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Ultrafast and reversible control of the exchange
interaction in Mott insulators
J.H. Mentink1,w, K. Balzer1 & M. Eckstein1

The strongest interaction between microscopic spins in magnetic materials is the exchange

interaction Jex. Therefore, ultrafast control of Jex holds the promise to control spins on

ultimately fast timescales. We demonstrate that time-periodic modulation of the electronic

structure by electric fields can be used to reversibly control Jex on ultrafast timescales in

extended antiferromagnetic Mott insulators. In the regime of weak driving strength, we find

that Jex can be enhanced and reduced for frequencies below and above the Mott gap,

respectively. Moreover, for strong driving strength, even the sign of Jex can be reversed and

we show that this causes time reversal of the associated quantum spin dynamics. These

results suggest wide applications, not only to control magnetism in condensed matter

systems, for example, via the excitation of spin resonances, but also to assess fundamental

questions concerning the reversibility of the quantum many-body dynamics in cold atom

systems.
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C
ontrolling magnetically ordered systems on sub-
picosecond timescales is currently a widely studied
research area owing to the joint fundamental interest

and technological demand for faster and more energy-efficient
magnetic storage1. The fastest pathways to reverse magnetic order
utilize the exchange interaction Jex between microscopic magnetic
moments2–6, which can exceed external magnetic fields by orders
of magnitude. Because Jex relies on the electrostatic Coulomb
repulsion and the Pauli principle rather than on magnetic dipole
forces, it may be modified directly by the action of a laser pulse on
the electronic state. This implies an appealing and largely
unexplored scenario to control magnetism on the fastest
possible timescale. Recently, several experimental studies on
magnetic materials have discussed an ultrafast modification of Jex
or change of the type of magnetic order by creating a
nonequilibrium electron distribution (by photodoping or laser
heating)7–15. In these cases the spin dynamics after the excitation
strongly depends on the relaxation of the electrons, thereby
hindering a direct and reversible control of the spin degrees of
freedom alone. On the other hand, reversible electrical control of
Jex was recently demonstrated in a multiferroic solid state system,
where the bond alignment can be changed by a static electric
field16. Clearly, a natural goal is to achieve control of Jex, which is
both reversible and ultrafast, that is, it is active while a laser pulse
is on, but leaves the electronic state unexcited after the pulse is
switched off.

A versatile approach to reversibly control the dynamics of
quantum systems is given by the rectification of time-periodic
perturbations. The use of periodic driving to control the
dynamics of a quantum system is known in many areas of
physics, for example, through effective conservative forces
resulting from the AC Stark effect or through the coherent
destruction of tunnelling17,18. For extended solid state systems, it
is well known that particles in a tight-binding band subject to
periodic driving evolve under an effective Hamiltonian that has a
different band structure17–22. On the other hand, the control of
the exchange interaction requires to understand how the driving
influences both the band structure and the electronic correlations,
which determine Jex in equilibrium. This is a highly challenging
problem in general, since it implies the solution of a strongly
time-dependent many-body problem of an extended system.

In recent years, important insights into the control of Jex have
been obtained by studying the effect of periodic driving for one
and two spin systems, leading to light-induced Kondo effects23,
the design of an effective low-energy spin Hamiltonian in bosonic
double-well systems24, as well as an optically induced RKKY
interaction between localized spins in semiconductor quantum
dots by virtual excitation of delocalized excitons25,26. The latter
has been shown to be effective in extended systems as well, in
particular for the dilute ferromagnetic (FM) semiconductors27,28.
However, since the spin dynamics in ferromagnets requires a
change of the total angular momentum, it is difficult to induce
fast dynamics by modifying Jex. To the contrary, extended
antiferromagnetic (AFM) systems do not suffer from the
angular momentum bottleneck, and hence can provide novel
opportunities for the ultrafast control of the spin dynamics by
modifying Jex.

In this paper, we demonstrate that it is possible to reversibly
control Jex in extended AFM Mott insulators by periodically
modulating the electronic structure with a frequency o higher
than Jex/:, but not resonant to electronic excitations. We
investigate a simple driving scheme using time-periodic electric
fields, which can be realized both in solid state systems and for
cold atoms, and hence suggests wide applications: besides the
possibility of manipulating magnetism in solids, for example, via
the excitation of spin resonances, we find that in the extreme limit

of strong driving one may even achieve a sign reversal of Jex,
which is equivalent of letting the system evolve backwards in time
and may allow for addressing fundamental questions concerning
the reversibility of quantum many-body dynamics29–31 in cold
atom experiments. Furthermore, we show that considerable
insight can be obtained from analytical Floquet theory for a
few-site cluster under continuous driving, which predicts
reversible enhancement, reduction and even complete sign-
change of the exchange interaction. The relevance of these
results for extended many-body systems may not be clear a priori,
since in this case a true quasi-steady driven state may always
become infinitely excited32. For the relatively short-term
dynamics of interest here, the predictions of Floquet theory are
nevertheless correct, as we demonstrate using numerical
calculations for both the classical spin dynamics in high-
dimensional Mott insulators and the quantum spin dynamics in
low-dimensional Mott insulators.

Results
Floquet theory for a two-site cluster. In this work, we study the
repulsive Hubbard model as a model for strongly interacting
electrons on a lattice. The Hamiltonian is given by

H ¼ � t0
X
ijh is

cyiscjs þU
X
j

nj"nj#; ð1Þ

where cyis creates an electron at site i with spin s¼m, k, t0 is the
hopping between nearest-neighbour sites, and U the repulsive
on-site interaction. Arbitrary time-dependent electric fields E(t)
are incorporated by adding a Peierls phase to the hopping matrix
elements (see Methods). Below we set :¼ 1 and measure energy
and time in units of the hopping t0 and the inverse hopping,
respectively. Electric fields are measured in units of t0/ea, where a
is the lattice spacing and e the electron charge.

For half-filling and U=t0 � 1, the Hubbard model describes a
Mott insulator with one electron per site, in which the remaining
spin degrees of freedom are coupled by an AFM exchange
interaction Jex ¼ 2t20=U . The simplest analytical understanding
for this result is obtained already for two electrons on two
Hubbard sites: for total Sz¼ 0 we have four states. In the atomic
limit, two of them (|m, ki and |k, mi) are singly occupied sites at
E1¼ 0, while the other two states involve a doubly occupied and
empty site at energy E2¼U (|mk, 0i and |0, mki). In the
presence of hopping, the degeneracy is lifted and the lowest states
become singlet and triplet states at energies ES ¼ � 4t20=U and
ET¼ 0, respectively. The low-energy spectrum is thus described
by a spin Hamiltonian 2JexS1S2 with Jex ¼ ET � ESð Þ=2 ¼ 2t20=U .
This analytical understanding from the cluster is useful since
lattice effects beyond the lowest-order perturbative result only
appear in the order t40=U

3. In the same spirit, to gain theoretical
insight into the modification of Jex by periodic driving, we first
consider the same two-site Hubbard cluster and employ Floquet’s
theorem33,34, the analogue of Bloch’s theorem in time. When the
Hamiltonian is periodic in time with a period T¼ 2p/o, solutions
of the time-dependent Schrödinger equation are given in the
form cðtÞj i ¼ e� iEat caðtÞj i, where caðtþTÞj i ¼ caðtÞj i is time
periodic and Ea is a quasi-energy defined up to multiples of o.
The Floquet picture describes a system that undergoes virtual
absorption and emission of an arbitrary number of photons, as
depicted in Fig. 1c for the Mott–Hubbard systems. The
unperturbed Floquet sectors are described by the time-averaged
Hamiltonian shifted by no, and mixing between these Floquet
sectors results in a renormalization of quasi-energy levels.
A natural procedure is then to adopt an ‘adiabatic’ principle
in which the driving amplitude varies slowly as compared
with the driving frequency, _E=E

�� �� � o, and identify the
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amplitude-dependent singlet-triplet splitting ET � ES in the quasi-
energy spectrum with the (time dependent) exchange interaction
that describes the spin dynamics in the laser driven system on
timescales much slower than the driving period T.

The numerical solution of the Floquet spectrum and various
analytically tractable limiting cases for the two-site Hubbard
model are detailed in the methods section. For a tight-binding
model driven by an electric field E(t)¼E0 cos(ot), the coupling
between Floquet sectors is controlled by the dimensionless
Floquet amplitude

E ¼ eaE0
‘o

; ð2Þ

and the time averaging of H corresponds to a coherent reduction
of the tunnelling amplitude17,18 by a factor J0ðEÞ, where J0 is the
Bessel function (see Methods). In Fig. 1, we display the Floquet
spectrum and the exchange splitting JexðEÞ for a half-filled two-
site Hubbard model. In contrast to the limit o � U , t0, where the
only effect would be a renormalization of the hopping by J0ðEÞ
and a corresponding reduction of the exchange splitting at large
U by a factor J0ðEÞ2, one can see that Jex can be both increased
and decreased for finite o, depending on the driving. This is clear
already in the perturbative limit for E � 1 and t0=U � 1, which
is given by Jex ¼ 2t20=U þDJex with (see Methods)

DJex ¼
E2t20
4

1
U þo

þ 1
U �o

� 2
U

� �
; ð3Þ

and indicated with thin (dash-)dotted lines in the right panel of
Fig. 1. The last term of equation (3) is the reduction of the
exchange due to coherent reduction of the tunnelling, while the
first two terms derive from the coupling to the m¼±1 Floquet

sector with effectively shifted charge-transfer energies U±o. The
net effect is an enhancement (reduction) of Jex for driving
frequencies below (above) the Coulomb energy U. For sufficiently
strong driving one can even reverse the sign of Jex, thus leading to
the remarkable finding of a FM exchange coupling in the half-
filled Hubbard model. This happens when E is of order one, such
that coupling to higher Floquet sectors with effective Coulomb
energy U-mo becomes strongly enhanced, while the direct
exchange path is reduced by coherent destruction of tunnelling
BJ0ðEÞ. For larger Floquet amplitudes, the direct exchange path
again increases due to the oscillating behaviour of the Bessel
function. In the remainder of this paper, we verify that these
predictions from the two-site Floquet picture can remain valid for
extended condensed matter systems at off-resonant driving with
finite pulse duration, in spite of the possible importance of
higher-order processes such as multi-photon absorption in the
strongly driven regime, and the limited number of cycles in the
pulse.

Mean-field spin dynamics in a high-dimensional lattice.
A direct prediction of the Floquet theory (equation (3)) is the
enhancement (reduction) of the exchange interaction for driving
below (above) the Mott gap with weak amplitudes (E � 1). A
large class of materials for which this might be relevant are three-
dimensional bulk systems, such as transition metal oxides, whose
low-energy spin dynamics contain uniform spin resonances that
can be conveniently described in mean-field theory. For large
dimensions, also a numerical solution of the nonequilibrium
electron dynamics in the Hubbard model is possible using the
dynamical mean-field theory (DMFT, see Methods).

Within DMFT, the equilibrium solution of the Hubbard model
at half-filling and low temperature is the Néel state. To asses the
exchange interaction in this state, we study the excitation of
resonances in the AFM phase in a transverse magnetic field Bx, a
setup that was pioneered in ref. 15 for resonant photoexcitation.
In equilibrium, the balance of Bx and Jex gives rise to a canting of
the magnetic sublattices out of the y–z plane. If Jex is modified
under periodic driving, the sub-lattice magnetizations are no
longer aligned with the effective field Beff given by external and
exchange fields, as illustrated in the inset of Fig. 2. This implies a
rotation of the spins in the plane perpendicular to Bx (leaving the
total angular momentum Sx conserved), from which the time-
dependent modification of the exchange interaction is calculated
(see Methods). Hence, in our calculations, Jex is defined as the
parameter that describes best the observed transverse spin
dynamics as is obtained from the solution of the full electron
problem. We stress that this allows us to quantify changes of the
exchange interaction independent of the exchange energy stored
in the system. This is particularly important for the regime in
which absorption is not negligible, where the laser excites mobile
carriers that transfer their energy to the spin background on an
ultrafast timescale and thus reduce the ordered moment.

We have implemented the DMFT solution of the Hubbard
model in a time-dependent external electric field for the infinite-
dimensional hyper-cubic lattice with density of states D Eð Þ ¼
exp � E2ð Þ=

ffiffiffi
p

p
(refs 35,36). The electric field is pointing along the

body diagonal of the lattice and represents a laser pulse with
frequency o and a Gaussian envelope that contains 15 cycles per
pulse, that is, E tð Þ ¼ E0 sin otð Þ exp � t� 3tcð Þ2=t2c

� �
with

tc¼ 15p/(2.1o). Figure 2a,b show time traces of the induced
change of the exchange interaction DJcex tð Þ for one driving
frequency below (a) and above (b) gap, as extracted from the time
evolution of the spin degrees of freedom during the pulse. In
accordance with the prediction of the Floquet theory, we observe
an enhancement (reduction) of the exchange interaction during
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Figure 1 | Floquet spectrum of a two-site Hubbard model. (a) Floquet

spectrum for U¼ 10 and o¼6 as a function of Floquet amplitude E. Thin
dashed lines indicate the spectrum without driving. The exchange

interaction (Jex) is extracted from the difference between the lowest singlet

(ES) and triplet (ET) levels. The result is shown in b for the same U¼ 10 and

two different frequencies above (o¼ 16, blue solid line) and below (o¼6,

red dashed line) the Mott gap. For large driving strength E\1, a reversal of

Jex is possible. In addition, thin blue dotted (o¼ 16) and thin red dash

dotted (o¼6) lines indicate the modification of Jex as obtained within

second-order perturbation theory. (c) Illustration of the modification of Jex
in the Floquet picture. Red wavy lines indicate the virtual absorption and

emission of an arbitrary number n of photons with frequency o. This
induces a coupling to excited states in different Floquet sectors displaced

by an energy U±no.
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the application of the field with a frequency below (above) gap.
The frequency o¼ 3 in Fig. 2a is far from the resonance oEU,
and we observe that DJcex � 0 after the pulse, demonstrating the
reversibility of the effect. Conversely, the driving frequency
o¼ 12 in Fig. 2b is chosen close to the edge of the upper
Hubbard band where we observe significant absorption and
transient behaviour after the pulse. Hence, although the exchange
interaction is modified in this case as well, the effect is not
reversible. Note also that the time reached in the present
simulations is too short for the photoexcited carriers to relax,
hence a description in terms of a quasi-stationary photo-doped
state discussed earlier15 is not yet valid.

A quantitative comparison with the Floquet theory is shown in
the bottom panel of Fig. 2, where the ‘driving susceptibility’
DJex=ðJexE2Þ for E ! 0 is plotted as a function of the driving
frequency. Solid discs show the DMFT results as obtained by a
linear fit through the dependence of the ratio DJex(t)/Jex on E2 at
its maximum. Dashed and solid lines show the results based on
the perturbative Floquet formula (equation (3)) and the full
Floquet spectrum (non-perturbative in t0/U), evaluated from the
derivative dJex=dE2 at E¼ 0. As expected, in the vicinity of the
band edge (|o�U|B2), strong deviation is found since band

absorption is not captured in a cluster picture. Away from the
band edge, however, the frequency dependence matches very well,
being even in quantitative agreement for the lowest frequencies
below gap. This demonstrates the usefulness of the Floquet theory
for understanding how off-resonant periodic driving modifies the
exchange interaction in extended condensed matter systems by
photo-assisted hopping.

One-dimensional quantum spin dynamics. An intriguing pre-
diction of the Floquet analysis is the existence of amplitude and
frequency ranges in which the exchange coupling becomes FM.
Such a sign-change of Jex cannot cause a transition to a FM state
since the Hubbard model equation (1) conserves the total spin.
However, even if the system remains AFM, a change of sign of Jex
by periodic driving allows for a very non-trivial and unique way
to control the spin dynamics, namely, to reverse the time evo-
lution of the undriven system. Such time reversal can be antici-
pated by considering a pure Heisenberg spin Hamiltonian
Hex ¼ Jex

P
ijh i SiSj, which gives an accurate description of the

low-energy spin dynamics in the half-filled Hubbard model at
U � t0 if the system is not electronically excited. In the absence
of driving, the propagation over a time interval t is given by the
evolution operator UAFM ¼ exp � iHextð Þ. Such evolution can
exactly be reversed by the propagation with an exchange inter-
action J 0ex of opposite sign over a time interval t0 ¼ Jex=J 0ex

�� ��t,
since for the FM time evolution operator we have
UFM ¼ exp � iH0

ext
0� �
¼ exp þ iHextð Þ ¼ U � 1

AFM, that is, the two
time evolution operators are exactly inverse to each other.

To demonstrate that periodic driving of the Hubbard model at
large U indeed yields the anticipated time reversal of the spin
degrees of freedom, we consider a chain of L¼ 10 sites and
compute the dynamics using exact diagonalization techniques
(see Methods). The system is initially prepared in a classical Néel

state cy1"c
y
2#c

y
3"::: 0j i and is evolved under the unperturbed

Hamiltonian (1). In a quantum Heisenberg model, the classical
Néel state is a highly excited state the energy of which exceeds the
thermal energy at the Néel temperature, such that no remanent
long-range order is expected at long times, apart from finite size
effects. In one dimension, not even the ground state displays
long-range order. As a consequence of the spin-flip terms
Jex Sþ

i S�
iþ 1 þ S�

i Sþ
iþ 1

� �
in the effective AFM Heisenberg model,

we thus observe a rapid decay of the total staggered magnetization
M ¼ 1

L

PL
i¼1 � 1ð Þiþ 1 ni" � ni#

� 	
(Fig. 3b). After this initial free

evolution to a state where long-range order is suppressed, we
ramp on a time-periodic electric field (Fig. 3a), with Floquet
amplitude E¼ 3:4 and frequency o/U¼ 0.6 such that the Floquet
theory for a two-site model predicts a reversal of the exchange
coupling. Under the periodic driving, one indeed observes a near
perfect reversal of the dynamics of M(t) in Fig. 3b, which almost
completely recovers to the initial value M(t¼ 0) around tE100.
Subsequently, M(t) is reduced again by further evolution in the
reverse direction, as a consequence of the spin-flip terms in the
FM model. This continues until the field is ramped off, after
which one observes that the free evolution brings the system
again back to the initial state, from which the same rapid decay of
M(t) is observed as for the initial free evolution. Hence, we
conclude that the periodic driving allows for a reversible control
of the spin dynamics for the timescale considered in our
simulations. This is further confirmed by the time evolution of
the total double occupation d ¼

PL
i¼1 ni"ni#

� 	
, which has the

same mean value before and after the driving, demonstrating that
electronic excitations due to the driving are negligible. The weak
oscillations in d(t) are caused by switching on the hopping at
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Figure 2 | Laser-induced modification of the exchange interaction. (a,b)

Time-dependent change of the exchange interaction (DJex, thick lines)

during the action of a laser pulse, for driving frequencies o¼ 3 (a) and

o¼ 12 (b) below and above the Mott gap, respectively. Different colours

correspond to results obtained with different amplitude E0 of the electric

field, increasing from light to dark. Thin lines show the time dependence of

the electric field (E-field). Numerical results were obtained using dynamical

mean-field theory (DMFT) for the hyper-cubic lattice at U¼ 10 and initial

temperature T¼0.025. (c) The driving susceptibility DJex=ðJexE2Þ for
E ! 0 for frequencies above (blue, right vertical axis) and below gap (red,

left vertical axis), obtained from DMFT for the hyper-cubic lattice (disks),

from the numerical Floquet spectrum of a two-site Hubbard cluster (solid

lines), and from the perturbative result equation (3) (dashed lines). The

inset illustrates the canted geometry of the two sub-lattice magnetizations

S1,2 (black arrows) induced by a static transverse magnetic field Bx (grey

arrow). In equilibrium, the effective magnetic field B0
1 (green arrow) is

collinear with S1. A modification of the exchange interaction (DJex) would
rotate the effective field (light blue arrow) with respect to S1 causing the

excitation of a spin resonance. In the DMFT calculations, DJex is computed

from the observed spin precession in this canted geometry.
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t¼ 0, while the increased mean value of d(t) during driving is due
to photo-assisted hopping processes.

Time reversal can be demonstrated not only on the level of
local observables. Figure 3c displays the evolution of the spin–
spin correlation function Cz

l ¼
P

i� jj j¼l
1
Nl
ðhSzi Szj i� hSzi ihSzj iÞ as a

function of distance l and time (Nl is the number of site pairs with
distance l). Starting from the initial uncorrelated product state,
correlations build up under the evolution of H. Even though the
system is small, the spreading of correlations resembles the light-
cone effect that has been observed in quantum many-body
systems after a quench37, that is, correlations stay zero outside the
light cone |l|r2ut, where u is a maximal mode velocity38, while
short-range AFM correlations emerge inside the light cone.
Further, under the action of the periodic driving, the spin–spin
correlations diminish with the same speed, restoring the initially
uncorrelated state.

To determine quantitatively how well the time evolution is
reversed in our simulations, we computed the difference DM¼ 1
�M(t*) between the initial magnetization in the Néel state and
the magnetization M(t*) at the revival time t* for different values
of U (Fig. 4). In all simulations, the system is evolved forward in
time for a given time tf¼ 10, after which the field is ramped on
for a period Dt¼ 10. As before, we choose E¼ 3:4 and o¼ 0.6U,
which gives the same relative change of Jex for all sufficiently large
values U � t0. The observed scaling DMB1/U2 indicates that in
the current setup the deviation from perfect reversal originates
from small electronic excitations above the gap, which arises from
switching on the hopping in the beginning of the simulation and
the ramping on of the field. Since the dynamics of the
electronically excited states is not captured by the spin
Hamiltonian, it is not time-reversed. While the electronic
excitation can be further reduced by slow ramping, the ultimate
limit is given by non-Heisenbergian terms in the effective spin

Hamiltonian, for which perfect reversal under periodic driving is
not expected. For the half-filled Hubbard model in equilibrium,
the leading-order correction to the Heisenberg model appears in
the order t40=U

3 in the strong-coupling expansion. At least for
small times t, the contribution of a perturbation dH proportional
to t40=U

3 to the time-reversed Hamiltonian would lead to a scaling
DMB1/U3, which is smaller than the electronic excitation in the
present case. Note, however, that the times reached in the current
simulations are nevertheless long enough to observe near perfect
reversal even from a state without magnetic order, in which spin
correlations have spread throughout the full chain (Fig. 3).

Discussion
Our results demonstrate ultrafast and reversible electrical control
of the exchange interaction in extended fermionic many-body
systems by modulation with time-periodic electric fields. These
numerical results have recently been corroborated analytically in
the high-frequency limit, by showing that the effective spin model
for the two-site cluster remains valid for the driven lattice39. We
emphasize that Floquet amplitudes E � 0:1 are well accessible for
condensed matter systems, which would lead to relative changes
of Jex up to 1%. For example, for a frequency :o¼ 1 eV and a
lattice spacing of 2 Å, a laser fluence of 1mJ cm� 2 in a 100-fs
pulse corresponds to a Floquet parameter E � 0:05. While
realistic condensed matter systems usually involve several
correlated bands, we think that our current results are already
quite robust for the AFM oxides governed by superexchange
interactions. Similar as in the single-band model studied here,
superexchange interactions are governed by virtual charge
excitations, which will be reversibly modified through the
mechanism of photo-assisted hopping between different
Floquet sectors. This is further supported by recently presented
experiments on canted AFM oxides40 using terahertz emission
spectroscopy41, which show the first experimental evidence
of reversibly controlling exchange interactions by off-resonant
pumping below the charge-transfer gap. Furthermore,
equation (3) implies a strong enhancement of off-resonant
effects at low frequencies. As an extreme limit of this one can
anticipate control of spin dynamics by few-cycle terahertz pulses,
using both the coupling between the spins to the magnetic field of
the light42, and the modifications of Jex predicted by our work. At
the same time, extensions to multi-band models are very
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by the corresponding coloured labels. (b) Difference DM between the initial

staggered magnetization and the staggered magnetization at the revival

time t* as a function of U. The error bars represent the magnitude of the

short-time fluctuations of M close to t*. In all calculations, the driving

frequency o/U¼0.6 and Floquet amplitude E¼ 3:4 were used.
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interesting and relevant to perform as they usually involve
multiple possibly competing exchange paths, which generally
yield quantitative differences as well as different dependencies on
the driving frequency due to the presence of additional
resonances, potentially enabling to achieve even stronger effects.
In this connection, we also mention that extensions to multi-band
models may be relevant too for the description of metallic
ferromagnets. Here static electronic structure calculations already
indicate that exchange integrals involving electrons excited to
higher bands considerably differ from those in the ground state43.
Furthermore, a more accurate quantitative description of photo-
excited states would also include the effect of dynamic screening.
However, we anticipate that this will be important only if mobile
carriers are injected, that is, for photo-doping excitations, while it
will be a secondary effect for the off-resonant driving investigated
here, which leaves the electron distribution unchanged.

While the single-band model is clearly a minimal model for
application to condensed matter systems, fermionic cold atom
systems resemble the single-band model very accurately. More-
over, such systems may realize the large amplitudes E needed to
achieve the FM exchange at frequencies sufficiently far from
resonances no¼U, which are difficult to realize for most
condensed matter systems. It will, therefore, be of fundamental
interest to investigate the reversal of the exchange interaction and
the associated time reversal of the quantum spin dynamics in cold
atom experiments. In these systems recently, great progress has
been made to prepare and measure systems with single-site
spatial resolution44,45. Furthermore, various single-particle
Floquet Hamiltonians could be realized in the limit of strong
periodic driving without substantial heating by inter-band
absorption (see, for example, ref. 46). Cold atoms in optical
lattices have been successfully used as a quantum simulator for
the dynamics of a quantum quenches in the Bose–Hubbard
model, starting from an artificially prepared charge-ordered
phase47, which suggest similar techniques to probe the behaviour
of spin systems under time reversal. In the methods section
(cf. equation (7)), we show that analogous time reversal can be
achieved by modulating the amplitude of the hopping instead of
its phase, which is easier to control in cold atoms. An intriguing
problem to study both theoretically and experimentally is the
fundamental question how well the time evolution can be
reversed after (much) longer forward evolution time and
investigate systematically the influence of small deviations from
perfect time reversal. Furthermore, a study of the Loschmidt echo
and dynamical phase transitions48 in cold atoms might be
possible by including additional perturbations to the back
propagation.

Methods
Floquet theory. The Floquet quasi-energy spectrum can be obtained from the
ansatz cðtÞj i ¼ e� iEat caðtÞj i by expanding caðtÞj i in a Fourier series
caðtÞj i ¼

P
m eiomt ca;m

�� 	
, where ca;m

�� 	
is referred to as the component of the

wave function in the mth Floquet sector. The Schrödinger equation then achieves a
block-matrix structure

Ea þmoð Þ ca;m

�� 	
¼

X
m0

Hm�m0 ca;m0
�� 	

; ð4Þ

where Hm ¼ 1=Tð Þ
R T
0 dt e

iomH tð Þ are the Fourier components of the Hamiltonian.
Different from the usual discussions of Floquet theory for single-particle Hamil-
tonians, here we focus on the effect of periodic driving on an electronic spectrum
that is controlled by electronic correlations.

Time-dependent electric fields are incorporated into the Hubbard Hamiltonian
(1) by adding a time-dependent Peierls phase to the hopping matrix elements,
tij(t)¼ t0 exp[ieaAij(t)], where Aij is the projection of the vector potential along the
direction from site i to j (choosing a gauge with zero scalar potential and
E(t)¼ � qtA(t)). For the one-dimensional chain with electric field E0 sin(ot) along
the chain, this implies Aij tð Þ ¼ � 1

o i� jð ÞE0 cos otð Þ. The Fourier components of

the Hamiltonian are thus given by

Hm ¼ � t0
X
ijh is

� 1ð ÞmJm i� jð ÞEð Þcyiscjs; ð5Þ

plus the additional (time-independent) interaction part in the m¼ 0 component,
where Jm(x) is the mth Bessel function, and the dimensionless parameter
E¼eaE0=ð‘oÞ measures the strength of the perturbation (cf. equation (2)). For the
numerical determination of the Floquet energies, one truncates the number of
Floquet sectors in equation (4) to |n|rN, and increases N to reach convergence.
The determination of a many-body Floquet spectrum thus requires the
diagonalization of a matrix of dimension N�D, where D is the dimension of the
Hilbert space. The results presented in Fig. 1 are converged with N¼ 8.

In the limit of large frequency, o � U , t0, Floquet sectors in equation (4) are
separated in energy, and one can restrict oneself to the lowest sector m¼ 0. This is
equivalent to replacing the Hamiltonian with its time average, which leads to the
renormalization of the hopping by J0ðEÞ, and a corresponding reduction of the
exchange by a factor J0ðEÞ2. In the perturbative limit where both t0=U � 1 and
E � 1, we expand the Bessel functions Jn(x)Bxn for x-0. To lowest order only
states of the m¼ 0 and m¼±1 Floquet sectors have to be taken into account, and
the result given by equation (3) follows from standard second-order perturbation
theory. Furthermore, an interesting limit for the Mott regime is given by t0=U � 1,
but allowing for fields of arbitrary amplitude. Because all terms Hm for ma0 are
proportional to t0, the perturbative shift of the spin states in the m¼ 0 sector is
given by a sum over all second-order processes containing precisely one virtual
hopping to a higher Floquet sector and back, yielding

Jex E;oð Þ
Jex E ¼ 0ð Þ ¼

X1
n¼�1

J nj j Eð Þ2

1þ no=U
: ð6Þ

The unperturbed exchange is modified by a factor dependent only on o/U and E.
For the parameters E¼ 3:4 and o/U¼ 0.6 chosen for the time reversal, for
example, the factor is given by � 0.95 and indicates a near perfect sign reversal.

Finally, we note that a similar analysis is possible for the case of periodic
modulation of the hopping amplitude, taking t0(t)¼ t0(1þA cos(ot)). As above,
we obtain for U � t

Jex A;oð Þ
Jex A ¼ 0ð Þ ¼ 1þ

X
n¼� 1

A2

1þ no=U
; ð7Þ

yielding, for example, a perfect sign reversal for driving above gap o/U¼ 1.2 at
AE0.67. Other than for the field driven case, the perturbation is purely harmonic,
and only Floquet sectors m¼±1 enter this expression.

Dynamical mean-field theory. To solve the electron dynamics in the Hubbard
model, we use nonequilibriumDMFT35,49. The electric field of the laser is
incorporated by the Peierls substitution (see Methods, Floquet theory), so that the
light matter interaction within the single-band model is treated to all orders.
Within DMFT50, which becomes exact in the limit of infinite dimensions51, local
correlation functions are obtained from an effective impurity model in which one
site of the lattice is coupled to a non-interacting, self-consistently determined bath.
The impurity model is solved within the perturbative hybridization expansion
(non-crossing approximation52). The accuracy of this approach has been tested in
equilibrium and for the short-time dynamics by comparison with higher-order
hybridization expansions, as well as with numerically exact Quantum Monte
Carlo52–54, which revealed good agreement both in the AFM and paramagnetic
Mott insulator regime t0 � U . A detailed description of the formalism and of our
numerical implementation is given in ref. 15, which studies the same setup (that is,
a hyper-cubic lattice with electric field along the body diagonal), yet for different
electric fields.

Determination of Jex in DMFT. To asses the exchange interaction from mean-
field spin dynamics, we investigate the AFM phase of the Hubbard model sup-

plemented with a term Bx
P
i
Six , which couples the spin Sia ¼ 1

2

P
ss0 c

y
is ŝað Þss0 cis0

to a homogeneous magnetic field Bx along the x axis (ŝa denotes the Pauli matrices;
a¼ x, y, z). DMFT allows us to compute the time-dependent expectation value of
the electron spin hS1,2i on the two magnetic sublattices. Assuming a rigid mac-
rospin model, the time-dependent exchange interaction can be inferred from these
results by inverting the Landau–Lifshitz equation for the dynamics of spins on the
mean field B1;2

eff ¼ Bxex � 2Jex S2;1
� 	

. It was shown15 that this approach compares
well with the definition of exchange interactions from a time-dependent response
formalism55, as well as to the analytical perturbative result Jex ¼ 2t20=U in
equilibrium at large U. In the transverse field, the equilibrium exchange interaction
can be determined from the canting induced by Bx , yielding Jcex ¼ �Bx= 4 Sxh ið Þ.
Out of equilibrium, we obtain Jcex tð Þ ¼ �Bx= 4 Sxh ið ÞþDJcex tð Þ,

DJcex tð Þ ¼ � 1
4T S1xh i

Z tþT=2

t�T=2

_S1y sð Þ
� 	
S1z sð Þh ids; ð8Þ

where the time averaging is done to extract only the low-frequency component,
similar as in the Floquet theory. Note that by calculating the exchange interaction
in this way, we have automatically projected out dynamical changes in the (time
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averaged) local magnetization |hS1,2i|, and slight changes of the local moments
(double occupation) as a result of the virtual absorption and emission of photons.

Exact diagonalization. To compute the time evolution of the (driven)
one-dimensional Hubbard model from the Schrödinger equation with a
time-dependent Hamiltonian H(t) and a given initial state c0j i ¼ cw1"c

w
2#c

w
3"::: 0j i,

we use the Krylov technique56 in combination with a commutator-free exponential
time-propagation scheme57. While the Krylov method provides efficient
approximations to the time propagator, which are important to treat large Hilbert
spaces, the commutator-free exponential time-propagation scheme is related to the
Magnus expansion, and, preserving unitarity, allows for a high-order accurate
integration of the Schrödinger equation in time.
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