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Rapid proton migration is a key process in hydrocarbon photochemistry. Charge migration

and subsequent proton motion can mitigate radiation damage when heavier atoms absorb

x-rays. If rapid enough this can improve the fidelity of diffract-before-destroy measurements

of biomolecular structure at x-ray free electron lasers. We have studied x-ray-initiated iso-

merization of acetylene, a model for proton dynamics in hydrocarbons. Our time-resolved

measurements capture the transient motion of protons following x-ray ionization of carbon

K-shell electrons. We Coulomb-explode the molecule with a second precisely delayed x-ray

pulse and then record all the fragment momenta. These snapshots at different delays have

been combined into a ‘molecular movie’ of the evolving molecule, which shows substantial

proton redistribution within the first 12 femotseconds. We conclude that significant proton

motion occurs on a timescale comparable to the Auger relaxation that refills the K-shell va-

cancy.

Introduction

Proton migration in the acetylene dication has received significant attention as a model for

understanding isomerization driven by nonadiabatic electron-nuclear interactions in more complex

2



organic materials. Measurements reported by Osipov et al. indicate that, when initiated by x-ray

core ionization, this isomerization can occur on a timescale shorter than 60 fs1, 2. This ultrafast

rate was unexpected based on the predicted barrier heights in the electronic states populated in

relaxation upon core ionization3, 4. We investigated this process in a time-resolved x-ray pump/x-

ray probe experiment at Linac Coherent Light Source (LCLS), a free electron laser (FEL) x-ray

source at SLAC National Accelerator Laboratory. This new technique allows direct probing of the

isomerization in the time domain.

X-ray free electron lasers can produce intense femtosecond pulses of coherent x-rays. These

light sources have been employed for molecular and material science, as well as structural biology6, 7, 10–18.

Current and future x-ray FELs plan to deliver ultrashort x-ray pulses with sufficiently high intensity

to collect diffraction images of selected targets in a single shot. This prospect of nearly instanta-

neous diffraction-before-destruction is motivating a dedicated research effort at x-ray FELs19–21.

Single-particle diffraction requires an x-ray pulse duration shorter than the timescale asso-

ciated with the radiation damage6, 7, 22–24. Core-ionization and subsequent Auger decay in intense

x-ray fields creates a highly charged molecule that eventually falls apart by Coulomb repulsion.

The small mass of protons makes intramolecular proton migration the fastest nuclear response to

the significant disruption of the electronic structure caused by the x-ray ionization. The acetylene

dication is the smallest hydrocarbon that can isomerize and is thus a prototype for investigations of

the electronic-nuclear nonadiabatic interactions that underlie basic unimolecular isomerization and

radiation damage of biological material, relevant for diffraction-before-destruction techniques and

3



in vivo radio-oncology25. The nonadiabatic interactions that hinder the separation of the electronic

and nuclear motion in molecules under certain conditions cause the Born-Oppenheimer approxi-

mation to break down and require advanced quantum computational techniques for treatment26.

Isomerization of acetylene HCCH to form vinylidene H2CC has been studied in the neutral

molecule, as well as singly and doubly charged acetylene ions1, 2, 27–39. Acetylene cations are im-

portant not only as a model for molecular dynamics and radiation damage investigations, but also

in a range of applications, from plasma devices40, combustion41, semiconductor manufacturing42,

to understanding planetary atmospheres43. Isomerization of the dication has been investigated in

synchrotron experiments1, 2, 30, 31, 37. Osipov et al. performed ion-ion-photoelectron and ion-ion-

Auger electron coincidence measurements to study the fragmentation of the dication formed upon

core-ionization of acetylene1, 2. These measurements place an upper limit of 60 fs on the time for

the x-ray initiated isomerization1, 2. Osipov et al. proposed that the isomerization occurs on the

lowest singlet state of the dication 1Σ+
g

(see Fig. 1), although participation of the 1∆g state could

not be ruled out2. Calculations3, 4 predict the barrier for the isomerization on the 1Σ+
g

potential en-

ergy surface to be 2.3 eV. At the same time, the vibrational excitation of the acetylene dication after

Auger decay is expected to be smaller than the barrier height2. This would imply isomerization

times on the picosecond timescale according to transition-state theory4. The mechanism of the un-

expectedly fast isomerization could not be probed by the measurements reported in Refs. [1] and

[2] because they were not time-resolved. This process has been studied in time-resolved optical

laser experiments coupled with three- and four-particle coincident detection 33, 35, 36, 39.
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Optical laser experiments find that deuterium migrates to form vinylidene on a timescale

of ∼ 90 fs when strong-field 800 nm radiation initiates isomerization. In the singly-charged ion

the ultrafast isomerization is not launched with 800 nm radiation, but has been demonstrated to

proceed from the excited A2Σ+
g

state 29, 38. Core-ionization, which was employed in the current

work for initiating isomerization, occurs in the weak field regime, unlike the strong-field 800 nm

experiments. Core ionization, followed by Auger relaxation, results in a different distribution of

dicationic states and a different degree of vibrational excitation than strong-field ionization. The

isomerization mechanism can differ between these two cases.

To measure the ultrafast timescale of this prototypical x-ray initiated isomerization, we per-

formed a time-resolved x-ray pump/x-ray probe experiment at LCLS that directly detected the

geometry change in C2D2+

2 . C2D
2+

2 rather than C2H
2+

2 is employed to eliminate potential back-

ground sources of protons from water or other contaminants. Although the two molecules have

the same electronic structure, if the isomerization rate is limited by the nuclear masses, one would

expect both the particle velocity and the rate of the tunneling through the barrier to be slower in

C2D
2+

2 compared to C2H
2+

2 .

Our measurements indicate that the isomerization in the deuterated acetylene dication al-

ready begins in the first 12 fs following core ionization. This finding is consistent with a non-static

geometry prior to the Auger transition. As suggested by Gadea et al. 5, when lighter nuclei are

involved, molecular geometry can begin to evolve during the core-hole lifetime. This geome-

try change during the core-hole excitation, which is typically neglected in the analysis of core-
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ionization experiments, implies that transition-state theory applied to the potential energy surface

of the dication alone is insufficient to account for the ultrafast proton migration4. This new re-

sult will inform realistic models of radiation damage of biomaterials in single-molecule diffraction

experiments at FEL x-ray sources6–9.

Results

Strategy for the ultrafast x-ray probe. In the experiment the first x-ray pulse (400 eV, up

to 10 fs long, 100 µJ/pulse) ionizes the carbon K-shell in the molecule, which, in the dominant

relaxation channel, subsequently loses a second electron via Auger decay (see Fig. 1). The

dication is created in a non-stationary state, a superposition of many electronic states, each with a

different degree of vibrational excitation. The relaxation that follows initiates the geometry change

that can lead to isomerization and molecular breakup. Upon a variable delay a second x-ray pulse,

with the same characteristics as the first one, probes the instantaneous geometry in the relaxing

dication by further core-ionization and Auger decay. The result is C2D4+

2 , which has no bound

states44. The final charge state of 4+ is nearly impossible to reach via absorption of only one x-ray

photon, and is indicative of the time dependent pump-probe dynamics. Its dissociation fragments

reveal the geometry of the molecule at the probe delay time. Molecules that absorb two photons

from one x-ray pulse and fragment as a tetracation contribute to a time-independent background.

Alternative direct and shake ionization paths that involve the L shell of carbon typically lead to a

different final charge state than the 4+ channel. A combination of a loss of three electrons through

a shake process in one step, and a loss of one electron in L-shell ionization in another step, would
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lead to the final state 4+. This combination is at least two orders of magnitude less likely than the

excitation path discussed in the text.

Measurement of the momenta of all molecular fragments in coincidence as a function of

time delay between the two x-ray pulses gives information about the evolution of the instantaneous

molecular geometry during the relaxation of the dication. Based on total charge and momentum

conservation we can separate the ion coincidences arising from the fragmentation of the tetracation

from those arising from the background or the fragmentation of the molecule in other charge states.

More details of the experiment and data processing can be found in Methods.

Differentiation between acetylene and vinylidene. In order to fully characterize the in-

stantaneous molecular geometry we must detect each of the four ion fragments produced upon

dissociation. In this report we discuss the time evolution of the fragmentation channel in which

two deuterons and two singly charged carbon ions originating from a single C2D
4+

2 molecule were

detected. The conditions applied to identify the true C+/C+/D+/D+ coincidences are discussed in

Methods. In order to classify the four-particle coincidences as arising from the vinylidene or the

acetylene isomer, we define the angle θ:

θ = cos−1

(

sign((pC1
− pC2

) · pD2
)(pC1

− pC2
) · pD1

| pC1
− pC2

|| pD1
|

)

, (1)

which is the angle that a deuteron momentum makes with the effective C-C axis. Here the effective

C-C axis is defined by the momenta of the two heavier fragments, as the direction of the vector in
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a moving frame tied to the center of mass of the two heavier particles. Vectors pCi
and pDi

refer to

the carbon and deuteron momenta, respectively. To ensure that the vector is well-defined in a given

fragmentation event, we also require that the two C+ ions depart with momenta pointing close to

180◦ from each other. In other words:

cos−1

(

pC1
· pC2

| pC1
|| pC2

|

)

= θC1−C2
> π − δθC1−C2

(2)

where δθC1−C2
has the value of 1.0 rad (see Supplementary Figure 1 in for the distribution of

θC1−C2
). The angle θ enables us to classify the C+/C+/D+/D+ coincidences as “vinylidene-like”

(“V-like” further in the text) if θ < π

2
(both deuteron momenta reside on the same side of the plane

that divides the carbon-carbon axis). The remaining coincidences, when θ > π

2
, (two deuteron

momenta on opposite sides of this plane) are referred to as “acetylene-like” or “A-like”. The

angle θ is an approximate measure of the CCD angle, because the momenta in the four-particle

fragmentation are not required to point along the instantaneous directions of the molecular bonds.

We point out that our labels ‘A’ and ‘V’ are defined by the directions of the particle momenta,

regardless of the order in which the bonds break. Relative rotation of CCD+ fragments can also

lead to an apparent vinylidene-like angle θ.

As both the experiment reported here and that reported in Ref. [2] used non-resonant core

ionization, the same dicationic state distribution is created in both experiments. By measuring the

energy of the Auger electrons simultaneously, Osipov et al. concluded that the CH+/CH+ chan-
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nel originates from excited electronic configurations of the dication, while the CH+

2 /C+ channel

comes from the 1π−2
u

configuration2 (see Fig. 1). In addition, they find that CH+

2 /C+ fragments

are detected exclusively in coincidence with highest-energy Auger electrons, which indicates that

isomerization does not occur in dicationic states that arise from excited configurations. We popu-

late the same dicationic states as Osipov et al. That means that, although many excited dicationic

states contribute to the C+/C+/D+/D+ dissociation channel in our experiment, the signal indicative

of isomerization arises from the same states as discussed in the Ref. [2].

Plots of the angle θ track the differences between the V and A channels. In Fig. 2 we

plot the total kinetic energy release (KER) summed over all four fragments as a function of θ

integrated over the time delay. The right half of the plot contains the A-like coincidences and the

left half the V-like ones. It is apparent in Fig. 2 that mean KER and the KER distribution width

display a dependence on the angle θ. The mean KER value for the V-like population is several eV

lower than that of the A-like population. Osipov et al. report a higher KER for the CH+/CH+

channel compared to that of the CH+

2 /C+ channel in the fragmentation of the C2H
2+

2 . The same

experiment reported a broader distribution of the KER in the CH+/CH+ channel compared to that

of the CH+

2 /C+ channel2. Although the energetic ordering does not have to be preserved in four-

body fragmentation, Fig. 2 indicates that in case of acetylene this order is not altered. The broad

distribution of the KER in the A-like channel implies that the dication is formed with significant

vibrational excitation following Auger relaxation.

Time dependence in the measurement. Figure 3 shows a dependence of the deuteron
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momentum distribution on the time delay between the two pulses. The deuteron momenta are

represented in the center of mass frame of the two carbon ions. We choose the x axis along the

C-C momentum difference and the component of the deuteron momentum along this direction is

referred to as the parallel component. We use pD1
− pD2

to define the y axis. Its component

parallel to the C-C relative momentum is selected to be the y axis. The component of the deuteron

momentum along y axis is referred to as the perpendicular component. We always select the direc-

tion of the x axis so that the deuteron with the smaller y component has a negative x component.

With these axes the migrating deuteron is on the left and we can monitor the temporal evolution

in the distribution of the average CCD molecular angle, which is reflected in the evolution of the

deuteron moment distribution shown in Fig. 3.

The momentum distribution in Fig. 3 indicates that the maximum localization in both the

magnitude and the angle of the deuteron momentum occurs at zero time delay (Fig. 3b). This

localization is particularly pronounced for the deuteron with the smaller perpendicular component

of the momentum. This observation suggests greater localization in the CD bond length and CCD

angle at zero time delay. Such localization is consistent with an initial single deprotonation step

in near-linear geometry. The averaged CCD angle indicates that the Auger relaxation produces

vibrationally hot acetylene, predominantly sampled at turning points of the CCD bending mode.

An unequal momenum peak height of the two deuterons and hence an unequal distribution width

is already apparent at the nominal zero time delay, as expected for vibrationally hot sample. As

the migrating deuteron on the left is more delocalized, its momentum peak height is smaller. At

larger delays an increase in both the average CCD angle, as well as the spread of the CCD angles,
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is evident. Although this spreading in the CCD angle is most significant at longest time delay of

100 fs where almost complete loss of localization of the deuteron momentum angle and magnitude

is observed (Fig. 3f), it is important to note that the angle increase is already observable at the

earliest non-zero time delay (12 fs) in the experiment (Fig. 3c).

To characterize the broadening of the proton momentum distribution, in Fig. 3h we plot the

time dependence of the ratio of the signal in the region (1) to that in the area in the vicinity of

the left carbon (region (2), as illustrated in Fig. 3a). Time dependence of this ratio indicates that

the bending motion toward the isomerization barrier is already launched on the shortest timescale

sampled by our experiment. This is consistent with the upper limit for the isomerization time

reported in Ref. [1]. The increase in the bending angle at 12 fs, compared to 0 fs, is followed

by a discernible decrease at 25 fs. This could be a signature of a vibrational coherence since 12

fs corresponds to one-quarter of the period of the antisymmetric bending mode in the 1Σ+
g

state of

the acetylene dication3. Similar evolution of the bending angle is observed in the analysis of the

events where only three fragments, C+, C+, and D+, are detected (see Supplementary Figure 2).

We note that the cross correlation between the two x-ray pulses can affect the zero-delay

point. When both pulses arrive at the same time it is possible for a core-ionized molecule to

absorb the second x-ray photon before the Auger relaxation occurs. This results in double-core

hole formation, which for acetylene could be localized on the same carbon or distributed between

the two carbon atoms. This manuscript concentrates on the channels in which equal sharing of the

charge occurs among the four fragments, which may suppress detection of signatures of double-
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core hole relaxation.

Discussion

To understand the fast onset of the isomerization, which is already apparent at the shortest

delay in our experiment, we discuss in more detail the dynamics in the core-ionized acetylene ion

prior to Auger relaxation. When one of the carbon atoms becomes core-ionized, the sudden change

in the Coulomb field at the site of the deuterium atom bound to that carbon atom initiates motion of

that deuteron. In other words, if the core-excited singly-charged ion is created in a non-stationary

state it will begin to relax via a geometry change. This relaxation begins prior to interruption by

the Auger relaxation. The extent of the geometry change during the core-excitation depends on the

core-hole lifetime and is typically neglected in considering core-ionization2, 4, 5. This approxima-

tion is better for cases of core-excitation of nuclei with fast Auger relaxation rates as well as for

heavier nuclei that experience unscreened fields. With light species, such as deuterons or protons,

this geometry change during the ∼6 fs carbon 1s core hole lifetime45 may not be negligible. Gadea

et al. suggested a similar mechanism may play a role in core-to-valence excitation of acetylene5.

Thus, if the motion on the potential energy surface of the core excited C2D
+∗
2 lasts sufficiently

long, the deuterium atom adjacent to the core-excited carbon can acquire a non-negligible mo-

mentum that persists after the Auger relaxation occurs. In addition, the dication is created in an

initial geometry different from that of the neutral ground state acetylene. Both the alteration in the

geometry and the initial momentum can modify the path toward isomerization. Therefore, even

if isomerization is incomplete during the core-hole lifetime, the molecule can be launched on the
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path toward isomerization before the Auger transition occurs. Similarly, the wavepacket evolves

on a mostly coulombic potential in the trication prior to the second Auger relaxation.

To test the possibility that molecular geometry changes during the core-hole lifetime, we

calculated the potential energy as a function of the bending angle in the highly excited singly

charged acetylene ion (see Fig. 3(i) and Supplementary Figure 3). The potential energy plot shows

that the vibrational constant for the bending mode decreases in the core-excited singly charged ion,

compared to the neutral. The anharmonicity of the potential energy for the core-ionized cation

leads to broadening of the vibrational wavepacket as plotted in Fig. 3(i). It cannot be ruled out

that this increased flexibility of the molecular bending mode contributes to a geometry change

during the Auger lifetime. In the case of core-to-valence excitation of neutral acetylene5 Gadea et

al. found that both the bending mode and isomerization to vinylidene stabilize the excited state.

The singly charged core-excited ion created in a non-stationary state evolves during the core

hole lifetime. The momentum that the deuterium gains during the core hole lifetime persists after

the Auger decay. In addition, molecular geometry changes in the singly charged ion. This implies

that Franck-Condon overlaps between the neutral and the dication will give a distorted estimate of

the kinetic energy available for surmounting the isomerization barrier. In fact, it is necessary to

account for both the geometry change and the acquired momentum during the core hole lifetime

when considering the Franck-Condon overlaps with the dicationic states. Hence, transition-state

theory applied to the dication potential energy surface without accounting for the evolution during

the core hole lifetime is insufficient to describe the isomerization2–4, because the initial state excited
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by the core ionization is not static.

The new class of time-resolved x-ray pump/x-ray probe experiments reported here enables

direct probing of the molecular dynamics initiated by core-ionization. By combining this technique

with four-particle coincident detection, used for the first time at an x-ray FEL, we can monitor the

evolving molecular geometry as a molecular movie. We applied this technique to a prototypical

isomerization of the deuterated acetylene dication. We found that nonadiabatic interactions can

couple nuclear motion into the electronic relaxation process in the first tens of femtoseconds fol-

lowing core ionization. In addition, it may be necessary to account for the geometry change that

occurs during the core-excitation in order to understand the early-time dynamics in core-ionization

of species that contain lighter nuclei. These findings have important implications for hydrocarbon

isomerization and radiation damage by intense x-ray radiation.

Methods

Experimental design. This experiment was performed at the AMO beamline at Linac Coherent

Light Source (LCLS) in the High Field Physics (HFP) chamber, which is described in detail in

Ref. [13]. Pulses of x-ray radiation of 400 eV and up to 10 fs duration, 100 µJ/pulse, capable of

core ionizing both the neutral and doubly ionized C2D2, were used in both the pump and the probe

steps. The average length of the electron bunches from which the x-ray pulses were generated was

10 fs, resulting in up to 10 fs long x-ray pulses. Simulations indicate that the duration of the photon

pulse can be significantly shorter than the duration of the electron bunch46. Our experiment, which

used non-resonant excitation, is insensitive to shot-to-shot fluctuations in x-ray pulse frequency
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content.

Two x-ray pulses with delays of 12, 25, 50 and 100 fs were derived from a single x-ray pulse

using the split and delay apparatus described in Ref. [47]. Briefly, the apparatus consists of two

mirrors in which the pitch and height of one of the mirrors can be varied. The mirror splits the pulse

into two pulses that intersect at a small angle downstream. Adjusting one of the mirrors varies the

difference in the path length between the two pulses and results in a variation of the time delay at

the focus. In the nominal zero fs time delay, only one x-ray pulse, but with twice the fluence as the

pulses at other time delays, was delivered to the sample using one of the mirrors in the split and

delay apparatus. The apparatus allows for sub-femtosecond precision in setting the delay.

The two almost-collinear x-ray pulses intersect the molecular beam at a right angle. The

approximate diameter of the focus was 50 µm2. The molecular beam was produced by expanding

a 1:3 mixture of C2D2 and He at backing pressure of 2.4 bar through an Even-Lavie pulsed valve.

The sample pressure, the distance of the nozzle from the interaction region, and the photon intensity

were adjusted such that on average only one molecule was fragmented per pump-probe event in

order to realize unambiguous ion-coincidence measurements. The data collection rate was 120 Hz.

At each time delay we analyzed ∼ 2 ·106 events. After filtering out false coincidences we analyzed

1087, 1307, 1137, 1392, and 1461 events at 0, 12, 25, 50, and 100 fs delay points, respectively.

Ion fragments were extracted and accelerated toward the detector using a set of parallel plates

in the direction perpendicular to both the molecular beam and x-ray pulses. The ions were detected

using a microchannel plate combined with a three-layer delay line anode detector (RoentDek Han-
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dles GmbH HexAnode). The voltages on the spectrometer plates were set to achieve the flat-field

regime. The flat-field regime permitted a straightforward reconstruction of the particle momenta

along the time-of-flight direction. The other two components of the momenta, in the plane of the

detector, were reconstructed by implementing the advanced reconstruction technique48. This tech-

nique, described in Ref. [48] benefits from the redundancy of the ion impact information collected

from the three detection layers.

Momentum analysis. In order to ensure that the fragments originated from the same parent

ion, two constraints were applied in the impact analysis. The first constraint requires identification

of all four C+/C+/D+/D+ ions and up to two extra particles. The second constraint applies the

conservation of momentum to the detected C+/C+/D+/D+ coincidence so that the sum of the four

momenta is close to zero in each direction in the lab frame individually. In other words:

| pD1,j
+ pD2,j

+ pC1,j
+ pC2,j

|= pj < δpj (3)

where D1, D2, C1, C2 indicate the first and second deuterium and carbon atoms detected, and j is

the lab frame direction. The three lab frame directions, x, y, and z, refer to the direction of the

molecular beam, the direction of the x-ray beam propagation and the time of flight direction. The

value δpj is determined for each direction individually by identifying the width of the distribution

of pj, which was 15 au, 28 au, and 92 au for the TOF and the two in-plane directions respectively.

The final ion fragment energy was scaled by a common factor of 0.9787 determined by a

calibration with CO dissociative ionization. To make this calibration we compared the measured
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energies of the 21Σ+v = 0 and v = 1 peaks in the KER spectrum of core ionized CO to those

reported in the literature49. This scaling factor does not affect the momenta direction discussed in

the manuscript.
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Figure 1 Excitation scheme. Acetylene dication states discussed in the text are given

after Ref. [2]. The first x-ray pulse core ionizes the acetylene molecule, which relaxes

by Auger electron emission. This process populates dicationic states, some of which

are shown on the right hand side. According to Ref. [2] isomerization to vinylidene

occurs on the 1Σ+
g

potential energy surface, while acetylene-like fragmentation occurs

in an excited configuration. Upon a variable delay the second x-ray pulse further core-

ionizes the dication. Quadruply charged ion, formed upon the loss of the second Auger

electron, dissociates and the fragment momenta are analyzed as described in the text.

Figure 2 Acetylene/vinylidene differentiation. The distribution of all C+/C+/D+/D+

coincidences is plotted as a function of the total kinetic energy release and the angle θ.

The plot contains the data integrated over all time delays. The solid black line divides

the vinylidene-like geometries (left) and acetylene-like ones (right). The data for the two

isomers display a difference in both the peak KER and the width of its distribution, as

shown on the right hand side.

Figure 3 Temporal evolution of the deuteron momenta. The directions parallel and

perpendicular to the C-C axis are defined in (a). The measurements were done at 0 fs

(b), 12 fs (c), 25 fs (d), 50 fs (e) and 100 fs (f). While the deuteron momentum distribution

indicates localization in CD bond length and CCD angle at 0 fs, at longer time delays

both the average CCD bending angle and the width of geometry distributions increase.

Acetylene and vinylidene isomers, as well as the transition state are shown schematically
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in (g). The broadening of the distribution leads to an increase in the signal in region 1

(shaded red in (a)) and a disappearance in region 2 (shaded blue in (a)). Region (1)

shaded red in (a) pertains to the combinations of the deuteron momentum components

where 0◦ < tan−1(p‖/p⊥) < 60◦, while the region (2) pertains to 60◦ < tan−1(p‖/p⊥) < 120◦.

The ratio of the signal in the region 1 to that in the region 2 is shown in (h). Potential

energy surfaces for the 1Σ+
g

ground state of neutral acetylene (green) and the 2Σ−
u

state of

core-ionized cation (blue; the 2Σ+
g

state of the core-ionized cation is almost isoenergetic)

along the bending mode are shown in (i) together with the broadening of the wavefunction

on the timescale of the Auger relaxation. More details about the calculation is given in the

Supplemental Material.
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Supplementary Figure 1. Carbon fragment momenta. Plotted is the distribution of angles 

among the two carbon fragments defining the effective C-C axis.  
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Supplementary Figure 2. Temporal evolution of the deuteron momenta in three-particle 

coincidences. Similar to Fig. 3 in the main text, but for events in which only three particles, C+, 

C+, and D+, are detected: temporal evolution of the distribution of the deuteron momentum 

components parallel and perpendicular to the C-C axis at 0 fs (a), 12 fs (b), 25 fs (c), 50 fs (d) and 

100 fs (e). Three particles are detected more often than all four, resulting in a larger number of 

events for analysis. However, with only three particles the requirement that the momentum sum is 

near zero cannot be used as a filter. This leads to a larger dilution of the signal with false 

coincidences as compared to Fig. 3.	   

	  

	  



	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  
Supplementary Figure 3. Potential energy surface of the 

2
Σu

-
 state of the 1s core-ionized 

C2D2
+
* Potential energy is plotted as a function of the CCD bending angle and the CD internuclear 

distance (
2
Σg

+
 is almost isoenergetic; comparison to the potential energy of the 1Σg

+
 ground state 

of neutral given is in the main text, Fig. 3(i)). The potential energy surface of C2D2 was obtained at 

the Hartree-Fock (HF) level of theory using Dunning’s double-zeta basis (DZP) [1]. For C2D2
+
 we 

first carried out the HF/DZP calculation on the C2D2 ground state. We then started with two 

reference ion configurations, (1a’
1
2a’

2
3a’

2
4a’

2
5a’

2
1a’’

2
2a’’

2
) and (1a’

2
2a’

1
3a’

2
4a’

2
5a’

2
1a’’

2
2a’’

2
), 

with a single vacancy in the C1s orbital, and performed an all-singles configuration-interaction 

calculation, constraining the maximum combined electron occupancy of the core molecular 

orbitals, 1a’ and 2a’, to three. Note that the bond distances and angles, other than those being 

plotted, are fixed at the equilibrium geometry of the neutral C2D2. Evolution of the molecular 

geometry begins on this potential energy surface prior to Auger relaxation. Increased flexibility of 

the bending mode in core-ionized acetylene could facilitate geometry change during the Auger 

lifetime. Auger lifetime of the 1s hole in carbon is approximately 6 fs [2]. 
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