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Abstract. We present a solvable two-dimensional piecewise linear chaotic map that arises

from the duplication map of a certain tropical cubic curve. Its general solution is constructed

by means of the ultradiscrete theta function. We show that the map is derived by the

ultradiscretization of the duplication map associated with the Hesse cubic curve. We also

show that it is possible to obtain the non-trivial ultradiscrete limit of the solution in spite of a

problem known as ‘the minus-sign problem.’

1. Introduction

Ultradiscretization [41] has been widely recognized as a powerful tool to extend the

theory of integrable systems to piecewise linear discrete dynamical systems (ultradiscrete

systems) [7, 11, 23, 29, 31, 36, 37, 39, 44, 47, 50]. In particular, it yields various soliton

cellular automata when it is possible to discretize the dependent variables into a finite

number of integers by a suitable choice of parameters. It has also established the links

between the theory of integrable systems and various areas of mathematical sciences,

such as combinatorics, representation theory, tropical geometry, traffic flow models, and so

on [5, 6, 10, 13, 17, 19, 20, 21, 22, 27, 30, 31, 33, 46, 43, 45, 49]. One of the key features

of ultradiscretization is that one can obtain piecewise linear discrete dynamical systems from

rational discrete dynamical systems by a certain limiting procedure, which corresponds to

the low-temperature limit in statistical mechanics. When this procedure is applied to a certain

class of discrete integrable systems, wide classes of exact solutions, such as soliton solutions

or periodic solutions, survive under the limit, which yield exact solutions to the ultradiscrete

integrable systems.

While the application of ultradiscretization to integrable systems has achieved great

success, it seems that only a few results have been reported on the application to non-

integrable systems [38, 40]. One reason may be that, in many cases of non-integrable

systems, fundamental properties are lost under the limit. For example, it is possible to

ultradiscretize the celebrated logistic map formally, but its chaotic behavior is lost through

the ultradiscretization [16].
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In [16], the ultradiscretization of a one-dimensional chaotic map that arises as the

duplication formula of Jacobi’s sn function has been considered. It exemplifies a solvable

chaotic system, which is regarded as a dynamical system lying on the border of integrability

and chaos [4], in the sense that, though its exact solution is given by an elliptic function, its

dynamics exhibits typical chaotic behaviors such as irreversibility, sensitivity to initial values,

positive entropy, and so on. By applying the ultradiscretization, it has been shown that we

obtain the tent map and its general solution simultaneously. Moreover, a tropical geometric

interpretation of the tent map has been presented; namely, it arises as the duplication map on a

certain tropical biquadratic curve. This result implies that there is the world of elliptic curves

and elliptic functions behind the tent map, which might be an unexpected and interesting

viewpoint. It also suggests that the tropical geometry and ultradiscretization provide a

theoretical framework for the description of such a geometric aspect.

In this paper, we present two kinds of two-dimensional solvable chaotic maps and their

general solutions that are directly connected through the ultradiscretization. In Section 2,

we construct a piecewise linear map from a duplication map on a certain tropical plane

cubic curve. We also construct its general solution in terms of the ultradiscrete theta

function [16, 20, 26, 32, 33, 42] by using the tropical Abel–Jacobi map. In Section 3, we

consider a certain rational map that arises as a duplication map on the Hesse cubic curve (see,

for example, [1, 15, 35]), whose general solution is expressible in terms of theta functions of

level three. In Section 4, we discuss the ultradiscretization of the rational map and its solution

obtained in Section 3, and show that they yield the piecewise linear map and its solution

obtained in Section 2. The rational map and its general solutions discussed in Sections 3

and 4 involve a problem known as ‘the minus-sign problem,’ which is usually regarded as

an obstacle to successful application of ultradiscretization. We show that it is possible to

overcome the problem by taking careful parametrization and a limiting procedure.

2. Duplication map on tropical cubic curve

2.1. Duplication map

In this section, we construct the duplication map on a certain tropical curve. For the basic

notions of tropical geometry, we refer to [3, 12, 24–26, 34].

Let us consider the tropical curve CK given by the tropical polynomial

�(X, Y ;K)=max[3X, 3Y, X + Y +K, 0], X, Y, K ∈ R, K > 0. (2.1)

The curve CK is defined as the set of points where � is not differentiable. As shown

in Figure 1(a), the vertices Vi and the edges Ei of CK are given by V1 = (−K, 0),

V2 = (0,−K), V3 = (K, K) and E1 = V1V2, E2 = V2V3, E3 = V3V1, respectively. From the

Newton subdivision of the support of CK given in Figure 1(b), we see that CK is a degree-

three curve. For a vertex on the tropical curve, let vi ∈ Z2 (i = 1, . . . , n) be the primitive

tangent vectors along the edges emanating from the vertex. Then it is known that for any

vertex there exist natural numbers wi ∈ Z>0 (i = 1, . . . , n) such that the following balancing

condition holds:

w1v1 + · · · +wnvn = (0, 0). (2.2)
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FIGURE 1. (a) Tropical curve CK ; V1 = (−K, 0), V2 = (0,−K), V3 = (K, K). Primitive tangent
vector of each edge: E1, v1 = (1,−1); E2, v2 = (1, 2); E3, v3 = (2, 1). (b) Newton subdivision of

the support of CK . (c) Tropical line.

We call wi the weight of the corresponding edge. Now, since the primitive tangent vectors

emanating from V1 are given by (−1, 0), (1,−1) and (2, 1), the balancing condition at V1 is

given by

3(−1, 0)+ (1,−1)+ (2, 1)= (0, 0). (2.3)

Therefore, the weights of E1, E3 and the tentacle along the edges emanating from V1 are

given by 1, 1 and 3, respectively. The balancing conditions at V2 and V3 show that the weights

of the edges Ei (i = 1, 2, 3) are 1, and those of the tentacles of CK are all 3, respectively.

If a vertex V is three-valent, namely V has exactly three adjacent edges whose primitive

tangent vectors and weights are vi and wi (i = 1, 2, 3), respectively, the multiplicity of V

is defined by w1w2|det(v1, v2)| =w2w3|det(v2, v3)| = w3w1|det(v3, v1)|. If all the vertices

of the tropical curve are three-valent and have multiplicity one, then the curve is said to be

smooth. The multiplicity of the vertex V1 is computed as

3× 1×
∣

∣

∣

∣

det

(

−1 0

1 −1

)∣

∣

∣

∣

= 3, (2.4)

and similarly those of V2 and V3 are both three, which imply that CK is not smooth. The

genus is equal to the first Betti number of CK , which is one as shown in Figure 1(a). Thus

the curve CK is a non-smooth, degree-three tropical curve of genus one. Note that the cycle

CK of CK (the triangle obtained by removing the tentacles from CK ) can be given by the

equation

max[3X, 3Y, 0] = X + Y +K. (2.5)

A tropical line is the tropical curve given by the tropical polynomial of the form

L(X, Y )=max[X + A, Y + B, 0], (2.6)

which is shown in Figure 1(c). The three primitive tangent vectors emanating from the vertex

are given by (−1, 0), (0,−1) and (1, 1). From the balancing condition (−1, 0)+ (0,−1)+
(1, 1)= (0, 0), the weights of the edges are all 1.

Vigeland [48] has introduced the group law on the tropical elliptic curve, which is

a smooth, degree-three curve of genus one. According to the group law, the duplication
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map is formulated as follows. Let C be a tropical elliptic curve and let C be its cycle.

Take a point P ∈ C. We draw a tropical line that intersects with C at P with the intersection

multiplicity two, and denote the other intersection point by P ∗ P . Drawing a tropical line

passing through O and P ∗ P with a suitable choice of the origin of addition O ∈ C, the third

intersection point is 2P .

For a given point P on a tropical elliptic curve, the tropical line that intersects at P

with the intersection multiplicity two does not exist in general. However, the curve CK has

a remarkable property that it is possible to draw a tropical line that intersects at any point on

CK with the intersection multiplicity two. The explicit form of the duplication map is given

as follows.

PROPOSITION 2.1. Choosing the origin as O = V3, the duplication map CK ∋ P =
(X, Y ) �−→ 2P = (X, Y ) ∈ CK on the tropical cubic curve CK is given by

X = Y + 3 max[0, X] − 3 max[X, Y ], Y =X + 3 max[0, Y ] − 3 max[X, Y ], (2.7)

or
Xn+1 = Yn + 3 max[0, Xn] − 3 max[Xn, Yn],

Yn+1 =Xn + 3 max[0, Yn] − 3 max[Xn, Yn],
(2.8)

where (Xn, Yn) is the point obtained by the n times successive applications of the map to

(X, Y ).

Proof. Case 1: P ∈E1. As illustrated in Figure 2(a), the primitive tangent vectors of the

two edges passing through P are (1,−1) (thick line) and (1, 1) (broken line), respectively,

and the weights of the edges crossing at P are both 1. Then the intersection multiplicity is

given by

1× 1×
∣

∣

∣

∣

det

(
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1 1

)∣
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∣

∣

= 2. (2.9)

Let P ∗ P be the other intersection point. Note that the intersection multiplicity at P ∗ P

is one. Then the map P = (X, Y ) �−→ P ∗ P = (X′, Y ′) is constructed as follows. Since

P ∈E1 and P ∗ P ∈E1 ∪ E2, we have

0= X + Y +K, max[3X′, 3Y ′] = X′ + Y ′ +K. (2.10)

Subtracting the second equation from the first one, we obtain, by using (X −X′)/(Y − Y ′)=
1,

X′ =X − 3 max[X, Y ], Y ′ = Y − 3 max[X, Y ]. (2.11)

Our choice of the origin of addition O = V3 makes the form of 2P simple. It is obvious, as

illustrated in Figure 2(b), that 2P = (X, Y ) is given by (X, Y )= (Y ′, X′). Hence we obtain

the map P �−→ 2P as

X = Y − 3 max[X, Y ], Y =X − 3 max[X, Y ], (X, Y ) ∈ E1. (2.12)

Case 2: P ∈E2. As illustrated in Figure 3(a), the two primitive tangent vectors of the edges

passing through P are (1, 2) and (1, 0), and the weights of the edges crossing at P are both 1.

Then the intersection multiplicity is given by

1× 1×
∣
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∣
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= 2. (2.13)
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O

FIGURE 2. (a) Map P �→ P ∗ P for P ∈E1. The intersection point of CK and the line passing through
P with multiplicity two (broken line) is P ∗ P . (b) Map P ∗ P �→ 2P . The intersection point of CK
and the line passing through O = V3 and P ∗ P (broken line) is 2P . Obviously P ∗ P and 2P are

symmetric with respect to X = Y .

O O

FIGURE 3. (a) Map P �→ P ∗ P for P ∈E2. (b) Map P ∗ P �→ 2P .

Since P ∈ E2 and P ∗ P ∈ E1 ∪ E3, we have

3X =X + Y +K, max[3Y ′, 0] = X′ + Y ′ +K. (2.14)

By using Y ′ = Y , we obtain the map P �−→ P ∗ P and P �−→ 2P as

X′ =−2X + 3 max[0, Y ], Y ′ = Y, (2.15)

X = Y, Y =−2X + 3 max[0, Y ], (X, Y ) ∈ E2, (2.16)

respectively.

Case 3: P ∈ E3. As illustrated in Figure 4(a), the two primitive tangent vectors of the edges

passing through P are (2, 1) and (0, 1), and the weights of the edges crossing at P are both 1.

The intersection multiplicity is given by
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Since P ∈ E3 and P ∗ P ∈ E1 ∪ E2, we have

3Y = X + Y +K, max[3X′, 0] = X′ + Y ′ +K. (2.18)
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O

O

FIGURE 4. (a) Map P �→ P ∗ P for P ∈ E3. (b) Map P ∗ P �→ 2P .

By using X′ =X, we obtain the map P �→ P ∗ P and P �→ 2P as

X′ = X, Y ′ =−2Y + 3 max[0, X], (2.19)

X =−2Y + 3 max[0, X], Y =X, (X, Y ) ∈E3, (2.20)

respectively.

We finally obtain equation (2.7) by collecting equations (2.12), (2.16) and (2.20)

together. ✷

Strictly speaking, the group law in [48] cannot be applied to our case, since CK is not

a smooth curve. However, it is possible to show by direct computation that the map (2.8) is

actually a duplication map on the tropical Jacobian of CK . For this purpose, we first compute

the total lattice length L of CK , which is defined by the sum of the length of each edge scaled

by the norm of corresponding primitive tangent vector:

L=
3

∑

i=1

|Ei |
|vi |

=
√

5K
√

5
+
√

2K
√

2
+
√

5K
√

5
= 3K. (2.21)

Then the tropical Jacobian J (CK) of CK is given by

J (CK )= R/LZ= R/3KZ. (2.22)

The Abel–Jacobi map η : CK → J (CK ) is defined as the piecewise linear map satisfying

η(O)= η(V3)= 0, η(V1)=
|E3|
|v3|

=K, η(V2)= η(V1)+
|E2|
|v2|

= 2K. (2.23)

PROPOSITION 2.2. The map CK ∋ P = (X, Y ) �−→ P = (X, Y ) ∈ CK defined by equa-

tion (2.7) is a duplication map on the Jacobian J (CK ). Namely, we have η(P )=
2η(P ) mod 3K .

Proof. We consider the case P ∈ E1. Suppose P = (X, Y ) satisfies V1P : V2P = s : 1− s

(0≤ s ≤ 1), namely

P = (X, Y )= (−(1− s)K, −sK), η(P )= η(V1)+ sK = (1+ s)K. (2.24)
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FIGURE 5. (a) π1 ◦ η−1 : J (CK )→X. (b) π2 ◦ η−1 : J (CK )→ Y .

Case (I): X ≤ Y (0≤ s ≤ 1
2
). From equation (2.12), P is given by

X = Y − 3Y =−2Y = 2sK, Y =X − 3Y = (−1+ 4s)K, P ∈E2, (2.25)

which implies that

V2P : V3P = 2s : 1− 2s, η(P )= η(V2)+ 2sK = 2(1+ s)K = 2η(P ). (2.26)

Case (II): X ≥ Y ( 1
2
≤ s ≤ 1). In this case, P is given by

X = Y − 3X = (3− 4s)K, Y =−2X = 2(1− s)K, P ∈ E3, (2.27)

which implies that

V3P : V1P =−1+ 2s : 2(1− s), η(P )= (−1+ 2s)K ≡ 2(1+ s)K = 2η(P ) mod 3K.

(2.28)

Therefore we have shown that η(P )= 2η(P ) for P ∈ E1. We omit the proof of other cases

since they can be shown in a similar manner. ✷

2.2. General solution

From the construction of the map (2.8), it is possible to obtain the general solution by

using the Abel–Jacobi map of CK . Let π1 and π2 be projections from CK to the X-axis

and the Y -axis, respectively. Then the maps π1 ◦ η−1 and π2 ◦ η−1, namely, the maps from

the tropical Jacobian to the X-axis and the Y -axis through the Abel–Jacobi map, are given

as illustrated in Figures 5(a) and (b), respectively. Therefore, Proposition 2.2 implies that

Xn = π1 ◦ η−1(2nu0) and Yn = π2 ◦ η−1(2nu0) for arbitrary u0 ∈ J (CK) gives the general

solution to equation (2.8).

It is possible to express π1 ◦ η−1 and π2 ◦ η−1 by using the ultradiscrete theta function

#(u; θ) defined by [16, 20, 26, 32, 33, 42]

#(u; θ)=−θ{((u))− 1
2
}2, ((u))= u− Floor (u). (2.29)

For this purpose, we introduce a piecewise linear periodic function S(u; α, β, θ) by

S(u; α, β, θ)=#

(

u

α
; θ

)

−#

(

u− β

α
; θ

)

, (2.30)
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FIGURE 6. Graph of S(u; α, β, θ).

which has a period α and amplitude 2β(α − β)θ/α2 as illustrated in Figure 6. Comparing

Figure 5 with Figure 6, we have

π1 ◦ η−1(u)= S(u−K; 3K, 2K, 9
2
K), π2 ◦ η−1(u)= S(u− 2K; 3K, K, 9

2
K).

(2.31)

Therefore, we obtain the following proposition.

PROPOSITION 2.3. For a given initial value P0 = (X0, Y0), the general solution to the map

(2.8) is given by

Xn = S(2nu0 −K; 3K, 2K, 9
2
K), Yn = S(2nu0 − 2K; 3K, K, 9

2
K),

K = 3 max[X0, Y0, 0] −X0 − Y0, u0 = η(P0).
(2.32)

Figure 7 shows the orbit of the map (2.8) plotted with 3000 times iterations. The map has

an invariant curve CK given by equation (2.5), and the figure shows that the curve is filled

with the points of the orbit.

3. Duplication map on the Hesse cubic curve

3.1. Duplication map

The Hesse cubic curve is a curve in P2 given by

Eμ : x3 + y3 + 1= 3μxy, (3.1)

or in the homogeneous coordinates [x0 : x1 : x2] = [x : y : 1] by

Eμ : x3
0 + x3

1 + x3
2 = 3μx0x1x2. (3.2)

The nine inflection points are given by [1 : −1 : 0], [1 : −ω : 0], [1 : −ω2 : 0], [1 : 0 : −1],
[1 : 0 : −ω], [1 : 0 : −ω2], [0 : 1 : −1], [0 : 1 : −ω] and [0 : 1 : −ω2], where ω is a non-trivial

third root of 1. It is known that any non-singular plane cubic curve is projectively equivalent

to Eμ (see e.g. [1]). Moreover, these inflection points are also the base points of the pencil

t0(x
3
0 + x3

1 + x3
2)= t1x0x1x2, [t0 : t1] ∈ P

1. (3.3)
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FIGURE 7. Orbit of the map (2.8) with the initial value (X0, Y0)= (8.56546, 15.6231).

The duplication map is constructed by the standard procedure. For an arbitrary point

on P ∈ Eμ, draw a tangent line, and set the other intersection of the tangent line and Eμ

as P ∗ P . Taking one of the inflection points as an origin O of addition, the intersection of

Eμ and the line connecting P ∗ P and O gives 2P . Choosing O to be [1 : −1 : 0] among

the nine inflection points of Eμ, the duplication map P = (x, y) �→ 2P = (x, y) is explicitly

calculated as (see, for example, [15, 35])

x =
(1− x3)y

x3 − y3
, y =

(1− y3)x

y3 − x3
, (3.4)

or writing the point obtained by the n times applications of the map to (x, y) as (xn, yn), we

have

xn+1 =
(1− x3

n)yn

x3
n − y3

n

, yn+1 =
(1− y3

n)xn

y3
n − x3

n

. (3.5)

By construction, it is obvious that the map (3.5) has the invariant curve Eμ, where μ is

the conserved quantity. Figure 8 shows the orbit of the map (3.5) plotted with 3000 times

iterations. Note that, although the invariant curve has a component in the first quadrant

x, y > 0 for μ > 0, the real orbit never enters this quadrant (except for the initial point), which

can be verified by a simple consideration. Suppose that xn > 0 at some n. Then equation (3.5)

implies that (xn−1, yn−1) must be in the highlighted region of Figure 9(a). On the other hand,

if yn > 0 at some n, (xn−1, yn−1) must be in the highlighted region of Figure 9(b). Since the

intersection of the two regions is empty, it is impossible to realize xn, yn > 0 for any n as

long as we start from the real initial value.
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FIGURE 8. Orbit of the map (3.5) with the initial value (x0, y0)= (2.1, 5.3). The dashed line in (a) is
the invariant curve.

FIGURE 9. (a) Region of (xn−1, yn−1) for xn > 0. (b) Region of (xn−1, yn−1) for yn > 0.

3.2. General solution

The general solution to the map (3.4) or (3.5) is given in terms of the following theta functions

of level three. Let us introduce the functions θk(z, τ ) (k = 0, 1, 2) by

θk(z, τ )=
∑

n∈Z
e3πi(n+k/3−1/6)2τ e6πi(n+k/3−1/6)(z+1/2)= ϑ(k/3−1/6,3/2)(3z, 3τ ), (3.6)

where ϑ(a,b)(z, τ ) is the theta function with characteristic (a, b) defined by

ϑ(a,b)(z, τ )=
∑

n∈Z
eπi(n+a)2τ+2πi(n+a)(z+b), τ ∈H = {Im z > 0, z ∈ C}. (3.7)
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PROPOSITION 3.1. The general solution to equation (3.5) is given by

xn =
θ0(2

nz0, τ )

θ2(2nz0, τ )
, yn =

θ1(2
nz0, τ )

θ2(2nz0, τ )
, (3.8)

where z0 ∈C is an arbitrary constant.

Proposition 3.1 is a direct consequence of the following proposition.

PROPOSITION 3.2.

(1) θk(z, τ ) (k = 0, 1, 2) satisfy

θ0(z, τ )3 + θ1(z, τ )3 + θ2(z, τ )3 = 3μ(τ) θ0(z, τ )θ1(z, τ )θ2(z, τ ),

μ(τ)=−
ϕ′(0, τ )

ψ ′(0, τ )
,

(3.9)

where

ϕ(z, τ )=
θ1(z, τ )

θ0(z, τ )
, ψ(z, τ )=

θ2(z, τ )

θ0(z, τ )
. (3.10)

(2) θk(z, τ ) (k = 0, 1, 2) satisfy the following duplication formulas:

θ0(0, τ )3θ0(2z, τ )= θ1(z, τ )[θ2(z, τ )3 − θ0(z, τ )3],

θ0(0, τ )3θ1(2z, τ )= θ0(z, τ )[θ1(z, τ )3 − θ2(z, τ )3],

θ0(0, τ )3θ2(2z, τ )= θ2(z, τ )[θ0(z, τ )3 − θ1(z, τ )3].

(3.11)

It seems that the above formulas are well known [2], but it might be useful for non-

experts to give an elementary proof here. In the following, we fix τ ∈H and write θk(z, τ )=
θk(z).

LEMMA 3.3. θk(z, τ ) (k = 0, 1, 2) satisfy the following addition formulas:

θ0(0)2θ0(x + y)θ0(x − y)= θ1(x)θ2(x)θ2(y)2 − θ0(x)2θ0(y)θ1(y), (3.12)

θ0(0)2θ1(x + y)θ0(x − y)= θ0(x)θ1(x)θ1(y)2 − θ2(x)2θ0(y)θ2(y), (3.13)

θ0(0)2θ2(x + y)θ0(x − y)= θ0(x)θ2(x)θ0(y)2 − θ1(x)2θ1(y)θ2(y), (3.14)

θ0(0)2θ0(x + y)θ1(x − y)= θ0(x)θ1(x)θ0(y)2 − θ2(x)2θ1(y)θ2(y), (3.15)

θ0(0)2θ1(x + y)θ1(x − y)= θ0(x)θ2(x)θ2(y)2 − θ1(x)2θ0(y)θ1(y), (3.16)

θ0(0)2θ2(x + y)θ1(x − y)= θ1(x)θ2(x)θ1(y)2 − θ0(x)2θ0(y)θ2(y), (3.17)

θ0(0)2θ0(x + y)θ2(x − y)= θ0(x)θ2(x)θ1(y)2 − θ1(x)2θ0(y)θ2(y), (3.18)

θ0(0)2θ1(x + y)θ2(x − y)= θ1(x)θ2(x)θ0(y)2 − θ0(x)2θ1(y)θ2(y), (3.19)

θ0(0)2θ2(x + y)θ2(x − y)= θ0(x)θ1(x)θ2(y)2 − θ2(x)2θ0(y)θ1(y). (3.20)

We give the proof of Lemma 3.3 in the appendix.

Proof of Proposition 3.2. The duplication formulas (3.11) are obtained by putting x = y = z

in equations (3.12), (3.13) and (3.14). In order to prove equations (3.9) and (3.10), we first
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note that it follows by definition that

θ0(−z)=−θ1(z), θ2(−z)=−θ2(z), (3.21)

and hence

θ1(0)=−θ0(0), θ2(0)= 0. (3.22)

From Lemma 3.3, we obtain the addition formulas for ϕ(z) and ψ(z) (see equation (3.10)) as

ϕ(x + y)=
ϕ(x)ϕ(y)2 − ψ(x)2ψ(y)

ϕ(x)ψ(x)ψ(y)2 − ϕ(y)
, (3.23)

ϕ(x + y)=
ψ(x)ψ(y)2 − ϕ(x)2ϕ(y)

ϕ(x)− ψ(x)2ϕ(y)ψ(y)
, (3.24)

ϕ(x + y)=
ϕ(x)ψ(x)− ϕ(y)ψ(y)

ψ(x)ϕ(y)2 − ϕ(x)2ψ(y)
, (3.25)

and

ψ(x + y)=
ψ(x)− ϕ(x)2ϕ(y)ψ(y)

ϕ(x)ψ(x)ψ(y)2 − ϕ(y)
, (3.26)

ψ(x + y)=
ϕ(x)ψ(x)ϕ(y)2 − ψ(y)

ϕ(x)− ψ(x)2ϕ(y)ψ(y)
, (3.27)

ψ(x + y)=
ϕ(x)ψ(y)2 − ψ(x)2ϕ(y)

ψ(x)ϕ(y)2 − ϕ(x)2ψ(y)
. (3.28)

Differentiating equations (3.23) and (3.25) by y and putting y = 0, we have

ϕ′(x)=−ϕ′(0)ϕ(x)− ψ ′(0)ψ(x)2, ϕ′(x)=
ψ ′(0)+ 2ϕ′(0)ϕ(x)ψ(x)+ ψ ′(0)ϕ(x)3

ψ(x)
,

(3.29)

respectively. Here we have used

ϕ(0)=−1, ψ(0)= 0, (3.30)

which follow from equation (3.22). Equating the right-hand sides of the two equations in

(3.29), we have

1+ ϕ(x)3 + ψ(x)3 =−3
ϕ′(0)

ψ ′(0)
ϕ(x)ψ(x), (3.31)

which yields equation (3.9) by multiplying by θ0(z)
3. This completes the proof. ✷

Consider the map

C ∋ z �−→ [θ0(z) : θ1(z) : θ2(z)] ∈ P
2(C). (3.32)

From the relations

θk(z+ 1)=−θk(z), θk(z + τ )=−e3πiτ−6πizθk(z) (k = 0, 1, 2), (3.33)

we see that this induces a map from the complex torus Lτ = C/(Z+ Zτ ) to Eμ, which is

known to give an isomorphism Lτ ≃ Eμ (see e.g. [2]). Since 0 �→ [1 : −1 : 0], the addition
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formulas (3.12)–(3.20) induce the group structure on Eτ with the origin [1 : −1 : 0]. Denoting

the addition of two points [x0 : x1 : x2] and [x ′0 : x
′
1 : x

′
2] as [x0 : x1 : x2] ⊕ [x ′0 : x

′
1 : x

′
2],

equations (3.12)–(3.20) imply

[x0 : x1 : x2] ⊕ [x ′0 : x
′
1 : x

′
2]

= [x1x2x
′2
2 − x2

0x ′0x
′
1 : x0x1x

′2
1 − x2

2x ′0x
′
2 : x0x2x

′2
0 − x2

1x ′1x
′
2] (3.34)

= [x0x1x
′2
0 − x2

2x ′1x
′
2 : x0x2x

′2
2 − x2

1x ′0x
′
1 : x1x2x

′2
1 − x2

0x ′0x
′
2] (3.35)

= [x0x2x
′2
1 − x2

1x ′0x
′
2 : x1x2x

′2
0 − x2

0x ′1x
′
2 : x0x1x

′2
2 − x2

2x ′0x
′
1]. (3.36)

In particular, when the two points are equal, the duplication formula is given by

2[x0 : x1 : x2] = [x1(x
3
2 − x3

0) : x0(x
3
1 − x3

2) : x2(x
3
0 − x3

1)]. (3.37)

Moreover, the inverse of [x0 : x1 : x2] is given by

−[x0 : x1 : x2] = [x1 : x0 : x2]. (3.38)

We finally remark that μ can also be expressed as follows. Differentiating both equations

in (3.10) and putting z= 0, we have by using equation (3.22),

ϕ′(0)= 2
θ ′0(0)

θ0(0)
, ψ ′(0)=

θ ′2(0)

θ0(0)
, (3.39)

which yield

μ(τ)=−
ϕ′(0)

ψ ′(0)
=−2

θ ′0(0)

θ ′2(0)
. (3.40)

4. Ultradiscretization

So far we have constructed the piecewise linear map (2.8) as the duplication map on the

tropical cubic curve CK , whose general solution is given by equation (2.32). We have also

presented the rational map (3.5), which arises as the duplication map on the Hesse cubic

curve Eμ. The general solution of the map is given by equation (3.8). In this section, we

establish a correspondence between the two maps and their general solutions by means of the

ultradiscretization.

4.1. Ultradiscretization of map

The key to the ultradiscretization is the following formula:

lim
ǫ→+0

ǫ log(eA/ǫ + eB/ǫ + · · · )=max[A, B, . . .]. (4.1)

Putting

xn = eXn/ǫ, yn = eYn/ǫ, (4.2)

we have from equation (3.5)

Xn+1 = ǫ log(1+ e(3Xn+ǫπi)/ǫ)+ Yn − ǫ log(e(3Xn/ǫ) + e(3Yn+ǫπi)/ǫ),

Yn+1 = ǫ log(1+ e(3Yn+ǫπi)/ǫ)+Xn − ǫ log(e(3Xn)/ǫ + e(3Yn+ǫπi)/ǫ),
(4.3)
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which yield, in the limit ǫ→+0, equation (2.8):

Xn+1 =max[0, 3Xn] + Yn −max[3Xn, 3Yn],

Yn+1 =max[0, 3Yn] + Xn −max[3Xn, 3Yn].
(4.4)

The limit of the invariant curve (3.1) yields CK :

max[0, 3X, 3Y ] =X + Y +K, (4.5)

by the use of

3μ(τ)= eK/ǫ. (4.6)

In the above process of ultradiscretization, we have calculated formally, for example,

ǫ log(1− e3Xn/ǫ)= ǫ log(1+ e(3Xn+ǫπi)/ǫ)−→max[0, 3X] (ǫ→+0). (4.7)

However, when the original rational map contains minus signs, such formal calculation

sometimes does not give a consistent result. This may happen, for example, when we consider

the limit of the exact solutions simultaneously, or when we consider the limit of the maps that

are representations of a certain group or algebra. In both cases, the cancellations caused by the

minus signs play a crucial role on the level of rational maps, and the structure of the rational

maps is lost because such cancellations do not happen after taking the limit. This problem is

sometimes called the minus-sign problem.

Therefore, we usually consider the subtraction-free rational map to apply the

ultradiscretization [45, 46, 49]†, or we try to transform the map to be subtraction-free

if possible [16]. Unfortunately, it seems that the map (3.5) cannot be transformed to be

subtraction-free by simple transformations. However, in this case, it is possible to obtain a

valid ultradiscrete limit of the general solution in spite of the minus-sign problem.

Remark 4.1. The nine inflection points of the Hesse cubic curve correspond to the vertices

of the tropical cubic curve CK in the following manner. Consider one of the inflection points

[x0 : x1 : x2] = [1 : −1 : 0] = [e0/ǫ : e(0+iπǫ)/ǫ : e−∞/ǫ]. Then putting xi = eXi/ǫ (i = 0, 1, 2)

and taking the limit ǫ→+0, we have [X0 :X1 :X2] = [0 : 0 : −∞] = [∞ :∞ : 0]. Note here

that on this level equivalence of the homogeneous coordinates is given by [X0 :X1 : X2] =
[X0 + L : X1 + L :X2 + L] for any constant L. In the inhomogeneous coordinates, this point

corresponds to (∞,∞), which is linearly equivalent to the vertex V3 = (K, K). Similarly,

the two points [1 : −ω : 0], [1 : −ω2 : 0] also correspond to V3. Furthermore, the triple of

points {[1 : 0 : −1], [1 : 0 : −ω], [1 : 0 : −ω2]} correspond to V2 = (0,−K), and the triple

{[0 : 1 : −1], [0 : 1 : −ω], [0 : 1 : −ω2]} to V1 = (−K, 0). In other words, three inflection

points of the Hesse cubic curve degenerate to each vertex of CK in the ultradiscrete limit.

This explains the reason why the multiplicity of each vertex of CK is three and CK is not

smooth while the Hesse cubic curve is non-singular.

†It should be remarked that the term ‘tropical’ has been used differently in the communities of geometry and

integrable systems [18]. In the former community it has been used to mean piecewise linear objects, while in the

latter subtraction-free rational maps. In the latter community the terms ‘crystal’ or ‘ultradiscrete’ have been used for

piecewise linear objects. Therefore, it sometimes happens that the term ‘tropicalization’ can be used with opposite

meanings.
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4.2. Ultradiscretization of general solution

In this section, we consider the ultradiscrete limit of the solution. The following is the main

result of this paper.

THEOREM 4.2. The general solution (3.8) of the rational map (3.5) reduces to the general

solution (2.32) of the piecewise linear map (2.8) by taking the limit ǫ →+0 under the

parametrization

Xn = exn/ǫ, Yn = eyn/ǫ,
τ

τ + 1
3

=−
9K

2πiǫ
,

z0 =
u0

9K

(

1−
2πiǫ

9K

)

, u0 ∈ R, K > 0.

(4.8)

The ultradiscrete limit of the theta function can be realized by taking Im τ → 0.

However, the limit of the real part of τ should be carefully chosen in order to obtain a

consistent result [32]. For choosing the limit of the real part of τ , the following observation

on the correspondence between the zeros of the theta functions and non-smooth points of

S(u; α, β, θ) is crucial.

OBSERVATION. The ultradiscrete theta function #(u; θ) defined by equation (2.29) is a

piecewise quadratic function with period one, and has zeros at u= n ∈ Z; #(u; θ) can

be obtained from ϑ0(z; τ )= ϑ(0,1/2)(z; τ ) by taking the limit τ → 0 [32]. Since the zeros

of ϑ0(z; τ ) are located at z= (m+ 1
2
)τ + n (m, n ∈ Z), the real zeros of ϑ0(z; τ ) survive

under the limit, giving the zeros of #(u; θ) at u= n. From the definition of S given in

equation (2.30) and Figure 6, it is easy to see that the valleys at u= nα and the peaks

at u= β + nα (n ∈ Z) of S correspond to the zeros of #(u/α; θ) and #((u− β)/α; θ),

respectively, as illustrated in Figure 10. In other words, the valleys and peaks of the

ultradiscrete elliptic function S arise from the zeros and poles of the corresponding elliptic

function, respectively. Now, noticing that the zeros of ϑ(a,b)(z, τ ) are located at z= (−a +
m+ 1

2
)τ + (−b + n+ 1

2
) (m, n ∈ Z), the zeros of θk(z, τ ) (k = 0, 1, 2) are given by

θ0(z, τ ) : z= (m+ 2
3
)τ + 1

3
(n− 1),

θ1(z, τ ) : z= (m+ 1
3
)τ + 1

3
(n− 1),

θ2(z, τ ) : z=mτ + 1
3
(n− 1),

respectively. It is obvious that the zeros and poles of xn = θ0(z, τ )/θ2(z, τ ) and yn =
θ1(z, τ )/θ2(z, τ ) cancel each other, respectively, in the limit τ → 0, which yields a trivial

result. Let us choose τ →− 1
3
. Then the zeros of θi(z, τ ) (i = 0, 1, 2) become

θ0(z, τ ) : z=
Z

3
−

2

9
=

Z

3
+

1

9
,

θ1(z, τ ) : z=
Z

3
−

1

9
=

Z

3
+

2

9
,

θ2(z, τ ) : z=
Z

3
,

respectively, which give the zigzag patterns in the limit as illustrated in Figure 11. These

patterns would coincide with the those in Figure 5 after an appropriate scaling.
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FIGURE 10. Zigzag pattern of S(u; α, β, θ)=#(u/α; θ)−#((u− β)/α; θ) and the zeros of
#(u/α; θ), #((u− β)/α; θ).

FIGURE 11. Zigzag patterns obtained by the limit τ →− 1
3

.

Before proceeding to the proof of Theorem 4.2, we prepare the modular transformation

of the theta function, which is useful in taking the limit of τ .

PROPOSITION 4.3. [9, 28] The following holds:

ϑσ ·m(σ · z, σ · τ )= eπi(σ ·z)cz(cτ + d)1/2κ(σ ) e2πiφm(σ )ϑm(z, τ ), (4.9)

where
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

m= (m1, m2), σ =

(

a b

c d

)

∈ SL2(Z),

σ ·m=mσ−1 +
1

2
(cd, ab), σ · τ =

aτ + b

cτ + d
, σ · z =

z

cτ + d
,

φm(σ )=−
1

2
[bdm2

1 + acm2
2 − 2bcm1m2 − ab(dm1 − cm2)],

κ(σ ) : an eighth root of 1 depending only on σ .

(4.10)
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Remark 4.4. The explicit expression of κ(σ ) is given by [8]

κ(σ )=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

eπi(abcd/2+acd2/4−c/4)

(

a

|c|

)

, c odd,

(

c

|d|

)

(−1)(sgn(c)−1)(sgn(d)−1)/4eπi/4(d−1), c even,

where
(

a
p

)

is the Legendre (Jacobi) symbol for the quadratic residue. In particular,
(

a
1

)

= 1.

Proof of Theorem 4.2. The first key part of the proof is to apply the modular transformation

on θk(z, τ )= ϑ(k/3−1/6,3/2)(3z, 3τ ) (k = 0, 1, 2) specified by

σ =
(

1 0

1 1

)

. (4.11)

From

σ ·m=
(

k

3
−

7

6
,

3

2

)

, φm(σ )=−
9

8
, κ(σ )= 1, (4.12)

we have

θk(z, τ )= ϑ(k/3−1/6,3/2)(3z, 3τ )

= e−3πiz2/(τ+1/3)(3τ + 1)−1/2eπi/4ϑ(k/3−7/6,3/2)

(

z

τ + 1
3

,
τ

τ + 1
3

)

. (4.13)

We put

τ

τ + 1
3

=−
θ

iπǫ
, θ > 0, (4.14)

and take the limit of ǫ→+0, which corresponds to τ →− 1
3

. Noting that

z

τ + 1
3

= 3

(

θ

iπǫ
+ 1

)

z,

we have

ϑ(k/3−7/6,3/2)

(

z

τ + 1
3

,
τ

τ + 1
3

)

=
∑

n∈Z
exp

[

−
θ

ǫ

(

n+
k

3
−

7

6

)2

+
6θ

ǫ

(

n+
k

3
−

7

6

)

z

]

× exp

[

6πi

(

n+
k

3
−

7

6

)(

z+
1

2

)]

. (4.15)

The second key part is to use the freedom of the imaginary part of z ∈ C. Putting

z=
u

9K
+ iv, K, u, v ∈R, (4.16)
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equation (4.15) is rewritten as

ϑ(k/3−7/6,3/2)

(

z

τ + 1
3

,
τ

τ + 1
3

)

=
∑

n∈Z
exp

[

−
θ

ǫ

(

n+
k

3
−

7

6

)2

+
6θ

ǫ

(

n+
k

3
−

7

6

)(

u

9K
+ iv

)]

× exp

[

6πi

(

n+
k

3
−

7

6

)(

u

9K
+ iv +

1

2

)]

= exp

(

θ

9K2ǫ
u2

)

∑

n∈Z
exp

[

−
θ

ǫ

(

u

3K
− n−

k

3
+

7

6

)2

− 6π

(

n+
k

3
−

7

6

)

v

]

× exp

[

6πi

(

n+
k

3
−

7

6

)(

θ

πǫ
v +

u

9K
+

1

2

)]

. (4.17)

If u and v satisfy

θ

πǫ
v +

u

9K
= 0, (4.18)

then equation (4.17) is simplified as

ϑ(k/3−7/6,3/2)

(

z

τ + 1
3

,
τ

τ + 1
3

)

= exp

(

θ

9K2ǫ
u2

)

exp

[

πi

(

k −
7

2

)]

×
∑

n∈Z
exp

[

−
θ

ǫ

(

u

3K
− n−

k

3
+

7

6

)2

− 6π

(

n+
k

3
−

7

6

)

v

]

e3πin

= exp

(

θ

9K2ǫ
u2

)

exp

[

πi

(

k −
7

2

)]

×
∑

n∈Z
exp

[

−
θ

ǫ

(

u−K(k + 1)

3K
− (n− 2)−

1

2

)2

+
(

n+
k

3
−

7

6

)

2π2ǫ

3Kθ
u

]

e3πin.

Therefore, the asymptotic behaviors of xn and yn as ǫ→+0 are given by

xn =
θ0(z, τ )

θ2(z, τ )
∼

∑

n∈Z exp[− θ
ǫ
(u−K

3K
− (n− 2)− 1

2
)2]e3nπi

e2πi
∑

n∈Z exp[− θ
ǫ
(u−3K

3K
− 1

2
− (n− 2))2]e3nπi

∼ e(n0+n2)πi
exp{− θ

ǫ
[((u−K

3K
))− 1

2
]2}

exp{− θ
ǫ
[((u−3K

3K
))− 1

2
]2}

,

yn =
θ1(z, τ )

θ2(z, τ )
∼

eπi
∑

n∈Z exp[− θ
ǫ
(u−2K

3K
− (n− 2)− 1

2
)2]e3nπi

e2πi
∑

n∈Z exp[− θ
ǫ
(u−3K

3K
− (n− 2)− 1

2
)2]e3nπi

∼ e(n1+n2+1)πi
exp{− θ

ǫ
[((u−2K

3K
))− 1

2
]2}

exp{− θ
ǫ
[((u−3K

3K
))− 1

2
]2}

,

(4.19)
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respectively, where ((u)) (u ∈ R) is defined in equation (2.29), and

n0 = Floor

[

u−K

3K

]

+ 2, n1 = Floor

[

u− 2K

3K

]

+ 2, n2 = Floor

[

u− 3K

3K

]

+ 2.

(4.20)

Here, we note that z and u are understood as 2nz0 and 2nu0, respectively.

In order to obtain the final result, the remaining task is to relate the parameters θ with K

in the limit ǫ →+0. This can be done by considering the limit of the conserved quantity

μ(τ) given by equation (3.9) or (3.40). Noting equation (3.40), we differentiate θ0(z, τ )

and θ2(z, τ ) with respect to z after applying the modular transformation. Then θ ′0(0, τ ) and

θ ′1(0, τ ) can be calculated by using equations (4.13) and (4.15) as

θ ′0(0, τ )=
∂

∂z
ϑ(−1/6,3/2)(3z, 3τ )

∣

∣

∣

∣

z=0

=
∂

∂z
exp

[

−πi

(

1+
θ

iπǫ

)

z2

](

1+
θ

iπǫ

)1/2

eπi/4

×
∑

n∈Z
exp

[

−
θ

ǫ

(

n−
7

6

)2

+
6θ

ǫ

(

n−
7

6

)

z

]

exp

[

6πi

(

n−
7

6

)(

z +
1

2

)]
∣

∣

∣

∣

z=0

=
(

1+
θ

iπǫ

)1/2

e3πi/4
∑

n∈Z

[

6

(

πi +
θ

ǫ

)(

n−
7

6

)]

exp

[

−
θ

ǫ

(

n−
7

6

)2

+ 3nπi

]

,

θ ′2(0, τ )=
∂

∂z
ϑ(1/2,3/2)(3z, 3τ )

∣

∣

∣

∣

z=0

=
∂

∂z
exp

[

−πi

(

1+
θ

iπǫ

)

z2

](

1+
θ

iπǫ

)1/2

eπi/4

×
∑

n∈Z
exp

[

−
θ

ǫ

(

n−
1

2

)2

+
6θ

ǫ

(

n−
1

2

)

z

]

exp

[

6πi

(

n−
1

2

)(

z +
1

2

)]
∣

∣

∣

∣

z=0

=
(

1+
θ

iπǫ

)1/2

e3πi/4
∑

n∈Z

[

6

(

πi +
θ

ǫ

)(

n−
1

2

)]

exp

[

−
θ

ǫ

(

n−
1

2

)2

+ 3nπi

]

,

respectively, which imply

3μ=−6
θ ′0(0, τ )

θ ′2(0, τ )
=−6

e3πi/4
∑

n∈Z(n−
7
6
) exp[− θ

ǫ
(n− 7

6
)2 + 3nπi]

e3πi/4
∑

n∈Z(n−
1
2
) exp[− θ

ǫ
(n− 1

2
)2 + 3nπi]

∼ −6
(− 1

6
) exp(− θ

36ǫ
+ 3πi)

− 1
2

exp(− θ
4ǫ

)+ 1
2

exp(− θ
4ǫ
+ 3πi)

= e2θ/9ǫ,

as ǫ→+0. Accordingly, from equation (4.6) we may put consistently

θ = 9
2
K. (4.21)

Let us set xn = eXn/ǫ and yn = eYn/ǫ in equation (4.19). Then the complex factors

in equation (4.19) disappear in the limit of ǫ→+0 and we finally obtain by using
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TABLE 1. Quadrant of (xn, yn) for ǫ ∼+0, where N = Floor(( u
3K

))+ 2.

(( u
3K

)) n0 n1 n2 n0 + n2 n1 + n2 + 1 (xn, yn)

[ 2
3
, 1) N N N − 1 2N − 1 2N (−,+)

[ 1
3
, 2

3
) N N − 1 N − 1 2N − 1 2N − 1 (−,−)

[0, 1
3
) N − 1 N − 1 N − 1 2N − 2 2N − 1 (+,−)

equation (4.21)

Xn =−
9K

2

[((

u−K

3K

))

−
1

2

]2

+
9K

2

[((

u− 3K

3K

))

−
1

2

]2

,

Yn =−
9K

2

[((

u− 2K

3K

))

−
1

2

]2

+
9K

2

[((

u− 3K

3K

))

−
1

2

]2

,

(4.22)

which is equivalent to equation (2.32). This completes the proof. ✷

We finally remark that the choice of parametrization (4.8) can also be justified by the

following observation. The asymptotic formula (4.19) shows that (xn, yn) is in R2 and that

the quadrant of (xn, yn) changes according to the value of (( u
3K

)) as described in Table 1.

Note that (xn, yn) never enters the first quadrant. It implies that the qualitative behavior of

the real orbit of the map (2.8) discussed in Section 3 is preserved under the limiting process.
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A. Proof of Lemma 3.3

In this appendix, we give a proof of Lemma 3.3. Besides the cases k = 0, 1, 2, we also use

the cases k = 1
2
, 3

2
, 5

2
as well. Note that θk+3(z, τ )= θk(z, τ ).

First, we remark that θ1/2(z, τ )= ϑ(0,3/2)(3z, 3τ ) and θ2(z, τ )= ϑ(1/2,3/2)(3z, 3τ ) are

ϑ(3z, 3τ ) and ϑ1(3z, 3τ ) of Jacobi’s notation, respectively. Let us start from equation (A)-(4)

in [14]:

θ1/2(w)θ1/2(x)θ1/2(y)θ1/2(z)− θ2(w)θ2(x)θ2(y)θ2(z)

= θ1/2(w
′)θ1/2(x

′)θ1/2(y
′)θ1/2(z

′)− θ2(w
′)θ2(x

′)θ2(y
′)θ2(z

′), (A.1)

where

w′ =
w + x + y + z

2
, x ′ =

w + x − y − z

2
,

y ′ =
w − x + y − z

2
, z′ =

w − x − y + z

2
.

(A.2)
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Replacing w→ w + τ/3, we have w′→w′ + τ/6, x ′→ x ′ + τ/6, y ′→ y ′ + τ/6 and

z′→ z′ + τ/6. By using the formula

θk

(

z+
τ

6

)

= e−πi/2e−πiτ/12−πizθk+1/2(z), θk

(

z +
τ

3

)

= e−πie−πiτ/3−2πizθk+1(z),

(A.3)

which easily follows by definition, we obtain

− θ3/2(w)θ1/2(x)θ1/2(y)θ1/2(z)+ θ0(w)θ2(x)θ2(y)θ2(z)

= θ1(w
′)θ1(x

′)θ1(y
′)θ1(z

′)− θ5/2(w
′)θ5/2(x

′)θ5/2(y
′)θ5/2(z

′). (A.4)

Replacing further w→ w + τ/3, x → x + τ/3, y → y + τ/3 and z→ z+ τ/3, we see that

w′→ w′ + 2τ/3 and x ′, y ′, z′ are unchanged. Then we obtain

− θ5/2(w)θ3/2(x)θ3/2(y)θ3/2(z)+ θ1(w)θ0(x)θ0(y)θ0(z)

= θ0(w
′)θ1(x

′)θ1(y
′)θ1(z

′)− θ3/2(w
′)θ5/2(x

′)θ5/2(y
′)θ5/2(z

′). (A.5)

Application of the same transformation to equation (A.1) yields

θ3/2(w)θ3/2(x)θ3/2(y)θ3/2(z)− θ0(w)θ0(x)θ0(y)θ0(z)

= θ5/2(w
′)θ1/2(x

′)θ1/2(y
′)θ1/2(z

′)− θ1(w
′)θ2(x

′)θ2(y
′)θ2(z

′). (A.6)

We put w =−(x + y + z) in equations (A.4) and (A.5). Then w′ = 0, x ′ =−(y + z),

y ′ =−(z+ x) and z′ =−(x + y). By definition it follows that

θ0(−z)=−θ1(z), θ1/2(−z)= θ1/2(z), θ2(−z)=−θ2(z), θ3/2(−z)= θ5/2(z),

(A.7)

and hence

θ1(0)=−θ0(0), θ5/2(0)= θ3/2(0), θ2(0)= 0. (A.8)

Therefore equations (A.4) and (A.5) yield

− θ5/2(x + y + z)θ1/2(x)θ1/2(y)θ1/2(z)− θ1(x + y + z)θ2(x)θ2(y)θ2(z)

= θ1(0)θ0(y + z)θ0(z+ x)θ0(x + y)− θ3/2(0)θ3/2(y + z)θ3/2(z+ x)θ3/2(x + y),

(A.9)

θ3/2(x + y + z)θ3/2(x)θ3/2(y)θ3/2(z)+ θ0(x + y + z)θ0(x)θ0(y)θ0(z)

=−θ0(0)θ0(y + z)θ0(z + x)θ0(x + y)− θ3/2(0)θ3/2(y + z)θ3/2(z + x)θ3/2(x + y),

(A.10)

respectively. Similarly, putting w = x + y + z, we have that w′ = x + y + z and x ′, y ′, z′ are

unchanged. Then equation (A.6) yields

θ3/2(x + y + z)θ3/2(x)θ3/2(y)θ3/2(z)− θ0(x + y + z)θ0(x)θ0(y)θ0(z)

= θ5/2(x + y + z)θ1/2(x)θ1/2(y)θ1/2(z)− θ1(x + y + z)θ2(x)θ2(y)θ2(z). (A.11)

Then from adding −(A.9)+ (A.10)+ (A.11) and dividing it by 2, we have

θ0(0)θ0(y + z)θ0(z + x)θ0(x + y)

= θ0(x + y + z)θ0(x)θ0(y)θ0(z)− θ1(x + y + z)θ2(x)θ2(y)θ2(z), (A.12)
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which yields equation (3.12) by putting z=−y in equation (A.12). Other addition formulas

are derived from equation (3.12). Applying x → x + τ/3, y → y + τ/3 on equation (3.12),

we have

θ0(0)2θ1(x + y)θ0(x − y)= θ0(x)θ1(x)θ1(y)2 − θ2(x)2θ0(y)θ2(y). (A.13)

Repeating the same procedure on equation (A.13), we obtain

θ0(0)2θ2(x + y)θ0(x − y)= θ0(x)θ2(x)θ0(y)2 − θ1(x)2θ1(y)θ2(y). (A.14)

Exchanging x ↔ y in equation (3.12), we have

θ0(0)2θ0(x + y)θ1(x − y)= θ0(x)θ1(x)θ0(y)2 − θ2(x)2θ1(y)θ2(y). (A.15)

Repeating x → x + τ/3, y → y + τ/3 on equation (A.15) twice yields

θ0(0)2θ1(x + y)θ1(x − y)= θ0(x)θ2(x)θ2(y)2 − θ1(x)2θ0(y)θ1(y), (A.16)

θ0(0)2θ2(x + y)θ1(x − y)= θ1(x)θ2(x)θ1(y)2 − θ0(x)2θ0(y)θ2(y), (A.17)

respectively. Applying x → x + τ/3 to equation (A.17), we obtain

θ0(0)2θ0(x + y)θ2(x − y)= θ0(x)θ2(x)θ1(y)2 − θ1(x)2θ0(y)θ2(y). (A.18)

Again, repeating x → x + τ/3, y → y + τ/3 on equation (A.15) twice, we have

θ0(0)2θ1(x + y)θ2(x − y)= θ1(x)θ2(x)θ0(y)2 − θ0(x)2θ1(y)θ2(y), (A.19)

θ0(0)2θ2(x + y)θ2(x − y)= θ0(x)θ1(x)θ2(y)2 − θ2(x)2θ0(y)θ1(y), (A.20)

respectively. This completes the proof of Lemma 3.3. ✷
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and C. Paar. Springer, Berlin, 2001, pp. 402–410.

[16] K. Kajiwara, A. Nobe and T. Tsuda. Ultradiscretization of solvable one-dimensional chaotic maps.

J. Phys. A: Math. Theor. 41 (2008), 395202 (13pp).

[17] T. Kimijima and T. Tokihiro. Initial-value problem of the discrete periodic Toda equation and its

ultradiscretization. Inverse Problems 18 (2002), 1705–1732.

[18] A. N. Kirillov. Introduction to tropical combinatorics. Physics and Combinatorics 2000. Eds. A. N. Kirillov

and N. Liskova. World Scientific, River Edge, NJ, 2001, pp. 82–150.

[19] A. Kuniba, M. Okado, R. Sakamoto, T. Takagi and Y. Yamada. Crystal interpretation of Kerov–Kirillov–

Reshetikhin bijection. Nucl. Phys. B740 (2006), 299–327.

[20] A. Kuniba and R. Sakamoto. Combinatorial Bethe ansatz and ultradiscrete Riemann theta function with

rational characteristics. Lett. Math. Phys. 80 (2007), 199–209.

[21] A. Kuniba, R. Sakamoto and Y. Yamada. Tau functions in combinatorial Bethe ansatz. Nucl. Phys. B786

(2007), 207–266.

[22] A. Kuniba, T. Takagi and A. Takenouchi. Bethe ansatz and inverse scattering transform in a periodic box–ball

system. Nucl. Phys. B747 (2006), 354–397.

[23] J. Matsukidaira, J. Satsuma, D. Takahashi, T. Tokihiro and M. Torii. Toda-type cellular automaton and its

N -soliton solution. Phys. Lett. A225 (1997), 287–295.

[24] G. Mikhalkin. Enumerative tropical algebraic geometry in R2. J. Amer. Math. Soc. 18 (2005), 313–377.

[25] G. Mikhalkin. Tropical geometry and its applications. Preprint, arXiv:math/0601041v2 [math.AG], 2006.

[26] G. Mikhalkin and I. Zharkov. Tropical curves, their Jacobians and theta functions. Preprint,

arXiv:math/0612267v2 [math.AG], 2006.

[27] J. Matsukidaira and K. Nishinari. Euler–Lagrange correspondence of cellular automaton for traffic-flow

models. Phys. Rev. Lett. 90 (2003), 088701.

[28] D. Mumford. Tata Lectures on Theta I. Birkhäuser, Boston, 1983.
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