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Abstract

Background: For decades, 16S ribosomal RNA sequencing has been the primary means for identifying the bacterial
species present in a sample with unknown composition. One of the most widely used tools for this purpose today is
the QIIME (Quantitative Insights Into Microbial Ecology) package. Recent results have shown that the newest release,
QIIME 2, has higher accuracy than QIIME, MAPseq, and mothur when classifying bacterial genera from simulated
human gut, ocean, and soil metagenomes, although QIIME 2 also proved to be the most computationally expensive.
Kraken, first released in 2014, has been shown to provide exceptionally fast and accurate classification for shotgun
metagenomics sequencing projects. Bracken, released in 2016, then provided users with the ability to accurately
estimate species or genus relative abundances using Kraken classification results. Kraken 2, which matches the
accuracy and speed of Kraken 1, now supports 16S rRNA databases, allowing for direct comparisons to QIIME and
similar systems.

Methods: For a comprehensive assessment of each tool, we compare the computational resources and speed of
QIIME 2’s q2-feature-classifier, Kraken 2, and Bracken in generating the three main 16S rRNA databases: Greengenes,
SILVA, and RDP. For an evaluation of accuracy, we evaluated each tool using the same simulated 16S rRNA reads from
human gut, ocean, and soil metagenomes that were previously used to compare QIIME, MAPseq, mothur, and QIIME
2. We evaluated accuracy based on the accuracy of the final genera read counts assigned by each tool. Finally, as
Kraken 2 is the only tool providing per-read taxonomic assignments, we evaluate the sensitivity and precision of
Kraken 2’s per-read classifications.

Results: For both the Greengenes and SILVA database, Kraken 2 and Bracken are up to 100 times faster at database
generation. For classification, using the same data as previous studies, Kraken 2 and Bracken are up to 300 times faster,
use 100x less RAM, and generate results that more accurate at 16S rRNA profiling than QIIME 2’s q2-feature-classifier.

Conclusion: Kraken 2 and Bracken provide a very fast, efficient, and accurate solution for 16S rRNA metataxonomic
data analysis.
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Introduction
Since the 1970s, sequencing of the 16S ribosomal RNA

gene has been used for analyzing and identifying bac-

terial communities [1, 2]. This technology targets the

16S rRNA gene, which has regions that are both highly

conserved and highly variable (hypervariable) among bac-

terial species. The highly conserved regions allow for the

design of “universal” PCR primers to target and amplify

the 16S rRNA sequence, while the hypervariable regions

allow for discrimination among different bacterial clades.

These properties allow 16S rRNA sequencing experi-

ments to capture nearly all of the bacteria in a microbial

community, which can then be compared to large 16S

rRNA databases to determine their identities.

Researchers have utilized 16S rRNA sequencing for a

very broad range of environmental and clinical studies.

For example, the Earth Microbiome Project [3] and other

environmental studies have used 16S rRNA sequencing to

reveal the bacterial diversity of soil [4, 5], beach sand [6],

and ocean environments [7], while other studies targeted

the microbiome of plants [8–10]. In the clinic, 16S rRNA

has been used for diagnostic purposes to identify infec-

tious bacterial species [11–13] and to characterize the

role of bacterial diversity in diseases such as diabetes [14],

Alzheimer’s disease [15], cancer [16], and autism [17].

The HumanMicrobiome Project, along with other human

microbiome studies, has used 16S rRNA data to charac-

terize the bacterial community present in the human gut,

feces, skin, and other areas of the body [18–20].

16S rRNA classification

Analysis of the bacterial community from a 16S rRNA

sequencing experiment includes comparing the reads to

reference database. The tool most widely used for 16S

rRNA analysis and classification today is the Quantitative

Insights into Microbial Ecology (QIIME) software pack-

age [21], which compares sequencing reads against a 16S

rRNA reference database. The three standard 16S rRNA

databases, each of which has somewhat different content,

are Greengenes [22], SILVA [23], and RDP [24].

First released in 2011, QIIME 1 [21] provided 4 classi-

fication algorithms for 16S rRNA, respectively based on

the RDP classifier [25], BLAST [26], UCLUST [27], and

SortMeRNA [28]. In 2018, QIIME 2 [29]’s q2-feature-

classifier was released [30], adding 3 new classification

algorithms based on scikit-learn’s naïve Bayes algorithm

[31], VSEARCH [32], and BLAST+ [33]. By default,

QIIME 1 uses the UCLUST algorithm for classification

while QIIME 2 suggests usage of the naïve Bayes algo-

rithm.

In 2018, Almeida et al. [34] performed benchmark

tests comparing QIIME 2 to its predecessor, QIIME 1,

and to two additional 16S rRNA classification tools,

MAPseq [35] and mothur [36]. Almeida et al. evaluated

the performance of each tool by classifying 16S rRNA

reads that were simulated from bacteria known to be

present in human gut, soil, and ocean microbiomes. That

study concluded that QIIME 2’s q2-feature-classifier pro-

vides the best accuracy on the basis of recall and F-score.

However, they also noted that QIIME 2was themost com-

putationally expensive, requiring substantially more CPU

time and more memory than other tools.

Kraken, Kraken 2, and Bracken

The Kraken program uses an alignment-free algorithm

that, when first released in 2014, was hundreds of times

faster than any previously described program for shotgun

metagenomics sequence analysis, with accuracy compa-

rable to BLAST and superior to other tools [37]. Using a

single thread, Kraken can classify sequence data at a rate

of > 1 million reads per minute.

In 2016, Bracken was released as an extension to Kraken

to estimate species abundance from Kraken’s output [38].

As originally designed, Kraken attempts to classify each

read as specifically as possible, allowing reads to be clas-

sified at any taxonomic level depending on how many

genomes share the same sequence. For example, a read

that has identical matches to two species will be clas-

sified at the genus level. Bracken adds the capability of

abundance estimation to Kraken, i.e., using Kraken’s read

counts and prior knowledge of the database sequences, it

estimates read counts for all species, genera, or higher-

level taxa in a sample. For example, when Bracken is asked

to estimate species counts, it will re-distribute all reads

that Kraken assigns at the genus level (or higher) down to

the species level.

Kraken 2, released in 2018, implemented significant

changes to the database structure and classification steps

to make databases smaller and classifications faster [39].

Because it uses the same classification algorithm, Kraken

2 has nearly the same precision and sensitivity as Kraken

1. However, Kraken 2 now also provides direct support

for 16S rRNA classification with any of the three standard

16S rRNA databases: Greengenes, SILVA, and RDP. This

new feature allowed us to compare Kraken 2 to the current

state-of-the-art programs for 16S rRNA classification, as

described below.

Kraken 2 versus QIIME 2

In 2016, Lindgreen et al. evaluated 14 metagenomics

classifiers, including Kraken 1 and QIIME 1 (UCLUST)

[40]. That study showed that Kraken achieved the lowest

false positive rate, 0%, while QIIME had a false pos-

itive rate of 0.28%. Kraken also had higher sensitivity

than QIIME, correctly labeling 70% of the reads while

QIIME was correct on 60%. Finally, Kraken obtained a

Pearson correlation between the known and predicted rel-

ative abundances of phyla and genera of 0.99, versus 0.78
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for QIIME. However, that study used different databases

and different input data (reads produced by metagenomic

shotgun sequencing) to evaluate these tools. For Kraken

1, Lindgreen et al. measured its performance on all input

sequences from a shotgun metagenomics experiment,

using a database containing all complete bacteria and

archaeal genomes from RefSeq, while for QIIME 1, they

analyzed its performance only on 16S rRNA sequences

against the 16S Greengenes database.

Because QIIME has primarily been used for 16S rRNA

sequencing projects and Kraken has previously been used

primarily for metagenomics shotgun sequencing projects,

the tools have not been directly compared. Here, we com-

pare QIIME 2’s q2-feature-classifier and Kraken 2 using

the 16S rRNA reads generated in the Almeida et al. bench-

mark study, using both the Greengenes and SILVA 16S

rRNA databases. We also show results for Kraken on the

RDP database, which is not compatible with QIIME 2.

Because we only tested the most recent version of each

tool, we will henceforth refer to QIIME 2 as QIIME and

Kraken 2 as Kraken.

Results
Prior to classification, Kraken requires users to first build

a specialized database consisting of three files: taxo.k2d,

opts.k2d, and hash.k2d. The user also can choose the value

k that determines the length of the sequences that Kraken

uses for its index; every sequence (or k-mer) of length k is

associated with the species in which it occurs.K-mers that

occur in two or more species are associated with the low-

est common ancestor of those species. The database files

contain the taxonomy and k-mer information for the spec-

ified database. Following generation of these files, Bracken

requires users to generate a k-mer distribution file. Kraken

and Bracken additionally allow the use of multiple threads

to accelerate database construction. We tested building all

files for the 16S rRNA Greengenes 13_8, SILVA 132, and

RDP 11.5 databases using 1, 4, 8, and 16 threads. Table 1

summarizes the contents of each of these databases.

For QIIME, users can generate the database (called a

“classifier”) by first converting sequence and taxonomy

files into QIIME compatible qza files. QIIME classifier

generation is single-threaded. QIIME does provide pre-

built SILVA and Greengenes taxonomy classifiers for q2-

feature-classifier at https://docs.qiime2.org/2020.6/data-

resources/. However, to evaluate the classifier generation

requirements, we built QIIME naïve-bayes classifiers for

Greengenes 13_8 and SILVA 132.

Figure 1a compares the combined database building

time for Kraken/Bracken against the classifier generation

time of QIIME. Kraken was at least 9x faster than QIIME

for database creation, e.g., it took 9 min to build the

Greengenes database index, while QIIME required 78min

for the same database. For the SILVA database, Kraken

required only 34 min while QIIME required more than 58

h to build the same database. Supplemental File 1 lists all

command lines used for building the databases.

To compare the accuracy of Kraken, Bracken, and

QIIME, we classified 12 samples generated by Almeida et

al. These 12 samples, each containing just under 200,000

reads, represent 3 different metagenomes (human, ocean,

and soil) and 4 different 16S rRNA primers (V12, V34,

V4, and V45). The number of reads in each sample is

shown in Table 2. See the “Methods” section for additional

information about sample generation and pre-processing

steps.

QIIME classifiers require one single file containing

all de-multiplexed reads. Therefore, we provided QIIME

with one file per metagenome, each containing reads from

all 4 primer sets. However, Kraken and Bracken classify

samples one at a time, requiring each of the 12 samples to

be processed individually.

Kraken and QIIME provide multi-threading options

to speed up classification. We therefore tested Kraken

and the QIIME Greengenes classifier using 1, 4, 8, and

16 threads. The QIIME SILVA classifier with 8 threads

required approximately 1.5 days of run time, and for this

reason, we only tested it using 16 and 8 threads and did not

evaluate the QIIME 2 SILVA classifier using 1 or 4 threads.

Figure 1b compares the average time in min-

utes required by QIIME’s q2-feature-classifier vs.

Kraken/Bracken to classify a single metagenome using

the 16S rRNA Greengenes and SILVA databases. Due

to the very large difference in run time between tools,

this figure compares the multi-threaded options of

QIIME against the single-threaded classification time of

Kraken/Bracken. Figure 1c reports the classification times

of Kraken/Bracken in seconds.

Another important consideration for software selec-

tion is the computational memory resources required.

We evaluated this by measuring the RAM in gigabytes

(GB) required for both classifiers. Figure 1d com-

pares the RAM required for the single-threaded runs

of Kraken/Bracken against the multi-threaded runs

using QIIME. Notably, all Kraken/Bracken runs used

less than 0.5 GB of RAM, which appears in the figure

as zero GB. To provide more detail on RAM usage,

Fig. 1e reports the RAM required by Kraken/Bracken

in megabytes (MB) for all multi-threading

options.

The resulting counts per genus for each of the human,

ocean, and soil samples are listed in Supplemental Tables

1, 2, and 3, respectively. Figure 2 compares the true dis-

tribution of genera in each metataxonomic sample against

the genus-level counts reported by Kraken 2, Bracken, and

QIIME 2. For clarity, this figure shows the combined read

counts across the V12, V34, V4, and V45 samples for each

metagenome.

https://docs.qiime2.org/2020.6/data-resources/
https://docs.qiime2.org/2020.6/data-resources/
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Table 1 16S rRNA databases used for the metataxonomic classifiers in this study

Database Version Release date Sequences Domains Phyla Classes Orders Family Genera Species

Greengenes 13_8 August 15, 2013 203,452 2 89 248 404 513 2102 2952

SILVA 132 December 13, 2017 695,171 5 228 514 1277 1531 9379 -

RDP 11.5 September 30, 2016 3,356,808 2 60 99 154 384 2466 -

For each of the most recently released versions of three 16S rRNA databases, this table describes the total number of sequences and the number of “traditional” nodes
represented in their respective taxonomies. The Greengenes numbers refer to the 99% OTU database, and the SILVA values reflect the Ref NR 99 database

Fig. 1 Build and classification statistics. a Required time to build each database for Kraken/Bracken and QIIME. Kraken and Bracken allow for multi-
threading while QIIME 2’s q2-feature-classifier is single-threaded. b Average classification runtime in minutes for each database. Kraken/Bracken
combined runtime is reported for only 1 thread as all runtimes are < 1 min and bars are too small to be visible at this scale. QIIME was only run using
16 and 8 threads for SILVA. c Classification runtime for Kraken and Bracken in seconds for all multi-threading options. d Computational memory
usage (RAM) for QIIME and Kraken/Bracken, shown in gigabytes (Gb). Kraken/Bracken RAM requirements reported only for 1 thread as Kraken and
Bracken require < 0.5Gb of RAM regardless of thread count. e Computational memory usage (RAM) for Kraken/Bracken shown in megabytes (Mb)
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Table 2 Sample read counts

Read counts V12 V34 V4 V45 Total

Human microbiome 186,689 189,972 193,787 192,319 762,767

Soil microbiome 196,254 193,564 196,226 194,325 780,369

Ocean microbiome 193,867 193,962 196,198 195,135 779,162

The read counts in each metagenome-primer sample. Each sample was generated as described in the Supplementary Methods

We used two different metrics to evaluate the genus

distribution accuracy: mean absolute percentage error

(MAPE) and Bray-Curtis dissimilarity (BC). Both error

rates measure how different the predicted sample dis-

tribution is from the true genera counts. See the

“Methods” section for details on how each error rate is

calculated. Given these two metrics, we evaluate accu-

racy as 1 − MAPE and 1 − BC. Figure 3a compares

the accuracy of each tool when calculating the cor-

rect combined read counts at the genus level for each

Fig. 2 Genera distribution for simulated microbiota. This plot compares the true genus relative abundances against those relative abundances
estimated by Kraken, Bracken, and QIIME’s q2-feature-classifier, for each of the three simulated microbiome samples (a human gut microbiome, b
ocean microbiome, c soil microbiome). Only the correct genera are represented by different bars while read assignments to any incorrect taxon are
included in “Other”
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metagenome. For further insight into how the choice

of 16S rRNA primer affects genus distribution accuracy,

we evaluated the average MAPE and average BC across

all 3 metagenome samples for each program/database.

Figure 3b uses these averages to compare the accuracy

between 16S rRNA primers. Supplemental Table 4 lists

all MAPE and BC values for each combination of soft-

ware/database/primer/metagenome.

While all tools tested provide general read counts per

genus, Kraken is the only tool that directly assigns each

read with a taxonomic label. Using this information, we

can calculate Kraken’s accuracy when classifying reads

at major taxonomic levels in terms of sensitivity and

precision. We measure precision by positive predictive

value (PPV, see Supplemental Methods for more details).

Figure 4 displays Kraken’s average sensitivity and PPV

for each database used (Fig. 4A) and for each 16S rRNA

primer used in generating the samples (Fig. 4b).

Discussion
In this study, we evaluated three systems for classifi-

cation and relative abundance estimation of 16S rRNA

sequencing data sets: Kraken 2, Bracken, and QIIME

2. For Kraken and Bracken, we used three 16S rRNA

databases: Greengenes, SILVA, and RDP, while for QIIME,

we only evaluated Greengenes and SILVA. We then used

these tools/databases to classify 12 samples generated by

Almeida et al., which represent 3 simulated metagenomes

(human gut, ocean, and soil) and 4 different 16S rRNA

primers (V12, V34, V4, and V45). In total, we collected

36 different results using Kraken/Bracken and 24 different

results using QIIME.

Database building time

For all systems compared here, database build time is

a function of the number of sequences in the database.

Because 16S Greengenes is the smallest database (with

200,000 sequences) and 16S RDP is the largest (with 3.4

million sequences), generation of database files is fastest

with Greengenes and slowest with RDP.

When comparing single-threaded Kraken/Bracken

against QIIME’s q2-feature-classifier, Kraken and Bracken

combined require far less build time. For the smallest 16S

rRNA database, Greengenes, QIIME required more than

an hour to generate the naïve Bayes classifier (Fig. 1a). By

comparison, single-threaded Kraken and Bracken com-

bined required less than 10 min to create the database

files. For 16S SILVA, with nearly 700,000 sequences,

QIIME 2 required more than 58 h for classifier genera-

tion while the single-threaded Kraken/Bracken required

only ∼ 30 min. We additionally note that the largest 16S

rRNA database, RDP, required a little more than an hour

for single-threaded Kraken 2 and Bracken to create the

database files. As mentioned above, the RDP database is

incompatible with QIIME 2. The multi-threaded nature

of Kraken 2 and Bracken further accelerate the database

building process, with 4 threads halving the required

build time (Fig. 1a).

Classification time/memory requirements

As observed by Almeida et al., QIIME 2’s q2-feature-

classifier requires more computational resources than

other methods during classification. With the use of 16

CPU threads, QIIME required 35 min on average to clas-

sify the human, ocean, and soil metataxonomic samples

using the Greengenes database (Fig. 1b). The QIIME’s

SILVA classifier required 16 h on average. By compari-

son, single-threaded Kraken 2 and Bracken required on

average 1 min per metataxonomic sample. This runtime

decreases from 1 min to 15, 10, and 6 s for 4, 8, and 16

threads respectively (Fig. 1c). The runtime of Kraken 2 and

Bracken was nearly the same for all three databases. Thus,

Kraken or Braken is at least 350 times faster (6 s vs. 35

min) than QIIME 2 when run with 16 parallel threads.

The amount of computer memory (RAM) required by

each system also varied widely (Fig. 1d). For all three

databases, single-threaded Kraken required < 260 MB of

RAM. However, the single-threaded QIIME Greengenes

classifier required 3.6 GB of RAM. Increasing the number

of threads for Kraken also increases the total RAM used,

with 16 threads using 400–500MB of RAM for each of the

Kraken databases (Fig. 1e). However, for QIIME, increas-

ing the number of threads decreased the total RAM: the

QIIME Greengenes classifier with 16 threads used ∼ 2.7

GB, and the QIIME SILVA classifier with 16 threads used

48 GB of RAM (Fig. 1d).

Accuracy of relative abundance estimation

Finally, we compared the accuracy of all three tools based

on their ability to recreate the true genus distribution of

the simulated samples (Fig. 2). We quantified the accuracy

of these distributions using both MAPE and Bray-Curtis

dissimilarity (Supplemental Table 4).

In all cases, Bracken performed better than Kraken 2,

which was expected because Kraken is a classification

tool, not an abundance estimation system. Kraken clas-

sifies reads at any level in the taxonomy, which means

that some reads might be assigned to a higher level

genus, e.g., any read that has equally good matches to

two genera will be assigned to the family containing

them. For the simulated datasets in this study, Kraken

assigned from 7–30% of the reads to levels above genus.

These reads are not incorrectly classified, but the result

is that Kraken underestimates the abundances of their

genera. By contrast, Bracken is designed to use Kraken’s

classification data to estimate all read counts at the

genus level, thereby improving on Kraken’s genus-level

distribution.
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On average, Bracken performed the best, having the

lowest average error rates across all three 16S rRNA

databases (Supplemental Table 4). Bracken also had the

lowest error rate for 8/9 combinations of samples and

databases. The only sample where QIIME 2 had a lower

error rate than Bracken was in the classification of

the ocean samples against the 16S Greengenes database

(Fig. 3a). However, QIIME 2 had the highest error rate

when classifying the human sample against Greengenes

or SILVA, regardless of whether measured by MAPE or

Bray-Curtis dissimilarity.

In analyzing the trends across the databases using both

MAPE and Bray-Curtis, Bracken performed the best using

the 16S SILVA database and performed the worst using

the 16S RDP database. 16S RDP yielded on average 0.391

MAPE and 0.221 BC Index while 16S SILVA only yielded

a 0.286 MAPE and a 0.153 BC Index. 16S Greengenes

with Bracken had an average of 0.313 MAPE and a 0.165

BC Index. Although QIIME 2 was not tested on 16S RDP,

QIIME 2 yielded the same trends when comparing 16S

Greengenes and SILVA, with 16S SILVA outperforming

16S Greengenes in almost all cases.

In addition to evaluating the different tools, we also

evaluated the accuracy of each of the primer sets (V12,

V34, V4, and V45) that were used by Almeida et al..

Figure 3b shows the average accuracy of each primer set

across all 3 metagenomes for a given software/database

pairing. For bothGreengenes and SILVA, the samples gen-

erated using V34 and V12 performed slightly better. How-

ever, for RDP, the difference in accuracy between primer

samples is further magnified. When classifying with the

RDP database, both Kraken and Bracken had significantly

better results for the V12 and V34 samples (Fig. 3b).

Per-read classification accuracy

Kraken is the only program of the three tested here that

provide per-read assignments by default, allowing us to

compute the read-level accuracy of its taxonomy assign-

ments. Per-read accuracy is somewhat dependent on the

reference database, but highly dependent on the 16S

Fig. 3MAPE and Bray-Curtis dissimilarity. This plot evaluates classification accuracy by using the inverse of two error metrics: mean absolute
proportion error (MAPE) and Bray-Curtis dissimilarity (BC). a Comparison of the accuracy of Kraken, Bracken, and Qiime’s q2-feature-classifier when
predicting the genus read counts across all samples for given metagenome/database. b Comparison of the accuracy between the individual
primers averaged across all 3 metagenomes for a given software/database. The top plots calculate accuracy as 1 − MAPE while the bottom plots
evaluate 1 − BC
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rRNA primer set (Fig. 4b). In particular, Kraken had three

times higher sensitivity (60%) and PPV (65%) when clas-

sifying reads generated using V12 primers versus those

generated from V45 primers (20% and 21%).

As expected, sensitivity and precision increased with

taxonomic level, with class and phylum sensitivity and

precision exceeding 0.95 for all sample sets and all

databases. Supplemental Table 6 contains exact numbers

for sensitivity and precision for each dataset and database.

Taxonomy inconsistencies

In our experiments, we observed that the accuracy of

16S rRNA analysis is highly dependent on the choice of

16S rRNA database, a phenomenon well known to the

16S rRNA community [13, 25]. The 170 distinct genera

present in our human, ocean, and soil metagenomes were

selected from the NCBI taxonomy, but none of the three

16S rRNA database taxonomies contains precisely the

same genera. Each 16S rRNA database is independently

curated from different reference sets, resulting in sub-

stantial differences among the taxonomies [41]. Among

the 170 unique genera uses here, 22 are missing from

Greengenes, 19 have different names or are mapped to

multiple genera in RDP, and 16 have different names in

Silva (see Supplemental Table 5). For example, Agrobac-

terium, Burkholderia, and Rhizobium are not unique

genera in the 16S SILVA taxonomy, but are combined into

a single “Allorhizobium-Neorhizbium-Pararhizobium-

Rhizobium” genus. Escherichia and Shigella are also

combined into the “Escherichia-Shigella” genus in 16S

SILVA. The Clostridium sequences in 16S SILVA are

split between 19 different genera, each with the prefix of

“Clostridium sensu stricto” followed by a number 1–19

[42].

Conclusion
Although each of the 16S rRNA databases represents

a large number of bacterial organisms, the accuracy of

metataxonomic classifiers varied substantially among

them. In our experiments, 16S SILVA provided the

lowest error rates and highest per-read accuracy regard-

less of the software used in classification. Across all

databases, Kraken 2 and Bracken outperformed QIIME

2’s q2-feature-classifier in terms of computational

Fig. 4 Kraken per-read accuracy. As Kraken is the only tool tested that provides per-read taxonomy assignments, we evaluate the sensitivity and
precision (PPV) of Kraken 2’s taxonomy assignments at each major taxonomic level
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requirements, runtime, and accuracy. Single-threaded

Kraken/Bracken was nearly 8x faster than QIIME 2

at building the 16S Greengenes database and 100x

faster at building a 16S SILVA database. Kraken and

Bracken also allow for multi-threaded database build-

ing, which allows any 16S rRNA database to be built

in less than 20 min. For classification, Kraken/Bracken

used 20 times less RAM, performed 300 times faster,

and achieved better genus-level resolution than

QIIME 2.

Methods
Almeida simulated data

QIIME 2, Kraken 2, and Bracken were evaluated

using the A500 synthetic microbiome samples

generated by Almeida et al. and available at

ftp://ftp.ebi.ac.uk/pub/databases/metagenomics/taxon_

benchmarking/. The A500 set contains 12 samples

representing three different microbial environments:

the human gut, ocean, and soil. For each of these envi-

ronments, genomic sequences for their most abundant

genera were extracted and randomly sampled. These

human gut, ocean, and soil genomes then were sub-

sampled four times to simulate 16S rRNA profiling using

four different primer sets, generating 200,000,250-bp

paired-end reads per primer sequence. The sub-sampling

introduced a 2% random mutation to each sequencing

read. Almeida et al. then performed pre-processing

and quality control to filter sequences with ambigu-

ous base calls, as is suggested for QIIME 2 analysis

([30, 43]). With three microbial environments and

four primer sets, Almeida et al. thereby generated 12

sets of synthetic communities for testing. Information

about the software and primers used in dataset gener-

ation is further described in the “Methods” section of

Almeida et al. [34].

Software and databases

The software packages tested are Kraken 2 (downloaded

on 2020/03/05), Bracken v2.5, and QIIME 2 v2017.11.

Kraken and Bracken database files were generated for

Greengenes 13_8, SILVA 132, and RDP 11.5 database

releases. QIIME 2 database files were generated for

Greengenes 13_8 and SILVA 132.

Error rate calculations

For evaluating the accuracy of Kraken 2, Bracken, and

QIIME 2, we calculated two different error metrics

which compare the true genera distributions against those

reported by each program. The first error metric is a

modified mean absolute proportion error (MAPE) which

compares the difference between the true read counts (Tg)

for a given genus and the measured read counts (Ag) for

that same genus.

MAPE =

n∑

g=1

Tg∑n
g=1 Tg

×
|Ag − Tg |

Tg
(1)

Each difference is calculated as a fraction of the true

counts and then weighted by the fraction of the total

sample. n is the total number of true genera in the sample.

The second metric, Bray-Curtis dissimilarity [44], is a

similar measurement of the dissimilarity between the true

genera distribution and the measured genera distribution.

The formula for Bray-Curtis dissimilarity is:

BCij = 1 −
2Cij

Si + Sj
(2)

where Cij is the sum of lesser reads for genera in common

and Si = Sj is the total number of reads. In other words,

for every true genus g in the sample, if Tg < Ag ,Cij =

Cij + Tg . Otherwise, if Tg > Ag ,Cij = Cij + Ag .

MAPE and BC values both fall between 0 and 1, where

larger values indicate a greater difference between samples

and smaller values indicate a greater similarity.

Sensitivity and precision (PPV) calculations

As Kraken 2 provides taxonomic assignments for every

read, we can use the true taxonomic tree of each read to

calculate sensitivity and precision at all taxonomic levels.

For this explanation, we describe our calculations of sensi-

tivity and precision for the genus level. First, we calculate

true positive (TP), vague positive (VP), false positive (FP),

and false negative (FN) read counts. We define TP read

counts as the number of reads correctly classified at the

genus level. This includes reads that are classified as any

species within the true genus. Vague positive (VP) reads

account for the possibility that a read is classified as any

ancestor of the true taxon. Therefore, VP reads include

all TP reads and all reads assigned to ancestor taxa of the

true genus. FN reads are all classified reads that are not

VP reads. This thereby includes reads classified at any taxa

not within the direct lineage of the true genera. Finally, we

define FN as the number of unclassified reads. Notably,

in all experiments, Kraken 2 did not label any read as

unclassified (FN = 0).

From these values, we define sensitivity and precision

(measured by positive predictive value, PPV ) using the

following two equations:

Sensitivity =
TP

TP + VP + FN + FP

=
TP

TP + VP + FP

(3)

PPV =
TP

TP + FP
(4)

https://ftp://ftp.ebi.ac.uk/pub/databases/metagenomics/taxon_benchmarking/
https://ftp://ftp.ebi.ac.uk/pub/databases/metagenomics/taxon_benchmarking/
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