Supporting Information for PCCP

Ultrafast Internal Conversion in a Low Band Gap Polymer for Photovoltaics: Experimental and Theoretical Study

Daniele Fazzi,^{a*} Giulia Grancini,^{b*} Margherita Maiuri,^b Daniele Brida,^b Giulio Cerullo,^b and Guglielmo Lanzani^{a,b}

a Center for Nano Science and Technology @ PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy.

bDipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milano, Italy

Corresponding authors: daniele.fazzi@iit.it; giulia.grancini@mail.polimi.it

S1) DFT (CAM-B3LYP, B3LYP and wB97XD/6-31G**) total energy for CPDTBT₄ in its ground state singlet (S0) and triplet (T1) state.

S2) Evaluation of the vertical excited state energies for CPDTBT₁₋₄ with: ZINDO/S calculations on AM1 optimized geometries and TD-CAMB3LYP calculations on CAM-B3LYP optimized geometries.

S3) Calculated TD-CAM-B3LYP/6-31G** Franck-Condon (FC) factors for S0 \rightarrow S1 transition for CPDTBT₁.

S4) Calculated TD-CAM-B3LYP/6-31G** Franck-Condon (FC) factors for S0→S2 transition for CPDTBT₁.

S5) Bond length differences as evaluated at the (TD)-CAMB3LYP/6-31G** level for optimized structures in S0, S1 and S2 states. Oligomer CPDTBT₄.

S6) Evaluation of the non radiative adiabatic excited state $S2 \rightarrow S1$ transition rate following the energy gap-law equation.

S7) TDDFT relaxed potential energy profiles as evaluated at the TDB3LYP and TDwB97X/6-31G** level for S0, S1, S2 and T1.

S8) Excited state energies for CPDTBT4 as evaluated with TDCAM-B3LYP, TDwB97XD, TDB3LYP/6-31G**

S9) TDDFT excited state energy variations as evaluated by displacing the nuclear geometry of CPDTB₄ along the most Raman active mode (ECC-mode)

S10) PCM (SCRF) TDDFT excited state energies for PCPDTBT_{1,4} oligomers

S1) DFT (CAM-B3LYP, B3LYP and wB97XD/6-31G**) total energy for CPDTBT₄ in its ground state singlet (S0) and triplet (T1) state:

S₀: CPDTBT₄ flat geometry (CAM-B3LYP/6-31G^{**}) = -7830.95572666 Ha S₀: CPDTBT₄ distorted geometry (CAM-B3LYP/6-31G^{**}) = -7830.95622708 Ha S₀: CPDTBT₄ distorted geometry (wB97XD/6-31G^{**}) = -7831.51193128 Ha S₀: CPDTBT₄ distorted geometry (B3LYP/6-31G^{**}) = -7832.72377798 Ha

T₁: CPDTBT₄ (UCAM-B3LYP/6-31G**) = -7830.91916325 Ha

S2) Evaluation of the vertical excited state energies for CPDTBT₁₋₄ with: ZINDO/S calculations on AM1 optimized geometries and TD-CAMB3LYP calculations on CAM-B3LYP optimized geometries.

TD-CAMB3LYP

S3) Calculated TD-CAM-B3LYP/6-31G** Franck-Condon (FC) factors for S0 \rightarrow S1 transition for CPDTBT₁.

Freq	FC
(cm-1)	
26.6	0.0000
41.1	0.0000
74.8	0.0965
85.0	0.0000
105.3	0.0000
127.8	0.0000
158.3	0.4548
160.2	0.0000
198.4	0.0000
207.2	0.2858
224.6	0.0000
246.8	0.0000
257.4	0.2959
260.6	0,0000
284.0	0.0410
305.2	0.0410
319 5	0.2723
380 3	0.0000
396.7	0.0000
JJ0.7 Л10 Л	0.0000
413.4	0.0000
443.4 150 Q	0.0033
430.8	0.0233
401.0	0.1903
501 6	0.0000
501.0	0.0000
550.5	0.0013
540.2	0.0000
576.9	0.1090
607.0	0.0149
024.7	0.0000
038.5	0.0407
6/8.6	0.0333
694.1	0.0305
696.1	0.0000
702.5	0.1282
/11.3	0.0000
724.6	0.0000
/65.0	0.0000
770.8	0.0000
/96.2	0.1414
808.2	0.0208
818.7	0.0001
840.4	0.0304
882.3	0.0000
883.3	0.0008
909.6	0.0000
912.3	0.0017
922.7	0.0000
954.6	0.0015
965.5	0.0000

970.8	0.0000
1007.0	0.0001
1011.9	0.0022
1045.8	0.0000
1106.6	0.0024
1122.6	0.0004
1134.5	0.0004
1168.3	0.0000
1194.8	0.0000
1201.8	0.0187
1209.6	0.0128
1226.5	0.0001
1275.3	0.0092
1296.6	0.0008
1354.4	0.0620
1384.8	0.0504
1396.3	0.0280
1410.5	0.0489
1423.3	0.0000
1430.2	0.0136
1443.4	0.0001
1450.4	0.0140
1472.2	0.0733
1487.2	0.0302
1503.0	0.0299
1503.1	0.0002
1506.3	0.0000
1521.9	0.0002
1524.6	0.0019
1536.5	0.1015
1551.6	0.0126
1567.0	0.0577
1592.1	0.2575
1626.1	0.0467
3072.5	0.0000
3075.4	0.0000
3149.4	0.0000
3153.4	0.0000
3162.9	0.0000
3164.1	0.0000
3210.4	0.0000
3227.1	0.0000
3243.3	0.0000
3251.0	0.0000
3272.2	0.0000
3287.8	0.0000

S4) Calculated TD-CAM-B3LYP/6-31G** Franck-Condon (FC) factors for S0 \rightarrow S2 transition for CPDTBT₁.

Freq FC (cm-1) 17.2 0.0000 34.2 0.0000 73.2 0.0000 75.5 0.0335 108.1 0.0000 124.5 0.0000 143.6 0.0000 157.3 0.2922 183.2 0.0000 205.8 0.1181 216.5 0.0000 234.3 0.0000 256.9 0.0687 271.0 0.0000 276.8 0.1701 299.2 0.2493 317.5 0.3180 365.8 0.0000 379.2 0.0000 438.0 0.0510 438.1 0.0000 448.7 0.0171 471.8 0.0000 490.7 0.0000 497.2 0.0092 531.8 0.2130 539.9 0.0000 570.7 0.1016 608.2 0.0125 620.1 0.0495 624.4 0.0000 661.7 0.0000 676.6 0.0786 683.7 0.0000 690.9 0.1016 700.2 0.0275 724.2 0.0000 727.5 0.0000 785.2 0.0059 806.7 0.0000 823.8 0.0192 842.8 0.0005 867.4 0.0217 895.7 0.0543 911.6 0.0000 917.6 0.0168 932.2 0.0000 945.1 0.0016 946.7 0.0000 957.8 0.0000

988.5	0.0083
991.8	0.0000
1001.8	0.0175
1034.9	0.0000
1097.7	0.0001
1112.8	0.0000
1134.6	0.0090
1167.4	0.0001
1185.0	0.0800
1185.1	0.0005
1207.0	0.0315
1239.5	0.0064
1273.3	0.0001
1284.5	0.0124
1326.4	0.0098
1341.2	0.0026
1369.2	0.1315
1390.0	0.0000
1407.9	0.0688
1417.5	0.0000
1438.0	0.0065
1442.9	0.0079
1465.5	0.1037
1481.8	0.0105
1501.6	0.0000
1502.9	0.0000
1509.7	0.0041
1516.0	0.0200
1517.7	0.0064
1530.3	0.0094
1553.4	0.0001
1581.8	0.0389
1608.3	0.3855
1659.4	0.0059
3064.2	0.0000
3068.1	0.0000
3139.1	0.0000
3143.8	0.0000
3160.7	0.0000
3162.3	0.0000
3215.1	0.0000
3231.9	0.0000
3245.1	0.0000
3250.3	0.0000
3271.1	0.0000
3286.0	0.0000

S5) Bond length differences as evaluated at the (TD)-CAMB3LYP/6-31G** level for optimized structures in S0, S1 and S2 states. Oligomer CPDTBT₄.

R(S1) - R(S0) optimized geometries

S6) Evaluation of the non radiative adiabatic S2 \rightarrow S1 excited state transition rate, following the energy gap-law equation.

Non radiative decay rate [G. Lanzani, et. al., Phys. Rev. Lett., 2001, 87, 187402]:

 $k_{nr} = A^{ij} \exp(-\Delta E^{ij}/B^{ij})$

where:

A is the pre-exponential factor related to the electronic coupling between states *i* and *j*; ΔE^{ij} is the adiabatic energy (zero point energy) difference between states *i* and *j*; B^{ij} is related to the relaxation energy for the $i \rightarrow j$ transition.

For CPDTBT₄ we have:

 $\begin{array}{l} \Delta E \; (S_1 \text{-} S_0) = 1.67 \; \text{eV} \\ \Delta E \; (S_2 \text{-} S_1) = 0.35 \; \text{eV} \\ \text{B, expressed in terms of effective frequency:} \\ \omega_M \; (S_1 \text{-} S_0) \; \text{as evaluated by FC factors calculated for } S_1 \rightarrow S_0 \; \text{transition (see $\mathbf{S3})} = 1618 \text{cm}^{-1} \\ \omega_M \; (S_2 \text{-} S_1) \; \text{as evaluated by FC factors calculated for } S_2 \rightarrow S_1 \; \text{transition (see list below reported)} = 1410 \text{cm}^{-1} \end{array}$

The ratio between $S_1 \rightarrow S_0$ and $S_2 \rightarrow S_1$ for non radiative rate transitions is expressed as:

 $k_{nr} (S_1 \rightarrow S_0) / k_{nr} (S_2 \rightarrow S_1) = A^{1-0} expt(-\Delta E^{1-0}/B^{1-0}) / A^{2-1} expt(\Delta E^{2-1}/B^{2-1})$

by considering, in a first approximation, $A^{1-0} = A^{2-1}$, we have:

 $k_{nr} (S_1 \rightarrow S_0) / k_{nr} (S_2 \rightarrow S_1) = 0.00179$

By knowing (see manuscript): $k_{nr}(S_1 \rightarrow S_0) = 5.95 \times 10^9 \text{ s}^{-1}$ (determined by knowing the quantum yield and the radiative decay rate $k_{nr}(S_1 \rightarrow S_0)$)

we have:

 $k_{nr} (S_2 \rightarrow S_1) = 3.36 \times 10^{12} \text{ s}^{-1}$

hence

 $\tau_{nr}(S_2 \rightarrow S_1) = 300 fs$

FC factors evaluated for the $S_2 \rightarrow S_1$ transition (CPDTBT₁)

Freq FC (cm⁻¹) -2.8 0.0000 -1.8 0.0000 0.6 0.0000 1.2 0.0000 3.8 0.0000

5.3 C	0.0000
26.6	0.0000
41 1	0.0000
41.1	0.0000
74.8	0.0168
85.0	0.0000
405.0	0.0000
105.3	0.0000
127.8	0.0000
100	0.0172
120.2	0.0175
160.2	0.0000
108 /	0 0000
150.4	0.0000
207.2	0.0314
224.6	0.0000
246.0	0.0000
246.8	0.0000
257.4	0.1048
260 6	0 0000
200.0	0.0000
284.0	0.0312
305.2	0.0012
240 5	0.0012
319.5	0.0499
389.3	0.0000
206 7	0 0000
390.7	0.0000
419.4	0.0000
443.4	0.0037
	0.0057
450.8	0.0010
481.6	0.2498
102 0	0.0000
492.0	0.0000
501.6	0.0000
520.2	0 1824
550.5	0.1024
548.2	0.0000
578.9	0.0143
co 7 0	0.02.02
607.0	0.0222
624.7	0.0000
628 5	0.0025
030.5	0.0025
678.6	0.0016
694.1	0.0026
001.1	0.0020
696.1	0.0000
702.5	0.0020
711 2	0 0000
/11.5	0.0000
724.6	0.0000
765.0	0 0000
705.0	0.0000
//0.8	0.0000
796.2	0.0104
000 2	0 0127
000.2	0.0157
818.7	0.0019
840.4	0.0065
002.2	0.0000
882.3	0.0000
883.3	0.0051
909 6	0 0000
505.0	0.0000
912.3	0.0003
922.7	0.0000
0546	0 0002
954.0	0.0002
965.5	0.0000
970.8	0.0000
1007.0	0.0007
1007.0	0.0007
1011.9	0.0093
104⊑ 0	0 0000
1043.0	0.0000
1106.6	0.0033
1122 6	0.0000
1124 5	0.0000
1134.5	0.0026
1168.3	0.0002
110/ 0	0.0000
1194.0	0.0000
1201.8	0.0078
1209 6	0 0002
1205.0	0.0002
1226.5	0.0436
1275.3	0.0017
1206 0	0.0027
1290.0	0.0027
1354.4	0.0665
1384 9	0 0086
104.0	
1205 5	0.0000
1396.3	0.0080

1423.3	0.0000	
1430.2	0.0466	
1443.4	0.0029	
1450.4	0.0117	
1472.2	0.0073	
1487.2	0.0136	
1503.0	0.0051	
1503.1	0.0000	
1506.3	0.0000	
1521.9	0.0050	
1524.6	0.0037	
1536.5	0.0009	
1551.6	0.0039	
1567.0	0.0030	
1592.1	0.0085	
1626.1	0.0000	
3072.5	0.0000	
3075.4	0.0001	
3149.4	0.0000	
3153.4	0.0000	
3162.9	0.0000	
3164.1	0.0000	
3210.4	0.0000	
3227.1	0.0000	
3243.3	0.0000	
3251.0	0.0000	
3272.2	0.0000	
3287.8	0.0000	

S7) TDDFT relaxed potential energy profiles as evaluated at the TDB3LYP and TDwB97X/6-31G** level for S0 (red circles), S1 (blue), S2 (purple) and T1 (green).

	TDCAMB3LYP	TDwB97XD	TDB3LYP
S0 → S1	2.06 (f = 3.78)	2.36 (f = 3.70)	1.31 (f = 3.31)
S0 → S2	2.36 (f = 0.23)	2.62 (f = 0.21)	1.57 (f = 0.05)
S0→S3	2.60 (f = 0.12)	2.83 (f = 0.13)	1.71 (f = 0.14)
S0 → S4	2.93 (f = 0.19)	3.17 (f = 0.20)	1.73 (f = 0.004)
S0→S8	3.61 (f = 0.56)	3.82 (f = 0.92)	

S8) Excited state energies for CPDTBT₄ as evaluated with TDCAM-B3LYP, TDwB97XD, TDB3LYP/6-31G**

S9) TDDFT (CAM-B3LYP/6-31G^{**}) excited state energy variations as evaluated by displacing the nuclear geometry of CPDTB₄ along the most Raman active mode (ECC-mode)

S10) PCM (SCRF) TDDFT (CAM-B3LYP/6-31G**) excited state energies for PCPDTBT_{1,4} oligomers (optimized geometries PCM-CAM-B3LYP/6-31G**, cholorobenzene as solvent).

- *n* S0-S1 (*vacuum*) S0-S1 (*chlorobenzene*)
- 1 3.01 (f=0.49) 2.93 (f=0.62)
- 4 2.15 (f=3.70) 2.01 (f=3.93)