Eq. (2) gives

E2D ¼ 1

2

X
σσ0

gσσ0nσnσ0 þ
1

8π

X
�
c4� ln

c2�
ffiffiffi
e

p
κ2

: ð4Þ

Recalling that gσσ0 ¼ 4π= lnðϵσσ0=κ2Þ one can check that to
the chosen order ∂E2D=∂κ2 ¼ 0, i.e., the final result (4)
depends only on nσ , aσσ0 , and not on κ.
We now turn to the interesting for us case 1=a↑↓ ≪

f ffiffiffiffiffin↑
p ; ffiffiffiffiffin↓

p g ≪ f1=a↑↑; 1=a↓↓g where the interspecies
interaction is weakly attractive and intraspecies ones
are weakly repulsive. Let us introduce an auxiliary energy
parameter Δ and a new set of coupling constants defined
by ~gσσ0 ¼ 4π= lnðϵσσ0=ΔÞ. We choose Δ such that
~g2↑↓ ¼ ~g↑↑ ~g↓↓ or, explicitly, Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ↑↓
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ↑↑ϵ↓↓

pp
×

exp½− ln2ðϵ↑↑=ϵ↓↓Þ=4 lnðϵ↑↑ϵ↓↓=ϵ2↑↓Þ�. Then we substitute

the expansion gσσ0 ≈ ~gσσ0 ½1þ ~gσσ0 lnðκ2=ΔÞ=4π þ � � �� into
Eq. (4) and keep terms up to second order in the new small
parameters ~gσσ0 . The energy density then reads

E2D¼ 1

2
ð~g1=2↑↑ n↑− ~g1=2↓↓ n↓Þ2

þ 1

8π
ð~g↑↑n↑þ ~g↓↓n↓Þ2 ln

ð~g↑↑n↑þ ~g↓↓n↓Þ
ffiffiffi
e

p
Δ

: ð5Þ

Properties of the liquid phase in free space are obtained by
minimizing the grand potential density E2D − μ↑n↑ − μ↓n↓
and by requiring that its value be zero (zero pressure).
Explicitly, E2D −

P
σð∂E2D=∂nσÞnσ ¼ 0. One can show

that possible values of n↑ and n↓ are close to the line
n↑=n↓ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~g↓↓=~g↑↑
p

where the dominant first-order term in
Eq. (5) vanishes. Particularly, for n ¼ n↑ ¼ n↓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~g↓↓=~g↑↑

p
Eq. (5) reduces to the form ∝ ~g2n2½lnðn=n0Þ − 1�, where
n0 ∼ Δ=j~gj is the equilibrium density at which the grand

potential vanishes or, equivalently, the energy per particle
∝ E2D=n reaches its minimum as a function of n. We
a posteriori verify that κ2=Δ is not exponentially large and,
therefore, the small parameters g and ~g are equivalent.
In the symmetric case a↑↑ ¼ a↓↓ ¼ a and n↑ ¼ n↓ ¼ n,

one has Δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ↑↓ϵ↑↑

p , the energy density simplifies to

E2D ¼ 8πn2

ln2ða↑↓=aÞ
½lnðn=n0Þ − 1�; ð6Þ

and the equilibrium density of each component reads

n0 ¼
e−2γ−3=2

2π

lnða↑↓=aÞ
aa↑↓

: ð7Þ

The knowledge of the equation of state (6) permits us to
find the spinodal point. Defined by the condition
∂2E2D=∂n2 ¼ 0 it is located at n ¼ e−1=2n0 ≈ 0.61n0.
The mixture is thus metastable for 0.61n0 < n < n0.
Note that since 1= lnða↑↓=aÞ ≪ 1 the parameter na2 ∝
ða=a↑↓Þ lnða↑↓=aÞ is exponentially small. We are thus
dealing with an extremely dilute liquid qualitatively differ-
ent from usual liquids where na2 ∼ 1.
In order to check the universality of our theory and

importance of higher-order corrections we perform diffu-
sion Monte Carlo (DMC) calculations for the symmetric
mixture (n ¼ n↑ ¼ n↓ and a ¼ a↑↑ ¼ a↓↓) for various
densities and interaction potentials. The DMC method
gives the ground-state energy exactly and it has been
applied to the one-component two-dimensional Bose gas
in Ref. [12]. In our case the convergence is enhanced by
using the guiding wave function in the Jastrow pair-product
form where we match the inter- and intraspecies two-body
scattering solutions at short distances with the long-range
phononic behavior at large distances [13]. The calculations
are performed in a finite box with periodic boundary
conditions and the results are extrapolated to the thermo-
dynamic limit [14,15]. In Fig. 1 we present the density
dependence of the energy per particle. As expected, with
decreasing 1= lnða↑↓=aÞ the numerical results converge
toward our theory and the rate of this convergence is
consistent with the scaling n2= ln3ða↑↓=aÞ for the next-
order correction to Eq. (6).
Let us now comment on the applicability of the above

results to quasi-two-dimensional atomic mixtures. The
passage from three-dimensional scattering parameters to
two-dimensional ones is realized by using the formula

ϵσσ0 ¼ ðB=πl20Þ exp½
ffiffiffiffiffiffi
2π

p
l0=a

ð3DÞ
σσ0 � [16], where að3DÞσσ0 are the

three-dimensional scattering lengths, l0 is the oscillator
length in the confinement direction, and B ≈ 0.9. In

particular, in the symmetric case, að3DÞ↑↑ ¼ að3DÞ↓↓ ¼ að3DÞ,
the equilibrium densities of the components equal
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n0 ¼
B½1=að3DÞ − 1=að3DÞ↑↓ �

4ð2πeÞ3=2l0
e

ffiffiffiffiffiffi
π=2

p
½l0=að3DÞ↑↓ þl0=að3DÞ�: ð8Þ

The weakly interacting regime in this case is ensured by the

inequality lnða↑↓=aÞ ¼
ffiffiffiffiffiffiffiffi
π=2

p ½l0=að3DÞ − l0=a
ð3DÞ
↑↓ � ≫ 1

and the requirement that typical transverse energies be
much smaller than 1=l20 (two-dimensional regime) practi-

cally reduces to −½l0=að3DÞ↑↓ þ l0=að3DÞ� ≫ 1. We can

rewrite these two conditions as 0 < −að3DÞ↑↓ < að3DÞ ≪ l0.

Note that a three-dimensional mixture satisfying 0 <

−að3DÞ↑↓ < að3DÞ is in the stable gas phase since the inter-
species attraction is too weak. We thus find a curious fact
that by introducing the confinement the mixture becomes
liquid. The nonsymmetric case is analysed in the same
fashion and we finally note that suitable combinations of

að3DÞσσ0 are available for hyperfine components F ¼ 1, mF ¼
−1 and F ¼ 1, mF ¼ 0 of 39K [17,18].
Let us now discuss finite-size droplets of the liquid. The

derivation of the corresponding Gross-Pitaevskii equation
follows the same path as in the three-dimensional case [3].
In short, the length scale onwhich the droplet profile changes
is of order ξ ∼ 1=

ffiffiffiffiffiffijμjp
, where the chemical potential μ ∼

−n= ln2ða↑↓=aÞ [see Eq. (6)]. On the other hand, excitations

mostly contributing to the second-order terms in Eqs. (2) and
(4) belong to the upper Bogoliubov branch and have wave-
lengths ∼1=cþ ∝ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=j lnða↑↓=aÞj

p
≪ ξ. This separation

of scales means that in the effective theory for fields with
momenta k ∼

ffiffiffiffiffiffijμjp
the effect of higher-momentummodes is

just a local density-dependent term and one can write the
energy density functional as

εðψ ;ψ�Þ ¼ j∇ψ j2 þ 8πjψ j4
ln2ða↑↓=aÞ

ln
jψ j2
en0

: ð9Þ

Here the complex field ψðρ; tÞ satisfies the normalization
condition N ¼ R jψðρ; tÞj2d2ρ, where N is the number of
particles in each component (we consider the symmetric
case). The Gross-Pitaevskii equation for ψ reads

i _ψ ¼ −
∇2

2
ψ þ 8π

ln2ða↑↓=aÞ
ln

� jψ j2ffiffiffi
e

p
n0

�
jψ j2ψ ; ð10Þ

and the stationary one is obtained from Eq. (10) by
substituting ψðρ; tÞ ¼ ψðρÞe−iμt [for uniform liquid
μ ¼ μ0 ¼ −4πn0= ln2ða↑↓=aÞ]. The dimensional analysis
of Eq. (10) shows that the typical length scale on which ψ
changes is indeed ξ. If ψ is real and depends only on one
coordinate, say x, this type of equation (with no explicit
spatial dependence of coefficients) maps to the classical
problem of a particle moving in time x and coordinate
ψ [19]. We will discuss it in more detail in the one-
dimensional case. Here we mention that the surface tension
(the energy per unit length of the liquid-vacuum interface)
σ ¼ R

dx½εðψ ;ψ�Þ − 2μ0jψ j2� ¼ I
ffiffiffi
π

p ð2n0Þ3=2= lnða↑↓=aÞ,
where I ¼ R

1
0 dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − zþ z ln z

p
≈ 0.42. This quantity is

useful for calculating finite-size corrections to droplet’s
energy and the spectrum of its surface modes (see, for
example, Ref. [20]). Note that such droplets with almost
uniform bulk density qualitatively differ from exponentially
small and dense many-body bound states of attractive two-
dimensional scalar bosons stabilized by the increased kinetic
energy associated with their nonuniform shape [21].
We now turn to the one-dimensional case where the

weakly interacting regime requires jgσσ0 j=n ≪ 1 [22].
Strictly speaking, there is no condensate in one dimension,
but it is now well understood that the energy of a weakly
interacting Bose gas is correctly predicted by the
Bogoliubov theory which assumes condensate [7,23]. In
this way we obtain the energy density in the form of Eq. (2)
where no cutoff is necessary, and the integration over
momentum results in

E1D ¼ 1

2

X
σσ0

gσσ0nσnσ0 −
2

3π

X
�
c3�; ð11Þ

where c� are given by Eq. (3).
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FIG. 1. The energy per particle E2D=2n versus n for the two-
dimensional mixture with a↑↑ ¼ a↓↓ ¼ a and n↑ ¼ n↓ ¼ n. We
rescale the vertical and horizontal axes, respectively, by
E0=2n0 ¼ jE2Dðn0Þj=2n0 and n0 calculated in the Bogoliubov
approximation [Eqs. (6)–(7)]. The solid black line is the result of
Eq. (6) and the scattered data are the DMC results for
1= lnða↑↓=aÞ ¼ 0.2 (red, circles), 0.1 (blue, squares), and 0.05
(green, diamonds) corresponding to n0a2 ¼ 3.8 × 10−4,
5.1 × 10−6, and 4.6 × 10−10, respectively. The interspecies (intra-
species) interactions are modeled by square wells (soft disks)
with the range R0 fixed by nR2

0 ¼ 5 × 10−3 and with the depths
(heights) adjusted in order to obtain the desired values of aσσ0 . As
a universality check we have significantly reduced R0 and found
that the energy changes at most by the symbol size.
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Let us introduce δg ¼ g↑↓ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffig↑↑g↓↓
p and discuss the

regime of repulsive intra- and attractive interspecies inter-
actions close to the mean-field collapse instability point
such that 0 < δg ≪ g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffig↑↑g↓↓

p . In this regime Eq. (11)
can be rewritten as

E1D ¼ ðg1=2↑↑ n↑ − g1=2↓↓ n↓Þ2
2

þ gδgðg1=2↓↓ n↑ þ g1=2↑↑ n↓Þ2
ðg↑↑ þ g↓↓Þ2

−
2

3π
ðg↑↑n↑ þ g↓↓n↓Þ3=2: ð12Þ

Similarly to the higher-dimensional cases we assume
n ¼ n↑ ¼ n↓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g↓↓=g↑↑

p
. Then the structure of the energy

density isE ∝ δgn2 − ðgnÞ3=2 characterized by the existence
of the liquid statewith equilibriumdensityn0 ∼ g3=δg2.Note
that at this density g=n ∼ ðδg=gÞ2 ≪ 1; i.e., the system is
weakly interacting. Counterintuitively, liquid appears for
δg > 0 in the regime where the mixture is on average
repulsive and where one would expect a stable gas phase.
It is thus the attractive beyond-mean-field term that
liquefies it.
The quantitative analysis of the droplet properties in

the one-dimensional case as well as the derivation of the
corresponding Gross-Pitaevskii equation goes along the
same lines as in the higher-dimensional cases. In particular,
in the symmetric case g ¼ g↑↑ ¼ g↓↓ and n ¼ n↑ ¼ n↓
Eq. (12) becomes

E1D ¼ δgn2 − 4
ffiffiffi
2

p
ðgnÞ3=2=3π; ð13Þ

the equilibrium density reads

n0 ¼ 8g3=ð9π2δg2Þ; ð14Þ

and the corresponding chemical potential equals
μ0 ¼ −δgn0=2. The spinodal point is at n ¼ 9n0=16≈
0.56n0. In Fig. 2 we compare the prediction of Eq. (13)
valid in the limit δg=g → 0 with our DMC results obtained
also for the symmetric mixture with delta-function inter-
actions but at finite values of δg=g. Our numerical pro-
cedure is similar to the one used in the one-dimensional
one-component case [24]. The rate of convergence towards
Eq. (13) indicates that the expansion of the energy con-
tinues in integer powers of

ffiffiffiffiffiffiffiffi
g=n

p
∝ δg=g.

The Gross-Pitaevskii equation for the droplet reads

i _ψ ¼ −ψ 00
xx=2þ δgjψ j2ψ − ð

ffiffiffi
2

p
=πÞg3=2jψ jψ ; ð15Þ

where ψðx; tÞ satisfies N ¼ R jψðx; tÞj2dx. It turns out that
the droplet exists for any μ0 < μ < 0 (which translates to
any N) and its shape can be found analytically. For real ψ
Eq. (15) can be written in the form ψ 00

xx ¼ −V 0
ψðψÞ, where

VðψÞ ¼ −δgψ4=2þ ð2 ffiffiffi
2

p
=3πÞg3=2ψ3 þ μψ2. This equa-

tion describes the trajectory of a classical particle in time

x with coordinate ψ [19]. Once integrated, it reads
dψ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2VðψÞp ¼ dx. The second integration gives the

shape of the droplet,

ψðx; tÞ ¼
ffiffiffiffiffi
n0

p
e−iμtμ=μ0

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ=μ0

p
coshð ffiffiffiffiffiffiffiffiffi

−2μ
p

xÞ ; ð16Þ

containing N¼2
ffiffiffiffiffiffiffiffiffiffiffiffi
n0=δg

p fln½ð1þ ffiffiffiffiffiffiffiffiffiffi
μ=μ0

p Þ=ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−μ=μ0

p Þ�−ffiffiffiffiffiffiffiffiffiffi
μ=μ0

p g particles of each component. Note that in contrast to
the usual single-soliton solution of the one-dimensional
Schrödinger equation with attractive cubic nonlinearity [25]
our droplet has a flat bulk region for μ ≈ μ0. We also note that
in this case the typical inverse length onwhichψ changes is of
order

ffiffiffiffiffiffiffiffiffi
δgn0

p
which is much smaller than the typical momen-

tum∼ ffiffiffiffiffiffiffi
gn0

p
contributing to the last (beyond-mean-field) term

in Eq. (13). This justifies the low-energy theory (15). For
μ=μ0 ≪ 1 the size of the droplet increases and its density
decreases with decreasing jμj. For the validity of (15) in this
case we need μ=μ0 ≫ δg=g or, equivalently, N ≫ 1.
In conclusion, weakly interacting low-dimensional

Bose-Bose mixtures manifest themselves as promising
candidates for studying liquid phases in the ultracold
ultradilute regime and associated beyond-mean-field
effects. We find that in the two-dimensional case the liquid
phase is formed whenever the intraspecies interactions are
repulsive and the interspecies one is attractive. This differs
from the three-dimensional case where jg↑↓j should be
larger than ffiffiffiffiffiffiffiffiffiffiffiffiffiffig↑↑g↓↓

p . Remarkably, the one-dimensional
mixture liquefies for jg↑↓j < ffiffiffiffiffiffiffiffiffiffiffiffiffiffig↑↑g↓↓

p ; this effect is com-
pletely missed by the mean-field approximation.
Interestingly, one-dimensional droplets can be described

FIG. 2. The energy per particle E1D=2n versus n for the
symmetric one-dimensional mixture with delta-function
interactions. The vertical and horizontal axes are rescaled,
respectively, by E0=2n0 ¼ jE1Dðn0Þj=2n0 and n0 given from
Eqs. (13)–(14). The solid black line is given by Eq. (13), exact for
δg=g → 0, and the scattered data are the DMC results for δg=g ¼
0.2 (red circles), 0.1 (blue squares), and 0.05 (green diamonds).
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analytically and it is tempting to study their dynamical and
transport properties. In any dimension the almost complete
cancellation of the first-order terms in the energy functional
of the liquid gives one an opportunity to test higher-order
terms and their universality. It is then relevant, although
theoretically challenging, to go beyond the Bogoliubov
approximation as it has been done in the scalar two-
dimensional case [8].
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