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Bowtie: short-read alignment<p>Bowtie: a new ultrafast memory-efficient tool for the alignment of short DNA sequence reads to large genomes.</p>

Abstract

Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence reads
to large genomes. For the human genome, Burrows-Wheeler indexing allows Bowtie to align more
than 25 million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes.
Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking
algorithm that permits mismatches. Multiple processor cores can be used simultaneously to achieve
even greater alignment speeds. Bowtie is open source http://bowtie.cbcb.umd.edu.

Rationale
Improvements in the efficiency of DNA sequencing have both
broadened the applications for sequencing and dramatically
increased the size of sequencing datasets. Technologies from
Illumina (San Diego, CA, USA) and Applied Biosystems (Fos-
ter City, CA, USA) have been used to profile methylation pat-
terns (MeDIP-Seq) [1], to map DNA-protein interactions
(ChIP-Seq) [2], and to identify differentially expressed genes
(RNA-Seq) [3] in the human genome and other species. The
Illumina instrument was recently used to re-sequence three
human genomes, one from a cancer patient and two from pre-
viously unsequenced ethnic groups [4-6]. Each of these stud-
ies required the alignment of large numbers of short DNA
sequences ('short reads') onto the human genome. For exam-
ple, two of the studies [4,5] used the short read alignment tool
Maq [7] to align more than 130 billion bases (about 45× cov-
erage) of short Illumina reads to a human reference genome
in order to detect genetic variations. The third human re-
sequencing study [6] used the SOAP program [8] to align
more than 100 billion bases to the reference genome. In addi-
tion to these projects, the 1,000 Genomes project is in the
process of using high-throughput sequencing instruments to

sequence a total of about six trillion base pairs of human DNA
[9].

With existing methods, the computational cost of aligning
many short reads to a mammalian genome is very large. For
example, extrapolating from the results presented here in
Tables 1 and 2, one can see that Maq would require more than
5 central processing unit (CPU)-months and SOAP more than
3 CPU-years to align the 140 billion bases from the study by
Ley and coworkers [5]. Although using Maq or SOAP for this
purpose has been shown to be feasible by using multiple
CPUs, there is a clear need for new tools that consume less
time and computational resources.

Maq and SOAP take the same basic algorithmic approach as
other recent read mapping tools such as RMAP [10], ZOOM
[11], and SHRiMP [12]. Each tool builds a hash table of short
oligomers present in either the reads (SHRiMP, Maq, RMAP,
and ZOOM) or the reference (SOAP). Some employ recent
theoretical advances to align reads quickly without sacrificing
sensitivity. For example, ZOOM uses 'spaced seeds' to signif-
icantly outperform RMAP, which is based on a simpler algo-
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rithm developed by Baeza-Yaetes and Perleberg [13]. Spaced
seeds have been shown to yield higher sensitivity than contig-
uous seeds of the same length [14,15]. SHRiMP employs a
combination of spaced seeds and the Smith-Waterman [16]
algorithm to align reads with high sensitivity at the expense of
speed. Eland is a commercial alignment program available
from Illumina that uses a hash-based algorithm to align
reads.

Bowtie uses a different and novel indexing strategy to create
an ultrafast, memory-efficient short read aligner geared
toward mammalian re-sequencing. In our experiments using
reads from the 1,000 Genomes project, Bowtie aligns 35-base
pair (bp) reads at a rate of more than 25 million reads per
CPU-hour, which is more than 35 times faster than Maq and
300 times faster than SOAP under the same conditions (see
Tables 1 and 2). Bowtie employs a Burrows-Wheeler index
based on the full-text minute-space (FM) index, which has a
memory footprint of only about 1.3 gigabytes (GB) for the
human genome. The small footprint allows Bowtie to run on

a typical desktop computer with 2 GB of RAM. The index is
small enough to be distributed over the internet and to be
stored on disk and re-used. Multiple processor cores can be
used simultaneously to achieve even greater alignment speed.
We have used Bowtie to align 14.3× coverage worth of human
Illumina reads from the 1,000 Genomes project in about 14
hours on a single desktop computer with four processor cores.

Bowtie makes a number of compromises to achieve this
speed, but these trade-offs are reasonable within the context
of mammalian re-sequencing projects. If one or more exact
matches exist for a read, then Bowtie is guaranteed to report
one, but if the best match is an inexact one then Bowtie is not
guaranteed in all cases to find the highest quality alignment.
With its highest performance settings, Bowtie may fail to
align a small number of reads with valid alignments, if those
reads have multiple mismatches. If the stronger guarantees
are desired, Bowtie supports options that increase accuracy at
the cost of some performance. For instance, the '--best' option
will guarantee that all alignments reported are best in terms

Table 1

Bowtie alignment performance versus SOAP and Maq

Platform CPU time Wall clock time Reads mapped per 
hour (millions)

Peak virtual memory 
footprint (megabytes)

Bowtie speed-up Reads aligned (%)

Bowtie -v 2 Server 15 m 7 s 15 m 41 s 33.8 1,149 - 67.4

SOAP 91 h 57 m 35 s 91 h 47 m 46 s 0.10 13,619 351× 67.3

Bowtie PC 16 m 41 s 17 m 57 s 29.5 1,353 - 71.9

Maq 17 h 46 m 35 s 17 h 53 m 7 s 0.49 804 59.8× 74.7

Bowtie Server 17 m 58 s 18 m 26 s 28.8 1,353 - 71.9

Maq 32 h 56 m 53 s 32 h 58 m 39 s 0.27 804 107× 74.7

The performance and sensitivity of Bowtie v0.9.6, SOAP v1.10, and Maq v0.6.6 when aligning 8.84 M reads from the 1,000 Genome project (National 
Center for Biotechnology Information Short Read Archive: SRR001115) trimmed to 35 base pairs. The 'soap.contig' version of the SOAP binary was 
used. SOAP could not be run on the PC because SOAP's memory footprint exceeds the PC's physical memory. For the SOAP comparison, Bowtie 
was invoked with '-v 2' to mimic SOAP's default matching policy (which allows up to two mismatches in the alignment and disregards quality values). 
For the Maq comparison Bowtie is run with its default policy, which mimics Maq's default policy of allowing up to two mismatches during the first 28 
bases and enforcing an overall limit of 70 on the sum of the quality values at all mismatched positions. To make Bowtie's memory footprint more 
comparable to Maq's, Bowtie is invoked with the '-z' option in all experiments to ensure only the forward or mirror index is resident in memory at 
one time. CPU, central processing unit.

Table 2

Bowtie alignment performance versus Maq with filtered read set

Platform CPU time Wall clock time Reads mapped per hour 
(millions)

Peak virtual memory 
footprint (megabytes)

Bowtie speed up Reads aligned (%)

Bowtie PC 16 m 39 s 17 m 47 s 29.8 1,353 - 74.9

Maq 11 h 15 m 58 s 11 h 22 m 2 s 0.78 804 38.4× 78.0

Bowtie Server 18 m 20 s 18 m 46 s 28.3 1,352 - 74.9

Maq 18 h 49 m 7 s 18 h 50 m 16 s 0.47 804 60.2× 78.0

Performance and sensitivity of Bowtie v0.9.6 and Maq v0.6.6 when the read set is filtered using Maq's 'catfilter' command to eliminate poly-A 
artifacts. The filter eliminates 438,145 out of 8,839,010 reads. Other experimental parameters are identical to those of the experiments in Table 1. 
CPU, central processing unit.
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of minimizing mismatches in the seed portion of the read,
although this option incurs additional computational cost.

With its default options, Bowtie's sensitivity measured in
terms of reads aligned is equal to SOAP's and somewhat less
than Maq's. Command line options allow the user to increase
sensitivity at the cost of greater running time, and to enable
Bowtie to report multiple hits for a read. Bowtie can align
reads as short as four bases and as long as 1,024 bases. The
input to a single run of Bowtie may comprise a mixture of
reads with different lengths.

Bowtie description and results
Bowtie indexes the reference genome using a scheme based
on the Burrows-Wheeler transform (BWT) [17] and the FM
index [18,19]. A Bowtie index for the human genome fits in
2.2 GB on disk and has a memory footprint of as little as 1.3
GB at alignment time, allowing it to be queried on a worksta-
tion with under 2 GB of RAM.

The common method for searching in an FM index is the
exact-matching algorithm of Ferragina and Manzini [18].
Bowtie does not simply adopt this algorithm because exact
matching does not allow for sequencing errors or genetic var-
iations. We introduce two novel extensions that make the
technique applicable to short read alignment: a quality-aware
backtracking algorithm that allows mismatches and favors
high-quality alignments; and 'double indexing', a strategy to

avoid excessive backtracking. The Bowtie aligner follows a
policy similar to Maq's, in that it allows a small number of
mismatches within the high-quality end of each read, and it
places an upper limit on the sum of the quality values at mis-
matched alignment positions.

Burrows-Wheeler indexing
The BWT is a reversible permutation of the characters in a
text. Although originally developed within the context of data
compression, BWT-based indexing allows large texts to be
searched efficiently in a small memory footprint. It has been
applied to bioinformatics applications, including oligomer
counting [20], whole-genome alignment [21], tiling microar-
ray probe design [22], and Smith-Waterman alignment to a
human-sized reference [23].

The Burrows-Wheeler transformation of a text T, BWT(T), is
constructed as follows. The character $ is appended to T,
where $ is not in T and is lexicographically less than all char-
acters in T. The Burrows-Wheeler matrix of T is constructed
as the matrix whose rows comprise all cyclic rotations of T$.
The rows are then sorted lexicographically. BWT(T) is the
sequence of characters in the rightmost column of the Bur-
rows-Wheeler matrix (Figure 1a). BWT(T) has the same
length as the original text T.

This matrix has a property called 'last first (LF) mapping'. The
ith occurrence of character X in the last column corresponds to
the same text character as the ith occurrence of X in the first

Burrows-Wheeler transformFigure 1
Burrows-Wheeler transform. (a) The Burrows-Wheeler matrix and transformation for 'acaacg'. (b) Steps taken by EXACTMATCH to identify the range 
of rows, and thus the set of reference suffixes, prefixed by 'aac'. (c) UNPERMUTE repeatedly applies the last first (LF) mapping to recover the original text 
(in red on the top line) from the Burrows-Wheeler transform (in black in the rightmost column).

(a)

(b)

(c)
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column. This property underlies algorithms that use the BWT
index to navigate or search the text. Figure 1b illustrates
UNPERMUTE, an algorithm that applies the LF mapping
repeatedly to re-create T from BWT(T).

The LF mapping is also used in exact matching. Because the
matrix is sorted lexicographically, rows beginning with a
given sequence appear consecutively. In a series of steps, the
EXACTMATCH algorithm (Figure 1c) calculates the range of
matrix rows beginning with successively longer suffixes of the
query. At each step, the size of the range either shrinks or
remains the same. When the algorithm completes, rows
beginning with S0 (the entire query) correspond to exact
occurrences of the query in the text. If the range is empty, the
text does not contain the query. UNPERMUTE is attributable
to Burrows and Wheeler [17] and EXACTMATCH to Ferra-
gina and Manzini [18]. See Additional data file 1 (Supplemen-
tary Discussion 1) for details.

Searching for inexact alignments
EXACTMATCH is insufficient for short read alignment
because alignments may contain mismatches, which may be
due to sequencing errors, genuine differences between refer-
ence and query organisms, or both. We introduce an align-
ment algorithm that conducts a backtracking search to
quickly find alignments that satisfy a specified alignment pol-
icy. Each character in a read has a numeric quality value, with
lower values indicating a higher likelihood of a sequencing
error. Our alignment policy allows a limited number of mis-
matches and prefers alignments where the sum of the quality
values at all mismatched positions is low.

The search proceeds similarly to EXACTMATCH, calculating
matrix ranges for successively longer query suffixes. If the
range becomes empty (a suffix does not occur in the text),
then the algorithm may select an already-matched query
position and substitute a different base there, introducing a
mismatch into the alignment. The EXACTMATCH search
resumes from just after the substituted position. The algo-
rithm selects only those substitutions that are consistent with
the alignment policy and which yield a modified suffix that
occurs at least once in the text. If there are multiple candidate
substitution positions, then the algorithm greedily selects a
position with a minimal quality value.

Backtracking scenarios play out within the context of a stack
structure that grows when a new substitution is introduced
and shrinks when the aligner rejects all candidate alignments
for the substitutions currently on the stack. See Figure 2 for
an illustration of how the search might proceed.

In short, Bowtie conducts a quality-aware, greedy, rand-
omized, depth-first search through the space of possible
alignments. If a valid alignment exists, then Bowtie will find
it (subject to the backtrack ceiling discussed in the following
section). Because the search is greedy, the first valid align-

ment encountered by Bowtie will not necessarily be the 'best'
in terms of number of mismatches or in terms of quality. The
user may instruct Bowtie to continue searching until it can
prove that any alignment it reports is 'best' in terms of
number of mismatches (using the option --best). In our expe-
rience, this mode is two to three times slower than the default
mode. We expect that the faster default mode will be pre-
ferred for large re-sequencing projects.

The user may also opt for Bowtie to report all alignments up
to a specified number (option -k) or all alignments with no
limit on the number (option -a) for a given read. If in the
course of its search Bowtie finds N possible alignments for a
given set of substitutions, but the user has requested only K
alignments where K < N, Bowtie will report K of the N align-
ments selected at random. Note that these modes can be
much slower than the default. In our experience, for example,
-k 1 is more than twice as fast as -k 2.

Excessive backtracking
The aligner as described so far can, in some cases, encounter
sequences that cause excessive backtracking. This occurs
when the aligner spends most of its effort fruitlessly back-
tracking to positions close to the 3' end of the query. Bowtie
mitigates excessive backtracking with the novel technique of
'double indexing'. Two indices of the genome are created: one
containing the BWT of the genome, called the 'forward' index,
and a second containing the BWT of the genome with its char-
acter sequence reversed (not reverse complemented) called
the 'mirror' index. To see how this helps, consider a matching
policy that allows one mismatch in the alignment. A valid
alignment with one mismatch falls into one of two cases
according to which half of the read contains the mismatch.
Bowtie proceeds in two phases corresponding to those two
cases. Phase 1 loads the forward index into memory and
invokes the aligner with the constraint that it may not substi-
tute at positions in the query's right half. Phase 2 uses the
mirror index and invokes the aligner on the reversed query,
with the constraint that the aligner may not substitute at posi-
tions in the reversed query's right half (the original query's
left half). The constraints on backtracking into the right half
prevent excessive backtracking, whereas the use of two
phases and two indices maintains full sensitivity.

Unfortunately, it is not possible to avoid excessive backtrack-
ing fully when alignments are permitted to have two or more
mismatches. In our experiments, we have observed that
excessive backtracking is significant only when a read has
many low-quality positions and does not align or aligns
poorly to the reference. These cases can trigger in excess of
200 backtracks per read because there are many legal combi-
nations of low-quality positions to be explored before all pos-
sibilities are exhausted. We mitigate this cost by enforcing a
limit on the number of backtracks allowed before a search is
terminated (default: 125). The limit prevents some legitimate,
Genome Biology 2009, 10:R25
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Exact matching versus inexact alignmentFigure 2
Exact matching versus inexact alignment. Illustration of how EXACTMATCH (top) and Bowtie's aligner (bottom) proceed when there is no exact match 
for query 'ggta' but there is a one-mismatch alignment when 'a' is replaced by 'g'. Boxed pairs of numbers denote ranges of matrix rows beginning with the 
suffix observed up to that point. A red X marks where the algorithm encounters an empty range and either aborts (as in EXACTMATCH) or backtracks 
(as in the inexact algorithm). A green check marks where the algorithm finds a nonempty range delimiting one or more occurrences of a reportable 
alignment for the query.
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low-quality alignments from being reported, but we expect
that this is a desirable trade-off for most applications.

Phased Maq-like search
Bowtie allows the user to select the number of mismatches
permitted (default: two) in the high-quality end of a read
(default: the first 28 bases) as well as the maximum accepta-
ble quality distance of the overall alignment (default: 70).
Quality values are assumed to follow the definition in PHRED
[24], where p is the probability of error and Q = -10log p.

Both the read and its reverse complement are candidates for
alignment to the reference. For clarity, this discussion consid-
ers only the forward orientation. See Additional data file 1
(Supplementary Discussion 2) for an explanation of how the
reverse complement is incorporated.

The first 28 bases on the high-quality end of the read are
termed the 'seed'. The seed consists of two halves: the 14 bp
on the high-quality end (usually the 5' end) and the 14 bp on
the low-quality end, termed the 'hi-half' and the 'lo-half',
respectively. Assuming the default policy (two mismatches
permitted in the seed), a reportable alignment will fall into
one of four cases: no mismatches in seed (case 1); no mis-
matches in hi-half, one or two mismatches in lo-half (case 2);
no mismatches in lo-half, one or two mismatches in hi-half
(case 3); and one mismatch in hi-half, one mismatch in lo-
half (case 4).

All cases allow any number of mismatches in the nonseed part
of the read and all cases are also subject to the quality distance
constraint.

The Bowtie algorithm consists of three phases that alternate
between using the forward and mirror indices, as illustrated
in Figure 3. Phase 1 uses the mirror index and invokes the
aligner to find alignments for cases 1 and 2. Phases 2 and 3
cooperate to find alignments for case 3: Phase 2 finds partial
alignments with mismatches only in the hi-half and phase 3
attempts to extend those partial alignments into full align-
ments. Finally, phase 3 invokes the aligner to find alignments
for case 4.

Performance results
We evaluated the performance of Bowtie using reads from the
1,000 Genomes project pilot (National Center for Biotechnol-
ogy Information [NCBI] Short Read Archive:SRR001115). A
total of 8.84 million reads, about one lane of data from an
Illumina instrument, were trimmed to 35 bp and aligned to
the human reference genome [NCBI build 36.3]. Unless spec-
ified otherwise, read data are not filtered or modified (besides
trimming) from how they appear in the archive. This leads to
about 70% to 75% of reads aligning somewhere to the
genome. In our experience, this is typical for raw data from
the archive. More aggressive filtering leads to higher align-
ment rates and faster alignment.

All runs were performed on a single CPU. Bowtie speedups
were calculated as a ratio of wall-clock alignment times. Both
wall-clock and CPU times are given to demonstrate that
input/output load and CPU contention are not significant fac-
tors.

The time required to build the Bowtie index was not included
in the Bowtie running times. Unlike competing tools, Bowtie
can reuse a pre-computed index for the reference genome
across many alignment runs. We anticipate most users will
simply download such indices from a public repository. The
Bowtie site [25] provides indices for current builds of the
human, chimp, mouse, dog, rat, and Arabidopsis thaliana
genomes, as well as many others.

Results were obtained on two hardware platforms: a desktop
workstation with 2.4 GHz Intel Core 2 processor and 2 GB of
RAM; and a large-memory server with a four-core 2.4 GHz
AMD Opteron processor and 32 GB of RAM. These are
denoted 'PC' and 'server', respectively. Both PC and server
run Red Hat Enterprise Linux AS release 4.

The three phases of the Bowtie algorithm for the Maq-like policyFigure 3
The three phases of the Bowtie algorithm for the Maq-like policy. A three-
phase approach finds alignments for two-mismatch cases 1 to 4 while 
minimizing backtracking. Phase 1 uses the mirror index and invokes the 
aligner to find alignments for cases 1 and 2. Phases 2 and 3 cooperate to 
find alignments for case 3: Phase 2 finds partial alignments with mismatches 
only in the hi-half, and phase 3 attempts to extend those partial alignments 
into full alignments. Finally, phase 3 invokes the aligner to find alignments 
for case 4.
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Comparison to SOAP and Maq
Maq is a popular aligner [1,4,5,26,27] that is among the fast-
est competing open source tools for aligning millions of Illu-
mina reads to the human genome. SOAP is another open
source tool that has been reported and used in short-read
projects [6,28].

Table 1 presents the performance and sensitivity of Bowtie
v0.9.6, SOAP v1.10, and Maq v0.6.6. SOAP could not be run
on the PC because SOAP's memory footprint exceeds the PC's
physical memory. The 'soap.contig' version of the SOAP
binary was used. For comparison with SOAP, Bowtie was
invoked with '-v 2' to mimic SOAP's default matching policy
(which allows up to two mismatches in the alignment and dis-
regards quality values), and with '--maxns 5' to simulate
SOAP's default policy of filtering out reads with five or more
no-confidence bases. For the Maq comparison Bowtie is run
with its default policy, which mimics Maq's default policy of
allowing up to two mismatches in the first 28 bases and
enforcing an overall limit of 70 on the sum of the quality val-
ues at all mismatched read positions. To make Bowtie's mem-
ory footprint more comparable to Maq's, Bowtie is invoked
with the '-z' option in all experiments to ensure that only the
forward or mirror index is resident in memory at one time.

The number of reads aligned indicates that SOAP (67.3%) and
Bowtie -v 2 (67.4%) have comparable sensitivity. Of the reads
aligned by either SOAP or Bowtie, 99.7% were aligned by
both, 0.2% were aligned by Bowtie but not SOAP, and 0.1%
were aligned by SOAP but not Bowtie. Maq (74.7%) and Bow-
tie (71.9%) also have roughly comparable sensitivity,
although Bowtie lags by 2.8%. Of the reads aligned by either
Maq or Bowtie, 96.0% were aligned by both, 0.1% were
aligned by Bowtie but not Maq, and 3.9% were aligned by
Maq but not Bowtie. Of the reads mapped by Maq but not
Bowtie, almost all are due to a flexibility in Maq's alignment
algorithm that allows some alignments to have three mis-
matches in the seed. The remainder of the reads mapped by
Maq but not Bowtie are due to Bowtie's backtracking ceiling.

Maq's documentation mentions that reads containing 'poly-A
artifacts' can impair Maq's performance. Table 2 presents
performance and sensitivity of Bowtie and Maq when the read
set is filtered using Maq's 'catfilter' command to eliminate
poly-A artifacts. The filter eliminates 438,145 out of
8,839,010 reads. Other experimental parameters are identi-
cal to those of the experiments in Table 1, and the same obser-
vations about the relative sensitivity of Bowtie and Maq apply
here.

Read length and performance
As sequencing technology improves, read lengths are growing
beyond the 30-bp to 50-bp commonly seen in public data-
bases today. Bowtie, Maq, and SOAP support reads of lengths
up to 1,024, 63, and 60 bp, respectively, and Maq versions
0.7.0 and later support read lengths up to 127 bp. Table 3

shows performance results when the three tools are each used
to align three sets of 2 M untrimmed reads, a 36-bp set, a 50-
bp set and a 76-bp set, to the human genome on the server
platform. Each set of 2 M is randomly sampled from a larger
set (NCBI Short Read Archive: SRR003084 for 36-bp,
SRR003092 for 50-bp, SRR003196 for 76-bp). Reads were
sampled such that the three sets of 2 M have uniform per-base
error rate, as calculated from per-base Phred qualities. All
reads pass through Maq's 'catfilter'.

Bowtie is run both in its Maq-like default mode and in its
SOAP-like '-v 2' mode. Bowtie is also given the '-z' option to
ensure that only the forward or mirror index is resident in
memory at one time. Maq v0.7.1 was used instead of Maq
v0.6.6 for the 76-bp set because v0.6.6 cannot align reads
longer than 63 bp. SOAP was not run on the 76-bp set because
it does not support reads longer than 60 bp.

The results show that Maq's algorithm scales better overall to
longer read lengths than Bowtie or SOAP. However, Bowtie in
SOAP-like '-v 2' mode also scales very well. Bowtie in its
default Maq-like mode scales well from 36-bp to 50-bp reads
but is substantially slower for 76-bp reads, although it is still
more than an order of magnitude faster than Maq.

Parallel performance
Alignment can be parallelized by distributing reads across
concurrent search threads. Bowtie allows the user to specify a
desired number of threads (option -p); Bowtie then launches
the specified number of threads using the pthreads library.
Bowtie threads synchronize with each other when fetching
reads, outputting results, switching between indices, and per-
forming various forms of global bookkeeping, such as mark-
ing a read as 'done'. Otherwise, threads are free to operate in
parallel, substantially speeding up alignment on computers
with multiple processor cores. The memory image of the
index is shared by all threads, and so the footprint does not
increase substantially when multiple threads are used. Table
4 shows performance results for running Bowtie v0.9.6 on the
four-core server with one, two, and four threads.

Index building
Bowtie uses a flexible indexing algorithm [29] that can be
configured to trade off between memory usage and running
time. Table 5 illustrates this trade-off when indexing the
entire human reference genome (NCBI build 36.3, contigs).
Runs were performed on the server platform. The indexer was
run four times with different upper limits on memory usage.

The reported times compare favorably with alignment times
of competing tools that perform indexing during alignment.
Less than 5 hours is required for Bowtie to both build and
query a whole-human index with 8.84 million reads from the
1,000 Genome project (NCBI Short Read
Archive:SRR001115) on a server, more than sixfold faster
than the equivalent Maq run. The bottom-most row illus-
Genome Biology 2009, 10:R25
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trates that the Bowtie indexer, with appropriate arguments, is
memory-efficient enough to run on a typical workstation with
2 GB of RAM. Additional data file 1 (Supplementary discus-
sions 3 and 4) explains the algorithm and the contents of the
resulting index.

Software
Bowtie is written in C++ and uses the SeqAn library [30]. The
converter to the Maq mapping format uses code from Maq.

Discussion
Bowtie exhibits a large performance advantage over both Maq
and SOAP when mapping reads to the human genome. Bow-
tie's sensitivity in terms of reads aligned is comparable to that
of SOAP and slightly less than Maq's, although the user may
use command-line options to trade slower running time for
greater sensitivity. Unlike SOAP, Bowtie's 1.3 GB memory
footprint allows it to run on a typical PC with 2 GB of RAM.
Bowtie aligns Illumina reads to the human genome at a rate
of over 25 million reads per hour. Multiple processor cores
can run parallel Bowtie threads to achieve even greater align-

Table 3

Varying read length using Bowtie, Maq and SOAP

Length Program CPU time Wall clock time Peak virtual memory footprint (megabytes) Bowtie speed-up Reads aligned (%)

36 bp Bowtie 6 m 15 s 6 m 21 s 1,305 - 62.2

Maq 3 h 52 m 26 s 3 h 52 m 54 s 804 36.7× 65.0

Bowtie -v 2 4 m 55 s 5 m 00 s 1,138 - 55.0

SOAP 16 h 44 m 3 s 18 h 1 m 38 s 13,619 216× 55.1

50 bp Bowtie 7 m 11 s 7 m 20 s 1,310 - 67.5

Maq 2 h 39 m 56 s 2 h 40 m 9 s 804 21.8× 67.9

Bowtie -v 2 5 m 32 s 5 m 46 s 1,138 - 56.2

SOAP 48 h 42 m 4 s 66 h 26 m 53 s 13,619 691× 56.2

76 bp Bowtie 18 m 58 s 19 m 6 s 1,323 - 44.5

Maq 0.7.1 4 h 45 m 7 s 4 h 45 m 17 s 1,155 14.9× 44.9

Bowtie -v 2 7 m 35 s 7 m 40 s 1,138 - 31.7

The performance of Bowtie v0.9.6, SOAP v1.10, and Maq versions v0.6.6 and v0.7.1 on the server platform when aligning 2 M untrimmed reads from 
the 1,000 Genome project (National Center for Biotechnology Information Short Read Archive: SRR003084 for 36 base pairs [bp], SRR003092 for 
50 bp, and SRR003196 for 76 bp). For each read length, the 2 M reads were randomly sampled from the FASTQ file downloaded from the Archive 
such that the average per-base error rate as measured by quality values was uniform across the three sets. All reads pass through Maq's "catfilter". 
Maq v0.7.1 was used for the 76-bp reads because v0.6.6 does not support reads longer than 63 bp. SOAP is excluded from the 76-bp experiment 
because it does not support reads longer than 60 bp. Other experimental parameters are identical to those of the experiments in Table 1. CPU, 
central processing unit.

Table 4

Bowtie parallel alignment performance

CPU time Wall clock time Reads mapped per hour (millions) Peak virtual memory footprint (megabytes) Speedup

Bowtie, one thread 18 m 19 s 18 m 46 s 28.3 1,353 -

Bowtie, two threads 20 m 34 s 10 m 35 s 50.1 1,363 1.77×

Bowtie, four threads 23 m 9 s 6 m 1 s 88.1 1,384 3.12×

Performance results for running Bowtie v0.9.6 on the four-core server with one, two, and four threads. Other experimental parameters are identical 
to those of the experiments in Table 1. CPU, central processing unit.
Genome Biology 2009, 10:R25
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ment speed; experiments show a speed up of 3.12 for four
threads on a typical Opteron server.

Unlike many other short-read aligners, Bowtie creates a per-
manent index of the reference that may be re-used across
alignment runs. Building the index is fast - Bowtie outper-
forms competing tools when aligning lanes of Illumina reads
even with index construction time included. At 2.2 GB for the
human genome, the on-disk size of a Bowtie index is small
enough to distribute over the internet. The Bowtie website
hosts pre-built indices for the human genome and several
other model organisms including chimp, dog, rat, mouse, and
chicken.

Bowtie's speed and small memory footprint are due chiefly to
its use of the Burrows-Wheeler index in combination with the
novel, quality-aware, backtracking algorithm introduced
here. Double indexing is used to avoid the performance pen-
alty of excessive backtracking.

Bowtie supports standard FASTQ and FASTA input formats,
and comes with a conversion program that allows Bowtie out-
put to be used with Maq's consensus generator and single
nucleotide polymorphism caller.

Bowtie does not yet support paired-end alignment or align-
ments with insertions or deletions, although both improve-
ments are planned for the future. Paired-end alignment is not
difficult to implement in Bowtie's framework, and we expect
that Bowtie's performance advantage will be comparable to,
though perhaps somewhat less than, that of unpaired align-
ment mode. Support for insertions and deletions is also a con-
ceptually straightforward addition.

Bowtie is free, open source software available from the Bowtie
website [25].
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