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Abstract— In this paper, we demonstrate a phase transition
phenomenon in algebraic connectivity of small-world net-
works. Algebraic connectivity of a graph is the second smallest
eigenvalue of its Laplacian matrix and a measure of speed
of solving consensus problems in networks. We demonstrate
that it is possible to dramatically increase the algebraic
connectivity of a regular complex network by 1000 times or
more without adding new links or nodes to the network. This
implies that a consensus problem can be solved incredibly
fast on certain small-world networks giving rise to a network
design algorithm for ultrafast information networks. Our
study relies on a procedure called “random rewiring” due to
Watts & Strogatz (Nature, 1998). Extensive numerical results
are provided to support our claims and conjectures. We prove
that the mean of the bulk Laplacian spectrum of a complex
network remains invariant under random rewiring. The same
property only asymptotically holds for scale-free networks. A
relationship between increasing the algebraic connectivity of
complex networks and robustness to link and node failures
is also shown. This is an alternative approach to the use of
percolation theory for analysis of network robustness. We also
show some connections between our conjectures and certain
open problems in the theory of random matrices.

Keywords: small-world networks, networked systems,
consensus algorithms, phase transition, graph Laplacians,
algebraic connectivity, network robustness, random matrices

I. INTRODUCTION

Complex networks are abundant in large-scale engineer-
ing, biological, and social systems. Some examples include
power networks, metabolic and gene networks [17], co-
authorship network of scientists [27], biological network of
oscillators [44], [19], [18], [24], [39], economic networks
[15], sensor networks [10], [30], [7], [38], swarms of
networked unmanned autonomous vehicles (UAVs) [32],
[36], [6], and self-organizing biological swarms [25], [41].
For recent surveys on complex networks, the reader can
refer to [40], [28].

In 1998, Watts & Strogatz [42] introduced a network
model called small-world network that was capable of inter-
polating between a regular network and a random network
using a single parameter. A small-world is a network with
a relatively small characteristic length1. In a small-world,
any two nodes can be linked using a few steps despite the
large size of the network. For example, the world-wide web
(www) with n = 8 × 108 nodes has a characteristic length
of 18.5 [3].

1The average distance between two nodes in the network over all pairs
of distinct nodes. The distance is the length of the shortest path connecting
two nodes.

The small-world model of Watts & Strogatz initiated a
tremendous amount of interest among researchers from mul-
tiple fields to study topological properties of complex net-
works. These properties include degree distribution, char-
acteristic length, clustering coefficient (see [42], [28]), ro-
bustness to node failure, and search issues. The researchers
who have most contributed to this effort came from fields
such as statistical physics, computer science, economics,
mathematical biology, communication networks, and power
networks.

In most engineering and biological complex systems,
the nodes have a dynamics—they are not labels or names
of actors. In other words, “real-life” engineering networks
are interconnection of dynamic systems. The same applies
to broad examples of biological networks including gene
networks and coupled neural oscillators. From the perspec-
tive of systems & control theory, the stability properties
of collective dynamics of networks of dynamic agents is of
interest. This motivates exploration of spectral properties of
complex networks. In the past, the study of spectral proper-
ties of random networks has been given little attention. This
paper is a first step towards understanding the behavior of
Laplacian spectra of complex networks and its application
in design of ultrafast information networks.

We use consensus problems [35], [33] as a framework to
convey our ideas regarding the connections between spectral
properties of complex networks and ultrafast solution to dis-
tributed decision-making problems for interacting groups of
agents. Distributed computation based on solving consensus
problems has direct implications on sensor networks & data
fusion [38], load balancing [21], and swarms/flocks [32],
[36]. Moreover, synchronization of coupled oscillators [44],
[19], [18], [24] that has received tremendous attention over
the past 35 years is a special case of a nonlinear consensus
problem in networks [35] regarding the frequency of oscil-
lation of all nodes2. For this case, algebraic connectivity is
(locally) a measure of speed of synchronization.

One of the first class of complex networks are random
graphs introduced by Erdös & Rényi (ER) [9] nearly 50
years ago. A random graph can be constructed by connect-
ing any pairs of vertices of the graph with probability p.
Random graphs are perhaps the most well-studied model
of random networks. The unique feature of the ER model

2Further details regarding the connection between the two problems in
the subject of an upcoming article.
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is that beyond a critical value p > pc ≈ 1/n, a giant
connected component forms in the network [9], [40]. This
phenomenon is the first known example of a combinatorial
phase transition. Other forms of combinatorial and algo-
rithmic phase transition phenomena were later discovered
in discrete mathematics and computer science.

The next generation of random networks consist of three
models: i) small-world networks by Watts & Strogatz (WS)
[42], ii) semiregular small-world networks by Newman,
Moore, & Watts (NMW) [29], and iii) scale-free networks
(e.g. www) by Barabási & Albert (BA) [1]. We will describe
the WS and NMW network models in details and leave the
discussion of the BA model to a future occasion. The ER
model is inadequate for our study since it is not guaranteed
to be connected unless the graph is relatively dense. That
is why we focus on spectral properties of WS and NMW
small-world models.

Here is an outline of the paper: Some background on
consensus problems from systems & control point of view
is presented in Section II. Small-world networks and their
semiregular version are described in Section III. Random
rewiring procedure for general networks is given in Sec-
tion IV. Our main numerical results and conjectures on
Laplacian spectral properties of small-world networks and
network resilience are presented in Section V. The connec-
tions between Laplacian of random networks and random
matrix theory is discussed in Section VI. Finally, concluding
remarks are made in Section VII.

II. CONSENSUS PROBLEMS IN NETWORKS

Consider a network of integrator agents ẋi = ui with
topology G = (V, E) in which each agent only com-
municates with its neighboring agents Ni = {j ∈ V :
{i, j} ∈ E} on G = (V, E). Here, V = {1, 2, . . . , n} and
E ⊂ [V ]2 (the set of 2-element subsets of V ) denote the
set of nodes and edges/links of the network, respectively. In
[35], [33], Olfati-Saber & Murray show that the following
linear dynamic system

ẋi(t) =
∑

j∈Ni

(xj(t) − xi(t)) (1)

solves a consensus problem. More precisely, let
a1, . . . , an ∈ R be n constants, then with the set of initial
states xi(0) = ai, the state of all agents asymptotically
converges to the average value ā = 1/n

∑
i ai provided

that the network is connected. The collective dynamics of
the agents in (1) can be expressed as

ẋ(t) = −Lx(t) (2)

where L = L(G) is the Laplacian matrix of graph G.
The Laplacian is defined as L = D − A where D is a
diagonal degree matrix of G with an ith element that is the
degree di = |Ni| of node i. Let us denote the eigenvalues
of Laplacian L by

λ1 ≤ λ2 ≤ · · ·λn.

Note that the Laplacian matrix always has a zero eigen-
value λ1 = 0 corresponding to the aligned state x =
(1, 1, . . . , 1)T . In addition, if G is connected, then λ2 > 0
[13]. Apparently, the analysis of consensus problems in
networks reduces to spectral analysis of Laplacian of the
network topology. Particularly, λ2 is the measure of speed
of convergence (or performance) of the consensus algorithm
in (1) [33]. λ2 is named the algebraic connectivity of the
graph by Fiedler [12] due to the following inequality:

λ2(G) ≤ ν(G) ≤ η(G) (3)

where ν(G) and η(G) are node-connectivity and edge
connectivity of a graph, respectively (see [4] for definitions).
According to this inequality, a network with a relatively
high algebraic connectivity is necessarily robust to both
node-failures and edge-failures. A lower bound on this
degree of robustness is �λ2�.

For a network with communication time-delays, the con-
sensus algorithm takes the following form [35], [33]:

ẋi(t) =
∑

j∈Ni

{xj(t − τ) − xi(t − τ)} (4)

with a collective dynamics

ẋ = −Lx(t − τ). (5)

We assume that the time-delay in all links is equal to τ
(see [35] for the general case). A necessary and sufficient
condition for stability of system (5) is given in [33] as

τ < τmax =
π

2λn
. (6)

Thus, λn is a measure of robustness to delay for reaching
a consensus in a network.

The main result of this paper is that λ2 for a regular
network can be increased multiple orders of magnitude
via changing the inter-agent information flow G without
increasing the total number of the links of the network.
Moreover, this change has a negligible effect on λn (the
system remains robustness to delay).

Some variations of consensus problems on graphs include
the following areas: networks with switching topology [16],
[33], [26], [34], consensus on digraphs [33], [26], and
asynchronous consensus [14].

III. SMALL-WORLD NETWORKS

Small-world phenomenon is a feature of certain complex
networks in which any two arbitrary nodes can be connected
using a few links [23]. This means that the average distance
between two nodes (i.e. characteristic length) is relatively
small in small-worlds.

In 1998, Watts & Strogatz (WS) [42] introduced a model
called small-world network with the capability to interpolate
between a regular lattice and a random graph using a single
parameter p (see Fig. 1). They demonstrated that broad ex-
amples of social, biological and physical complex networks
fall within the category of small-world networks including
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power networks in the western US, the neural network of
a worm called C. Elegans, a certain co-authorship network
of scientists, and the network of actors who played in the
same movies [42], [40].

p = 0 p = 0.1

p = 0.5 p = 1

Fig. 1. Small-world networks G(p) with (n, k) = (20, 2) for p =
0, 0.1, 0.5, 1.

To construct a small-world network, one starts with a one-
dimensional lattice on a ring with n nodes in which every
node is connected to its nearest neighbors up to the range
k. Let us denote this lattice by G0 = C(n, k). Then, one
rewires every link with probability p by changing one of the
endpoints of a link uniformly at random. No self-loops or
repeated links are allowed. (Note: a mathematically precise
rewiring algorithm will be presented later for an arbitrary
network). Fig. 1 demonstrates small-world networks ob-
tained via random rewiring for various values of parameter
p.

In [42], Watts & Strogatz numerically showed that the
characteristic length l of a small-world network consider-
ably reduces over the range 0.0001 ≤ p ≤ 0.01 and remains
almost unchanged for p > 0.01. This indicates that random
rewiring with a small value of p creates a small-world out
of a regular network that originally has a large diameter.

Newman, Moore, & Watts (NMW) [29] introduced a
modified form of the small-world network model that is
the addition of a regular lattice plus a random graph. No
rewiring is needed. Starting with a lattice every two nodes
are connected with a probability of φ per number of links
of the initial lattice. The NMW model has nk + nkφ
links on average. Using mean-field theory from statistical
physics, Newman et al. analytically derived a formula for
the characteristic length of the network as l = n

k f(nkφ)
with

f(x) =
1

2
√

x2 + 2x
tanh−1 x√

x2 + 2x
. (7)

We refer to the Newman-Moore-Watts model as a semireg-
ular small-world network. Semiregular small-world model
can be effectively used as an approximate model of the WS
model. The degree distribution of both models is known
and can be found in [28].

Our main contribution is to show that the algebraic con-
nectivity of a small-world network can be made more than
1000 times greater than a regular network. This means that
small-world networks go through a spectral phase transition
phenomenon that was unknown before. This spectral phase
transition allows achieving ultrafast consensus in small-
world networks.

Remark 1. By spectral properties of a graph, we mean
spectral properties of the Laplacian matrix which fundamen-
tally differs from the spectral properties of the adjacency
matrix of a graph as considered in [11]. The spectrum of
the adjacency matrix has no relevance to stability properties
of system (2).

IV. RANDOM REWIRING ALGORITHM: NETWORK

EVOLUTION

The random rewiring procedure in [42] can be general-
ized to networks with arbitrary topologies in a straightfor-
ward manner. For future applications, we formally describe
this algorithm in details. The byproduct of this formalism
is the fact that small-world networks can be obtained as the
limit of a finite-time evolution of a dynamic graph [22] with
three key elements: a non-deterministic graphical dynamics
specified by random rewiring algorithm, an initial state that
is a regular lattice, and a terminal state that is a small-world
network.

Let Ji = Ni∪{i} denote the set of inclusive neighbors of
node i and Jc

i = V \Ji denote the set of non-neighbors. Let
e = {i, j} be an edge of the graph G and ed = (i, j) be its
oriented form. The rewired edge is a new edge e′d = (i, j′)
in which j′ is a node in Jc

i that is chosen uniformly at
random with probability qi = 1/|Jc

i |. Let e′ = {i, j′} be the
unoriented form of e′d. The randomly rewired graph G′ =
Rp(G, e) is obtained from G by replacing the edge e =
{i, j} by its rewired version e′ = {i, j′} with probability
p. If a node is connected to every other node, there are
no non-neighbors (or Jc

i = ∅) and we set j′ = j. In case
Ji = V , no rewiring occurs. Here, Rp is a random edge
rewiring operation that rewires a single edge of the graph
with probability p. The following diagram clarifies the edge
rewiring procedure:

{i, j} −−−−→
orient

(i, j) −−−−−−−−→
rand. rewire

(i, j′) −−−−−→
unorient

{i, j′}

Let e1, e2, . . . , em be the sequence of the edges of graph
G. Set G0 = G and define the following graphical dynamics

Gt+1 = Rp(Gt, et+1), t = 0, 1, 2, . . . , (m − 1) (8)

Then, the randomly rewired network is defined as G(p) :=
Gm with m = |E|. Clearly, (8) can be viewed as a discrete-
time dynamic system with a state that is a dynamic graph of
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order n driven by an input vt = et+1. The special choice of
G0 = C(n, k) and m = nk gives the small-world networks
in [42]. The benefit of our formalism is that any other type
of lattice or regular network can be used as an initial state
of system (8). This includes 2-D and 3-D toroidal grids and
networks induced by α-lattices [32].

Here, our main focus will be devoted to random rewiring
of the ring lattice G0 = C(n, k) with purely local links.
In comparison, a small-world network contains nonlocal
interconnections (or shortcuts) as well as local links. We
will demonstrate that the existence of nonlocal links are
crucial in dramatic improvement of algebraic connectivity
of small-world networks.

Considering that G(p) is a random network, its eigen-
values are random variables. This means that λi(p) =
λi(G(p)) := λi(L(G(p))) are random variables for i =
1, . . . , n. Thus, by saying “algebraic connectivity” of a
small-world network G(p), we mean the expected value
λ̄2(G(p)) of the random variable λ2(G(p)). Throughout this
paper, with a slight abuse of notation, we refer to “expected
value of algebraic connectivity” of a random network as
“algebraic connectivity” and denote it by λ2(p).

Even for a highly structured graph such as C(n, k), the
probability space of G(p) is very large for n � 1 with
k = O(log(n)). One approximate way to calculate λ2(p)
is to generate a number of instances of G(p) for a given
p > 0 using the random rewiring algorithm. Then, use the
average value of their algebraic connectivity as an estimate
of λ2(L(G(p))).

V. SPECTRAL PHASE TRANSITION IN SMALL-WORLD

NETWORKS (MAIN RESULTS)

In this section, we characterize the behavior of algebraic
connectivity and λn of small-world networks based on a set
of systematic numerical experiments on complex networks.
This allows us to formulate formal conjectures regarding
the behavior of λ2 and λn of small-world networks that
can be later tackled by various theories. Here are a number
of motivating questions that guide our study:

1) When does λ2(p) increase as a function of p?
2) Is λ2(p) a monotonic function of p?
3) Does random rewiring increase λ2(Gt(p)) (on aver-

age for a fixed p) as a function of the evolution time-
step t?

4) Is there an interval for p such that λ2(p) increases by
a factor of 100, 1000, or 10,000?

5) What happens to λn(p) upon rewiring?

So far, there have been no analytic or experimental
studies on spectral properties of small-world networks that
address any of the above questions. Answering these ques-
tions is crucial in further understanding of properties of
complex networks of interconnected dynamic systems that
arise in engineering and biological systems. This knowledge
is particularly beneficial for design of ultrafast information
networks.

TABLE I

TEST GRAPHS

C(n, k) n k m = |E|
g1 100 2 200
g2 200 3 600
g3 500 3 1500
g4 1000 5 5000

We generate multiple (10 to 20) samples of small-world
networks G(p) for each p with initial states specified in
Table I. The parameter p is chosen on a logarithmic scale be-
tween 0.01 to 1 (25 data points). In fact, for 0 < p < 0.01,
no significant change in λ2(p) could be observed. The last
entry of Table I (or g4) corresponds to the graph parameters
used to create the data in Fig. 2 of [42] which is added
for comparison purposes. All entries of the table satisfy
k ≈ log(n)/2 meaning that m = |E| = O(n log(n)).

Definition 1. (algebraic connectivity gain & robustness to
delay) Let λi(p) = λi(G(p)) and note that G(0) = G0. We
refer to γ2(p) = λ2(p)/λ2(0) as the algebraic connectivity
gain of G(p). In addition, γn(p) = λn(p)/λn(0) is called
the measure of robustness to delay of the network G(p) (as
γn(p) increases, the network can tolerate smaller delays).

A. Behavior of λ2

The algebraic connectivity gain of small-world networks
G(p) evolved from regular networks g2, g3, g4 (defined
in Table I) is shown in Fig. 2. The curve of γ2(p) =
λ2(p)/λ2(0) has a S-shape that essentially remains the same
for various network parameters. Each data point in this
figure is obtained by averaging over 10 randomly rewired
networks. The actual data from the simulation runs for g4

is shown in Fig 3. Here are some observations and remarks:
i) A phase transition in algebraic connectivity gain γ2

can be observed that starts around the critical value
pc ≈ 0.1 regardless of the network size n and contin-
ues to pf = 0.68 (the 23rd data point). This critical
value is 103 times larger than the parameter value for
the onset of the small-world phenomenon in [42] for
G0 = C(1000, 5) (Fig. 2 (d)).

ii) The maximum value of γ2 is at the same order as the
network size or greater, i.e. γ∗

2 = maxp γ2(p) ≈ O(n).
If this happens to be true for larger networks (e.g. n =
104 and larger), the implication is that λ2 of a complex
regular network can be increased by multiple orders
of magnitude (e.g. 4 or more) via random rewiring.
Apparently, for a network with n = 1000 nodes, λ2

can be increased more than 1500 times over an interval
of p.

iii) Random rewiring with high p does not necessarily
increase λ2 for complex regular networks. In fact,
according to Fig. 2 (b), rewiring with p = 1 might
lead to a gain that is smaller than γ∗

2 for that network.
iv) We observed that in 100% of the 250 rewiring pro-

cedures performed on four regular networks preserved
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the connectivity of the network during the rewiring
iterations for all p ∈ (0, 1]. This property does not hold
for networks that are too sparse (e.g. n ≥ 100, k = 1).

v) Random rewiring of a regular network that is not
sufficiently complex does not necessarily increase λ2!
(see [31] for details). It turns out that the dramatic
increase in λ2 requires both random rewiring with a
high p and high complexity of the network.

vi) For networks with n ≥ 100, the algebraic connectivity
gain γ2(p) is monotonically increasing in p regardless
of the network parameters n, k over a large sub-interval
[pc, pf ] of [0, 1] (e.g. pc = 0.1, pf = 0.68).
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Fig. 2. The S-shape curve of algebraic connectivity gain λ2(p)/λ2(0)
for small-world networks starting from lattices a) g2, b) g3, and c) g4.

From the above discussion, one can conclude that the
complexity of small-world networks serves a great purpose:
one can increase algebraic connectivity of a regular network
via random rewiring by a factor of O(n). The larger the size
of the network, the greater the gain γ2(p). We summarize
these assertions in the form of the following conjecture that
captures the essential aspects of the behavior of λ2(p) for
small-world networks.

Conjecture 1. Let G(p) with p > 0 be a small-world
network that is evolved from an initial regular lattice G0 =
C(n, k) with k = O(log(n)). Then, for a network G(p) that
is sufficiently large, the following statements hold:

i) The exists a sub-interval [pc, pf ] of [0, 1] of length
≥ 1/2 such that λ2(p) of L(G(p)) is on average
monotonically increasing in p.
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Fig. 3. Individual algebraic connectivity gains γ2(p) corresponding to
the averaged data shown in Fig. 2 (c).

ii) There exists a p∗ > 0 such that γ2(p) > n,∀p > p∗.

Now, let us explore whether the rewiring process on
average increases λ2(p) during the evolution of small-world
networks. For doing so, we have plotted the estimates of
λ2(p) and the individual runs for 20 simulation runs in
Fig. 4. During a large portion of the network evolution,
λ2(p) is monotonically increasing as a function of the
evolution time-step. For each individual simulation run,
λ2(p) does not change monotonically. Though, in all cases,
random rewiring increase λ2 by 2-3 orders of magnitude.
These observations can be also summarized as a conjecture:

Conjecture 2. Let G0 = C(n, k) be a lattice with k =
O(log(n)). Let Gt(p) denote the state of the network
during its random rewiring evolution according to graphical
dynamics (8) at time-step t with t = 1, 2, . . . , m and
m = nk. Then, for a sufficiently large-scale network, the
mean of λ2(L(Gt(p))) is monotonically increasing in t
during the last �m/2� iterations of its evolution.
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Fig. 4. Variations of γ2(p) during network evolution.
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B. Behavior of λn

Given that λn is a measure of robustness to delays for
a consensus algorithm, the main question that remains is
whether a dramatic increase in γ2(p) leads to a considerable
decrease in the robustness to delay gain γn(p)? To answer
this question, we need to inspect the plots of γn(p) for
small-world networks with various parameters.

Fig. 5 shows the variation of the robustness to delay gain
γn(p) for various networks. Clearly, regardless of the size
of the network, γn(p) does not change significantly in any
case. Therefore, a dramatic increase in γ2(p) only slightly
increases γn(p). In fact, γn(p) < 2 for all p for every case
shown in Fig. 5.
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Fig. 5. γn(p) of small-world networks for networks with different sizes:
a) g1 and b) g4. One observes that 1 < γn(p) < 2 regardless of the size.

C. Spectral Phase Transition

Fig. 6 shows the distribution of bulk eigenvalues (ex-
cluding λ1 = 0) of a regular lattice G0 = C(1000, 5)
and a small-world network G(p) with p = 0.68 that
is evolved from G0. Numerically, it was determined that
λ2(0) = 2.2 × 10−3 and λ2(p) ≈ 3.3. Let κ = λn/λ2

denote the (modified) condition number of L. Then, the
condition number of Laplacian of the lattice in Fig. 6 (a) is
approximately 103 times larger than the condition number
of the small-world network G(p) in Fig. 6 (b). Thus,
upon random rewiring, the entire Laplacian spectrum of the
network shifts towards λn. We refer to this dramatic shift of

the bulk spectrum of a complex network as spectral phase
transition phenomenon.
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Fig. 6. Distribution of the bulk Laplacian spectrum of two complex
networks with n = 1000 nodes: a) a regular lattice and b) a small-world
network G(p) with p = 0.68.

Let us define the disagreement of a group of agents with
state x as ϕ(x) = xT Lx [35], [33]. For a network with
n = 200 and k = 3, the disagreement of a group of dynamic
agents solving a consensus problem is shown in Fig. 7. The
initial state of the agents is chosen as xi(0) = i for i =
1, . . . , n. It takes 100 times longer to reach a consensus in
a regular network compared to a small-world network G(p)
with p = 0.68. A communication network that implements
such an ultrafast information flow via routing can be chosen
to be a small-world model with p = 0.01. This way a
network with few nonlocal physical links implements an
information flow with numerous nonlocal information links.

D. Mean of the Bulk Eigenvalues of Complex Networks

The following theorem provides an invariance property
of the bulk Laplacian spectrum of small-world models that
are obtained via random rewired from any lattice:

Theorem 1. (mean invariance of bulk eigenvalues) Let
G(p) be a small-world network of order n evolved from
an arbitrary lattice G0 with m links. Then, the mean
λ̄ = 1

n−1

∑
i≥2 λi of the bulk eigenvalues of Laplacian of

Gt(p) is an invariant quantity that does not depend on p
or t (the evolution step-size). Moreover, λ̄(G(p)) = λ̄(G0).
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Fig. 7. Comparison of time to reach a consensus between a regular
network and a small-world model: a) Tlattice = 500 seconds and b)
Tsmall-world = 5 seconds.

Proof. For a graph G with m edges, Laplacian L, and
eigenvalues λ1 ≤ . . . , λn, we have

(n−1)λ̄(G) =
∑

i≥2

λi =
∑

i≥1

λi = trace(L) =
∑

i

di = 2m.

Thus, λ̄(G) = 2m/(n− 1). Since the number of edges and
nodes of Gt(p) remain invariant during random rewiring,
we get λ̄(Gt(p)) = λ̄(G0). Furthermore, setting t = m
gives λ̄(G(p)) = λ̄(G0).

Keep in mind that G0 is not restricted to be a ring
lattice in Theorem 1. For the two distributions of the bulk
eigenvalues shown in Fig. 6, the mean λ̄ of the bulk spectra
of G0 and G(p) are the same and equal to λ̄ = 104/999 ≈
10 (or λ̄ ≈ 2k).

A modified version of Theorem 1 for the NMW model
can be stated as follows: Let G(φ) be a semiregular small-
world network with parameters n, k, φ. Then, on-average
λ̄(G(φ)) = λ̄(G0)+2nkφ/(n−1) ≈ 2k(1+φ) for n � 1.

The invariance property of Theorem 1 does not hold for
scale-free networks because the number of their nodes and
links grows by time (see [1], [2] for more details). However,
it is possible to calculate the limit of λ̄ after a long evolution
period. Let G(t) be a scale-free network at the evolution
time-step t and assume initially the network started with
a finite (but unknown) number of nodes n0 and no links.
At every time-step t, one node is added and connected to
s ≤ n0 existing nodes in any manner (including preferential
growth [2]). Then, m(t) = st and n(t) = n0 + t. Thus,
λ̄(G(t)) = 2m(t)/(n(t) − 1) ≈ 2s for a well-developed
network with t � 1.

For a random graph Γ with parameter p0, λ̄(Γ) = np0.
Given that a small-world model G(p) with p = 1 behaves
like a random graph with p0 = 2nk/n(n − 1) ≈ 2k/n
for n � 1, it turns out that λ̄(G(p)|p=1) = np0 ≈ 2k.
This value is consistent with our previous calculation of λ̄
for the small-world model. Note that we have managed to
determine λ̄ for all four models of complex networks.

E. Algebraic Connectivity and Robustness to Failures

According to the Fiedler’s inequality in (3), increasing
the algebraic connectivity of a network renders the network
robust to link and node failures. Since �λ2� = 4 for

the spectrum of G(p) in Fig. 6 (b), we have η(G(p)) ≥
ν(G(p)) ≥ 4. Thus, any 4 links or nodes of a sample of the
small-world network G(p) with λ2 = 3.3 can fail and still
the network will remain connected. This is an alternative
approach to the use of percolation theory for analysis of
network resilience [5], [28].

VI. CONNECTIONS TO RANDOM MATRICES

The question is that how one proves any of the aforemen-
tioned conjectures? A look at the structure of the Laplacian
matrix L = D−A makes it clear that L is a random matrix,
i.e. a matrix with entries that are random variables. The
theory of random matrices [20] was originally motivated
by the study of many-body particle systems in physics. The
first major result in random matrices is the original work of
Wigner [43]. Specifically, we are interested in distribution of
individual eigenvalues of Laplacian and not how the entire
spectrum is distributed.

The diagonal elements of L are random variables with
identical distributions to the degree distribution of a random
network. Hopefully, the degree distributions of all random
network models are known (see [28]). However, the degree
distribution and the distribution of all off-diagonal elements
of L differ. The author is not aware of any results that can
deal with eigenvalue distribution of random matrices with
entries that have heterogeneous distributions. We assume
this is an open problem that needs to be addressed by
mathematical physicists who specialize in such distribution
calculations [8], [37].

VII. CONCLUSIONS

We demonstrated that the algebraic connectivity of a
regular network can be considerably increased by a factor
of 1000 via random rewiring that turns a local link to a
nonlocal link (no new links are added). This procedure
was originally introduced by Watts & Strogatz [42]. This
phase transition in algebraic connectivity of small-world
networks makes them ideal candidates for design of ultrafast
information networks.

We posed two conjectures based on a numerical analysis
of the behavior of λ2 and λn for small-world networks.
We proved that the mean of the bulk Laplacian spectrum
of small-world networks is invariant and does not change
via rewiring. This property only holds asymptotically for
scale-free networks. A relationship between increasing the
algebraic connectivity of complex networks and network
robustness to link and node failures was also demonstrated.
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[9] P. Erdös and A. Rényi. On the evolution of random graphs. Pub.
Math. Inst. Hungarian Academy of Science, 5:17–61, 1960.

[10] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century
challenges: scalable coordination in sensor networks. Proc. of Mobile
Computing and Networking, pages 263–270, 1999.
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