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Ultrafast carrier thermalization in lead iodide
perovskite probed with two-dimensional electronic
spectroscopy
Johannes M. Richter1, Federico Branchi2, Franco Valduga de Almeida Camargo2, Baodan Zhao1,

Richard H. Friend 1, Giulio Cerullo2 & Felix Deschler 1

In band-like semiconductors, charge carriers form a thermal energy distribution rapidly after

optical excitation. In hybrid perovskites, the cooling of such thermal carrier distributions

occurs on timescales of about 300 fs via carrier-phonon scattering. However, the initial build-

up of the thermal distribution proved difficult to resolve with pump–probe techniques due to

the requirement of high resolution, both in time and pump energy. Here, we use two-

dimensional electronic spectroscopy with sub-10 fs resolution to directly observe the carrier

interactions that lead to a thermal carrier distribution. We find that thermalization occurs

dominantly via carrier-carrier scattering under the investigated fluences and report the

dependence of carrier scattering rates on excess energy and carrier density. We extract

characteristic carrier thermalization times from below 10 to 85 fs. These values allow for

mobilities of 500 cm2V−1 s−1 at carrier densities lower than 2 × 1019 cm−3 and limit the time

for carrier extraction in hot carrier solar cells.
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H
ybrid perovskite semiconductors have attracted strong
scientific interest for optoelectronic applications. Simple
and low-cost solution-based fabrication techniques can be

used to obtain poly-crystalline thin films1–3, as well as single
crystals4 and colloidal nanostructures5. Reports on sharp
absorption onsets, long carrier lifetimes and high photo-
luminescence quantum efficiencies4, 6–11 highlight the semi-
conducting quality of these materials. Despite the current drive
for higher optoelectronic device efficiencies and stabilities, little
information exists about the fundamental non-equilibrium
interactions of photo-excited charge carriers in these semi-
conductors, which define, for example, the fundamental limits of
charge transport.

Photo-excitation of a semiconductor with free band continuum
states leads to an electron population in the conduction band.
Initially, the excitations are in a superposition of ground and
excited states. Over the dephasing time these coherences are lost
and a pure population is left. However, after light absorption this
carrier population is not in thermodynamic equilibrium imme-
diately, as the energy of the excited carriers matches that of the
absorbed light. The spectrum of the excitation pulse and the
selection rules of the semiconductor determine the initial ener-
getic distribution of the carrier population, which can lead to the
observation of a “spectral hole” in the absorption spectrum for
narrowband excitation12, 13. Ultrafast scattering processes, such
as carrier-carrier or carrier-optical-phonon scattering, lead to a
broadening of the energetic distribution of the carrier popula-
tion14–16, which can eventually be described by an equilibrium
carrier temperature higher than the lattice temperature. This
process of exchange of energy among charge carriers is called
thermalization. Subsequently, a cooling of the carriers occurs
through carrier-phonon and carrier-impurity scattering pro-
cesses, bringing the carriers and lattice to thermodynamic equi-
librium14. The carrier thermalization and cooling processes after
light absorption depend on the properties of the excited charge
carriers and the band structure of the semiconductor. In optoe-
lectronic applications, the carrier scattering rates determine the
fundamental limits of carrier transport and electronic coherence.

For the prototypical semiconductor GaAs, studies of therma-
lization dynamics reported timescales ranging from 100 fs to
4 ps12, 15, 17, and provided insights into dephasing times12, band
structure15 and carrier-carrier scattering processes18, which affect
subsequent carrier cooling and recombination processes. In
hybrid perovskites, ultrafast transient absorption spectroscopy
has been used to study the carrier cooling process, which was
found to occur on 100 s of femtoseconds timescales19–22, with a

strong contribution from a hot phonon effect at high fluences23.
The thermalization process, on the other hand, has not yet been
experimentally resolved and is expected to occur on much faster
timescales14–16.

To resolve ultrafast thermalization dynamics, the time evolution
of the time-dependent energy distribution of an initial population
excited at a well-defined energy needs to be tracked24. The
necessary femtosecond time resolution requires the use of ultra-
short, broadband light pulses, which compromises the desired
high resolution in excitation energy. Two-dimensional electronic
spectroscopy (2DES) is an extension of traditional transient
absorption techniques that achieves both conditions simulta-
neously25 by using a Fourier transform (FT) approach. In 2DES,
two pump pulses are used instead of one, with the time delay
between them (labeled t1) being scanned with interferometric
precision for a fixed delay between the second pump and the
probe (the waiting time, labeled t2). Taking the FT of the non-
linear optical signal over t1 provides the excitation frequency axis,
with a resolution that is only limited by the t1 scanning range.

Here, we report 2DES experiments on lead-iodide hybrid
perovskites using thin films of the prototypical material
CH3NH3PbI3. We extract thermalization time constants in the
range of below 10–85 fs, depending on carrier density and excess
energy and find that the main thermalization process is carrier-
carrier scattering.

Results
Pump–probe experiment with sub-10 fs pulses. We prepare thin
films of CH3NH3PbI3 on 170 μm thick glass substrates. Figure 1a
shows the absorption spectrum of the samples with a bandgap
around 760 nm (1.63 eV), which contains contributions from an
excitonic transition near the bandgap and free carrier absorption
towards shorter wavelengths26.

We perform pump–probe experiments using sub-10 fs laser
pulses, with a spectrum spanning from 550 nm (2.25 eV) to
750 nm (1.65 eV), as shown in Fig. 1a. All measurements were
performed in the linear excitation regime as can be seen in
Supplementary Fig. 2a and in conditions under which the samples
showed a high photo-stability (see Supplementary Fig. 2b).
Figure 1b shows the differential transmission (∆T/T) spectrum
as a function of pump–probe delay and probe wavelength.
For positive time delays the signal is dominated by a strong
photo-bleaching (PB, ΔT/T > 0) between 600 and 750 nm, which
we attribute to a phase space filling of the electronic states and
thus reduced absorption near the band edge due to excitation of
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Fig. 1 Pump–probe spectroscopy of lead iodide perovskite. a Absorption spectrum of lead iodide perovskite and broadband laser spectrum used for the

degenerate pump–probe and 2D electronic spectroscopy (2DES) experiments. The pump spectrum overlaps with the free band continuum as well as the

excitonic transition of perovskite. b Pump–probe spectroscopy of perovskite: ΔT/T spectrum as a function of probe wavelength and pump–probe delay

(excitation density: 2 × 1018 cm−3). The broadband nature of the short pump pulses makes the observation of a non-thermalized distribution and

thermalization difficult in pump–probe experiments. Inset: Pump–probe dynamics at 745 nm probe wavelength. The signal rises over two distinct timescales
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carriers in the band-to-band continuum. The broad negative
signal between 550 and 650 nm overlapping the PB has been
shown to originate from a transient change in reflectivity18, 19. At
negative time delays, i.e. when the probe pulse arrives before the
pump, we observe spectral oscillations (see Supplementary Fig. 3
for detailed map) which display an increasing period when
approaching time zero14, 27, 28, defined as the point of temporal
overlap of pump and probe pulse. These oscillations, known as
the pump-perturbed free-induction decay, originate from a
transient grating signal between pump and probe, which is
emitted along the probe’s propagation direction and is only
present at negative time delays13, 29, 30. It will therefore not affect
the analysis of the signal at positive time delays.

The inset in Fig. 1b shows the ΔT/T dynamics near the band
edge at 745 nm probe wavelength. We see a rise in the PB signal
with two distinct components: A fast rise within the first 130 fs
and a slower rise longer than the 500 fs maximum time delay.
While the second component is consistent with the reported
carrier cooling times19, the first component is likely to be due to
carrier thermalization. This signal contains contributions from
carriers excited at all energies within the broad pump pulse
spectrum, which thermalize to a distribution peaked close to the
bandgap. For this reason, pump–probe spectroscopy with
broadband pulses is unable to resolve an excitation energy-
dependent thermalization process. At the same time, broadband
pump pulses are required in order to provide the time resolution
necessary to measure the observed ultrafast thermalization
process.

Carrier relaxation probed by 2DES spectroscopy. In order to
achieve a high resolution in pump energy while maintaining
ultrafast time resolution, we perform 2DES experiments with the
same broadband sub-10 fs pulses employed for pump–probe.
An illustration of the 2DES setup layout can be found in Sup-
plementary Fig. 1 and a detailed description in Supplementary
Note 2. We perform 2DES measurements in a range of the

waiting time t2 (which corresponds to the pump–probe delay)
from −100 to 500 fs and for excitation densities of 2 × 1018 cm−3

and 2 × 1019 cm−3. The full sets of 2DES maps are available as
video files (Supplementary Movies 1 and 2). The lower fluence
measurement is performed at an excitation density just below the
onset of the hot phonon effect (re-absorption of excited phonons
by charge carriers)19, which allows us to observe carrier cooling.
The higher fluence reaches an excitation density where the hot
phonon effect slows down carrier cooling, preventing its obser-
vation within the 500 fs measurement window. In order to check
the quality of the computed 2DES maps, we plot the projection of
the 2DES data along the pump wavelength axis in Supplementary
Fig. 4 and compare it with the pump–probe data. We find a very
good agreement between the two measurements indicating a high
reliability of the 2DES data.

At negative time delays, we observe spectral oscillations,
which again can be identified by their increasing period when
approaching time zero. These are likely to be due to the pump-
perturbed free induction decay. However, the current scanning of
t1 in our 2DES setup is such that the pulse sequence is changed
for negative t2 time delays, which complicates the interpretation
of the data in this regime beyond the scope of this report.

At a time delay t2= 0 fs, we observe a PB signal dominantly
along the diagonal of the 2DES map as seen in Fig. 2a for a
carrier density of 2 × 1018 cm−3. This signal originates from
a non-thermalized carrier distribution, which has not yet
undergone scattering events, so that we observe a PB at the
same wavelengths at which we excite with the pump pulse.

Within the first 100 fs after excitation, we observe a spectral
broadening of the PB signal for each pump wavelength as seen for
t2= 80 fs in Fig. 2b, indicative of carrier thermalization, i.e.,
the exchange of energy amongst charge carriers. After completion
of the thermalization process, the carrier population can be
described by a carrier temperature TC but still remains out of
thermodynamic equilibrium with the lattice (typically TC> TL

where TL denotes the lattice temperature). The carrier energy
distribution and thus the ΔT/T signal at high probe energies
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Fig. 2 Carrier relaxation probed with 2D electronic spectroscopy. a–c 2DES maps for time delays t2 of a 0 fs, b 80 fs and c 500 fs for an excitation

density of 2 × 1018 cm−3. The diagonal of the 2DES maps is indicated with orange lines. d Schematic illustration of carrier relaxation processes. Initially,

a non-thermal carrier energy distribution is excited. After undergoing carrier-carrier scattering, carriers form a thermalized distribution with a temperature

higher than the lattice. Through carrier-phonon scattering, the carriers subsequently cool down until they reach an equilibrium with the lattice temperature
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(energies larger than 1.7 eV or 730 nm) are expected to follow a
Boltzmann function, according to19

ΔT

T
Eð Þ � exp �

E � Ef

kBTC

� �

ð1Þ

where kB denotes the Boltzmann constant and Ef the Fermi
energy. We fit Eq. (1) to the ΔT/T spectrum at 625 nm pump
wavelength and a delay of t2= 52 fs (Supplementary Fig. 5), from
which we derive a carrier temperature of 1600 K. At later time
delays, carriers undergo carrier-phonon scattering, which will
bring the excited carrier population into an equilibrium with
the lattice and cool the carrier temperature TC down to ambient
levels (about 300 K). The cooling time has been reported to be
around 200–400 fs below the onset of the hot phonon effect19, 20.
At t2= 500 fs time delay, we extract a carrier temperature
of 890 K (Supplementary Fig. 5) showing the progressive
carrier cooling in good agreement to published carrier cooling
times19–21. This confirms that the lower fluence measurement
was performed below the onset of the hot phonon effect. At a
time delay t2= 500 fs, we observe a carrier population which
has now significantly cooled down compared to the carrier
distribution at 80 fs, so that the 2DES map is now a vertical stripe
corresponding to the band edge in Fig. 2c.

The different stages of carrier relaxation are illustrated in
Fig. 2d. The clear separation in the time scales of the different
relaxation processes can be seen in Fig. 3a by monitoring the

dynamics of the peak in the 2DES map corresponding to 655 nm
pump and 695 nm probe wavelength: At negative time delays, we
observe spectral oscillations characteristic of the pump-perturbed
free induction decay. At positive time delays up to 100 fs, the PB
signal rises due to thermalization while it subsequently decays
when carriers cool to the band edge under carrier-phonon
scattering. This is consistent with the observed two regimes in the
rise of the bandgap signal in the inset of Fig. 1b.

Investigating carrier thermalization. Figure 3b shows the time
evolution of the ΔT/T spectra at 625 nm pump wavelength,
extracted from the 2DES measurements. Around 0 fs, we observe
a peak in the spectrum near the pump wavelength of 625 nm. On
either side of this peak, we observe a negative transmission
change. For delay times close to the temporal overlap of pump
and probe, this effect has been observed for GaAs before and was
attributed to many-body edge singularities due to the non-
equilibrium distribution function under photoexcitation14. This
effect might also reduce the total photo-bleach intensity at time
zero compared to later time delays. Other contributing factors
will be a negative signal due to a change in reflectivity of the
perovskite film19, which can also be seen at 500 fs time delay as
plotted in Fig. 2c in the probe wavelength range of 550–650 nm.
At positive time delays, the peak in Fig. 3b at 625 nm probe
wavelength decays, while the signal on either side of the peak
rises. This shows that carriers are now occupying a broader
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Fig. 3 Carrier thermalization in perovskites. a 2D electronic spectroscopy (2DES) kinetic at 655 nm pump and 695 nm probe wavelength, which is on the

right side of the 2DES map diagonal and thus between the pump wavelength and the bandgap (excitation density: 2 × 1018 cm−3). We observe three

different regimes: a coherent regime at negative times during which we observe spectral oscillations, a thermalization regime during which we observe a

rise in signal much slower than the temporal width of the instrument response function and delayed relative to the rise of the diagonal, and a carrier cooling

regime during which the signal slowly decays. b ΔT/T spectra for 625 nm pump wavelength extracted from 2DES maps for different time delays t2 at

an excitation density of 2 × 1018 cm−3. Initially, we observe a peak around the pump energy. Carriers quickly thermalize and form a Boltzmann distribution.

c, d Kinetics of carrier thermalization for c 662 nm and d 720 nm pump wavelength at an excitation density of 2 × 1019 cm−3. While the diagonal signal

decays, the off-diagonal signals rise indicating that carriers scatter from the initial sharp energy distribution into a broad statistic energy distribution. The

lines represent a mono-exponential fit to the experimental data
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energetic range of states. We interpret this as carriers undergoing
scattering processes, which will eventually lead to a thermal dis-
tribution. The peak of the spectrum is therefore now close to the
band edge at 760 nm.

Carrier thermalization can be visualized from the dynamics in
Fig. 3c, where we plot signal traces at different probe wavelengths
for 662 nm pump wavelength at a carrier density of 2 × 1019 cm−3.
For the diagonal position at 662 nm probe, we observe a rapid
decay at early times after excitation. At the same time, the signal on
both sides of the diagonal rises as seen by the kinetics of the 600
and 745 nm probe. This demonstrates that carriers initially excited
at 662 nm scatter into other energetic states and that the carrier
distribution function broadens. We plot similar dynamics in
Fig. 3d for a pump wavelength of 720 nm. Again, we observe a
decay of the diagonal signal and a rise at longer and shorter
wavelengths. However, the timescale is now longer than for 662 nm
pump. In the following, we use the decay time of the signal along
the diagonal of the 2DES map as a measure for the thermalization
time. From mono-exponential fits to this decay, we derive a
thermalization time constant of 15 fs for 662 nm pump and 45 fs
for 720 nm pump. This difference in thermalization time constants
can be explained by the higher kinetic energy of carriers pumped at
662 nm, which makes the time between carrier scattering events
shorter than for carriers pumped at 720 nm. It will take a few time
constants for the carriers to reach a fully thermal distribution. It is,
however, difficult to quantify the time point of completed carrier
thermalization due to the asymptotic nature of the process.

Thermalization time is strongly pump energy dependent. To
gain more insights on the underlying scattering process that leads to
thermalization of photo-excited carriers, we study the fluence and
pump wavelength dependence of the diagonal peak decay time.
Figure 4a shows the dynamics of different points on the diagonal of

the 2DES maps. We observe that the thermalization time is strongly
dependent on pump wavelength and measure a thermalization time
constant of 85 fs for excitation near the band edge (737 nm), which
decreases to sub-10-fs when exciting at 581 nm. We determine
carrier scattering rates by fitting the dynamics of the diagonal peaks
with an exponential decay ∝ exp(−kscatt). Figure 4b shows the
excess energy dependence of the carrier scattering rate for the two
excitation densities. In both measurements, we find an increasing
scattering rate with increasing excess energy above the bandgap.
When comparing the two fluences, we observe that the scattering
rates are lower for the lower excitation density. The rate at which
carriers scatter during thermalization is thus carrier density and
excess energy dependent, indicating that the dominant thermali-
zation process is carrier-carrier scattering.

Discussion
2DES is an excellent tool for studying ultrafast thermalization
processes with high temporal and energetic resolution. We mea-
sured thermalization time constants from below 10 to 85 fs for
lead iodide perovskite depending on the excess energies of carriers.
These time scales are fast compared to GaAs where carrier ther-
malization times have been measured in the range of 100 fs to 4 ps
at room temperature12, 15, 17. Interestingly, Hunsche et al.18 report
no significant dependence of thermalization times on carrier
density and excess energy for GaAs. The carrier thermalization
times we observe for perovskites, however, show a strong
dependence on both excess energy and carrier density. For an
excess energy of 60meV at an excitation density of 2 × 1018 cm−3,
we measure a thermalization time of 70 fs (Fig. 4b). This is three
times faster than the 200 fs reported for GaAs for similar
excitation conditions18. The origin for the faster carrier-carrier
scattering in hybrid perovskites is likely to be due to a weaker
Coulomb screening compared to GaAs. The carrier-carrier
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scattering rate ke−e is expected to depend on the optical (high-
frequency) dielectric constant ε according to ke−e ~ 1/ε231. With a
dielectric constant of 6.5–832, 33 for perovskite and about 11 for
GaAs34, we expect carrier-carrier scattering in perovskites to be
faster by a factor of (11/7.25)2= 2.3 due to a weaker Coulomb
screening. This rough estimate already gives reasonable agreement
with our extracted scattering rate. However, we expect that
detailed theoretical calculations, which are beyond the scope of the
current report, will give more accurate values. These fast carrier
scattering processes in perovskites eventually also destroy the
electronic coherence of carriers, so that the thermalization times
are an upper boundary for the coherence times.

Processes that can lead to carrier thermalization include carrier-
carrier scattering, carrier-phonon scattering and carrier-impurity
scattering. The increase of the scattering rates with increasing
fluence suggests that the energy redistribution time for each car-
rier depends on the density of surrounding carriers. Furthermore,
we observe a continuous increase of the scattering rates with
excess energy and thus kinetic energy of the carriers. This suggests
that the dominant scattering process for thermalization is carrier-
carrier scattering under the investigated carrier densities. This can
include scattering of electrons with electrons and holes with holes
as well as scattering in between these two species. There might also
be a contribution from carrier-phonon scattering, which would
cause higher scattering rates in the hot phonon effect regime.

Carrier thermalization will ultimately limit the time for carrier
extraction in hot carrier extracting solar cells (see Fig. 4c). Extrac-
tion of hot carriers has been reported for perovskite nanocrystals35

and was recently suggested for polycrystalline lead iodide films36.
Under the pulsed excitation regime used in these reports, hot carrier
extraction is only limited by the carrier cooling time. However,
under continuous illumination, such as standard sunlight illumi-
nation, there will be a large background population of cold carriers
in the polycrystalline perovskite layer (around 1014–1015 cm−3

assuming an absorbed photon flux of around 1010 cm−3 ps−1) due
to imperfect carrier extraction and due to the long carrier lifetimes
of 100 s of nanoseconds4, 6 compared to the cooling time of less
than 1 ps19–21. This cold population will undergo thermalization
with any newly excited charge carriers without a significant change
in the temperature of the total carrier population. The excess energy
will therefore be rapidly lost after carrier thermalization. Even
reported longer cooling times of around 100 ps for a sub-population
of the carriers37 are still far shorter than the lifetime of charge
carriers making hot carrier extraction difficult.

Strong carrier-carrier scattering can limit the carrier mobility μ
under high excitation densities. By using the expression

μ ¼
e

2meff
� τscat ð2Þ

we can estimate an upper boundary for the charge carrier
mobility. Here, meff denotes the effective mass of the carriers
(meff≈ 0.15me for perovskites

19, 38), e the elementary charge and
τscat the average scattering time. By using the thermalization time
constant near the band edge, in the range of 85 fs, we estimate
upper boundaries for the mobility of 500 cm2V−1 s−1 for a carrier
density of 2 × 1019 cm−3. Even with the fastest measured
thermalization time constant of 8 fs, the mobility would only be
limited to 50 cm2V−1 s−1. These values are within the range
of reported carrier mobilities at low excitation densities38. Other
carrier momentum scattering processes like acoustic phonon
scattering might limit the mobilities to lower values as we did not
probe carrier momentum relaxation in our experiment. We note
that these estimates for the mobility are an average mobility
for electron and hole, since the extracted thermalization time
constant is measuring electrons and holes.

We identified the main scattering process to be carrier-carrier
scattering which will get slower with lower fluence. Eventually,
at low fluences, the thermalization times will be limited by
carrier-impurity scattering and carrier-phonon scattering. The
latter has been shown to occur on timescales of 200–400 fs19, 20,
in agreement with our measurements.

In conclusion, we report on carrier thermalization in lead
iodide perovskite measured by 2DES. We find thermalization
time constants of below 10–85 fs with carrier-carrier scattering
being the dominant process. Furthermore, we discussed that these
timescales are the limiting factor for hot carrier extracting devi-
ces. The reported timescales give an insight into the fundamental
carrier–carrier interactions and provide a deeper understanding
of the photophysics of these emerging photovoltaic materials.

Methods
Film preparation. For the iodide perovskite films, 3:1 molar stoichiometric ratios
of CH3NH3I and Pb(CH3COO)2 (Sigma Aldrich 99.999% pure) were made in
N,N-dimethylformamide in 20 wt% solution. This solution was spun inside a
nitrogen filled glove box on quartz substrates at 2000 r.p.m. for 60 s followed by
3 min of thermal annealing at 100 °C in air to form thin films. The samples were
encapsulated with a second glass slide and epoxy adhesive (Loctite Double Bubble)
under inert conditions to avoid sample degradation and beam damage.

Pump–probe experiment. We perform pump–probe experiments with sub-10 fs
laser pulses. The pump–probe setup starts with an amplified Ti:sapphire laser
system (Libra, Coherent), which delivers 4-mJ, 100-fs pulses around 800 nm at
1-kHz repetition rate. A portion of the laser with 300 μJ energy is used to pump a
non-collinear optical parametric amplifier (NOPA), which is subsequently split
into pump and probe pulse. The NOPA delivers a pulse with a spectrum spanning
from 550 nm (2.25 eV) to 750 nm (1.65 eV), as shown in Fig. 1a, compressed to
sub-10-fs duration by multiple reflections on custom-designed double-chirped
mirrors (DCMs). Pulse duration is measured by second harmonic generation
frequency resolved optical gating39. The pump energy is 3 nJ which, focused to a
spot size of ≈100 μm, yields a fluence of ≈10 μJ cm−2.

Two-dimensional electron spectroscopy. We perform 2DES in the partially
collinear pump–probe geometry, according to the scheme shown in Supplementary
Fig. 2. 2DES can be seen as an extension of conventional pump–probe spectro-
scopy, where two identical collinear pump pulses are used and their delay t1
(coherence time) is scanned in time, for a fixed value of the probe pulse delay t2
(population time). The probe pulse is dispersed in a spectrometer, providing
resolution in the detection frequency. The FT with respect to the pump pulses delay
provides the resolution of the signals with respect to the excitation frequency40–42.

The 2DES setup uses the same NOPA as pump–probe, which is divided by a beam
splitter (90% transmission, 10% reflection) into pump and probe lines. The identical
and phase-locked pair of femtosecond pump pulses is generated by the Translating-
Wedge-Based Identical-Pulses-eNcoding System (TWINS) technology43, 44. TWINS
uses birefringence to impose user-controlled temporal delays, with attosecond
precision, between two orthogonal components of broadband laser pulses. Rapid
scanning of the inter-pulse delay allows robust and reliable generation of 2DES
spectra in a user-friendly pump–probe geometry. In order to determine zero delay
between the pump pulses and properly phase the 2DES spectra, part of the pump
beam is split off and sent to a photodiode to monitor the interferogram of the pump
pulse pair. The additional dispersion introduced by the TWINS on the pump pulse
pair is compensated by a suitable number of bounces on a pair of DCMs, and spectral
phase correction is verified using a Spatially Encoded Arrangement for Temporal
Analysis by Dispersing a Pair Of Light E-fields (SEA-TADPOLE) setup45. Pump and
probe pulses are non-collinearly focused on the sample and the transient transmission
change ΔT/T is measured by a spectrometer46.

Data availability. The experimental data that support the findings of this study are
available in the University of Cambridge Repository (https://doi.org/10.17863/
CAM.11883).
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