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The year 2019 marks the 10th anniversary of the first report of ultrafast fiber laser mode-locked by graphene. This
result has had an important impact on ultrafast laser optics and continues to offer new horizons. Herein, we
mainly review the linear and nonlinear photonic properties of two-dimensional (2D) materials, as well as their
nonlinear applications in efficient passive mode-locking devices and ultrafast fiber lasers. Initial works and sig-
nificant progress in this field, as well as new insights and challenges of 2D materials for ultrafast fiber lasers,
are reviewed and analyzed. © 2019 Chinese Laser Press
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1. INTRODUCTION

Ultrafast fiber lasers (UFLs), which deliver pulses with extremely
short durations (e.g., on the order of femtoseconds or picosec-
onds), have been proved as the most powerful tool for various
and crucial applications such as strong-field physics, nonlinear
optics, precision metrology, and ultrafine material processing.
One distinguishing property of rare-earth-doped fibers is the
large gain bandwidth (i.e., tens of nanometers), making possible
the generation of ultrafast mode-locked laser pulses (∼100 fs).
In order to achieve the mode-locking response, cavity longi-
tudinal modes must be forced to lock together by either active
electro-optic modulators or passive saturable absorbers (SAs).
Comparatively, a passively mode-locked fiber laser using a real
SA has the significant advantages of self-starting operation,
low cost, high stability, and being maintenance-free.

Currently, the most prevalent absorber technology is the
molecular beam epitaxy (MBE)-grown semiconductor SA mirror
(SESAM) [1], which is widely applied in semiconductor lasers,
UFLs, and solid-state lasers. However, SESAM has its own lim-
itations, including long recovery time (∼picosecond level), nar-
rowband operation (<100 nm), sophisticated fabrication, and
a low damage threshold. Therefore, the pursuit of an ideal SA,
the key module of a passively mode-locked fiber laser, has long
been the goal of scientific researchers.

Two-dimensional (2D) materials, also denoted as atomic
layered materials, define a new material morphology where

single or few layers of atoms gather together in one direction,
while in two other directions, they keep uniform and crystal-
like expansions. With the reduction in physical dimension, 2D
materials bring totally different energy band structures when
compared to their bulk states, and possess unique optical and
electronic characteristics [2–5] that have been employed in ap-
plications of microelectronics devices [6], biomedicine [7],
energy [8], and chemistry [9]. As summarized in this review,
one of the most exciting things is that they could be used as
passive SAs, the mode-lockers for UFLs. The origin of saturable
absorption in 2D materials is similar to SESAM, in that the
absorption of injected light can be saturated under strong ex-
citation due to the depletion of final states (i.e., Pauli blocking).

Ignited by Bao et al. [10] and Sun et al. [11,12], who re-
ported the initial UFLs mode-locked by graphene in 2009, a
rapid exploration of the 2Dmaterial family as efficient fiber SAs
has occurred. The most widely investigated 2D materials in this
field are graphene [13,14], topological insulators (TIs) [15,16],
transition metal dichalcogenides (TMDs) [17,18], and black
phosphorus (BP) [19,20]. In addition, some newly emerging
2D materials continue to join the 2D family, like MXenes
[21,22], bismuthene [23], and antimonene [24], all reported
recently. The profusion of 2D materials together with diverse
fiber integration methods brings quite a great flexibility in fab-
ricating fiber SAs with unique and controllable parameters,
allowing for broad bandwidth, ultrafast recovery, high damage
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threshold, low saturable influence, etc. In combination with
rich rare-earth-doped fiber lasers in different wavelength re-
gions, the development of UFLs mode-locked by 2D nanoma-
terials has been greatly facilitated over the last decade
[25–29].

In this paper, we cover the state of art of UFLs mode-locked
by 2D materials. In Section 2, a brief introduction to dominant
2D materials is made, including their atomic structures, energy
band structures, linear and nonlinear absorptions, carrier life-
times, etc. Related experimental approaches for fabricating
these 2D materials and fiber SAs are also mentioned. In
Section 3, the historical first demonstrations of UFLs mode-
locked by 2D materials are presented. In Section 4, some im-
portant and interesting progress in recent years is summarized,
mainly focusing on pulse width, repetition rate, and stability
characteristics. In Section 5, new insights and current chal-
lenges regarding 2D materials are discussed.

2. 2D MATERIAL FAMILY FOR UFLS

In the fields of ultrafast photonics, 2D materials are character-
ized by their broadband saturable absorptions [30–32], ultra-
fast recovery [33–35], large nonlinear refractive indices [36,37],
and potential as outstanding mode-lockers for UFLs. What fol-
lows is a brief overview of 2D materials’ atomic structures,
bandgap structures, and recovery times. Table 1 shows a brief
comparison of the 2D material family. Later in this section,
corresponding material preparation and fiber integration tech-
niques are also introduced.

A. 2D Materials

1. Graphene

Graphene, viewed as the pioneer of 2D materials, is a single
layer of carbon atoms arranged in a 2D honeycomb lattice
[14], facilitating great potential in the application of UFLs.
Benefiting from its gapless Dirac cone [13], monolayer gra-
phene is calculated to possess about 2.3% absorption of
incident visible to infrared (IR) light. Graphene is special in
that it enjoys ultrashort recovery time (<200 fs), low saturable

absorption (∼10 MW∕cm2 [38]), great relative modulation
depth (>60% per layer [10]), and wavelength-independent
operation (ranging from the visible to the terahertz), allowing
it to operate efficiently for the generation of broadband ultrafast
laser pulses.

2. TIs

TIs define a new kind of material with nontrivial symmetry-
protected topological order that behaves as insulators in their
interior but whose surfaces contain gapless conducting states
[15,16,50]. A small indirect bulk bandgap of 0.2–0.3 eV gives
TIs a strong graphene-like broadband nonlinear response from
the visible to the mid-IR. The lifetime of their phonon-induced
carriers is short of several picoseconds, also making them useful
for ultrafast light modulators. Three kinds of TIs, namely,
Sb2Te3, Bi2Se3, and Bi2Te3, are the most widely used TI SAs.

3. TMDs

TMDs are a class of more than 40 different semiconductors
that share a formula of MX 2, where M stands for a transition
metal (e.g., Mo, W, Ti, Nb) and X stands for a chalcogen
(e.g., S, Se, or Te) [51,52]. In a TMD monolayer, the single
transition metal layer is sandwiched between the two chalcogen
layers, showing graphene-like layered structure. As for different
monolayer TMDs, they have energy bandgaps varying from
1 to 2.5 eV. Surprisingly, the subbandgaps created by the edge
states of TMDs allow efficient absorptions of light with photon
energy much lower than their normal bandgaps [53,54].
Meanwhile, the short recovery times of TMDs are several pico-
seconds, which are also fast enough for ultrafast light modula-
tion. For example, MoS2, MoTe2, WSe2, and WS2 have been
widely used for UFLs in 1.5 and 2 μm wavelength regions.

4. BP

BP is a thermodynamically stable allotrope of phosphorus at
room temperature [19,55]. Like graphene, each phosphorus
atom in BP is connected to three adjacent phosphorus atoms,
forming a stable six-atom linked ring structure. The differ-
ence is that the BP structure is puckered, which reduces its

Table 1. 2D Material Family for UFLsa,b

Type

Graphene

[38,39]

TIs

[16,40,41]

TMDs

[42–44]

BP

[45,46]

MXenes

[47]

Bismuthene

[24,48,49]

Atomic structure

Band structure
(monolayer)

Bandgap 0 eV (monolayer)
0.25 eV (bilayer)

0–0.7 eV 1–2.5 eV 0.35–2 eV <0.2 eV ∼0.5 eV (monolayer)

Carrier lifetime Fast: <200 fs
Slow: ∼1 ps

Fast: 0.3–2 ps
Slow: 3–23 ps

Fast: ∼1�3 ps
Slow: 70–400 ps

Fast: 360 fs
Slow: 1.36 ps

– Fast: 3 ps
Slow: 420 ps

aAtomic and electronic band structures of Bi2Se3, MoS2, and Ti3CNT x (T = F, OH) are selected to represent TIs, TMDs, and MXenes, respectively.
bBandgaps and carrier lifetimes of TIs and TMDs are value ranges from a variety of materials.
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symmetry and brings an angle-dependent nonlinearity [56]. It
has tunable direct bandgaps varying from 0.35 eV (bulk) to
2 eV (monolayer), indicating its broadband nonlinear response
deep into the mid-IR [57,45], which has been widely used for
UFLs as well [58,59]. Research shows that nanosheet BP has a
wavelength-dependent recovery time of 0.36 to 1.36 ps excited
with photon energies from 1.55 to 0.61 eV [60]. It should be
noted that BP would be oxidized when exposed in ambient
conditions and needs encapsulation for scaling its long-term
stability [61].

5. MXenes

MXenes represent a new class of 2D transition metal carbides,
carbonitrides, or nitrides whose chemical formula is
M n�1X nT x�n � 1�3�. Here, M stands for transition metals
(Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, etc.), X is carbide and/or
nitride, and T x represents surface terminations (F, O, OH,
etc.) [22,62]. Few-layer Ti3C2T x has an indirect energy
bandgap of <0.2 eV and a low absorption of ∼1%∕nm.
Stacking of 2D MXene materials generally occurs through
van der Waals interaction without internal surface termination,
as in the cases of graphene, phosphorene, and TMDs. A recent
study showed that the main features observed in MXene mono-
layers were well conserved in stacked ones [47], indicating that
well-functioning fiber SAs could be made using MXenes, thus
avoiding the troublesome processes of monolayer dispersion.

6. Bismuthene

Due to its distinct electronic and mechanical properties, as well
as its strong stability, bismuthene has attracted tremendous
research interest [23,48]. Recent research shows that the layer-
dependent optical bandgap of beta-bismuthene ranges from
almost 0 to 0.55 eV, suggesting that it is a promising broad-
band optical material from the near-IR to the terahertz regions
[24]. The short recovery time of bismuthene is 2.8 ps, which
also indicates it is a potential ultrafast SA.

7. Other Materials

The aforementioned 2D materials offer distinct, yet comple-
mentary properties and hence, new opportunities for optical
applications in UFLs [63–65]. But these are not enough, since
better SAs with enhanced optical properties, such as much
shorter carrier lifetimes, higher damage thresholds, and larger
modulation depths are always desired. On the one hand, explo-
rations for new 2D materials will never stop. On the other
hand, modification of existing materials also provides an oppor-
tunity. The possibility of combining different 2D materials to
form van der Waals heterostructures offers an exciting prospect
for a wide range of new engineerable photonic devices [66,67].
This overcomes the intrinsic drawbacks of single materials,
while enhancing performance greatly [68,69]. Recently, several
UFLs mode-locked by heterostructure SAs have been re-
ported [70,71].

B. Preparation and Characterization of 2D Materials

To summarize, there are many physical or chemical techniques
used to obtain 2D materials, which can be classified into
two categories, namely, top-down exfoliation and bottom-up
growth [72]. Typical approaches regarding exfoliation are
mechanical exfoliation (ME) [73], liquid-phase exfoliation

(LPE) [74], and ion-intercalation exfoliation [75]. Meanwhile,
chemical vapor deposition (CVD) [76], pulsed laser deposition
(PLD) [77], pulsed magnetron sputtering (PMS) [78], and
MBE [28] are representative growth techniques.

At the same time, plenty of measurement techniques have
been introduced to characterize 2D materials. To analyze the
atomic composition and structural characteristics, the X-ray
diffractometer, Raman scattering spectroscopy, and photolumi-
nescence measurements are often used. Scanning electron
microscopy (SEM), atomic force microscopy (AFM), and
atomic resolution scanning transmission electron microscopy
(STEM) are used to characterize the morphology. With Z-scan
or P-scan measurements, it is possible to measure the third-
order nonlinear coefficients and saturable absorptions directly.
Pump–probe spectroscopy is used to analyze the carrier
lifetime. Recently, both Z-scan [36] and pump–probe spectros-
copy [79] have been shifted to mid-IR regions. Micro pump–
probe spectroscopy has also been promoted as an efficient tool
to investigate 2D materials’ carrier transportation on the scale
of micrometers [80,81].

C. Fiber Integration with 2D Materials

To fabricate SAs for all-fiber mode-locked UFLs, 2D materials
must be transferred [82] or deposited [83] onto optical fibers,
achieving sufficient interaction with intracavity laser light.
Meanwhile, 2D materials could be mounted onto a transparent
plate or a high-reflectivity mirror. In these cases, UFLs with
non-all-fiber formats could also be established with free-
space couplings. Both polarization-maintaining (PM) and
non-PM fibers could be used for building these UFLs with
2D materials. Figure 1 shows some popular fiber coupling
schemes. Briefly, these couplings could be summarized into
two kinds of schemes: transmission coupling [Figs. 1(a)–1(c)]
and evanescent-wave coupling [Figs. 1(d)–1(g)].

1. Transmission Coupling

As shown in Fig. 1(a), the most common transmission coupling
sandwiches SA materials between two fiber ends directly. Large
area uniform 2D materials like ME-prepared graphene, CVD-
grown graphene or TMDs, and MBE-grown TIs could be easily
integrated with transferring methods [82]. Monolayer or few-
layer nanosheet materials embedded in thin organic polyvinyl
alcohol (PVA)/polymethyl methacrylate (PMMA)/polydime-
thylsiloxane (PDMS) films could be sandwiched too. For nano-
sheets in solutions, direct optical heat deposition to a fiber end is

Fig. 1. Fiber integration with 2D materials. (a)–(c) Transmission
coupling; (d)–(g) evanescent-wave coupling; 2D materials are depos-
ited or transferred on (a) fiber ends, (b) transparent plate, (c) reflection
mirror, (d) tapered fiber, (e) side-polished fiber, (f ) photonic crystal
fiber, and (g) cladding-etched fiber.
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often used. In general, these methods are simple, and commercial
fiber connector/physical contact (FC/PC) or fiber connector/
angled physical contact (FC/APC) could be used directly.
Figures 1(b) and 1(c) depict the cases when 2D materials are
transferred or deposited onto a transparent plate or a high-
reflectivity mirror, respectively. Besides, discrete optical compo-
nents such as lenses must be adopted, resulting in free-space cou-
pling with fibers. It should be noted that transmission coupling
does have its disadvantages, such as a low damage threshold.

2. Evanescent-Wave Coupling

To scale the damage threshold of fiber SAs, evanescent-wave
coupling usually provides a better choice. In this condition,
the fiber-guided laser light in the core originally would leak
out and interact with 2D materials on the side. The main four
evanescent-wave couplings are sketched in Fig. 1, including
tapered fiber [84], side-polished fiber [85], photonic crystal
fiber [86], and cladding-etched fiber [87]. Both side-polished
fiber [88] and photonic crystal fiber [89] have already been
demonstrated to support high-power mode-locking operations.

After integration, a fiber SA component should be charac-
terized further with methods including linear transmission
spectroscopy and fiber-balanced twin-detector measurement
[90], reflecting the fiber SAs’modulation depths and nonsatur-
able loss. These tests are always important and indispensable
because they reflect whether the integration process has been
successful or not.

3. FIRST DEMONSTRATIONS OF UFLS

MODE-LOCKED BY 2D MATERIALS

As discussed in Section 2, 2D materials are innate broadband
SAs, enabling the realization of mode-locked UFLs at luxuriant
wavelengths. The numerous laser transitions available from tri-
valent rare-earth ions like Yb3�, Er3�, Tm3�, and Ho3� lend
them the ability to generate light over a wide selection of wave-
lengths [91–94]. Despite different kinds of fibers, fibers made of
silica and fluoride (ZrF4 − BaF2 − LaF3 − AlF3 −NaF, ZBLAN)
glasses are themost widely used. Figure 2 sketches the very initial
demonstrations of 2D materials-based UFLs at 1.0, 1.5, and
2.0 μm (silica), and 3.0 μm (ZBLAN) over the last decade.

Bao et al. reported the first graphene Er3�-doped fiber laser
(EDFL) at 1550 nm [10] in 2009. From Fig. 3(a), one can see

that a ring-cavity EDFL was mode-locked by a CVD-grown
graphene film sandwiched between two fiber ends. In this case,
a stable and regular soliton pulse train was generated, along
with a repetition rate of 1.79 MHz and output power of
2 mW. The output pulses had a temporal width of 756 fs
and a spectral bandwidth of 5 nm, indicating the ultrafast char-
acteristics. Soon after that, mode-locked pulses at 1576.3 nm
with a pulse width of 415 fs and a repetition rate of 6.84 MHz
were obtained by Zhang et al. from a dispersion-managed cavity
fiber laser [95]. At the end of 2009, Sun et al. also demonstrated
their first work on an ultrafast EDFL mode-locked by mono-
layer and few-layer graphene flakes [12]. They proposed that
high-performance ultrafast pulses could also be obtained with
a graphene–PVA composite fabricated by using wet-chemistry
techniques. These works in 2009 were pioneering, opening the
door for UFLs mode-locked by 2D materials.

As aforementioned, it is feasible to transplant mode-locking
operation to other wavelengths, since gapless graphene makes it
a natural broadband SA. Just one year later, Zhao et al. reported
an ultrafast Yb3�-doped fiber laser (YDFL) mode-locked by a
few-layer CVD-grown graphene film. They obtained dissipa-
tive soliton pulses at 1069.8 nm with a spectral bandwidth of
1.29 nm and a pulse width of 580 ps [96]. In 2012, Zhang et al.
reported the first graphene–PVA composite mode-locked
Tm3�-doped fiber laser (TDFL) at 1940 nm [97]. The laser
output pulses had temporal widths of 3.6 ps and a pulse energy
of ∼0.4 nJ at a repetition rate of 6.46 MHz. UFLs in this wave-
length region are important because of eye-safe operation and
their potential as laser scalpels. In 2015, a graphene mode-
locked Ho3�-doped fiber laser (HDFL) at 2107 nm with a
pulse width of 1.8 ps was further demonstrated [98].

In the meantime, researchers also paid much attention to
other kinds of 2D materials [3,72]. TIs, TMDs, BP, MXenes,
and bismuthene were successively fabricated as fiber SAs and
applied into mode-locked UFLs. To the best of our know-
ledge, the first demonstration of UFLs mode-locked by
TI − Bi2Te3 was in 2012 [99], TMD −MoS2 in 2014 [100],
BP in 2015 [101], MXene [47] and bismuthene [102] in 2017.

Fig. 2. First demonstrations of UFLs mode-locked by 2D materials
at different wavelengths.

Fig. 3. CVD-grown graphene mode-locked EDFL [10]. (a) Laser
configuration; (b) output pulse train; (c) output laser spectrum;
(d) autocorrelation trace. Reproduced with permission, Copyright
2009, Wiley-VCH.
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Interestingly, almost all these initial demonstrations were at
1.5 μm except TMD −MoS2 at 1 μm [100], which might ben-
efit from the telecommunications boom. Meanwhile, these 2D
materials were also investigated to explore the broadband lasing
wavelengths like graphene [103–108]. In summary, not only
graphene, but also TIs, TMDs, and BP have been used for
the generation of 1, 1.5, and 2.0 μm ultrafast pulses in these
corresponding silica fiber lasers. Note that these demonstrations
of broadband SA characteristics were indirect because 2D
materials were prepared by different groups, even with different
methods. In 2014, Fu et al. put forward a direct demonstration
of graphene’s broadband saturable absorption by inserting a
single-fiber SA into three codoped fiber lasers: YDFL,
EDFL, and Tm3�,Ho3� (THDFL), respectively [30]. Thus,
mode-locked pulses with center wavelengths of 1035, 1564,
and 1908 nm were achieved.

Since graphene, Tis, and BP are gapless or have small energy
bandgaps, as introduced in Section 2, they could also be used
for mid-IR mode-locking operations. However, silica fiber does
not work in the mid-IR due to its huge absorption. The adop-
tion of fluoride ZBLAN fibers for generating ultrafast pulses
opens up another playground in the mid-IR for the nonlinear
studies of 2D materials. But due to the lack of mid-IR fiber
components, current mid-IR UFLs had to adopt non-all-fiber
formats limited by a free-space coupling scheme.

In 2015, Yin et al. designed the first mid-IR UFL mode-
locked by 2D materials [109]. The linear-cavity UFL adopted
a piece of Ho3�-doped ZBLAN fiber as the gain fiber and a
high-reflection gold mirror covered with TI − Bi2Se3 nano-
sheets as the SA mirror. The output pulses had a repetition rate
of 10.4 MHz, a pulse width of ∼6 ps, and a center wavelength
of 2830 nm. Soon after that in 2015, Zhu et al. also reported
the first mid-IR graphene mode-locked Er3�-doped ZBLAN
fiber laser at 2.78 μm [110]. A CVD-grown four-to-six layer
graphene was transferred onto a gold mirror as the SA. The
output had a pulse width of 42 ps and a repetition rate of
25.4 MHz. Few-layer BP SA mirrors have also been built for
mid-IR mode-locked UFLs since 2016 [111,112]. In 2016,
Qin et al. transferred mechanically exfoliated BP flakes onto
a gold mirror as a BP SA mirror [111]. The excellent perfor-
mance of the BP SA mirror in the mid-IR brought stable mode-
locked pulses at 2783 nm with a maximum output power of
613 mW, a repetition rate of 24 MHz, and a pulse width of
42 ps. A recent work showed that BP could even be used to
modulate lasing at 3489 nm in an Er3�-doped ZBLAN fiber
laser [112], resulting in a stable mode-locked pulse train with a
repetition rate of 28.91 MHz.

4. SIGNIFICANT PROGRESS OF UFLS

MODE-LOCKED BY 2D MATERIALS

Most of these aforementioned initial UFLs mode-locked by 2D
materials are proof-of-concept demonstrations. In fact, their
lasing performances are hard to satisfy diverse applications.
Therefore, more crucial parameters like SA modifications, cav-
ity dispersion and nonlinearity management, coupling ratio,
and gain adjustments are often adopted to improve laser per-
formance. In the following, representative high-performance
UFLs mode-locked by 2D materials are reviewed from three

aspects: toward shorter pulse widths, higher repetition rates,
and better stabilities. Due to the immature ZBLAN fiber com-
ponents [113], high-performance mode-locked mid-IR fiber
lasers are rare. Therefore, we focus on silica fiber-based UFLs
in this section.

A. Short Pulse Width

The output pulse width of a mode-locked fiber laser depends
mainly on its spectral bandwidth and chirp [114]. In fact, the
broadband saturable absorption feature of 2D materials could
modulate all longitude modes within the whole gain bandwidth
of rare-earth ions, leading to desirable ultrafast pulses. When
the laser cavity operates in the anomalous dispersion regime,
mode-locked pulses can easily evolve into femtosecond solitons,
considering the dispersion is comparable to nonlinearity [115].

Based on numerical simulations, Jeon et al. found that in a
mode-locked UFL, the adoption of SAs with larger modulation
depth could induce the temporal shortening of output pulses
[116]. Considering that monolayer 2D materials’ absorption is
low, the problem is how to improve the modulation depth of a
2D material SA. In 2015, Sobon et al. put forward a stacking
method for monolayer graphene to achieve the desired number
of layers [117]. They demonstrated that by increasing the layer
numbers, the graphene SA’s modulation depth increased, and
the output pulse width decreased. This idea of engineering
modulation depth by modifying layer numbers was soon
adopted in other kinds of 2D materials like TI − Bi2Se3 [118]
and TMD −MoS2 [119].

In order to shorten the mode-locking pulse width,
dispersion management is also indispensable. By adopting
gain and passive fibers with opposite dispersions [120] or
inserting a dispersion compensation grating [121], the net
cavity dispersion could be minimized. Indubitably, external
pulse compression is a promising alternative. A fiber chirp
pulse amplification (CPA) chain can not only scale up pulse
energy, but also induce broadening of the amplified spectrum,
leading to a much shorter pulse width after compression.
Representative results of UFLs mode-locked by 2D materials
at short pulse widths are presented in Table 2.

The shortest pulse width (88 fs) output directly from a
graphene mode-locked EDFL was reported by Sotor et al.

in 2015 [122]. A 60-layer CVD-grown graphene/PMMA
composite was sandwiched between two fiber ends as an SA.
With dispersion compensation, the ring-cavity EDFL had a net
dispersion of −0.0015 ps2, resulting in a stretched mode-
locking operation at 1545 nm with a spectral bandwidth of
48 nm. Also utilized with CVD-grown graphene films, shortest
pulse widths of 603 fs at 1940 nm [123] and 190 fs at 2059 nm
[124] were reported. However, due to the lack of dispersion
engineering, the graphene mode-locked ZBLAN fiber laser
at 2784.5 nm had a long pulse width of 42 ps [110].

With all-fiber CPA systems, ultrafast pulses shorter than
24 and 260 fs at 1560 and 1968 nm were obtained [125,126],
respectively. Figure 4 shows the corresponding result when the
shortest pulse width of 24 fs was realized [125]. As presented
in Fig. 4(a), the laser system consisted of only two types of PM
fibers, ensuring simplicity and stability. A 30-layer graphene/
polymer composite as described in detail in Ref. [117], was
used as the fiber SA in the mode-locked EDFL. The output

82 Vol. 8, No. 1 / January 2020 / Photonics Research Review



pulse from the oscillator had the shortest temporal width
of 224 fs, associated with a lasing wavelength of 1560 nm and
a spectral bandwidth of 11.5 nm. After amplification with an
Er3�-doped fiber amplifier (EDFA) and compression in the
gain fiber, the fiber laser system delivered few-cycle optical
pulses with a pulse width short of 24 fs and a spectral band-
width of 136 nm.

As illustrated in Table 2, one can acquire the shortest output
pulse widths for the UFLs mode-locked by other kinds of 2D
materials. These results are generated directly from mode-
locked laser oscillators without amplification and compression.
In the 1.5 μm wavelength region, the shortest output pulses
mode-locked by TIs, TMDs, BP, bismuthene, and MXenes
were 70 fs [127], 67 fs [129], 102 fs [130], 193 fs [132],
and 159 fs [133], respectively. These works demonstrated that
other 2D materials also had the ability to generate ∼100 fs

ultrafast laser pulses. Comparatively, the output pulses at other
wavelengths like 1 and 2 μm are still much longer than pulses
at 1.5 μm, indicating much more work is required to shorten
pulses in the future. Meanwhile, robust fiber amplifiers oper-
ating in these wavelength ranges are also required to scale up
pulse energy and peak power, and further shorten the pulse
width.

B. High Repetition Rate

The pursuit of higher repetition rates is another important
aspect. In particular, lasers with repetition rates from several
to hundreds of gigahertz are important for high-speed optical
communication systems and microwave generation. The short
recovery times of 2D materials make them good candidates for
gigahertz pulse generation.

Table 3 shows the representative results of high repetition
rate UFLs mode-locked by 2D materials. For fundamental
mode-locking operation, the repetition rate of the pulse train
is the same as the longitudinal mode spacing, whose increment
can only be achieved by reducing cavity length. In 2012,
Martinez et al. reported a graphene mode-locked EDFL with
a ∼1 cm linear cavity, whose pulse repetition rate was
9.67 GHz [134]. In 2015, Wu et al. also demonstrated a
MoS2-based short-cavity EDFL at a fundamental repetition
rate of 463 MHz [139]. However, due to the fiber gain limi-
tation, short-cavity configuration is difficult to improve the
repetition rate further (e.g., >10 GHz).

By inserting a comb filter like Fabry–Perot (FP) filter or
microknot filter into a fiber laser cavity to form a composite
cavity, it is also possible to increase output repetition rate by
filtering out some longitudinal modes [114]. In 2015, Qi et al.
reported the generation of a 100 GHz pulse train in an EDFL
by using a graphene tapered fiber SA and an FP filter [136].

Fig. 4. Graphene mode-locked EDFL that delivers 24 fs pulses
[125]. (a) Laser configuration; (b) optical spectrum; (c) autocorrelation
trace; (d) measured RF spectrum. Reproduced with permission.
Copyright 2016, IOP Publishing.

Table 2. UFLs Mode-Locked by 2D Materials with Short Pulse Widths

Laser Configuration SA

Pulse

Width Wavelength

Spectral

Bandwidth Ref.

Dispersion compensated ring-cavity
EDFL

60-layer CVD-grown graphene 88 fs 1545 nm 48 nm [122]

Ring-cavity TDFL 24-layer CVD-grown graphene 603 fs 1940 nm 6.6 nm [123]
Dispersion compensated ring-cavity
HDFL

Few-layers graphene 190 fs 2059 nm 53.6 nm [124]

Linear-cavity Er3�-doped ZBLAN
fiber laser

4–6 layer CVD-grown graphene ∼42 ps 2784.5 nm 0.21 nm [110]

Ring-cavity EDFL + EDFA 30-layer CVD-grown graphene 224 fs/24 fsa 1560 nm 11.5 nm/136 nmb [125]
Ring-cavity TDFL + TDFA 12-layer CVD-grown graphene 656 fs/260 fsa 1968 nm 9.4 nm/15 nmb [126]
Ring-cavity YDFL 250 nm PMS-deposited TI − Bi2Te3 5.3 ps 1036.7 nm 8.28 nm [78]
Ring-cavity EDFL PLD-prepared TI − Sb2Te3 70 fs 1542 nm 63 nm [127]
Ring-cavity EDFL Bulk-structured TI − Bi2Te3 795 fs 1935 nm 5.64 nm [104]
Linear-cavity Ho3�-doped ZBLAN
fiber laser

LPE-prepared TI − Bi2Te3 6 ps 2830 nm 10 nm [109]

Ring-cavity EDFL CVD-grown TMD −WSe2 163.5 fs 1557.4 nm 25.8 nm [128]
Ring-cavity EDFL PLD-prepared TMD −WS2 67 fs 1540 nm 114 nm [129]
Ring-cavity EDFL LPE-prepared BP 102 fs 1555 nm 40 nm [130]
Ring-cavity TDFL ME-prepared BP 739 fs 1910 nm 5.8 nm [108]
Linear-cavity Ho3�-doped ZBLAN
fiber laser

LPE-prepared BP 8.6 ps 2866.7 nm 4.35 nm [131]

Ring-cavity EDFL LPE-prepared bismuthene 193 fs 1561 nm 14.4 nm [132]
Ring-cavity EDFL MXene-Ti3C2T x 159 fs 1555 nm 22.2 nm [133]

aPulse widths of 224 and 656 fs were obtained from oscillators, while 24 and 260 fs were obtained after amplifiers.
bSpectral bandwidths of 11.5 and 9.4 nm were obtained from oscillators, while 136 and 15 nm were measured after fiber amplifiers.
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Figure 5 shows a recent work by Liu et al. in which a
graphene-deposited microfiber knot filter was used in ring-
cavity fiber lasers, providing the spectral filtering and saturable
absorption effect [137]. When the filter was implemented into
a YDFL, a pulse train at 1 μm with a 162 GHz repetition rate
was generated. When it was inserted into an EDFL, a pulse
train in the 1.5 μm region with a 106.7 GHz repetition rate
was addressed.

The harmonic mode-locking technique is an alternative
important approach to realize high repetition rate outputs.
In 2012, a graphene-based 21st-harmonic mode-locked fiber
laser was reported by Sobon et al., with a pulse repetition rate
of 2.22 GHz [135]. Other kinds of 2D materials like TIs,
TMDs, and BP are also efficient for achieving harmonic mode-
locking operations. With a TI − Bi2Te3 fiber SA implemented
in a ring-cavity EDFL, Luo et al. raised the repetition rate to

2.04 GHz, corresponding to a high harmonic order of 418
[138]. Another work by Yan et al. also utilized a TI − Bi2Se3
fiber SA in a ring-cavity EDFL, but with a higher fundamental
repetition rate of 200 MHz. In this case, a harmonic mode-
locking repetition rate of 2.95 GHz was obtained at a 170th-
harmonic order [77]. To date, the highest repetition rate of
a TMD mode-locked UFL was accomplished by Koo et al.

in 2016 [140]. In their work, aMoSe2∕PVA composite depos-
iting side-polished fiber was incorporated as an SA within a
ring-cavity EDFL, where a repetition rate up to 3.27 GHz at
a harmonic order of 212 was obtained. Considering various
applications of high repetition rate pulses, we anticipate that
high repetition rate UFLs mode-locked by 2D materials will
continue to be a hot topic in the future.

C. High Stability

Many applications of UFLs, such as optical frequency combs
[142,143] and pure microwave generation, are in great need of
highly stable ultralow-noise laser pulses. Therefore, the stability
of a UFL is always the first consideration. A simple measure-
ment to reflect the stability is to check the RF spectrum of pulse
trains. If a mode-locked fiber laser has a high stability with RF
harmonics extending to several gigahertz, it is regarded as an
ideal device for gigahertz signal generation. Some representative
results of UFLs mode-locked by 2D materials are summarized
in Table 4.

In 2010, Popa et al. demonstrated a highly stable graphene
mode-locked EDFL [120]. The ring-cavity laser had a net
dispersion of −0.052 ps2. A large RF signal-to-noise ratio
(SNR) of 87.4 dB was realized at the fundamental repetition
rate of 27.4 MHz. In 2014, Sobon et al. reported a high-power
fiber CPA laser system at 1560 nm [144]. A highly stable
CVD-grown graphene mode-locked EDFL was selected to pro-
vide seed pulses. It had an RF SNR of 70 dB at the repetition

Table 3. UFLs Mode-Locked by 2D Materials with High Repetition Rates

Laser Configuration SA Repetition Rate Ref.

∼1 cm short linear-cavity EDFL LPE-prepared graphene 9.67 GHz [134]
21st-harmonic mode-locked ring-cavity EDFL ME-prepared multilayer graphene 2.22 GHz [135]
Ring-cavity EDFL with FP filter LPE-prepared graphene 100 GHz [136]
Ring-cavity EDFL with microfiber knot filter LPE-prepared graphene 106.7 GHz [137]
Ring-cavity YDFL with microfiber knot filter LPE-prepared graphene 162 GHz [137]
418th-harmonic mode-locked ring-cavity EDFL LPE-prepared TI − Bi2Te3 2.04 GHz [138]
170th-harmonic mode-locked ring-cavity EDFL PLD-prepared TI − Bi2Te3 2.95 GHz [77]
∼22 cm short linear-cavity EDFL LPE-prepared TMD −MoS2 463 MHz [139]
212th-harmonic mode-locked ring-cavity EDFL LPE-prepared TMD −MoSe2 3.27 GHz [140]
10th-harmonic mode-locked ring-cavity HDFL LPE-prepared BP 290 MHz [141]

Fig. 5. Hundred gigahertz repetition rate graphene mode-locked
UFLs [137]. (a) Laser configuration; (b) graphene microfiber knot
filter; (c) laser spectrum at 1 μm; (d) laser spectrum at 1.5 μm;
(e) autocorrelation trace at 1 μm; (f ) autocorrelation trace at 1.5 μm.
Reproduced with permission. Copyright 2018, OSA Publishing.

Table 4. Highly Stable UFLs Mode-Locked by 2D Materials

Laser Configuration SA SNR at f
rep

RF Resolution RF Spanning Ref.

Ring-cavity EDFL LPE-prepared graphene 87.4 dB 10 Hz – [120]
Ring-cavity EDFL CVD-grown graphene 70 dB – 0–10 GHz [144]
Ring-cavity TDFL CVD-grown graphene 75 dB 33 Hz 0–3.6 GHz [126]
Ring-cavity EDFL PMS-deposited TI − In2Se3 90 dB 30 Hz 0–1.5 GHz [145]
Ring-cavity EDFL PMS-deposited TMD −MoTe2 93 dB 10 Hz 0–1 GHz [146]
Ring-cavity TDFL PMS-deposited TI − Sb2Te3 84 dB 10 Hz 0–1 GHz [147]
Ring-cavity TDFL PMS-deposited TI −Wte2 95 dB 10 Hz 0–0.5 GHz [148]
Ring-cavity EDFL CVD-grown TMD −WSe2 96 dB 20 Hz 0–0.6 GHz [128]
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rate of 50 MHz, whose RF spectrum exhibits a slight decay
compared to the case of 0–10 GHz, implying its high stability.
Other 2D materials like TIs and TMDs have also been used for
generating low-noise mode-locked UFLs. Yan et al. used the
PMS technique to deposit TI and TMD films onto fiber tapers
for fabricating high-performance fiber SAs. By inserting these
fiber SAs into ring-cavity EDFLs [145,146] and TDFLs [147],
stable mode-locked pulse trains with ultrahigh SNRs on RF
spectra were obtained. In 2018, Liu et al. prepared a CVD-
grown TMD-WSe2 film and transferred it onto a tapered fiber
to fabricate a fiber SA. They demonstrated a highest SNR
of 96 dB at a pulse repetition rate of 63.133 MHz with a
ring-cavity EDFL [146].

Figure 6 depicts the measured optical spectra and RF spectra
of these representative results. As can be seen from the optical
spectra, these highly stable laser pulses were all typical soliton
pulses mode-locked in anomalous regimes. To further charac-
terize the stabilities of mode-locked UFLs, relative intensity
noise and time jittering should be taken into account. In the
future, we hope that more techniques and methods will be used
to suppress lasing noise and enhance long-term stability.

5. CHALLENGES AND FUTURE DIRECTIONS

According to previous discussions, there are indeed some as-
pects of 2D materials that are better than those of SESAMs,
like excellent broadband saturable absorption and ultrashort
recovery time. However, despite the current achievements, the
lack of fine-controlled material fabrication still remains a hurdle
to mass production of most of these 2D materials [133]. Maybe
the industrialization of graphene is a great start. Besides, the
long-term stability of these 2D materials should also be further
exploited. Methods used for oxidation resistance [2], hydrolytic
resistance [61], and suppression of photon-induced degrada-
tion should be fully considered as the next steps. We also think
that the fabrication of a 2D material fiber SA with customized
nonsaturable loss, modulation depth, and recovery time is of
critical importance. It is likely that future work in this field
will establish more systematic guidelines for SA design and
optimization.

Obviously, there is abundant room for further progress
in the pursuit of high-performance UFLs mode-locked by 2D
materials. The broadband saturable absorption of 2D materials
makes them good candidates for two-band mode-locking op-
erations simultaneously. In 2014, Sotor et al. reported a passive
synchronization of an EDFL and a TDFL enhanced by a
common graphene SA [149]. It might help for few-cycle pulse
generation with coherent combination or difference frequency
generation in the mid-IR [150]. Meanwhile, the introduction
of advanced optical techniques, such as time-lens [151], disper-
sive Fourier transform [152–154], and coherent sampling
[155] measurements, to reveal the real-time pulse build-up dy-
namics of UFLs mode-locked by 2D materials is highly desir-
able. We believe that after getting insight into the buildup
dynamics and making positive modifications to 2D materi-
als-based SAs, many more high-performance UFLs will be
put forward in the future. Although the main aim of this paper
is to review the progress of UFLs mode-locked by 2D materials,
we would like to point out the broadband 2D materials could
also be exploited for novel photonic components, like photo-
detectors [156–160], sensors [161–164], active-optical modu-
lators [165,166], and all-optical modulators [65,167–175].
Besides these, we also have confidence that more unprec-
edented ultralow-noise ultrafast mode-locked pulses or optical
frequency combs will be realized with novel 2D materials-
based SAs.

6. CONCLUSIONS

We have reviewed both initial and significant UFLs mode-
locked by 2D materials in this paper. The intention of this re-
view is to provide a brief survey of UFLs mode-locked by 2D
materials in the past decade. Though it is not yet possible to be
completely exhaustive, a number of important results have been
covered, and future insights and challenges have been put
forward.
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126. G. Soboń, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and
K. M. Abramski, “260 fs and 1 nJ pulse generation from a compact,
mode-locked Tm-doped fiber laser,” Opt. Express 23, 31446–31451
(2015).

127. W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, and Z.
Wei, “70-fs mode-locked erbium-doped fiber laser with topological
insulator,” Sci. Rep. 6, 19997 (2016).

128. W. Liu, M. Liu, Y. OuYang, H. Hou, G. Ma, M. Lei, and Z. Wei,
“Tungsten diselenide for mode-locked erbium-doped fiber lasers
with short pulse duration,” Nanotechnology 29, 174002 (2018).

129. W. Liu, L. Pang, H. Han, M. Liu, M. Lei, S. Fang, H. Teng, and Z. Wei,
“Tungsten disulfide saturable absorbers for 67 fs mode-locked
erbium-doped fiber lasers,” Opt. Express 25, 2950–2959 (2017).

130. X. Jin, G. Hu, M. Zhang, Y. Hu, T. Albrow-Owen, R. C. T. Howe, T. C.
Wu, Q. Wu, Z. Zheng, and T. Hasan, “102 fs pulse generation from a
long-term stable, inkjet-printed black phosphorus-mode-locked fiber
laser,” Opt. Express 26, 12506–12513 (2018).

131. J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black
phosphorus: a two-dimension saturable absorption material for
mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep.
6, 30361 (2016).

132. B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F.
Zhang, Y. Q. Ge, and H. Zhang, “Sub-200 fs soliton mode-locked
fiber laser based on bismuthene saturable absorber,” Opt. Express
26, 22750–22760 (2018).

133. X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F.
Zhang, Q. Wen, J. Li, Q. Bao, D. Fan, and H. Zhang, “Broadband
nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH),”
Laser Photon. Rev. 12, 1700229 (2018).

134. A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber
laser using a graphene saturable absorber,” Appl. Phys. Lett. 101,
041118 (2012).
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