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Abstract. The exact factorization of the time-dependent electron–nuclear wavefunction has been employed
successfully in the field of quantum molecular dynamics simulations for interpreting and simulating light-
induced ultrafast processes. In this work, we summarize the major developments leading to the formulation
of a trajectory-based approach, derived from the exact factorization equations, capable of dealing with
nonadiabatic electronic processes, and including spin-orbit coupling and the non-perturbative effect of an
external time-dependent field. This trajectory-based quantum-classical approach has been dubbed coupled-
trajectory mixed quantum-classical (CT-MQC) algorithm, whose performance is tested here to study the
photo-dissociation dynamics of IBr.

1 Introduction

The theoretical description of nonequilibrium pro-
cesses at the microscopic scale poses continuous chal-
lenges in many fields, such as molecular and chem-
ical physics, condensed matter physics, and theoret-
ical chemistry. Theory needs to be able to describe
purely quantum effects such as electronic transitions [1–
9], (de)coherence [10–15], interferences [16,17], energy
relaxation [18–20], or phase transitions [21,22], that
are often the result of complex interactions between
electrons and nuclei on ultrafast time scales and of
the non-perturbative effect of time-dependent external
fields. While quantum mechanics is the key to unravel
these processes, actual applications and studies relying
on computational methods require the introduction of
approximations. In the domain of quantum molecular
dynamics, approximations can be intended in various
way, (i) to reduce the complexity of the original prob-
lem via simplified models, (ii) to make the underlying
equations of motion computationally tractable based
on mathematical or physical observations, or (iii) to
neglect some effects in favor of others depending on the
situations.

In the present work, we will provide examples on
these three strategies, limiting our study to light-
induced ultrafast phenomena in isolated molecular sys-
tems, and employing the formalism of the exact factor-
ization of the time-dependent electron–nuclear wave-
function [23–25]. Using this theoretical framework, par-
ticular attention is devoted to present the procedures
yielding simplified equations of motion, i.e., point (ii)

a e-mail: federica.agostini@universite-paris-saclay.fr (cor-
responding author)

above, that have made in recent years the exact factor-
ization a suitable “tool” to perform quantum molecular
dynamics simulations [4,26].

Introducing the factored form of a molecular—
electronic and nuclear—wavefunction allows one to
rewrite the time-dependent Schrödinger equation as
coupled evolution equations for the electronic and the
nuclear components of the full wavefunction. Once the
problem is decomposed, the idea that has motivated
and driven our efforts in the last years is to circumvent
the exponential scaling of quantum mechanical equa-
tions of motion using classical-like trajectories to mimic
nuclear dynamics while maintaining a quantum view-
point for electronic dynamics [27–30].

The exact factorization naturally lends itself for such
a quantum-classical scheme because the original prob-
lem, i.e., the molecular time-dependent Schrödinger
equation, is decomposed into a (single) electronic and
nuclear part without invoking any approximations. Fur-
thermore, nuclear dynamics appears to be fairly stan-
dard, in the sense that the nuclei evolve according to
a (new) time-dependent Schrödinger equation where
the effect of the electrons is accounted for via time-
dependent vector [31,32] and scalar potentials [33,34].
Being explicitly dependent on time, these potentials are
able to describe effects due to electronic excited states
and induced or driven by external fields [24,35–38].
Aside from being a suitable framework for developing
approximate numerical schemes, the exact factorization
offers a framework to interpret, and perhaps even dis-
entangle, complex effects: on one hand, nonadiabaticity
and quantum decoherence are often strongly related to
each other and affected by nuclear motion [30,39–44];
on the other hand, nuclear quantum effects, such as
interferences and branching in configuration space, can
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manifest themselves as consequence of the coupling to
electronic dynamics, and compete with other similar
effects, such as tunneling [45–47].

While a comprehensive discussion on these points
is beyond the scope of this work, we focus here on
the possibility of capturing nonadiabatic effects and
quantum decoherence during photo-induced ultrafast
processes, by means of the quantum-classical scheme
derived from the exact factorization. For complete-
ness, we treat at the same level spin-allowed electronic
nonadiabatic transitions, induced by nuclear motion,
and spin-forbidden electronic transitions mediated by
spin-orbit coupling [48,49]. Following recent develop-
ments [50], we present as well how to explicitly account
for external time-dependent fields (only the case of a
continuous-wave (cw) laser will be discussed). The pos-
sibility of including quantum nuclear effects by adopt-
ing a quantum trajectory approach is also mentioned.

To present the exact factorization, together with its
quantum-classical formulation, and to apply the the-
ory to the study of a molecular process, we organize
the paper as follows. In Sect. 2, we briefly recall the
exact factorization, but we mainly devote this sec-
tion to the derivation of the trajectory-based pro-
cedure, dubbed coupled-trajectory mixed quantum-
classical (CT-MQC), ultimately leading to an actual
algorithm for quantum-classical molecular dynamics
simulations. Section 3 focuses on a simple molecular
application by presenting the performance of CT-MQC
in describing the photo-dissociation of IBr, including
spin-orbit coupling. A general assessment of the work
done so far on the exact factorization and on future
directions is presented in Sect. 4. Our conclusions are
stated in Sect. 5.

2 Excited-state dynamics with the exact
factorization formalism

This section is devoted to the presentation of the exact
factorization formalism to set the basis for the deriva-
tion of the CT-MQC algorithm.

We consider a system of interacting electrons and
nuclei, including spin-orbit coupling (SOC) and an
external time-dependent field to the molecular Hamilto-
nian. Therefore, the system is described by the Hamil-
tonian Ĥ(x,R, t) = T̂n(R)+ĤBO(x,R)+ĤSO(x,R)+
V̂ (x,R, t), where T̂n is the nuclear kinetic energy,
ĤBO, i.e., the Born–Oppenheimer Hamiltonian, con-
tains the electronic kinetic energy, together with the
electronic and nuclear potentials, ĤSO is the SOC,
V̂ is the external time-dependent potential. Elec-
tronic position-spin variables are labeled as x =
[r1,σ1], [r2,σ2], . . . , [rNel

,σNel
], and nuclear positions

are labeled as R = R1,R2, . . . ,RNn
. Note that, the

electronic operators ĤBO and V̂ are block-diagonal in
spin space, and the particular form [51–53] chosen for
ĤSO does not affect any of the results presented below.

The solution of the time-dependent Schrödinger
equation (TDSE) i�∂tΨ(x,R, t) = Ĥ(x,R, t)Ψ(x,R, t)
is factored as [24]

Ψ(x,R, t) = χ(R, t)ΦR(x, t) (1)

with χ(R, t) the nuclear wavefunction, and ΦR(x, t)
the electronic conditional factor that parametrically
depends on R. The partial normalization condition∫

dx |ΦR(x, t)|2 = 1 ∀R, t [54,55] guarantees that
|χ(R, t)|2 reproduces at all times the (exact) nuclear
density obtained from Ψ(x,R, t). Here, the integral over
x stands for an integral over the 3Nel-dimensional elec-
tronic configuration space and Nel sums over electronic
spins. The evolution of χ(R, t) and ΦR(x, t) is given by

i�∂tχ(R, t) =

[
Nn∑
ν=1

[−i�∇ν +Aν(R, t)]2

2Mν
+ ε(R, t)

+ v(R, t)

]
χ(R, t) (2)

i�∂tΦR(x, t) =
[
ĤBO(x,R) + ĤSO(x,R) + V̂ (x,R, t)

+ Ûen [ΦR, χ] − ε(R, t) − v(R, t)
]
ΦR(x, t)

(3)

The coupled nuclear and electronic evolution equations
are derived by inserting the product form (1) of the
molecular wavefunction into the TDSE and using the
partial normalization condition, as described in detail
in Refs. [25,46,54,55]. In Eq. (2), the symbol ∇ν indi-
cates the gradient taken with respect to the positions
of the ν-th nucleus and Mν are the nuclear masses. The
time-dependent vector potential is a three-dimensional
vector for each value of the index ν, and it is defined as
[31,32,56,57]

Aν(R, t) = 〈ΦR(t)| −i�∇νΦR(t)〉x (4)

The time-dependent scalar potentials are

ε(R, t) =
〈
ΦR(t)

∣
∣
∣ĤBO(x,R) + ĤSO(x,R)

+ Ûen [ΦR, χ] − i�∂t

∣
∣
∣ΦR(t)

〉

x
(5)

v(R, t) = 〈ΦR(t)| V̂ (x,R, t) |ΦR(t)〉x (6)

and mediate the coupling between electrons and nuclei,
beyond th adiabatic regime. We distinguish two scalar
potential contributions to separate the effect of the
external time-dependent field. The first contribution,
given by Eq. (5), will be referred to as time-dependent
potential energy surface (TDPES) [16,27,33,34,58,59];
the second contribution, Eq. (6), is associated to the
external field. The integration over x is indicated as
〈 · 〉x. Like the vector potential and the TDPES, the
external contribution, Eq. (6), is, in general, an N-
body operator, even though the external potential
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V̂ (x,R, t) (typically representing a laser pulse) is a one-
body operator. The electron–nuclear coupling operator
Ûen [ΦR, χ] is [28,29,60,61]

Ûen[ΦR, χ] =

Nn∑
ν=1

1

Mν

(
[−i�∇ν − Aν(R, t)]2

2

+

(−i�∇νχ(R, t)

χ(R, t)
+Aν(R, t)

) ( − i�∇ν − Aν(R, t)
))

(7)

and depends explicitly on the nuclear wavefunction
χ(R, t), and implicitly on the electronic factor ΦR(x, t),
via its dependence on the vector potential, given by
Eq. (4).

The product form (1) of the molecular wavefunction
is invariant under a gauge-like R, t-dependent phase
transformation of the electronic and nuclear compo-
nents. Fixing the gauge means to choose an expres-
sion for such a phase or imposing a condition on the
“gauge fields” that indirectly defines the phase. The
gauge fields are the vector potential and the TDPES,
since they transform as standard gauge potentials if the
electronic and the nuclear wavefunctions are modified
by the gauge phase. Solving Eqs. (2) and (3) with any
given choice of gauge leads to a unique solution of the
TDSE, as expected.

In the next sections, we describe the procedure and
approximations ultimately leading to the CT-MQC
equations. In Sect. 2.1, we rewrite the nuclear TDSE (2)
employing the so-called quantum hydrodynamic for-
malism [62] and devise a trajectory-based scheme to
solve it by invoking a classical limit (on the nuclear
degrees of freedom). In Sect. 2.2, we introduce the
expansion of the electronic wavefunction on a basis
and we show how to solve the electronic evolution
equation (3) along the classical nuclear trajectories. In
Sect. 2.3, we summarize the algorithm and briefly dis-
cuss the computational procedure for its implementa-
tion. Note that, recently, an attempt to solve numer-
ically exactly Eqs. (2) and (3) has been made [63],
but numerical instabilities seem to develop at the
early stages of the propagation even for a simple one-
dimensional model. In addition, some (successful) stud-
ies are currently ongoing [64] aiming to solve the exact
equations employing their quantum hydrodynamic for-
mulation. Since the original work on the exact fac-
torization [24], the main effort has been devoted on
exploiting Eqs. (2) and (3) to develop approximations,
as done in CT-MQC, rather than studying their funda-
mental mathematical properties. Nonetheless, we can
comment here on some of these properties, like the
existence and uniqueness of the their solutions. On the
one hand, since the solution of the TDSE exists, and
Ref. [24] proved the existence of the exact factoriza-
tion product form, then the solutions of equations (2)
and (3) exist. Uniqueness, on the other hand, has not
been thoroughly investigated, and non-physical solu-
tions might emerge, which are not related to the phys-
ical molecular wavefunction. Future theoretical devel-

opments might, indeed, focus on circumventing the
numerical instabilities encountered when solving the
coupled partial differential equations (2) and (3), as
those observed in Ref. [63] (even though this might
require to transform back the exact factorization equa-
tions into the molecular TDSE), or on curing eventual
instabilities emerging in the trajectory-based CT-MQC
scheme (see Sect. 2.2). In more general terms, we can
say that the numerically-exact solution of the molecular
TDSE is prohibitive already for small molecules like H2.
Nonetheless, techniques able to deal with the quantum
mechanical evolution of nuclear wavepackets [19,20]
including the effect of multiple electronic states can
access up to few tens of nuclear degrees of freedom, but
the potential energy surfaces and their couplings have
to be pre-computed (or even expressed in analytical
forms). In approaches such as the multi-configurational
time-dependent Hartree (MCTDH) method [65–69], up
to hundreds, or even thousands, nuclear degrees of free-
dom can be handled, however, the potential energy sur-
faces need to be pre-computed and expressed as sums of
single-particle functions (and often, the majority of the
degrees of freedom are harmonic oscillators that mimic
the effect of a bath).

2.1 Solution based on characteristics of the nuclear
equation

The polar representation of the (complex-valued) nuc-
lear wavefunction, χ(R, t) = |χ(R, t)| exp [(i/�)S(R, t)],
when inserted into the nuclear TDSE (2), yields the two
coupled (real) equations [46]:

−∂tS(R, t) =

Nn∑
ν=1

[∇νS(R, t) +Aν(R, t)]2

2Mν

+ ε(R, t) + v(R, t) + Q(R, t) (8)

−∂t |χ(R, t)|2 =

Nn∑
ν=1

[
∇ν · ∇νS(R, t) +Aν(R, t)

Mν
|χ(R, t)|2

]
(9)

The evolution equation for the phase S(R, t), Eq. (8),
has a Hamilton–Jacobi form, where the Hamiltonian
on the right-hand side contains a kinetic term, with
∇νS(R, t) + Aν(R, t) being the momentum field, two
“classical” time-dependent potential terms, ε(R, t) and
v(R, t), and a quantum potential term [62,70],

Q(R, t) =
Nn∑

ν=1

−�
2

2Mν

∇2
ν |χ(R, t)|
|χ(R, t)| (10)

Since the quantum potential depends on the modulus
of the nuclear wavefunction, it couples the Hamilton-
Jacobi equation to the continuity equation, Eq. (9),
which describes the evolution of the nuclear probability
density |χ(R, t)|2.

A quantum trajectory scheme to solve the partial
differential equation (PDE) Eq. (8) has been derived
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in Ref. [46] and relies on the method of characteris-
tics. The PDE is replaced by a set of ordinary differ-
ential equations (ODEs), i.e., the characteristic equa-

tions, for the “variables” R(s), t(s), S(s), P̃(s) =
∇S(s), ∂tS(s) = St(s) that always satisfy the origi-
nal PDE, as functions of the parameter s. We indicate
here the 3Nn-dimensional gradient of S as ∇S(s) =
{∇νS(s)}ν=1,...,Nn

to simplify the notation. We intro-
duce the function F (R, t, S, P̃, St) = St+Hn(P̃,R, t) =
0, whose total differential is dF = FR · dR + Ftdt +
FSdS + FP̃ · dP̃ + FSt

dSt. The quantities FR, Ft, FS ,
FP̃, and FSt

indicate the partial derivatives of the func-
tion F with respect to its variables. If a set of “initial
conditions” is chosen such that F = 0, the (non-trivial)
characteristic equations representing the evolution of
the variables (R, t, S, P̃, St) are

Ṙν =
P̃ν + Aν

Mν
(11)

˙̃Pν = −∇νHn(P̃,R, t) (12)

with ν = 1, . . . , Nn, where the Hamiltonian Hn(P̃,R, t)
is the right-hand side of Eq. (8). The symbols Ṙν and
˙̃Pν are intended as total derivatives with respect to
the parameter s for each value of the nuclear index
ν. The characteristic equation ṫ = 1 shows that the
parameter s can be identified as the physical time
t: the map t(s) = s + cnst is, thus, invertible for
a given choice of cnst (we define the map such that
t(s = 0) = 0). The characteristic equations for S and
St, not reported here, can be easily derived from ˙̃Pν ,
since P̃ν = ∇νS. Equations (11) and (12) guarantee
that the vector (dR, dt,dS, dP̃,dSt) is orthogonal to the
gradient (FR, Ft, FS , FP̃, FSt

) of F, and thus along the
characteristics dF = 0. If at any time t the characteris-
tic ODEs are solved for any initial condition, the field
S(R, t) (and ∇νS(R, t) as well) can be reconstructed.

We proposed different procedures to solve Eqs. (8)
and (9):

(i) The classical procedure [26,30,41,43,44] relies on
neglecting the quantum potential Q(R, t), such
that the equations decouple, in the sense that the
equation for S(R, t) can be solved independently
from the continuity equation. The nuclear den-
sity is reconstructed simply from the distribution
of trajectories. Quantum effects such as tunneling
cannot be captured in this case.

(ii) The pseudo-quantum procedure [46,60] accounts
for the quantum potential Q(R, t) in the evolu-
tion for S(R, t). However, the nuclear density is
only approximated as a sum of Gaussians centered
at the position of the trajectories, without solving
the continuity equation (9). Tunneling can be cap-
tured, even though the fine details of the nuclear
density, and thus of the quantum potential, cannot
be correctly reproduced, posing issues to capture
effects such as interferences.

(iii) The quantum procedure [45,64,71] is devised to
solve the coupled equations for the phase S(R, t)
and for the density |χ(R, t)|2 according to Eqs. (8)
and (9). This procedure is fully equivalent to
the solution of the nuclear TDSE. However, so
far, only a proof-of-principle study has been con-
ducted in this direction [45], due to the evident
numerical instabilities caused by the quantum
potential.

Henceforth, all quantities depending on R become func-
tions of R(t) as we solve the dynamics along the flow
of characteristics. This is independent of the procedure
chosen among the three possibilities just presented.
Note that the term “trajectory” is used to indicate
the collection of 3Nn nuclear coordinates that evolve
in time.

The derivation of CT-MQC follows the classical pro-
cedure, thus Q(R(t), t) = 0. In addition, after hav-
ing calculated the gradient of the Hamiltonian on the
right-hand side of Eq. (12), we impose the condition
ε(R(t), t) + v

(
R(t), t

)
+

∑
ν Ṙν(t) · Aν(R(t), t) = 0 to

fix the gauge freedom. The characteristic equations thus
reduce to

Ṙν(t) =
Pν(t)
Mν

(13)

Ṗν(t) = Ȧν

(
R(t), t

)
(14)

where we introduced the new symbol Pν = P̃ν + Aν

for the classical momentum. Equation (14) shows that
the force to be used in CT-MQC to propagate classical
nuclear trajectories is derived from the time-dependent
vector potential. Note that the SOC contribution to the
TDPES, i.e., the second term in the definition given in
Eq. (5), has been gauged away and does not appear in
Eq. (14).

In Sect. 2.3, we provide a more explicit expression of
the classical force, using the dependence of Aν(R(t), t)
on the electronic wavefunction. To this end, we describe
in Sect. 2.2 how to derive the evolution equation for
ΦR(t)(x, t) along the nuclear characteristics.

2.2 Solution of the electronic equation along the
characteristics

Solving the electronic PDE (3) along the flow of nuclear
trajectories – the characteristics – requires to switch
from the Eulerian frame to the Lagrangian frame. In
the Lagrangian frame, only total time derivatives can
be evaluated along the flow, that is why the symbol
Φ̇R(t)(x, t) has to be used, rather than ∂tΦR(t)(x, t).
This is done by applying the chain rule ∂tΦR(t)(x, t) =
Φ̇R(t)(x, t)−∑

ν Ṙν(t)·∇νΦR(t)(x, t) anywhere the par-
tial time derivative is found.

The derivation of CT-MQC relies on the expansion
of the electronic wavefunction ΦR(t)(x, t) on a basis,
namely
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ΦR(t)(x, t) =
∑

m

Cm

(
R(t), t

)
ϕ
(m)
R(t)(x) (15)

The electronic representation can be chosen in different
ways, as illustrated here:

(i) In the absence of an external time-dependent field
and of SOC, the adiabatic representation is usu-
ally preferred [44]. The adiabatic basis is formed
by the eigenstates of the Born–Oppenheimer
Hamiltonian ĤBO. Transitions among electronic
adiabatic states during the dynamics, that will
emerge as a result of the coupled electron–nuclear
motion, are induced by the nonadiabatic cou-
pling (NAC). NAC is referred to as kinetic cou-
pling, consequence of the action of the nuclear
kinetic energy operator on the parametric depen-
dence of the electronic states on the nuclear posi-
tions. Quantum chemistry softwares usually pro-
vide electronic structure information in the adia-
batic basis, a feature that is crucial when combin-
ing CT-MQC with different approaches to elec-
tronic structure theory.

(ii) In the presence of SOC, the spin-diabatic rep-
resentation is often the chosen one [49,52,72].
Spin-diabatic states can be labeled depending
on their spins, e.g., singlets or triplets, and are,
thus, easily employed for interpreting spectro-
scopic results. The spin-diabatic basis is formed by
the eigenstates of the Born–Oppenheimer Hamil-
tonian ĤBO. Transitions among electronic spin-
diabatic states of different spin multiplicity are
induced by the SOC, whereas NAC can mediate
transitions within the same spin multiplet. Alter-
natively, the spin-adiabatic representation can be
used, formed by the eigenstates of ĤBO + ĤSO.
Spin-adiabatic states are combinations of different
spin multiplicities and transition among them is
purely of kinetic nature (NAC).

(iii) In the presence of an external time-dependent
field, in particular of a laser pulse, a possible
choice is the representation based on the eigen-
states of the Hamiltonian ĤBO (or ĤBO + ĤSO

if SOC is present), which has been called field-
diabatic representation in Ref. [73]. Transitions
among electronic states are of NAC or SOC char-
acter, depending on the physical problem at hand.
In addition, transitions can be induced by the field
itself, respecting the spin selection rules, and are
mediated by the transition dipole moment when
only an external electric field is considered.

(iv) In the case of a cw laser, the Floquet dia-
batic representation [50,74–80] appears to be a
viable option especially for interpreting absorp-
tion/emission processes [35,81–87] in terms of
exchanges of photons between the system and
the field. Floquet representation exploits the peri-
odicity induced by the laser in the Hamiltonian
[88], which is encoded in the mixed character of
field-electronic states, defined as the eigenstates

of ĤBO − i�∂t. Transitions among Floquet dia-
batic states are either of NAC nature, conserving
the number of photons, or are induced by photon
exchanges. For completeness we mention as well
the Floquet adiabatic representation [50], formed
by the eigenstates of ĤBO + V̂ −i�∂t, even though
its applications in the field of quantum molecular
dynamics simulations have not been thoroughly
investigated so far.

To present a derivation of CT-MQC that is as general as
possible, we use here the spin-diabatic representation.
Once the final equations are obtained, it is easy to see
how they can be modified to accommodate alternative
representations. In the following derivation, we do not
consider the external field because including the effect
of a cw laser via the Floquet formalism requires the use
of a slightly more involved representation [50], whose
implementation in the CT-MQC algorithm is still ongo-
ing work.

The electronic CT-MQC equation describes the time
evolution of the expansion coefficients introduced in Eq.
(15). The purpose of the following discussion is, thus,
to present a derivation of the quantity Ċm

(
R(t), t

)
.

However, we only describe the critical points of such
derivation, since the details can be found in Refs.
[19,43,44,49].

In the definition (7) of Ûen we identify two terms:
the first term has been shown [61,89,90] to be smaller
if compared to the second term, and it is thus neglected.
The corresponding term in the TDPES will be neglected
as well to maintain gauge invariance of the exact fac-
torization equations in their trajectory-based formu-
lation [30,44]. The electron–nuclear coupling operator
depends on the nuclear wavefunction. When its polar
representation is used, the expression of Ûen reduces to

Ûen �
Nn∑

ν=1

(

Ṙν(t) + i
Pν

(
R(t), t

)

Mν

)

(−i�∇ν − Aν

(
R(t), t

))
(16)

The first term in parenthesis of Eq. (16) is the velocity
of the trajectory from the characteristic equation (13),
whereas the second term contains the quantum momen-
tum [30], Pν(R(t), t) = −�|χ(R(t), t)|−1∇ν |χ(R(t), t)|,
that has been defined in previous work on CT-MQC.
The quantum momentum [91,92] induces quantum
decoherence effects by tracking the spatial delocaliza-
tion over time of the nuclear density (or, equivalently,
of its modulus) [13,40]. Since the nuclear density at
each time has to be reconstructed to evaluate its spa-
tial derivative, and thus the quantum momentum, CT-
MQC trajectories are “coupled”, in the sense that they
cannot be propagated independently from each other.
CT-MQC equations encode some non-local information
about the dynamics, which is the key to correctly cap-
ture the quantum mechanical effect of decoherence. If
we use an index α to label the dependence on the tra-
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jectory Rα(t), the quantum momentum at the position
of the trajectory is

Pα
ν (t) =

−�∇ν |χ (Rα(t), t)|2
2 |χ (Rα(t), t)|2 (17)

where |χ(Rα(t), t)|2 = [|χ(R, t)|2]|R=Rα(t). The nuclear
density at time t is constructed as the sum of (normal-
ized real) Gaussians centered at the positions of the traj
trajetories, thus

|χ (Rα(t), t)|2 =
1

Ntraj

Ntraj∑

β=1

Gσ

(
Rα(t) − Rβ(t)

)

(18)

Gσ is a multi-dimensional Gaussian, which can be
expressed as the product of 3Nn uni-dimensional Gaus-
sians. Each of the 3Nn nuclear degrees of freedom can
be associated to a different width, which is kept con-
stant along the dynamics, and each of the Ntraj replicas
has the same width. The widths of the Gaussians are
indicated in Eq.(18) with the symbol σ. Equation (18)
clearly shows that, to determine the nuclear density,
and thus, the quantum momentum at time t, informa-
tion about the positions of all trajectories Rβ(t) at that
time is required. It is in this sense that CT-MQC tra-
jectories are coupled.

The expression of the electronic wavefunction along
the trajectories in the chosen representation is inserted
in Eq. (15). Note that when the total time derivative
acts on the electronic states, only the gradient term
survives, because they depend on time implicitly, via
their dependence on the trajectory.

To isolate the evolution of one of the coefficients,
say Cm

(
R(t), t

)
, one has to project the electronic

equation onto ϕ̄
(m)
R(t)(x), by integrating over x. The

NAC vectors and the matrix elements of the SOC
appear in the final equation, and are defined as
dα

ν,ml = 〈ϕ(m)
Rα(t)|∇νϕ

(l)
Rα(t)〉x and [Hα

SO]ml = 〈ϕ(m)
Rα(t)|

ĤSO(Rα(t))|ϕ(l)
Rα(t)〉x, respectively.

The action of the Born–Oppenheimer Hamiltonian
on its eigenstates, i.e., ĤBO(x,Rα(t))ϕ(m)

Rα(t)(x) =

Em(Rα(t)) ϕ
(m)
Rα(t)(x), yields the eigenvalues Eα

m =
Em(Rα(t)), clearly depending on the position of the
trajectory.

As consequence of the action of the gradient oper-
ator ∇ν in Eq. (16) on the electronic wavefunction,
the equation contains a term like ∇νCα

m(t), which is
approximated by neglecting the spatial dependence of
the modulus of Cα

m(t) in favor of the spatial dependence
of its phase. Therefore, ∇νCα

m(t) � (i/�)fα
ν,mCα

m(t) and
we use a simple expression for the gradient of the phase,
namely fα

ν,m =
∫ t

0
dτ [−∇νEα

m]; this quantity is a spin-
diabatic force accumulated over time along the trajec-
tory α.

With these definitions and approximations in mind,
we can rewrite the electronic evolution equation given
in Eq. (3) in the spin-diabatic basis along the trajectory
Rα(t) as

Ċα
m(t) =

[

− i

�
Eα

m +
Nn∑

ν=1

Pα
ν (t)

�Mν
· (
fα
ν,m − Aα

ν (t)
)
]

Cα
m(t)

(19a)

−
∑

l

(
i

�
[Hα

SO]ml +
∑

ν

Ṙα
ν (t) · dα

ν,ml

)

Cα
m(t)

(19b)

Some quantities in this equation depend explicitly on
time, and such dependence has been indicated together
with the dependence on Rα(t); some other quantities
only depend on time via their dependence on the tra-
jectory, which is indicated with the superscript α.

In Eqs. (19) electronic information is encoded in the
energies, i.e., Eα

m, in the NACs, i.e., dα
ν,ml, and in SOC,

i.e., [Hα
SO]ml. Those quantities are usually computed

on-the-fly at each time by solving the electronic (many-
body) problem for a given nuclear configuration, i.e.,
for the configurations visited by the trajectories dur-
ing the dynamics. In general, the (finite) number of
electronic states considered in a simulation is chosen
a priori, so as to truncate the expansion in Eq. (15).
Selecting the electronic states requires to assess elec-
tronic structure properties of the system by scanning
the potential energy landscape along different nuclear
paths, to identify minima, transitions states, and degen-
eracies. In particular, potential energies can become
degenerate, for instance at conical intersections, caus-
ing (i) discontinuous changes in the electronic wave-
function characters and (ii) nonadiabatic singularities.
However, in trajectory-based schemes, issue (i) is cir-
cumvented since only local electronic structure quanti-
ties are required, and issue (ii) seldom appears because
the trajectories do not often encounter the real singu-
larity.

The first diagonal term, Eq. (19a), contains in square
brackets a purely imaginary part, depending on the
spin-diabatic energy, and a purely real part, depending
on the quantum momentum. The former is responsi-
ble for the oscillating phase of Cα

m(t), the latter affects
the modulus of Cα

m(t) and is, thus, source of decoher-
ence effects. It is worth mentioning here that the norm
of the electronic wavefunction is preserved along the
dynamics by Eqs. (19), i.e.,

∑
m |Cα

m(t)|2 = 1 ∀ t, α.
The off-diagonal contributions in Eq. (19b) drive elec-
tronic transitions from state m to state l, mediated by
the SOC, if states with different spin multiplicity are
concerned, and by the NAC vectors, if states with the
same spin multiplicity are involved.

The time-dependent vector potential appears in Eq.
(19a). According to its definition given in Eq. (4), it
depends on the electronic wavefunction, therefore, it
can be expressed in the chosen electronic basis along a
trajectory Rα(t) as Aα

ν (t) = −i�
∑

m C̄α
m(t)∇νCα

m(t)−
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i�
∑

m,l C̄
α
m(t) Cα

l (t)dα
ν,ml. Recalling the approximation

used above to express the gradient of the electronic
coefficients, and observing that the first term of this
expression accumulates over time, while the second is
localized in space due to the dependence on the NAC
vectors, the CT-MQC expression of the (real-valued)
time-dependent vector potential is

Aα
ν (t) =

∑

m

|Cα
m(t)|2 fα

ν,m (20)

The classical force of Eq. (14) used to propagate CT-
MQC trajectories contains the vector potential, and its
total time derivative has to be computed to give an
explicit expression of the force in terms of electronic
coefficients and the other electronic properties intro-
duced in Eqs. (19). The final expression in given in
Sect. 2.3.

2.3 CT-MQC algorithm

Sections 2.1 and 2.2 described the procedure and the
approximations used to derive CT-MQC electronic and
nuclear evolution equations. Essentially, those equa-
tions are a set of ODEs, thus referred to as quantum-
classical, representing a way to reformulate the quan-
tum mechanical equations of the exact factorization,
i.e., Eqs. (2) and (3). In particular, the electronic equa-
tion (19) is solved along a trajectory, thus it lends
itself for an on-the-fly approach, where electronic struc-
ture properties are only computed at the instantaneous
nuclear positions. In turn, the nuclei evolve according
to a classical-like force determined by the instantaneous
state of the electrons.

Nuclear forces of Eq. (14) are determined by com-
puting the total time derivative of the vector potential.
Writing explicitly this derivative yields the following
expression of the force for the trajectory Rα(t)

Fα
ν (t) = Fα

ν,Eh(t) + Fα
ν,qm(t) + Fα

ν,SOC(t) (21)

The Ehrenfest-like term (Eh) is a standard mean-field
force

Fα
ν,Eh(t) =

∑

m

|Cα
m(t)|2 (−∇νEα

m)

+
∑

m,l

C̄α
m(t)Cα

l (t) (Eα
m − Eα

l )dν,ml (22)

The quantum momentum term (qm) depends on Pα
ν (t),

namely

Fα
ν,qm(t) =

2
�

∑

m

|Cα
m(t)|2

[
Nn∑

μ=1

Pα
μ(t) · fα

μ,m

]

(
fα
ν,m − Aα

ν (t)
)

(23)

and couples the trajectories through the presence of
the quantum momentum, as described in Sect. 2.2. The

SOC term contains the matrix elements of the spin-
orbit Hamiltonian

Fα
ν,SOC(t) =

1
�

∑

m,l

Im
(
C̄α

m(t)Cα
l (t)[Hα

SO]ml

)

(
fα
ν,l(t) − fα

ν,m(t)
)

(24)

It is clear from this expression that it is crucial to
correctly capture decoherence effects in the presence
of SOC. In fact, usually, SOC is very delocalized in
(nuclear) space and, in some situations, it is even con-
sidered spatially constant [93]. This feature is clearly
different from the behavior of NAC, which is typically
localized in the regions of avoided crossings and coni-
cal intersections. If the SOC contribution to the force,
Eq. (24), goes to zero, it does so as effect of decoherence,
and not because the SOC itself goes to zero. Decoher-
ence manifests itself as the “collapse” of the electronic
time-dependent wavefunction along a given trajectory
to a single electronic state, with the corresponding coef-
ficient becoming one. Norm conservation along that tra-
jectory imposes that all other coefficients become zero,
finally yielding no contribution from the SOC force as
consequence of the decoherence process.

It should be noted that adapting standard trajectory-
based algorithms for nonadiabatic dynamics to the
delocalized nature of SOC requires to revisit those algo-
rithms if calculations are performed in the spin-diabatic
basis. In fact, methods such as ab initio multiple spawn-
ing [72,94,95] and surface hopping [52,96–98] rely on
the fact that NACs are spatially localized. The choice
between spin-diabatic or spin-adiabatic basis when
dealing with SOC depends on the quantum-chemistry
package chosen for the electronic structure calculations;
quantum-chemistry codes typically provide electronic
structure information in the spin-diabatic basis. How-
ever, if calculations are possible in the spin-adiabatic
basis, all couplings become NACs, thus spatially local-
ized, and the algorithms can be employed in their orig-
inal form. The interested reader is referred to Ref. [49]
for a detailed discussion on this topic with connec-
tions to various trajectory-based approaches consider-
ing SOC.

Similarly to the expression of the force given in
Eq. (21), we can rewrite the electronic evolution equa-
tion (19) as

Ċα
m(t) = Ċα

m(t)
∣
∣
∣
Eh

+ Ċα
m(t)

∣
∣
∣
qm

+ Ċα
m(t)

∣
∣
∣
SOC

(25)

where we identify the following terms:

Ċα
m(t)

∣
∣
∣
Eh

= − i

�
Eα

mCα
m(t) −

∑

l

Nn∑

ν=1

Ṙα
ν (t) · dα

ν,mlC
α
l (t)

(26a)

Ċα
m(t)

∣
∣
∣
qm

=
Nn∑

ν=1

Pα
ν (t)

�Mν
· (
fα
ν,m − Aα

ν (t)
)
Cα

m(t) (26b)
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Ċα
m(t)

∣
∣
∣
SOC

= − i

�

∑

l

[Hα
SO]mlC

α
l (t) (26c)

In the absence of SOC, the term [Hα
SO]ml in Eq. (26c) is

not present, and the electronic equation reduces to the
one in the original derivation of CT-MQC in the adia-
batic representation reported in Ref. [30]. In the pres-
ence of NAC and SOC, the algorithm is dubbed gen-
eralized CT-MQC (G-CT-MQC) in the spin-diabatic
basis [48]. As discussed earlier, in the presence of spin-
orbit effects, one can transform the coupling mediated
by the SOC into NAC in the spin-adiabatic representa-
tion. In this case, [Hα

SO]ml of Eq. (26c) does not appear
and the electronic equation is identical with the original
CT-MQC equation.

In the presence of a cw laser field, if the Floquet dia-
batic representation is used, the periodic time depen-
dence induced by the external field is expressed in
Fourier space, via the harmonics of the driving fre-
quency. An additional term appears in the expres-
sion of the force of Eq. (21), namely, Fα

ν,ext(t) =
�

−1
∑

m,l Im
[
C̄α

m(t)Cα
l (t)

]
V α

ml(f
α
ν,l− fα

ν,m), and in the
expression of the evolution of the electronic coefficients
of Eq.(25), namely Ċα

m(t)
∣
∣
ext

= −i�−1
∑

l V
α
mlC

α
l (t).

Furthermore, the energies Eα
m of Eq. (26b) are shifted

by a fixed amount depending on the photon energy
of the corresponding harmonic. Note that the indices
m, l in the Floquet picture label the electronic physical
states as well as the harmonic of the driving frequency.
Thus, V α

ml induces transition between electronic states
and between harmonics. We recall that the matrix ele-
ments of the external field in the Floquet diabatic basis
are expressed in Fourier space (that is why V α

ml does
not depend on time). Using the Floquet diabatic repre-
sentation, the algorithm is dubbed F-CT-MQC [50].

In the next section, we apply the CT-MQC algorithm
to study the photo-dissociation reaction of IBr. The
molecule IBr is known to have strong spin-orbit effects,
and thus, it is selected here to show the performance of
(G-)CT-MQC in the spin-adiabatic and spin-diabatic
flavors presented above.

3 Photo-dissociation of IBr

In this section, we simulate the photo-induced dissoci-
ation of IBr based on CT-MQC and we focus on the
calculation of the branching ratio of the products.

As reported in the literature [99], a strong transition
dipole moment couples the ground state of the molecule
X(1Σ0+) to its excited electronic state B(3Π0+). In
the Franck–Condon region, in particular, this transition
dipole moment is the dominant one, thus we will con-
sider that photo-dissociation is initiated by an excita-
tion X(1Σ0+) → B(3Π0+). The electronic states consid-
ered here are denoted using typical spin-diabatic labels
[96,100] even though we will work in the spin-adiabatic
representation as well, based on the model potentials
of Ref. [101]. In particular, the spin-diabatic characters

B(3Π0+) and Y(0+), discussed below, describe the first-
excited and second-excited electronic states, respec-
tively, in the Franck–Condon region R < 5 bohr.

The molecule IBr manifests strong SOC, which is
responsible for the appearance of an avoided crossing
between the first-excited and second-excited electronic
states, ultimately leading to the dissociation of the
molecule via two channels: within 300 fs from photo-
excitation, the products of such an ultrafast photo-
reaction are I + Br(2P3/2), if the molecule dissociates
via the first-excited state, and I + Br∗(2P1/2), if the
dissociation takes place via the second-excited state. In
the dissociation limit far away from the Franck–Condon
region, the first-excited (spin-adiabatic) state acquires
a Y(0+) (spin-diabatic) character, whereas the second-
excited (spin-adiabatic) state acquires a B(3Π0+) (spin-
diabatic) character. Therefore, determining the popu-
lations of the electronic states at the end of the process
allows us to determine the branching ratio of the disso-
ciation products

Q =
[I + Br∗]

[I + Br] + [I + Br∗]
(27)

In our simulations, we use the model Hamiltonian of
Ref. [101], expressed in a spin-diabatic basis as

ĤBO(R) =

(
H0(R) 0 0

0 H1(R) V12

0 V12 H2(R)

)

(28)

where the nuclear coordinate R is the IBr internuclear
distance. The diagonal elements of the electronic Hamil-
tonian are the spin-diabatic potential energy curves
(PECs), whereas the off-diagonal elements are the SOC,
which are chosen to be constant. Following Ref. [101],
we have

H0(R) = A0

[(
1 − e−α0(R−R0)

)2

− 1
]

(29)

H1(R) = A1

[(
1 − e−α1(R−R1)

)2

− 1
]

+ Δ (30)

H2(R) = A2 e−α2 R + B2 e−β2 R (31)

where A0 = 0.067 Ha, α0 = 0.996 bohr−1, R0 =
4.666 bohr, A1 = 0.01019 Ha, α1 = 1.271 bohr−1, R1 =
5.3479 bohr, Δ = 0.01679 Ha, A2 = 2.82 Ha, α2 =
0.9186 bohr−1, B2 = 3.0 × 107 Ha, β2 = 4.3 bohr−1,
and V12 = 0.0006834 Ha.

The spin-diabatic PECs are shown in Fig. 1 as yellow
dashed lines. The curves corresponding to H1(R) and
H2(R) cross at Rc = 6.2 bohr, and in fact, after diag-
onalization of the Hamiltonian in Eq. (28), an avoided
crossing appears at Rc. The ground state is not coupled
to the excited states, as clearly shown in the Hamil-
tonian of Eq. (28) . However, as the transition dipole
moment between X(1Σ0+) and B(3Π0+) is strong, an
optical transition can be induced via an external field.
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Fig. 1 Potential energy curves (PECs) corresponding to
the spin-(a)diabatic states considered to describe the photo-
dissociation process of IBr. Continuous colored lines are
the spin-adiabatic PECs: ground state in blue, first-excited
state in red, second-excited state in green. They are labeled
using the notation of Ref. [99] in the Franck–Condon region.
Dashed yellow lines are spin-diabatic PECs. The initial
nuclear density centered at the equilibrium position of the
ground state PEC is shown as a thin black line. The arrows
indicate the dissociation channels along the two electronic
states

In this studied case, we suppose an instantaneous ini-
tial excitation. The molecule is prepared in the ground
state, and the initial density is shown in Fig. 1. Since
the ground state PEC is nearly harmonic around the
equilibrium position at R0 = 4.666 bohr, the initial
nuclear wavefunction χ(R, t = 0) is a (real) Gaussian
function

χ(R, t = 0) = 4

√
1

πσ2
e− (R−R0)2

2σ2 (32)

with variance σ = 0.096 bohr. The nuclear mass used
in the calculations is the IBr reduced mass M =
90023 amu. The instantaneous excitation promotes the
ground-state wavepacket to the first-excited state with-
out geometric rearrangements, thus the first excited
state is fully populated at time t = 0, and all along
the dynamics, the ground state remains non-populated
because it is not coupled to the excited states. Equa-
tion (32) is the vibrational ground state of lowest elec-
tronic PEC around the equilibrium position. There-
fore, Eq. (32) is a suitable initial nuclear wavefunction
before the instantaneous excitation promotes it to the
first-excited state. In addition, electronic population of
that state can safely be chosen equal to unity since
the Franck–Condon region is far away from the avoided
crossing located at Rc.

CT-MQC dynamics is performed in the spin-adiabatic
and in the spin-diabatic basis considering explicitly the
3 electronic states. Initial conditions are randomly sam-
pled in position-momentum space from the (Gaussian)
Wigner distribution associated to the initial nuclear
state of Eq. (32). The Wigner transform of a Gaus-
sian function in R (see Eq. (32)) yields a position-
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Fig. 2 Populations of the spin-(a)diabatic states as func-
tions of time. Continuous lines are used to indicate spin-
adiabatic populations: ground state in blue, first-excited
state in red, second-excited state in green. Dashed lines
are used to indicate spin-diabatic populations: X(1Σ0+) in
gray, B(3Π0+) in dark-yellow, Y(0+) in cyan. Exact spin-
adiabatic results are shown as thin black lines

momentum distribution in the form of an uncorrelated
product of a Gaussian in R and a Gaussian in P ; both
distributions are strictly positive and standard sam-
pling techniques [102] can be applied to select the ini-
tial conditions. For this reason, in general situations the
Wigner sampling is usually employed by invoking the
harmonic approximation of the potential energy in the
region where the sampling is performed. In the presence
of strong anharmonicities, a classical Boltzmann sam-
pling is, instead, preferred [19], to avoid dealing with
negative portions of the Wigner distribution. For all cal-
culations, we run Ntraj = 1000 coupled trajectories. For
all trajectories, the electronic coefficients corresponding
to the initially populated state are set equal to one.

When the molecule reaches Rc, population is par-
tially transferred from the first-excited state to the
second-excited state, and transfer is concluded just
after 100 fs. In Fig. 2, the populations of the spin-
adiabatic states are shown as continuous lines as func-
tions of time, whereas dashed lines are used to indicate
spin-diabatic populations.

Populations of the electronic states, denoted here
ρm(t), are computed based on the CT-MQC procedure
as averages over the trajectories, namely

ρm(t) =
1

Ntraj

Ntraj∑

α=1

|Cα
m(t)|2 (33)

with m = ground state, 1st excited state, 2nd excited
state in the spin-adiabatic representation, or m =
X(1Σ0+), B(3Π0+),Y(0+) in the spin-diabatic represen-
tation. Note that, when performing an average oper-
ation to compute observable quantities, as it is done
in Eq. (33), the trajectories have all the same weight,
because the initial Wigner sampling is an importance
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Table 1 Branching ratio of the products of the photo-
dissociation reaction of IBr. The reference values (exact)
are determined based on quantum mechanical simulations
using Eq. (27). The branching ratio is also calculated based
on CT-MQC simulations in the spin-adiabatic and spin-
diabatic basis

Exact Spin-adiabatic Spin-diabatic

Q 75% 76(1)% 76(1)%

sampling which initializes the trajectories where the ini-
tial density is large.

Comparison with exact quantum dynamics (thin
black lines) shows that CT-MQC results reproduce
extremely well the spin-adiabatic populations. As shown
in Fig. 1, the spin-diabatic PECs are identical with the
spin-adiabatic curves in the asymptotic regions, but
they differ in the vicinity of Rc. Therefore, between
50 fs and 100 fs, when the population transfer process
takes place in Fig. 2, the behavior of the populations
differs. However, at long time, the spin-diabatic and
spin-adiabatic populations agree: the population of the
first-excited state (red line in Fig. 2) is the same as the
population of the state Y(0+) in the dissociating limit
(dashed cyan line in Fig. 2); the population of the sec-
ond excited state (green line in Fig. 2) is the same as
the population of the state B(3Π0+) in the dissociat-
ing limit (dashed dark-yellow line in Fig. 2). Therefore,
the branching ratio of the dissociation products can be
determined using either set of results; numerical values
are reported in Table 1.

In Table 1 the branching ratios calculated based on
CT-MQC results are compared to the exact values cal-
culated from the results shown in Fig. 2. For CT-MQC,
the errors on the branching ratios (in parentheses) are
determined from the standard deviations on the pre-
dictions of the final populations, and, within the error,
CT-MQC values are in perfect agreement with the ref-
erence.

Finally, we show the comparison between nuclear
quantum wavepacket dynamics and the trajectories.

In Fig. 3, the distributions of CT-MQC trajectories
along the PECs that guide their evolution is superim-
posed to the nuclear wavepackets corresponding to the
first-excited state (red) and to the second-excited state
(green). Three snapshots at the time steps indicated in
the figure are shown. CT-MQC equations are solved in
the spin-adiabatic (black dots) and in the spin-diabatic
(colored dots) basis, thus two sets of classical results are
shown at the selected time steps. A very good agree-
ment between the two sets of CT-MQC results, as well
as with exact results, is observed.

In general, based on the above observations and on
previous work, we conclude that CT-MQC is a reliable
and flexible algorithm for trajectory-based calculations
of light-induced ultrafast phenomena, involving nona-
diabatic and spin-orbit coupling. Additional develop-
ments can be envisaged, especially aiming to refine the
way the coupling of the trajectories is treated in the cal-
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Fig. 3 PECs corresponding to the spin-adiabatic states
are shown as thin colored lines. The nuclear densities cor-
responding to the first-excited state (thick red lines) and
to the second-excited state (thick green lines) are shown at
three time steps: t = 12, 60, 180 fs, as indicated in the figure.
At the same times, the distributions of CT-MQC trajecto-
ries evolved in the spin-adiabatic (black dots) and in the
spin-diabatic (colored dots) basis are shown. In particular,
we use the value of the TDPES from Eq. (5) at the position
of each trajectory

culation of the quantum momentum, and to implement
the effect of an external time-dependent field beyond
the Floquet formalism.

4 State of the art and perspectives

In the past few years, the exact factorization has been
developed in different flavors to describe various kinds
of systems and processes.

In its original time-dependent electron–nuclear for-
mulation proposed by Gross and co-workers [24], stud-
ies addressed the question as to what forces drive
nuclear dynamics in nonadiabatic regimes [31,33,34],
ultimately leading to the derivation of CT-MQC [30].
Those studies focused on the characterization of the
time-dependent potential energy surface and of the
time-dependent vector potential of the theory in key sit-
uations manifesting strong nonadiabaticity with deco-
herence [33], quantum interferences [16], and coni-
cal intersections [31]. In a similar spirit, and invert-
ing the role of electronic and nuclear coordinates, the
inverse factorization has been proposed to analyze
the time-dependent Schrödinger equation for electronic
dynamics with non-classical nuclei [37]. In situations
of weak nonadiabaticity, instead, for instance when the
nuclei move slower than the electrons, the electronic
equation can be solved perturbatively [61], the Born–
Oppenheimer regime being the unperturbed state of
the system. This idea has been successfully applied to
compute electronic flux densities “within” the Born–
Oppenheimer approximation [103], the response of chi-
ral molecules to infrared left and right circularly polar-
ized light, known as vibrational circular dichroism [89],
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and to estimate nonadiabatic corrections to infrared
spectra of hydrogen-based molecules [90].

As discussed previously, the exact factorization nat-
urally lends itself to the inclusion of (classical) time-
dependent external fields, for instance, laser pulses
or cw lasers, to describe phenomena such as photo-
induced ultrafast dynamics [43], strong field ioniza-
tion [36,104], or periodically driven processes [35]. This
is because the formalism already accounts for time-
dependent potentials to describe the coupling between
electrons and nuclei. In fact, the time-dependent poten-
tials are modified by the presence of the external field,
and have been analyzed to unravel dynamical details of
dissociation [25], electron localization [37,105], charge-
resonance enhanced ionization [36] in H+

2 , or to chal-
lenge single-electron pictures [106] to describe molecules
in strong lasers [38,107]. Recently, the exact factoriza-
tion and CT-MQC (F-CT-MQC algorithm) have been
combined with the Floquet formalism to interpret laser-
driven dynamics in terms of single- or multi-photon
absorption and emission processes [50].

Interesting work has been conducted in the frame-
work of the stationary Schrödinger equation [108–110],
by proposing the static, time-independent version of
the exact factorization of the electron–nuclear wave-
function. In this context it is worth mentioning three
major contributions. One is the study of the behav-
ior of the scalar potential and of the vector potential
in the presence of conical intersections and in relation
to geometric and topological phases [56–58]. This work
is oriented towards finding an answer to the question:
Is the appearance of the molecular geometric phase
effects within the Born–Oppenheimer approximation an
artifact? The traditional molecular Berry phase is inti-
mately connected to the requirement of infinitely slow
nuclear motion. While this notion of adiabatic trans-
port is a beautiful mathematical concept, real-world
nuclei move the way move (i.e., not adiabatically) and
this makes it difficult to relate the traditional molecu-
lar Berry phase to actual physical observables. By con-
trast, the geometric phase associated with the exact
vector potential does not require any adiabaticity and,
hence, it might be measurable. Even though conclu-
sions of general validity are perhaps difficult to draw,
enlightening case studies have been reported. Another
topic that has been approached recently, and has been
already applied to LiF, is the combination of the exact
factorization formalism with density functional theory
to solve the electronic equation, which is coupled to the
nuclear Schrödinger equation [111,112]. Finally, a quan-
tum electronic embedding method has been derived
from the exact factorization to calculate static prop-
erties of a many-electron system [113,114].

Motivated by experimental and theoretical advances
of the past few years in the domain of physics and
chemistry in cavities, the exact factorization of the
electron–photon wavefunction and the exact factoriza-
tion of the electron–nuclear–photon wavefunction have
been proposed. Currently, studies are conducted focus-
ing on the analysis of the properties of the scalar

potential acting on the electrons as effect of the pho-
tons [115] (reminiscent of the inverse factorization),
as well as on the dynamic effect of the cavity on the
electron–nuclear time-dependent potential energy sur-
face [59,116], in analogy with polaritonic and cavity-
Born–Oppenheimer surfaces. Application of the exact
factorization in this domain is still preliminary, but the
success of the original theory in many diverse fields
strongly suggests that insightful novel developments are
to be expected.

In the field of quantum molecular dynamics simula-
tions, so far CT-MQC has proven its strength and flexi-
bility. CT-MQC is a trajectory-based method, thus it is
suitable for on-the-fly molecular dynamics calculations
where electronic structure properties are determined
along the dynamics only at the visited nuclear geome-
tries [26]. The necessary electronic structure informa-
tion to solve CT-MQC equations are energies, gradi-
ents and derivative couplings, along with spin-orbit
coupling, when working in the spin-diabatic basis, and
with the transition dipole moment, if the external time-
dependent electric field is explicitly considered (beyond
the Condon approximation). This information is avail-
able in standard quantum-chemistry packages, thus
CT-MQC can be combined with different approaches to
electronic structure theory. It has been shown, in fact,
that this is a viable route, employing time-dependent
density functional theory and the CPMD software [117].
The coupled nature of CT-MQC trajectories, however,
remains the bottleneck even when parallelization strate-
gies are employed, as was done in the CPMD imple-
mentation. To circumvent this issue, recently [42,118–
120] the surface-hopping algorithm has been com-
bined with the exact factorization including decoher-
ence effects while maintaining (as much as possible) an
independent-trajectory perspective. Further studies are
ongoing to propose an algorithm/implementation able
to access systems of “experimental” complexity. Inter-
esting new developments are clearly envisaged, focusing
on the theoretical formulation of CT-MQC, for instance
aiming to capture nuclear quantum effects based on the
quantum trajectory formulation of nuclear dynamics,
on its applications, addressing systems of growing com-
plexity, and on the algorithmic aspect, with the purpose
to improve the computational performance of such a
coupled-trajectory-based scheme.

5 Conclusions

We reported an overview of the state of the art and
perspectives on the application of the exact factoriza-
tion of the electron–nuclear wavefunction in the field of
quantum molecular dynamics.

We showed that the CT-MQC scheme is a reliable
and flexible numerical procedure to solve the exact fac-
torization equations with the support of classical-like
trajectories. CT-MQC lends itself to on-the-fly ab initio
molecular dynamics calculations to simulate and inter-
pret highly nonequilibrium processes governed by var-
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ious effects. Here, we presented a general method to
treat nonadiabatic ultrafast dynamics, with spin-orbit
effects, all within the same formalism.

Owing to the diverse achievements obtained so far
and documented here, we envisage interesting new
results of the ongoing developments.
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50. M. Schirò, F.G. Eich, F. Agostini, J. Chem. Phys. 154,
114101 (2021)

51. E. van Lenthe, E.J. Baerends, J.G. Snijders, J. Chem.
Phys. 99, 4597 (1993)

52. F.F. de Carvalho, I. Tavernelli, J. Chem. Phys. 143,
224105 (2015)

53. C.M. Marian, WIREs Comput. Mol. Sci. 2, 187 (2012)
54. J.L. Alonso, J. Clemente-Gallardo, P. Echeniche-

Robba, J.A. Jover-Galtier, J. Chem. Phys. 139, 087101
(2013)

55. A. Abedi, N.T. Maitra, E.K.U. Gross, J. Chem. Phys.
139, 087102 (2013)

56. R. Requist, F. Tandetzky, E.K.U. Gross, Phys. Rev. A
93, 042108 (2016)

57. R. Requist, C.R. Proetto, E.K.U. Gross, Phys. Rev. A
96, 062503 (2017)

58. S.K. Min, A. Abedi, K.S. Kim, E.K.U. Gross, Phys.
Rev. Lett. 113, 263004 (2014)

59. L. Lacombe, N.M. Hoffmann, N.T. Maitra, Phys. Rev.
Lett. 123, 083201 (2019)

60. F. Agostini, S.K. Min, E.K.U. Gross, Ann. Phys. 527,
546 (2015)

61. F.G. Eich, F. Agostini, J. Chem. Phys. 145, 054110
(2016)

62. R.E. Wyatt, in Quantum Dynamics with Trajectories:
Introduction to Quantum Hydrodynamics (Interdisci-
plinary Applied Mathematics, Springer, 2005)

63. G.H. Gossel, L. Lacombe, N.T. Maitra, J. Chem. Phys.
150, 154112 (2019)

64. D.D. Holm, J.I. Rawlinson, C. Tronci.
arXiv:2012.03569 [physics.chem-ph] (2021)

65. H.D. Meyer, U.M.L.S. Cederbaum, Chem. Phys. Lett.
120, 73 (1990)

66. R. Binder, D. Lauvergnat, I. Burghardt, Phys. Rev.
Lett. 120, 227401 (2018)

67. H. Wang, J. Phys. Chem. A 119, 7951 (2015)
68. H.D. Meyer, G.A. Worth, Theor. Chem. Acc. 109, 251

(2003)
69. P.J. Castro, A. Perveaux, D. Lauvergnat, M. Reguero,

B. Lasorne, Chem. Phys. 509, 30 (2018)
70. C.L. Lopreore, R.E. Wyatt, Phys. Rev. Lett. 82, 5190

(1999)
71. B. Gu, I. Franco, J. Chem. Phys. 146, 194104 (2017)

72. B.F.E. Curchod, C. Rauer, P. Marquetand, L.
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