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ABSTRACT

Combinatorial optimization problems are known for being particularly hard to solve on traditional von Neumann architectures. This has led
to the development of Ising Machines (IMs) based on quantum annealers and optical and electronic oscillators, demonstrating speed-ups
compared to central processing unit (CPU) and graphics processing unit (GPU) algorithms. Spin torque nano-oscillators (STNOs) have
shown GHz operating frequency, nanoscale size, and nanosecond turn-on time, which would allow their use in ultrafast oscillator-based IMs.
Here, we show using numerical simulations based on STNO auto-oscillator theory that STNOs exhibit fundamental characteristics needed to
realize IMs, including in-phase/out-of-phase synchronization and second harmonic injection locking phase binarization. Furthermore, we
demonstrate numerically that large STNO network IMs can solve Max-Cut problems on nanosecond timescales.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0041575

Combinatorial optimization (CO) problems appear in a wide
range of scheduling, routing, and optimization situations in all of soci-
ety. CO problems can be illustrated as the need for finding a global
minimum in a multivariate energy landscape. As this is a very com-
mon situation in nature, solutions have been inspired by physical sys-
tems such as the Ising model.1 The Hamiltonian associated with the
Ising model can be written as

H ¼ �
X

N

j;j0

Jj;j0 sjsj0 � h
X

N

j

sj; (1)

where N represents the number of spins, Jj;j0 is the coupling between
spins j and j0, sj is the spin state þ1 or �1 of spin j, and the last term
describes a bias field h acting on all spins. Real-world CO problems
can be mapped1 onto the Hamiltonian in Eq. (1), which opens up the
possibility of building a general purpose CO computing platform
based on solving the Ising model.

Customized hardware architectures able to solve the Ising model
Eq. (1) are called Ising Machines (IMs), and various implementations
have been proposed. D-Wave quantum annealers based on Josephson
junctions2 have shown promising results but face similar challenges as
general quantum computers: cryogenic temperatures requiring kWs of

cooling power and extremely high production costs. IMs utilizing
optoelectronic parametric oscillators address some challenges related
to quantum systems, offering room temperature operation and all-to-
all interconnections using optical feedback methods.3–5However, solu-
tions to miniaturize these systems are challenging and are yet to be
demonstrated. Alternatively, IMs inspired by simulated annealing and
based on commercially available CMOS processes have shown prom-
ising results.6–8

A recent demonstration using LC oscillators and resistive cross-
bars proved that IM can be realized utilizing readily available elec-
tronic oscillators.9,10 This approach is based on the similarities
between the Ising Hamiltonian and the Lyapunov function describing
the dynamics of a second harmonic injection locked (SHIL) network
of coupled oscillators.

Networks of synchronized spintronic oscillators such as spin-
torque nano-oscillators (STNOs) and spin-Hall nano-oscillators
(SHNOs),11 with characteristics including wide frequency tunability,
nanoscale size, strongly non-linear behavior, and CMOS compatibility,
have gained significant interest as building blocks for neuromorphic/
unconventional computing.12–19 These properties, along with the sub-
stantial effort focused on further enhancing the controllability of spin-
tronic oscillator arrays,20,21 make them interesting candidates for
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implementing IMs. It is, therefore, of great interest to explore whether
networks of interacting STNOs, with their particularly strong and
qualitatively different non-linearities, could be used as IMs. Here, we
numerically explore this possibility.

The proposed IM consists of an array of coupled STNOs where
SHIL is achieved by applying a small RF current, with twice the fre-
quency of the free-running STNOs, in combination with the DC bias
current to all the STNOs. To predict the behavior of such a network,
we employ the universal auto-oscillator model proposed by Slavin and
Tiberkevich,22 which describes the STNO dynamics in terms of the
complex dimensionless spin wave amplitude c, where p ¼ jc2j is pro-
portional to the STNO output power and / ¼ argðcÞ is the phase.
The dynamical equations describing STNO j in an array under SHIL
can be written as22,23

dcj

dt
þ ixjðpjÞcj þ Cþ;jðpjÞcj � C�;jðpjÞcj

¼ Kee
�ixetc�j þ

X

j0

Xj;j0e
ibj;j0cj0 (2)

or alternatively as two coupled real differential equations for the power
p and phase / as

dpj

dt
¼ �2pj Cþ;jðpjÞ � C�;jðpjÞ

� �

þ 2Kepj cosðxet þ 2/jÞ

þ2
X

j;j0

Xj;j0
ffiffiffiffiffiffiffiffi

pjpj0
p

cosð/j � /j0 � bj;j0Þ; (3a)

d/j

dt
¼ �xjðpjÞ � Ke sinðxet þ 2/jÞ

þ
X

j;j0

Xj;j0

ffiffiffiffiffiffiffiffiffiffiffi

pj0=pj

q

sinð/j0 � /j þ bj;j0Þ ; (3b)

where xjðpjÞ ¼ x0 þnpj is the operating frequency, x0=2p
� 4:2GHz is the ferromagnetic resonance frequency, n=2p
� �3:44GHz is the nonlinear frequency shift coefficient, Cþ;jðpjÞ
¼ CGð1þ QpjÞ is the intrinsic magnetization damping
(CG=2p � 252MHz), andQ � 2:66 is the nonlinear damping param-
eter. C�;jðpjÞ ¼ rIdcð1� pjÞ is the negative damping induced by the
spin polarized direct current Idc and r ¼ eglB=2eMsV , where e ¼ 0:7
is the spin polarization, g is the spectroscopic Lande factor, lB is the
Bohr magneton, e is the electron charge, 4pMs ¼ 9500 Oe is the satu-
ration magnetization, and V ¼ 85� 140� 1:8 nm3 is the volume of
the free layer. Parameters, includingn and x0, were calculated based
on a CoFeB magnetic tunnel junction STNO,24 as shown in Fig. 1(a),
with an easy-plane magnetic anisotropy of HA ¼ 125Oe and placed in
an external in-plane magnetic field of Hext ¼ 300Oe oriented at an
angle of /ext ¼ 30� with respect to the anisotropy direction of the free
layer. Moreover, the inter-layer coupling field is assumed as Hint

¼ 125Oe. All device parameters are taken from an analytical model
developed in Ref. 25, which was successfully used to replicate the
microwave signal properties of different independent magnetic tunnel
junction STNO studies.24,26

Injection locking is described using the frequency xe of the exter-
nal RF current and its coupling strength, Ke to the STNOs. The last
term on the right-hand side (RHS) describes the coupling of oscillator
j to other oscillators j0 in the network through the coupling strength
Xj;j0 and phase bj;j0 . Common coupling mechanisms between STNOs
include spin-wave,12–15,27,28 direct exchange,16,19,29 dipolar,30–32 and
electrical18,33–35 coupling, or even a combination of these mecha-
nisms.12,15,18,19 However, the type of coupling does not directly affect
the model in Eq. (2) where only the strength and phase of the coupling
mechanism are taken into account. Throughout the simulation results,
we will focus on the behavior of the STNO system described by Eq. (2)
without explicitly defining the type of coupling. However, a general

FIG. 1. (a) STNO and graphical representation of terms in Eq. (2). PL is the pinned layer, FL is the free layer, MFL is the magnetization of the free layer, and Heff is the effective
field inside the FL; (b) SHIL of a single STNO; Simulations of two coupled STNOs: (c), (d), (e), and (f) show mutual synchronization of the two STNOs for different coupling
strength and phases; (g) and (h) show the transients of the STNOs corresponding to the black circular mark in (d) and (f).
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purpose IM requires an all-to-all coupling, which limits the choice of
physical coupling mechanisms.

Figure 1(b) presents simulation results for a single injection
locked STNO [the last term on the RHS in Eq. (2) is neglected], where
xe is swept around the STNO second harmonic, the so-called second
harmonic injection locking (SHIL), with a fixed value of coupling to
the external RF current, Ke ¼ 50MHz. For a large difference between
fe ¼ xe=2p and fSTNO, the STNO remains at the free running fre-
quency of 3.2GHz. However, when fe approaches 2fSTNO, it starts per-
turbing the STNO, showing a typical frequency pulling between
2.9GHz and 3.1GHz, while the STNO completely locks to the external
signal in the range of 3.1GHz - 3.3GHz. Similar to conventional elec-
tronic oscillators under SHIL, there are two stable locking states with a
relative phase difference of 180�. This behavior is often referred to as
phase binarization, which is critical for the realization of an oscillator-
based IM. In the case of a single locked oscillator, the locking states 0�/
180� depend purely on the initial conditions. However, for a network
of coupled oscillators under SHIL, these two states can be used to rep-
resent spins in the Ising Hamiltonian as it has been previously
demonstrated.9

Figures 1(c)–1(h) present the simulation results obtained by solv-
ing Eq. (2) for two identical coupled STNOs in the absence of SHIL
[Ke ¼ 0 in Eq. (2)]. STNO1 is biased with a constant DC bias current
resulting in fSTNO1

� 3:2GHz, while the DC bias/operating frequency
of STNO2 is swept. Figures 1(c) and 1(d) present the effect of increas-
ing Xj;j0 , which results in a wider frequency locking range. Moreover,
the STNOs synchronize away from the mean of their individual oper-
ating frequencies as a consequence of the coupling phase bj;j0 .

22,35

The coupling phase characterizes the phase delay associated with
the coupling mechanism, e.g., in the case of dipolar coupling
bj;j0 ¼ �p=2.22 Moreover, the coupling phase can be re-normalized to
account for any other time delays of the coupling, such as, e.g., capaci-
tive coupling.36–38 A change in bj;j0 significantly modifies the locking
bandwidth and the frequency at which the STNOs synchronize, as
presented in Figure 1(d) and 1(e). Moreover, for the case of bj;j0
¼ �1:5p shown in Fig. 1(f), the STNOs synchronize in frequency but
are out-of-phase (OOP) as presented in Fig. 1(h). This translates to a
negative (antiferromagnetic) coupling Xj;j0 in Eq. (2). For the conven-
tional electronic oscillator, the OOP synchronization usually occurs in

the fixed range of 0:5p < bj;j0 < 1:5p, while the nonlinearity in
STNOs shifts this interval when Eq. (2) is solved.39 Analytically, the
effective coupling phase, ~bj;j0 , can be approximated as22

~bj;j0 ¼ bj;j0 � tan�1ð�Þ; (4)

where � is the normalized nonlinear frequency shift coefficient, calcu-
lated according to the macrospin theory.22 For the case presented in
Fig. 1(h), � � �2:64, which translates to an effective coupling phase of
~b j;j0 � �1:1p, explaining why a robust OOP synchronization is
achieved under these conditions. The combination of in-phase/OOP
synchronization and SHIL phase binarization demonstrated above
shows that STNOs exhibit all the desired characteristics to realize an IM.

Many NP-hard problems can be mapped onto the Ising model,
but we will focus on a particular class of problems called Max-Cut,
one of Karp’s 21 NP-complete problems. Specifically, we focus on
undirected, unweighted graphs with N vertices and E edges. The Max-
Cut problem consists of partitioning the vertices into two subsets s1=s2
such that the number of edges crossing between s1 and s2 is as high as
possible. This problem can be mapped to the Hamiltonian in Eq. (1)
(assuming h¼ 0) where spins that settle to the states " = # (þ1/�1)
belong to the subset s1=s2. An optimal solution of a particular graph
corresponds to the sets s1=s2 leading to the ground state of Eq. (1),
which also represents the Max-Cut solution. An example graph, called
a M€obius ladder graph with a size N¼ 16, is shown in Fig. 2(a) along
with one possible ground state/Max-Cut solution.

In the oscillator-based IM, STNOs represent nodes/spins with
the state þ1/-1 determined by the phase 0�=180� and with graph
edges programed into the couplings Xj;j0 . Max-Cut problems require
antiferromagnetic coupling Xj;j0 between STNOs if nodes in a particu-
lar graph are connected and Xj;j0 ¼ 0 otherwise. The coupling phase is
chosen as bj;j0 ¼ �1:4p to yield an effective coupling phase of
~b j;j0 � �p, which provides antiferromagnetic coupling in our simula-
tions. Moreover, we assume that the STNOs are biased with Idc
¼ 1.5mA, leading toxjðpÞ=2p � 3:2GHz with a coupling strength of
Xj;j0 ¼ 25MHz (if nodes are connected) and xe=2p ¼ 2� 3:2GHz
for SHIL.

It has been shown that employing SHIL for annealing in LC
oscillator-based IM can increase the probability of achieving the

FIG. 2. (a) M€obius ladder graph of size N¼ 16 and one possible ground state where nodes with 0�=180� (" = #) states belong to the subset s1=s2. (b) Annealing is performed
by ramping Ke repeatedly as a function of time. (c) Evolution of the phase difference between STNOs connected as in (a) when Xj;j0 ¼ 25 MHz, bj;j0 ¼ �1:4p, and Ke follows
the annealing schedule in (b).
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optimal solution.9 STNOs exhibit qualitatively different characteristics
compared to conventional electronic oscillators, which can be seen
from Eq. (3) where the phase / and power p are strongly coupled.
Moreover, SHIL in STNOs strongly influences p, which consequently
affects the coupling in the network through

ffiffiffiffiffiffiffiffiffiffiffi

pj0=pj
p

Xj;j0 . To explore
the effect of SHIL on the STNO-based IM, we employ the annealing
schedule shown in Fig. 2(b).

It is worth mentioning that Ke is proportional to the amplitude of
the injected RF current at xe and consequently, implementing such an
annealing schedule in experiments should be relatively straightfor-
ward. This annealing schedule was chosen arbitrarily and does not
guarantee optimal performance, but comparison of annealing sched-
ules or finding an optimal annealing schedule is out of the scope of
this study.

The phase difference between STNOs employing the previously
presented annealing schedule is shown in Fig. 2(c). During the first
100 ns, the STNOs distribute relatively uniformly from -p to p as a
consequence of the phase coupling bj;j0 . The state they reach within
these 100ns is already close to the optimal solution, provided that one
reassigns their individual continuous phase values to the closest
0�=180� phase state. At t¼ 100ns, Ke is ramped from 0 to 25MHz
over 10 ns to phase binarize the network, which forces the STNOs to
settle to a phase close to 0� or 180�. This process is then repeatedly
performed to search for the global optimal/Max-Cut solution. While
this small network finds its solution already during the first such step,
larger networks require many annealing steps to find their minimum.
Every time the SHIL is switched off, there is a substantial delay before
the STNOs return to their intrinsic phase state. This delay is longer for
stronger SHIL and is a consequence of the sum term in Eq. (3b), which
is very close to zero in the SHIL state; the stronger the SHIL, the closer
to zero those terms will be.

We then explored the impact of different sizes of M€obius ladder
graphs using the annealing schedule in Fig. 2(b). In Fig. 3(a), the prob-
ability of achieving the optimal solution in 100 simulation runs with
and without SHIL as a function of M€obius ladder graph size is pre-
sented. The phases / of all STNOs are initialized with a random uni-
form distribution between [0, 2p), while the initial power p is kept as
0.3, which is close to the free running STNO power. In the case with-
out SHIL, the final phase difference is rounded to the nearest multiple

of p to extract the cut value. Figure 3(a) confirms that SHIL improves
the Max-Cut probability in the proposed STNO-based IM.
Additionally, in Fig. 3(b), a comparison between the achieved cut as a
function of time with and without annealing for a single run for
N¼ 288 is shown. For both cases, the network quickly reaches a solu-
tion close to the Max-Cut (within the first 100 ns), but SHIL perturbs
the STNO array, leading to a Max-Cut solution, while without SHIL,
the system is stuck, close to the Max-Cut. To further confirm this con-
clusion, the inset in Fig. 3(b) shows the probability distribution of cuts
for N¼ 288 over 100 runs. Without SHIL, solutions close to the Max-
Cut exhibit the highest probability, while SHIL modifies the distribu-
tion, increasing the Max-Cut probability.

We have verified the functionality of the STNO-based IM and
shown that SHIL significantly increases the solution quality. However,
M€obius ladder graphs are classified as “easy” Max-Cut problems.40 To
further demonstrate the potential of the proposed architecture, we
employ random cubic (3-regular) graphs which can be considered as
“hard” Max-Cut problems.40 An example graph of size N¼ 16 is
shown in Fig. 4(a). We generate 20 random graphs of each size, rang-
ing from 16 to 256, and again employ the annealing schedule shown
in Fig. 2(b). The Max-Cut solutions are determined using LocalSolver,
a commercially available optimization tool, and compared with the
solution found by the STNO IM. The results are presented in Fig. 4(b)
where each data point represents the average probability of 20 random
graphs in 100 runs (total of 2000 simulations). The error bars repre-
sent one standard deviation of the probability, which indicates the dis-
tribution of hardness for different graphs of the same size. As
expected, the probability of finding the Max-Cut solution for random
graphs is significantly lower than that for the M€obius graphs, confirm-
ing the hardness of these problems. Fig. 4(b) also presents the proba-
bility of finding a sub-optimal solution, which is less than 5 cuts from
the Max-Cut solution.

It is noteworthy that in all our simulations, we never observed
any chaotic behavior, which has been shown to arise in coupled
STNOs under certain conditions, in particular, as the number of
STNOs increases.39,41 It was also shown that it may even be beneficial
for STNO-based reservoir computing to operate at the edge of chaos.42

While it is beyond the scope of our work to address the impact of pos-
sible chaos, which could possibly appear in much larger STNO net-
works, it is something that future studies should investigate.

FIG. 3. (a) Probability of achieving the Max-Cut solution for M€obius ladder graphs
of different sizes and (b) the achieved cut as a function of annealing time for a sin-
gle run of N¼ 288 with and without SHIL. The inset in (b) shows the cut probability
distribution with and without SHIL from 100 runs.

FIG. 4. (a) Random cubic graph of size N¼ 16 and (b) the mean probability of
obtaining the Max-Cut solution (green) and a sub-optimal solution (purple) for 20
different random cubic graphs of each size.
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We have shown that STNOs exhibit fundamental characteristics
required to develop an ultrafast and nanoscale IM. However, to
achieve an experimental demonstration of a spintronic oscillator-
based IM, further research on synchronization of large STNO/SHNO
networks is required. Specifically, a general purpose IM requires an
all-to-all coupling, which is impossible to achieve using, e.g., dipolar
coupling alone. One potential solution might be to employ dipolar/
exchange or spinwave coupling for physically close STNOs, while elec-
trical coupling could be used for longer distances. Additionally, an effi-
cient method to control the coupling strength and even the coupling
phase needs to be developed to demonstrate a general purpose IM.
From a fundamental perspective, the impact of phase noise, variability,
and graph density needs to be further explored to fully understand the
potential of the proposed spintronic oscillator IM.

This work was supported by the Swedish Research Council
(Dnr. 2016-05980) and the Horizon 2020 research and innovation
programme (ERC Advanced Grant No. 835068 “TOPSPIN”).
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Ohno, and J. Åkerman, “Giant voltage-controlled modulation of spin Hall
nano-oscillator damping,” Nat. Commun. 11, 1–7 (2020).

21M. Zahedinejad, H. Fulara, R. Khymyn, A. Houshang, S. Fukami, S. Kanai, H.
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fer torque driven higher-order propagating spin waves in nano-contact mag-
netic tunnel junctions,” Nat. Commun. 9, 4374 (2018).

29A. Ruotolo, V. Cros, B. Georges, A. Dussaux, J. Grollier, C. Deranlot, R.
Guillemet, K. Bouzehouane, S. Fusil, and A. Fert, “Phase-locking of magnetic
vortices mediated by antivortices,” Nat. Nanotechnol. 4, 528–532 (2009).

30A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, F. A. Araujo, J. Grollier, K. A.
Zvezdin, V. Cros, and A. K. Zvezdin, “Phase locking dynamics of dipolarly

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 118, 112404 (2021); doi: 10.1063/5.0041575 118, 112404-5

VC Author(s) 2021

https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1038/nature10012
https://doi.org/10.1126/science.aah4243
https://doi.org/10.1126/science.aah5178
https://doi.org/10.1126/sciadv.aau0823
https://doi.org/10.1109/JSSC.2015.2498601
https://doi.org/10.1109/JSSC.2019.2949230
https://doi.org/10.1038/s41598-019-49699-5
https://doi.org/10.1109/JPROC.2016.2554518
https://doi.org/10.1038/nature04035
https://doi.org/10.1038/nature04036
https://doi.org/10.1038/ncomms3731
https://doi.org/10.1038/nnano.2015.280
https://doi.org/10.1038/nphys3927
https://doi.org/10.1038/nature23011
https://doi.org/10.1038/s41586-018-0632-y
https://doi.org/10.1038/s41565-019-0593-9
https://doi.org/10.1038/s41565-019-0593-9
https://doi.org/10.1038/s41467-020-17833-x
http://arxiv.org/abs/2009.06594
https://doi.org/10.1109/TMAG.2008.2009935
https://doi.org/10.1103/PhysRevLett.105.237204
https://doi.org/10.1063/1.3613965
https://doi.org/10.1063/1.3613965
https://doi.org/10.1109/TED.2015.2390411
https://doi.org/10.1109/TED.2015.2390411
https://doi.org/10.1103/PhysRevB.83.184410
https://doi.org/10.1103/PhysRevB.74.104401
https://doi.org/10.1038/s41467-018-06589-0
https://doi.org/10.1038/nnano.2009.143
https://scitation.org/journal/apl


coupled vortex-based spin transfer oscillators,” Phys. Rev. B 85, 100409(R)
(2012), 1202.5499.

31N. Locatelli, A. Hamadeh, F. Abreu Araujo, A. D. Belanovsky, P. N. Skirdkov,
R. Lebrun, V. V. Naletov, K. A. Zvezdin, M. Mu~noz, J. Grollier, O. Klein, V.
Cros, and G. De Loubens, “Efficient synchronization of dipolarly coupled
vortex-based spin transfer nano-oscillators,” Sci. Rep. 5, 17039 (2015).

32A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, F. Abreu Araujo, K. A. Zvezdin,
J. Grollier, V. Cros, and A. K. Zvezdin, “Numerical and analytical investigation
of the synchronization of dipolarly coupled vortex spin-torque nano-oscil-
lators,” Appl. Phys. Lett. 103, 122405 (2013).

33J. Persson, Y. Zhou, and J. Akerman, “Phase-locked spin torque oscillators:
Impact of device variability and time delay,” J. Appl. Phys. 101, 09A503 (2007).

34J. Grollier, V. Cros, and A. Fert, “Synchronization of spin-transfer oscillators
driven by stimulated microwave currents,” Phys. Rev. B 73, 060409(R).

35R. Lebrun, S. Tsunegi, P. Bortolotti, H. Kubota, A. S. Jenkins, M. Romera, K.
Yakushiji, A. Fukushima, J. Grollier, S. Yuasa, and V. Cros, “Mutual synchroni-
zation of spin torque nano-oscillators through a long-range and tunable electri-
cal coupling scheme,” Nat. Commun. 8, 15825 (2017).
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