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Abstract: In the last decade attosecond technology has opened up the investigation of 

ultrafast electronic processes in atoms, simple molecules and solids. Here we report the 

application of isolated attosecond pulses to prompt ionization of the amino acid phenylalanine, 

and the subsequent detection of ultrafast dynamics on a sub-4.5-fs temporal scale, which is 

shorter than the vibrational response of the molecule. The ability to initiate and observe such 

electronic dynamics in polyatomic molecules represents a crucial step forward in attosecond 

science, which is progressively moving towards the investigation of more and more complex 

systems. 

One Sentence Summary: Ultrafast electron dynamics on a sub-4.5-fs temporal scale, which 

precedes any nuclear motion, is initiated in an amino acid by attosecond pulses.  
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The investigation of ultrafast processes in atoms received a major stimulus with the introduction 

of attosecond pulses in the extreme ultra-violet (XUV) spectral region (1).  Real-time 

observation of the femtosecond Auger decay in krypton was the first application of isolated 

attosecond pulses in 2002 (2). This demonstration was then followed by other important 

experimental results in the field of ultrafast atomic physics, such as the real-time observation of 

electron tunneling (3) and the measurement of temporal delays of the order of a few tens of 

attoseconds in the photoemission of electrons from different atomic orbitals of neon (4) and 

argon (5). The unprecedented time resolution offered by attosecond pulses has also allowed 

quantum mechanical electron motion and its degree of coherence to be measured in atoms using 

attosecond transient absorption spectroscopy (6). Attosecond techniques have been applied in the 

field of ultrafast solid state physics, with the measurement of delays in electron photoemission 

from crystalline solids (7) and the investigation of the ultrafast field-induced insulator-to-

conductor state transition in a dielectric (8). In the last few years, attosecond pulses have also 

been used to measure ultrafast electronic processes in simple molecules (9). Sub-femtosecond 

electron localization after attosecond excitation has been observed in H2 and D2 molecules (10), 

and control of photo-ionization of D2 and O2 molecules has been achieved by using attosecond 

pulse trains (APTs) (11,12). More recently, an APT, in combination with two near-infrared 

fields, was employed to coherently excite and control the outcome of a simple chemical reaction 

in a D2 molecule (13). While the study of more complex molecules is challenging, a formative 

measurement of the amino acid phenylalanine has shown that ionization by a short APT leads to 

dynamics on a temporal scale of a few tens of femtoseconds. This has been interpreted as the 

possible signature of ultrafast electron transfer inside the molecule (14). 
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The application of attosecond techniques to molecules offers the possibility of investigating 

primary relaxation processes, which involve electronic and nuclear degrees of freedom and their 

coupling. In the case of large molecules (e.g. biologically relevant molecules) prompt ionization 

by attosecond pulses may produce ultrafast charge migration along the molecular skeleton, 

which can precede nuclear rearrangement. This behaviour has been predicted in theoretical 

calculations by various authors (15-19), whose work was stimulated by pioneering experiments 

performed by Weinkauf, Schlag and coworkers on fragmentation of peptide chains (20,21). This 

electron dynamics, evolving on an attosecond or few-femtosecond temporal scale, can determine 

the subsequent relaxation pathways of the molecule (9). The process is induced by sudden 

generation of an electronic wavepacket, which moves across the molecular chain and induces a 

site selective reactivity, which is related to charge localization in a particular site of the molecule 

(15). While picosecond and femtosecond pulses are suitable for the investigation of nuclear 

dynamics, the study of electronic dynamics with these pulses has been made possible by slowing 

down the dynamics through the use of Rydberg electron wavepackets (22). However, in order to 

study the electron wavepacket dynamics in the outer-valence molecular orbitals relevant to most 

chemical and biological systems, attosecond pulses are required.   

Here we present clear experimental evidence of ultrafast charge dynamics in the amino acid 

phenylalanine after prompt ionization induced by isolated attosecond pulses. A probe pulse then 

produces a doubly-charged molecular fragment by ejection of a second electron, and charge 

migration manifests itself as a sub-4.5-fs oscillation in the yield of this fragment as a function of 

pump-probe delay.  Numerical simulations of the temporal evolution of the electronic wave 

packet created by the attosecond pulse strongly support the interpretation of the experimental 
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data in terms of charge migration resulting from ultrafast electron dynamics preceding nuclear 

rearrangement. 

The -amino acids consist of a central carbon atom ( carbon) linked to an amine (-NH2) 

group, a carboxylic group (-COOH), a hydrogen atom and a side chain (R), which in the case of 

phenylalanine is a benzyl group (Fig. 1). In our experiments, we use a two-color, pump-probe 

technique. Charge dynamics are initiated by isolated XUV sub-300-as pulses, with photon 

energy in the spectral range between 15 eV and 35 eV and probed by 4-fs, waveform-controlled 

visible/near infrared (VIS/NIR, central photon energy 1.77 eV) pulses (see Supplementary 

Material). A clean plume of isolated and neutral molecules is generated by evaporation of the 

amino acid from a thin metallic foil heated by a continuous wave (CW) laser. The parent and 

fragment ions produced by the interaction of the molecules with the pump and probe pulses are 

then collected by a linear time-of-flight device for mass analysis, where the metallic foil is 

integrated into the repeller electrode (23). Ionization induced by the attosecond pulse occurs in a 

sufficiently short time interval to exclude significant electron rearrangement during the 

excitation process.  

We have measured the yield for the production of doubly-charged immonium ions as a 

function of the time delay between the attosecond pump pulse and the VIS/NIR probe pulse (the 

structure of the immonium dication is ++NH2°CH-R). Figure 2A shows the results on a 100-fs 

time scale. The experimental data display a rise time of 102 fs and an exponential decay with 

time constant of 252 fs (this longer relaxation time constant is in agreement with earlier 

experimental results reported in (14)). Figure 2B shows a 25-fs-wide zoom of the pump-probe 

dynamics, obtained by reducing the delay-step between pump and probe pulses from 3 fs to 0.5 

fs. An oscillation of the dication yield is clearly visible. For a better visualization, Fig. 2C shows 
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the same yield after subtraction of an exponential fitting curve. The data have been fitted with a 

sinusoidal function of frequency 0.234 PHz (corresponding to an oscillation period of 4.3 fs), 

with lower and upper confidence bounds of 0.229 PHz and 0.238 PHz, respectively (see 

Supplementary Materials). The experimental data have been also analysed by using a sliding-

window Fourier transform, which, at the expense of frequency resolution, shows frequency and 

time information on the same plot. The result is shown in Fig. 3A. At short pump-probe delays 

two frequency components are present, around 0.14 PHz and 0.3 PHz. A strong and broad peak 

around 0.24 PHz forms in about 15 fs and vanishes after about 35 fs, with a spectral width which 

slightly increases upon increasing the pump-probe delay, in agreement with the frequency values 

obtained from best fitting of the data reported in Fig. 2C.   

From these results, we can draw the following conclusions: (i) the ultrafast oscillations in 

the temporal evolution of the dication yield cannot be related to nuclear dynamics, which usually 

come into play on a longer temporal scale, ultimately leading to charge localization in a 

particular molecular fragment. Indeed, standard quantum chemistry calculations in phenylalanine 

(see Supplementary Material) show that the highest vibrational frequency is 0.11 PHz, which 

corresponds to a period of 9 fs, associated with X-H stretching modes, while skeleton vibrations 

are even slower, so that one can rule out that the observed beatings are due to vibrational motion. 

In any case, some influence of the nuclear motion cannot be completely excluded, since for 

example stretching of the order of a few picometers of carbon bonds can occur in a few 

femtoseconds, and this could modify the charge dynamics (24,25). (ii) Clear oscillatory 

evolution of the dication yield is observed even without any conformer selection. It is well 

known that amino acids exist in many conformations, as a result of their structural flexibility. 

Typically, the energy barrier to interconversion between different conformers is small, of the 
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order of a few kcal/mol, so that, even at room temperature, thermal energy is sufficient to induce 

conformational changes. Theoretical investigations have shown that such changes can affect the 

charge migration process (26). In the case of phenylalanine, 37 conformers have been found by 

ab initio calculations (27), with a conformational distribution that depends on temperature. In our 

experiment, at an average temperature of about 430 K, only the six most stable conformers are 

significantly present, as discussed in the Supplementary Material, with the most abundant 

configuration shown in Fig. 1. 

To further investigate the measured dynamics, we have also varied the photon energy and 

spectral width of the attosecond pump pulse, by inserting an indium foil in the XUV beam-path. 

The new XUV spectrum was characterized by a 3-eV (FWHM) peak centred around 15 eV, 

followed by a broad and weak spectral component extending up to 25 eV. In this case doubly 

charged immonium fragments were barely visible, suggesting that the dication formation 

involves relatively highly excited states of the cation. We have calculated the energy level 

diagram with all the states of singly charged phenylalanine generated by the XUV pump pulse 

and all the states of the dication (see Supplementary Material). A number of transitions from 

excited states of the cation to the lowest states of the dication are possible, which involve the 

absorption of just a few VIS/NIR photons. These states cannot be accessed by low-energy 

excitation, as in the case of XUV pulses transmitted by the indium foil. In this case transitions 

from cation states to the lowest dication states would require the less probable absorption of 

many VIS/NIR photons.  

We have also performed theoretical calculations to describe the hole dynamics induced by 

an attosecond pulse similar to that used in the experiment. Details of the method can be found in 

the Supplementary Material. Due to the high central frequency and large spectral width of the 
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pulse, a manifold of ionization channels are open, thus leading to a superposition of many 1-hole 

(1h) cationic states, i.e., to an electronic wave packet. Ionization amplitudes for all 1h open 

channels (32 for a single conformer) have been quantitatively determined by means of the static-

exchange Density Functional Theory (28-30), which has been thoroughly tested in systems of 

similar complexity, and first-order time dependent perturbation theory. A calculated 

photoelectron spectrum at 45 eV photon energy is in very good agreement with that obtained at 

100 eV in a synchrotron radiation experiment (31). From the ionization amplitudes the actual 

electronic wave packet has been calculated by using the experimental frequency spectrum of the 

attosecond pulse. The evolution of the electronic wave packet has then been evaluated by using a 

standard time-dependent density matrix formalism (6), in which the system is described by a sum 

of single-particle Hamiltonians. This is a reasonable approximation when, as in the present case, 

changes in electronic density are mostly due to the coherent superposition of 1h cationic states 

induced by the XUV pulse (see Supplementary Material). In other words, higher-order processes 

in which additional electrons are excited (e.g., correlation satellites) play a minor role in the 

observed dynamics. The hole-density has been calculated as the difference between the 

electronic density of the neutral molecule, which does not depend on time, and the electronic 

density of the cation, from immediately after XUV excitation up to a 500 fs delay. Since, in the 

experiments, the molecules were not aligned, we have calculated the charge dynamics resulting 

from excitation by pulses with the electric field polarized along three orthogonal directions 

(shown in Fig. 1). The results were then averaged assuming randomly oriented molecules. For a 

better analysis, we have integrated the hole density around selected portions of the molecule: 

clear beating frequencies are observed when the charge density is integrated around the amine 

group.  
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The six most populated conformers at 430 K have been considered in the simulations. While 

the precise frequencies of the relevant peaks in the calculated Fourier spectra depend on the 

particular conformer, the common characteristic is the presence of three dominant groups of 

Fourier peaks between 0.15 and 0.4 PHz. Our calculations show that the largest temporal 

modulation of the hole dynamics occurs around the amine group. Due to this fact, in Fig. 3C we 

only show the Fourier power spectrum of the calculated hole density around this group for the 

most abundant conformer.  We have then analysed the numerical results by using the same 

sliding-window Fourier transform procedure applied to the experimental data. Figure 3B shows 

the resulting spectrogram in a temporal window up to 45 fs, considering an experimental 

temporal resolution of about 3 fs. A dominant  peak around 0.25 PHz is visible, which forms in 

about 15 fs and vanishes after about 35 fs, in excellent agreement with the results of the Fourier 

analysis of the experimental data. A higher frequency component is visible around 0.36 PHz in 

the delay intervals below ~15 fs and above ~30 fs. At short delays this component favourably 

compares with the experimental observation of the frequency peak around 0.30 PHz in the same 

window of pump-probe delays. The temporal evolution of the main Fourier components is a 

consequence of the complex interplay among several beating processes initiated by the 

broadband excitation pulse. Despite the agreement with the experimental results we cannot 

exclude that also the nuclear dynamics, which is not included in the simulations, play a role in 

the temporal evolution of the measured oscillation frequencies. The good agreement between 

simulations and experimental results is rather remarkable in light of the fact that simulations do 

not take into account the interaction of the VIS/NIR probe pulse. The fact that the effects of the 

probe pulse are not included in the simulations can explain why the calculated intensities of the 

different beatings differ from the experimental ones. It is interesting to note that the beating 
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frequencies have been observed experimentally even though the initial hole density is highly 

delocalized. An important result of the simulations is that the measured beating frequencies 

originate from charge dynamics around the amine group. This leads to the conclusion that the 

periodic modulations measured in the experiment are mainly related to the absorption of the 

probe pulse by the amine group. We would like to point out that the mechanism that makes the 

probe pulse sensitive specifically  to the charge density on this group is still not well understood 

and therefore it will not be further discussed in the manuscript.  Moreover, we observe that in 

spite of the large number of potential frequency beatings associated to the wave packet motion 

induced by the attosecond pulse, only a few ones manifest in the experiment, thus reducing the 

impact of the modulations introduced by the probe pulse in the analysis of the wave packet 

motion. Figure 4 displays snapshots of the variation of the hole density with respect to the time-

averaged hole density as a function of time for the most abundant conformer.  In spite of the very 

delocalized nature of the hole-density resulting from the broadband XUV excitation, a significant 

redistribution of this density is clearly observed on a sub-femtosecond scale. These charge 

dynamics cannot be associated with a simple migration from one side of the molecule to the 

other. Despite the complexity of the charge configuration calculated in a realistic (i.e., 

experimentally accessible) situation, the concept of charge migration is still valid. In particular, 

the snapshots shown in Fig. 4 clearly evidence a significant and periodic variation of the charge 

density around the amine group. This is because the dominant beatings always involve 

delocalized orbitals with significant localization around the amine group (see Supplementary 

Material), thus showing that evolution of the hole density around this functional group provides a 

highly selective interaction with the probe pulse.  
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Direct measurement of the ultrafast charge dynamics in an amino acid, initiated by 

attosecond pulses, represents a crucial benchmark for the extension of attosecond methodology 

to complex systems. We have clearly demonstrated that charge fluctuations over large regions of 

a complex molecule such as phenylalanine can be induced by attosecond pulses on a temporal 

scale much shorter than the vibrational response of the system. This result was achieved in spite 

of the broad bandwidth of the attosecond pulses and, therefore, their low frequency selectivity, 

thus showing that attosecond science offers the possibility to elucidate processes ultimately 

leading to charge localization in complex molecules. The latter has already been achieved in 

hydrogen molecules, where, after attosecond excitation, charge localization was induced by the 

probe NIR pulse as a result of the coupling with the nuclear degrees of freedom at long time 

delays (10). A similar achievement can be envisaged in more complex molecules by performing 

more sophisticated experiments, e.g., as those of (10), combined with the extension of the 

existing theoretical methods to account for the nuclear motion.  
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Figure Captions: 

Fig. 1. Three-dimensional structure of phenylalanine.  Molecular structure of the most 

abundant conformer of the aromatic amino-acid phenylalanine. Dark gray spheres represent 

carbon atoms, light gray spheres hydrogen atoms, blue sphere nitrogen and red spheres oxygen. 

The molecular geometry has been optimized using Density Functional Theory (DFT) with a 

B3LYP functional. 

Fig. 2. Pump-probe measurements. (A) Yield of doubly charged immonium ion (mass/charge 

= 60) as a function of pump-probe delay, measured with 3-fs temporal steps. The red line is a 

fitting curve with an exponential rise time of 10 fs and an exponential relaxation time of 25 fs. 

(B) Yield of doubly charged immonium ion vs. pump-probe delay measured with 0.5-fs temporal 

steps, within the temporal window shown as dotted box in (A). Error bars show the standard 

error of the results of four measurements.  The red line is the fitting curve given by the sum of 

the fitting curve shown in (A) and a sinusoidal function of frequency 0.234 PHz (4.3-fs period). 

(C) Difference between the experimental data and the exponential fitting curve displayed in (A). 

Red curve is a sinusoidal function of frequency 0.234 PHz. 

Fig. 3. Fourier analysis of charge dynamics. Spectrograms calculated for the measured data of 

Fig. 2C (A) and for the calculated hole density integrated over the amine group for the most 

abundant conformer (B). The sliding window Fourier transforms have been calculated by using a 

Gaussian window function g(t-td) = exp[-(t- td
 )2/t0

2], with t0 =10 fs and peak at td (gate delay 

time). The spectrogram (B) was calculated considering an experimental temporal resolution of 

about 3 fs. (C) Fourier power spectrum of the calculated hole density integrated over the amine 

group for the most abundant conformer. 

 

Fig. 4. Snapshots of hole dynamics. Relative variation of the hole density with respect to its 

time-averaged value as a function of time for the most abundant conformer. Isosurfaces of the 

relative hole density are shown for cutoff values of +10-4 a.u. (yellow) and -10-4 (purple). Time is 

referred to the end of the XUV pulse (first snapshot). To guide the eye, time intervals between 

snapshots showing a similar accumulated density over the amino group are indicated in the 

figure. These time intervals are close to the dominant periods associated with the electronic wave 

packet motion shown in Fig. 3. The location of the amine group is highlighted in the first 

snapshot with a shaded contour. 

 



14 

 

 
 



15 

 

 
 



16 

 

 



17 

 

 


