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INTRODUCTION

One of the goals of researchers in the field of reaction dynamics is to

develop an understanding of the elementary steps involved in a chemical

reaction on a molecular level (see e.g. Ref. 1). The century-old Arrhenius

rate law, a phenomenological description of the temperature dependence

of rates of reactions in bulk, has been used extensively to deduce activation
energies and frequency factors. The activated complex theory (also referred

to as absolute rate theory or transition-state theory, see e.g. Refs. 2, 3)

postulated more than 50 years ago, provides a useful interpretation of

the Arrhenius rate parameters in terms of molecular properties. These

parameters contain practical information about rates, but they do not

express the molecular details of a reaction. At this juncture, two types of

questions can be raised--one concerning the effects of the environment
on rates in condensed media, and the other, the purely molecular aspects

of reactions in the absence of an environment, i.e. in an isolated molecular

system. We restrict our attention to the latter case for the purposes of this

review.

~Present address: Department of Chemistry, Northeastern University, Boston, Massa-

chusetts 02115.
2 Contribution No. 8090.
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16 KHUNDKAR & ZEWAIL

The fundamental physical issues in this field of molecular reaction
dynamics are (a) how do initial conditions affect the outcome of a chemical
reaction? (b) how is the excess energy partitioned among the various

quantum states of the products7 and (c) how does the system evolve from
reactants to products7 The basic approach is deeply rooted in scattering
theory: If the initial conditions are precisely defined, and the interaction
potential is well-known, then one can, in principle, predict the outcome o~"
the reactive process precisely. Generally, the initial conditions and final
product states can be experimentally determined. The potential energy, a
function of many variables, is deduced indirectly, by making informed
guesses and checking for consistency with experimental results (1).

Experimental studies of reactions thus face the challenge of defining
the initial conditions precisely, as well as the detection of products with
quantum state resolution. Two technological advances that have helped
revolutionize experimental chemical kinetics are lasers and supersonic
molecular beams. A large body of results has accumulated over the past
three decades involving the characterization of such "before" (reagent)
and "after" (product) observables and has led to a deeper understanding
of reactive processes (1, 4-6). In addition to the large number of crossed
molecular beams and chemiluminescence studies, an expanding literature
of crossed molecular beam-laser results has probed dynamics via careful
analyses of product internal energy (vibrational and rotational) dis-
tributions and steady-state alignment and orientation of products (1, 7-
19). Approximate lifetimes of the collision (or half-collision) complexes
and rates of the reactions have been derived from measurements of the
steady-state angular distribution or alignment, and from linewidths of
spectroscopic transitions in a number of cases (1, 4-21).

Time-resolved measurements of intramolecular dynamics offer an
opportunity to observe a molecular system in the continuous process of
its evolution from reactants to products. Under this rather general picture,
one may further distinguish among intramolecular vibrational-energy
redistribution (IVR), rates of chemical reactions on a state-to-state basis,
and the dynamics of transition-state species. Generally, the timescale for
IVR is on the order of picoseconds, and rates for predissociation are tens

of picoseconds and longer. The "lifetime" of transition-state species is
even shorter--femtoseconds--corresponding to subangstrom fragment
displacements.

IVR in isolated molecules (22, 23) is a description of how energy initially
localized in a specific type of vibrational motion is shared among all other
types of nuclear motion possible. It has been shown that this process is a
manifestation of the loss of quantum coherence imposed on the initial
state via the preparation process, i.e. the coherence of the excitation pulse.
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ULTRAFAST MOLECULAR REACTION DYNAMICS 17

When a large number of states and couplings are involved, the average

effect of redistribution can be described in terms of simple kinetics and

rate constants (22, 23). The relevance of IVR to reaction dynamics lies 

a possible reduction of the dimensionality of the general problem. If IVR
is fast and complete, then the reaction is characterized by the energy and

total angular momentum. Under these conditions, the reaction is said to

be statistical (see e.g. 24) and statistical theories of reaction rates (25-31)
may be applied; a reaction rate constant can be directly obtained from the

exponential loss of population in the initial state or buildup in any product

state. On the other hand, if the rate of reaction is intrinsically faster than

the rate of energy redistribution, then one would expect the outcome of

the reaction to be deterministic--initial state influences both rate and

product distributions. A single rate constant cannot be defined and all

possible combinations of initial and final quantum states would have to

be considered for a complete description of the reaction.
Implicit in the above description is the existence of very short-lived

(_< 10-~2 seconds) transitional states between reactants and products. 

reagents proceed to products during a reaction, the spectral properties of

the system also evolve from being characteristic of reagents to those of
"transition states" and eventually to being characteristic of the products.

When the process of transition is continuous, the evolution of the spectra
should also be continuous. Conventional spectroscopic methods should

reveal the existence of nonstationary, or perturbed, species that correspond

to transitional configurations. The overall effect is extremely small,

however, and scales essentially with the "lifetime" of each such species.

Since the lifetime is < 10- ~ 2 s, the use of ultrashort pulses offers a distinct

advantage in the study of such species. In some sense, these pulses provide

a window of observation that discriminates against long-lived species and

enhances the probability of detecting transitory species.

In the following sections we describe the techniques and some of our

experimental results on the different topics discussed in general terms

above: IVR, state-to-state rates, and femtosecond transition-state spec-

troscopy (FTS)--the tool for "femtochemistry." The focus is on real-

time measurements of intramolecular dynamics, with special emphasis on

reactive processes. We have attempted to highlight the underlying physical

issues in each section, illustrating them with a number of examples, rather

than attempt a comprehensive review of each topic (see 23, 32-34).

EXPERIMENTAL METHODOLOGY

Several apparatuses have been used in these experiments (32-39), and 

present only an outline of the basic approach (Figure 1). For measurements
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18 KHUNDKAR & ZEWAIL
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Figure 1 Schematic diagram for the three major apparatuses developed for studies of

ultrafast molecular reaction dynamics in real-time: (a) time-correlated single photon count-

ing/molecular beam apparatus; (b) picosecond photofragment spectroscopy/molecular beam

apparatus (LIF/MPI); (c) femtosecond transition-state spectroscopy apparatus. shaded

blocks on the pump (and similarly for the probe) are to indicate the many nonlinear methods
used to generate different wavelengths.
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of IVR, a picosecond pulse is used to create the initial state. Fluorescence

or absorption from this initial state is resolved on the picosecond time

scale (23, 35-39). Time-correlated single photon counting or pump-probe

methods are used for measuring state-to-state rates. The pump-probe
method employs two independently tunable pulsed lasers. This allows one

to measure reagent decay and product rise-times as a function of the initial
energy and the final product rotational, vibrational, or electronic quantum

state. The two pulses, delayed in time and overlapped in space, are focused

in the sample, either a low pressure gas or a supersonic beam of inert gas

seeded with the molecule of interest. One of the pulses, the pump, is

resonant with a transition in the reagent molecule, while the other, the
probe, selectively excites or ionizes either a product or the excited reactant.

The temporal evolution of the species selected by the probe is mapped out

as the delay time between the two pulses is varied.

For the FTS (32-34) studies, the wavelength of the probe pulse is chosen

to be in resonance with either the transition-states or the states of free

products. The system may either fluoresce or be ionized after absorbing

the probe pulse. Detection is made by laser induced fluorescence (LIF) 
by multiphoton ionization (MPI). The latter is possible because intense

ultrashort pulses are used. When the sample is seeded in a molecular beam,

the ions can be identified with a mass-spectrometer built into the molecular

beam apparatus. The temporal resolution of these methods is determined

by the correlation width of the pump and probe pulses. The pulses them-
selves may be of the order of a few picoseconds or 40-100 femtoseconds,

the lower limit (~ 6 fs) being set by the current state of ultrafast laser
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20 Kh’UNDKag & ZEWAIL

technology (40). The spectral resolution is determined by the frequency

spectrum of the pulses~ generally close to the uncertainty limit.

STUDIES OF IVR IN REAL-TIME

Intramolecular vibrational-energy redistribution has been a topic of much

interest among laser chemists for the past two decades. The interest stems

from the hope that if enough energy can be localized in a bond for a period

of time longer than the reaction time, one can achieve selective bond-

fission (see e.g. 41, 42). For example, such selectivity has been observed 

the UV photodissociation of bromoiodomethane (43), where the excitation

of an electron from a nonbonding orbital on the halogen atom to the

antibonding carbon-halogen bond yields either I or Br atoms, depending

on the photolysis wavelength, rather than fission of the weakest bond in

the molecule. So, what determines the selectivity and what is the time scale

for energy redistribution?

Although the theory used to describe IVR is similar to that used for

other nonradiative processes (internal conversion, intersystem crossing),
IVR is distinct from these processes in that the electronic quantum number

does not change (23). This field has been reviewed recently (22, 23); 
highlight the principles and present a few illustrative examples drawn from

our own studies (23).
Let us consider first the case of two-coupled-vibrational-levels, the

simplest one in which the full details of IVR can be demonstrated (44).
Thus we have the ground state (I Y)), a vibrationally excited level in 

ground-state (If)), and two zero-order excited states (ta) and I b)) 

2), one of which (I a)) is active in absorption and emission to the ground

state, while Ib) is active only in emission to If~). The two states la)

and tb) are coupled by the matrix element Vab, giving rise to molecular

eigenstates, I1) and 12). This coupling is determined by the anharmonicity

of the potential and/or Coriolis interactions.
At time zero, the excitation process creates the superposition state

I~O) "~ l a), which then evolves under the influence of the molecular Hamil-
tonian. The states are:

I1) = ~la)+3lb) la.

12) = Bla)-~lb) lb.

[ ~(t)) = ("l 1)e-ie,t/~ + El 2)e-iF~2t/h)e-rt/2 2.

where El and E2 are the energies of the two eigenstates and F- ~ is the

fluorescence lifetime. Thus the probability amplitude oscillates back and
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22 KHUNDKAR & ZEWAIL

forth between the initially excited superposition I~/) and one orthogonal

to it. Clearly, if we were to excite purely I1) or purely 12), a situation that
can arise when the laser bandwidth is much narrower than the energy

difference E~--E2, the temporal behavior would be a simple exponential

decay corresponding to fluorescence to the ground state. The key to deter-
mining experimental conditions that allow one to observe IVR (i.e. evolu-

tion of superposition states) lies in the detection wavelength. Since a given

excited rovibrational state can emit to many different rovibrational states

of the ground electronic state, the emission wavelength provides an extra
degree of freedom that can be used to select a particular superposition of

excited states (23). For instance, the time-dependent fluorescence from

I~b(t)) to the ground state is proportional to its overlap with l 

I Kalff (0) 12 e-rt[1 - 2 (z2/J2 + 2~x2fl 2 cos(t EL - E2 It ~h)], 3.

whereas that to If~) is of opposite phase

I (hi q,(t)) 12 -- e- rt[2~2/~2(1 -cos -E21 t/h)) 4.

This simple picture of coupled oscillators gives us an intuitive feeling
for the process of IVR, and although it is somewhat of an ideal case,

experimental observations of such elementary redistribution processes in

large polyatomic molecules have been made in this laboratory (see Figure

3 and Ref. 23). One sees that if both time and energy resolution of fluo-
rescence (or absorption) are introduced, then IVR can be directly observed

through the in-phase ("energy leaving") and out-of-phase ("energy receiv-

ing") detection of energy flow. The transients give the effective coupling

matrix elements, in this case 2Vob = EL--E2, as dictated by Eqs. 3 and 4.
From the discussion above, it follows that IVR becomes important when

the density of states is large. This happens in all polyatomic molecules at

high energies. In large molecules, the density is high even at low energies

(~ 1000 cm- *). Thus a consideration of the effects of IVR as a function
of the number of coupled states is indicated. When many states are coupled
(i.e. involved in the initial coherent state), the evolution is a complicated

function of the energy spacing between participating states, and the loss

of coherence can appear exponential (or quasi-exponential).
The overall behavior of IVR can be categorized into three types (23,

45-47): (a) no IVR, where only molecular eigcnstates are excited; 
restricted IVR, where ~ 2-10 states are involved and quantum coherence

effects (e.g. Eqs. 3 and 4) are observed; and (c) dissipative IVR where 

than 10 states are involved and decays are observed (the total density of

states could be much higher!). In Figure 4, we show results on anthracene

as a function of excess energy as an example of the different types of

behavior where the time scales (> 18 ns to 22 ps) for the different regimes
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ULTRAFAST MOLECULAR REACTION DYNAMICS 25

have been established; restricted IVR occurs between 700-1300 cm-1 and

dissipative IVR is seen for energies greater than 1700 cm-~ in Sl. Other

molecules in which the dynamics of IVR has been studied include stilbene

(48), deuterated analogs of anthracene and stilbene (49, 50), alkyl-sub-

stituted anthracenes (51), diphenyl-butadiene (52), pyrazine and 

deutero-pyrazine (53-55), isoquinoline (56, 57), n-alkyl anilines (58), 

difluorobenzene (59), azulene (60), 1-methylindole (61), pyrimidine 

indole (63), tetrazene-Ar (see section on state-to-state microcanonical
rates, below), perylene (64), naphthol (65), and fluorene (see section 

purely rotational coherence, below). In a few of these examples, the

vibrational redistribution involves some interstate electronic coupling

(pyrazine, pyrimidine, isoquinoline).
High-resolution linewidth and spectral measurements, particularly on

benzene (66) and pyrazine (67, 68), and "chemical timing" spectral studies

on p-difluorobenzene and p-fluorotoluene (22), have contributed greatly

to the study of IVR in these large molecules but are not reviewed here. It
is important to emphasize that in relatively simple systems, where the eigen-

states can be resolved, real-time studies of IVR and spectral analyses are

complementary. In larger systems, however, spectral congestion is a serious

problem and inferences of rates of IVR from spectral data could be mis-

leading, as exemplified in the case of many molecules (see e.g. 45~17, 58,

59). Furthermore, care should be taken in translating linewidth measure-

ments into rates of IVR because of inhomogeneous broadening and pure

dephasing processes (23). Recent theoretical calculations by Marcus (69,

70) and Mukamel (71, 72) have reproduced features of the spectra and 

observed quantum coherence effects in the restricted region of IVR. It is

a challenge to be able to predict the threshold for restricted and dissipative

IVR regions in large molecules with the density of states reaching 104 to

106 states per cm- 1.
In the quantum model of dissipative IVR, one finds that a complete

rephasing of all the vibrational states occurs at some long time after

excitation. These recurrence times can be much longer than the time scale

of the experiment. Also note that both the excitation and the detection

processes are important in observing IVR. In particular, if one can detect

the total fluorescence, the effects of redistribution on a single electronic

surface are "washed out," and one observes only incoherent decay cor-

responding to fluorescence (23). A final point that should be noted is the

concept of complete redistribution. We have mentioned criteria for when

IVR is not present, restricted or dissipative. Within this prescription, even
when IVR is dissipative, it may be incomplete--a situation that occurs

when some of the energetically accessible molecular eigenstates have no

transition moment connecting them to the ground states populated in the
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unexcited ensemble. In other words, dissipative IVR does not necessarily

imply that all zero-order dark states are coupled to the initially excited

state. In such cases, optical excitation cannot produce a uniform dis-

tribution in phase space, a common assumption in all statistical rate

theories, and reactive dynamics may show features that do not follow the

predictions of these theories.

ALIGNMENT EFFECTS IN REAL-TIME

Purely Rotational Coherence

The description of vibrational-energy redistribution presented in the pre-

vious section has been extended to include coherence among rotational
states as well. The disparity in the timescales of vibrational (femtoseconds)

and rotational (picoseconds to nanoseconds) motion in molecules leads 

a natural separation of these effects. In other words, the effects appear
distinct because the rotational motion of a molecule may be adequately

represented as that of an equivalent molecule whose atoms are frozen in

their equilibrium position (rigid-body approximation). The energy differ-

ences between rotational states are (nearly) commensurable and the pre-

dicted recurrence times are on the order of the timescale of our measure-
ments. Therefore both the initial loss of coherence and subsequent

rephasings can be observed in the polarized emission or absorption from

a sample excited by a polarized laser source.

Although a quantum mechanical description of this phenomenon has

been discussed in Refs. (73-75), a classical model based on the charac-
teristics of rotation of a rigid body is useful as a convenient way of

visualizing these coherences (76, 77). For illustration, we consider the case

of a prolate symmetric top whose moments of inertia are In about the
symmetry axis and Ib about some other axis perpendicular to it. The

rotation of this object can be described as the combination of precession

of the symmetry axis about the direction of the angular momentum, J,

and a top-like spinning motion about this axis. The precession angular
frequency, c~ 1, is given by

o9~ = -- = 4roB J, 5.

while the angular frequency of the motion about the top-axis, 092 is given
by

~o= = IJIcos0 - = 4n(A--B)K. 6.
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Here, J is the magnitude of the angular momentum and K is its projection

on the symmetry axis. A and B are the rotational constants and 0 is the

precession angle. Figure 5 shows two positions of the rotating object half

a nutation period apart in time. Since the initial pulse partially aligns the

ensemble, it follows that for parallel transitions a total rephasing of dipoles

occurs at the fundamental nutation frequency (2B) (assuming that J 

K take on integer values only), since all molecules nutate at some multiple

of that frequency (76). For perpendicular transitions, rephasings occur 

4(.4-B), which is twice the fundamental rotation frequency, as well 

the fundamental nutation frequency 2B. Recurrences in fluorescence or

absorption intensities associated with these two patterns of dipole rephas-

ings constitute the principal observable consequences of pure rotational

Figure 5 Classical rotational motion of a rigid symmetric top. The top is shown at two
times separated by half a nutation period, ~ol and ~o2 are the angular frequencies of nutation
and of rotation about the symmetry axis, respectively. J is the total angular momentum
vector and ~" is its component along the symmetry axis (see Ref. 76).
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coherence in symmetric tops (and asymmetric tops) as discussed in Ref.

(76). These effects have been observed in emission in supersonic beams (73-

76), in resonance enhanced multiphoton ionization (78), and in fluo-

rescence depletion (79, 80). Rotational coherence has also been treated

and studied in gases near room temperature (77). Representative spectra

are shown in Figure 6. It should be noted that rotational states can also

participate (see e.g. 81-84) in IVR, e.g. by Coriolis coupling, an issue that

has not been covered here.
From Eqs. 5 and 6 and Refs. (73-76), one can see that the recurrence time

provides excited state rotational constants with Doppler-free resolution, a

powerful feature of this technique (73-76). So far, this real-time method

has been applied to stilbene (73-76, 78), anthracene (76), fluorene 

80) and iodine (see below). Within the limits of the accuracy of these
measurements (typically better than 0.1%), they have been used to deduce

the molecular structure of the excited states. This is particularly important

for assigning structures to weakly bound clusters, as demonstrated for rare

gas clusters of stilbene and fluorene (76).

Polarized Photofrayment Spectroscopy

The discussion in the preceding section has been focused on nonreactive

systems. Here, we extend it to photofragmentation processes. The asymp-
totic (steady-state) anisotropy, difference in photofragment yields 

observed with the probe light source polarized parallel and perpendicular

to the polarized excitation source, can be used to determine the degree of

alignment (12-16). This information is important in estimating the extent

of rotation of the molecule before it fragments, and affords an indirect
measure of its lifetime. It is also useful for understanding the origin of

rotational excitation of products. In time-resolved measurements of ani-
sotropy in unimolecular reactions, two effects need to be considered--the

loss of overall rotational coherence, and the evolution of the rotational
constants and energy levels from those of the bound molecule to those of
the free fragments. The simplest case is to assume that the fragmentation

occurs before the molecule rotates and the distribution over product
rotational states is determined instantaneously (i.e. dissociation occurs in

the "Franck-Condon" region). The subsequent dynamics consists of the
loss of coherence among the product states and an overall buildup of

population in these states (85, 86).

The time-dependent rotational anisotropy parameter for each rotational
state with angular momentum j, r(t,j), defined as

I~(t,j)--I_~(t,j)
7.r(t.,j) I. (t,j) + 2I±(t,j)
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can be written in the much, simpler form:

r(t,j) = 0.4P2 {cos [r/(t)]}. 8.

The angle between the transition dipole moments of the states being excited

by the pump laser (at t = 0) and that being monitored by the delayed
probe pulse is r/(t). P2 is the second-order Legendre polynomial. The

observed time-dependent anisotropy, r(t), is the average of Eq, 8 over the
distribution of product rotational states being probed:

~ P(j)r(t,j)

r(t) j 9.
~ P(J)
J

The averaged transient behavior observed with the polarization planes of
the pump and probe pulses set parallel (Ii}) and perpendicular (Ix) to each

other can be written as

(Itl) = <[1 2r(t,j)]A (t ,j)) 10a.

<Ix> = <[1 - r(t,j)]A(t,j)) lOb.

where A (t,j) is the normalized buildup of population in the product state

with angular momentumj. If A(t,j) is essentially the same for each j, these

expressions can be further simplified to

<Iit> = < 1 + 2r(t,j)>A(t) 1 la.

<Ix> = <1 -- r(t,j)>A(t). I lb.

Numerical simulations show that r(t) is strongly dependent on both the

average j and the width of the distribution over j, with the anisotropy

persisting longer for smaller average j, narrower distributions, and, of

course, smaller rotational constants (slower rotations) (85, 86). Examples

of early time anisotropy for the dissociation of ICN and HgI2 are shown
in Figure 7. In each case, the calculated anisotropy has been normalized

to an asymptotic value determined by theory. The steadyzstate values for
ICN are known (87-91) but have not been used here.

With the assumptions made above, the initial loss of rotational coher-

ence should be followed at later times (period given by 2B) by recurrences
that are clearly observable in r(t). Such recurrences have been seen in

product fluorescence (flee stilbene) in the predissociation of a stilbene-He

(92) van der Waals’ complex, where the time constant for dissociation 

,~ 80 ps! This suggests that even though the complexes apparently dis-
sociate "randomly" in time, the rotational levels of the complex evolve

adiabatically into those of the free stilbene, preserving the phase coherence.
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This could be a result of the close similarity of the rotational constants

of free stilbene (B’+C’=0.5132_+0.0008 GHz) and stilbene-He

(if+U= 0.4978+0.0019 GHz) (76) and the fact that the rotational
constants are small. As discussed in a later section, similar recurrences

have also been observed when FTS is used for molecular iodine.

STATE-TO-STATE MICROCANONICAL RATES

The concept of state-to-state rates is predicated on a master equation
approach to reactions. In this picture, all the energy levels of the reactant,

characterized by distinct electronic (nr), vibrational (vr), and rotational

quantum numbers, have distinct microscopic rates for dissociation into

product quantum states (np, vp, J~):

R(nr, vr, Jr) ~ P(np, vp, 

The rate constants k(n, vr, J~; np, vp, Jp; b) may depend on the reactant and

product quantum numbers, as well as some parameter, b, describing their
relative motion. These ideas are applicable to both unimolecular and

bimolecular reactions.

In the formulation of statistical theories of reaction rates, the micro-

scopic rate constants are generally assumed to be proportional to the
number of states, AT, of the reactive system satisfying certain constraints:

k~=~. 12.

The different versions of statistical theories (25-31) [RRKM and its vari-
ational modification for flexible states, phase space theory (PST), the

statistical adiabatic channel model (SACM), the separate statistical en-

semble (SSE)] differ in the details of the constraints assumed. We do not
attempt a review of the theories here and refer the interested reader to

several textbooks (93, 94), reviews (2, 3, 24, 95-97), and the original articles
(25-31) on these topics.

In comparing experimental results with some theoretical model, one of

course needs to know the observables of the experiment. Generally, the

reagent and product states can be specified only as a distribution of the

complete set of variables {nr, v~, Jr; np, vp, Jp; b}, and the experimental
rates should be compared with an average of theoretical rates over this

distribution. A few simple examples will help to illustrate this point; we

restrict our attention to unimolecular reactions, although the examples

can be extended to include all reactions. The simplest one is that of a
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thermal dissociation (or isomerization) in which the experimental variable

is the temperature. The first constraint involves a particular molecular
configuration with one less degree of freedom than the reactants, the so-

called "transition-state." An RRKM formulation then assumes that the

microscopic rate constants depend only on the available energy and total

angular momentum. Averaging Eq. 12 over all possible combinations of

reagent quantum states with Boltzmann statistics, one obtains the standard

transition-state theory rate expression.

The most rigorous experimental tests of the rate theories will be achieved

when the initial and final states are precisely specified, since then the effects

of averaging are minimized. To achieve this, we have coupled supersonic

beam expansions and transform-limited ultrashort laser pulses to define
essentially microcanonical ensembles characterized by their energy and

angular momentum. Rates measured as a function of energy provide an

experimental basis for rigorous tests of statistical microcanonical rate

theories. Two points pertaining to these measurements should be borne in

mind. First, a simple kinetic argument shows that even if the reagent

quantum numbers were uniquely determined by the excitation process, the

rate constant for the loss of population in this state would be given by the

sum of the microscopic rate constants connecting it to all possible product

states:

kobs(l~l,,l~,,J,.) = ~ k(n,,v,,J~;np, Vp, Jp;b). 13.
{np,vp.Jp;b}

In this idealized case, the decay of the initial state and the buildup of

population in any of the product states is purely single exponential, with
the same time constant, k~. Within the limits of this master equation-

like approach, the state-to-state rate constant can be obtained as the

product of the asymptotic, relative probability of forming products with
a particular combination of quantum numbers and this rate constant, kobs.

Inasmuch as the experimental conditions only specify the energy level

and not the individual quantum states, the temporal behavior of the initial

state, S,(t), is a sum of single exponential transients weighted by the

probabilities of creating and detecting each {n,, v,, J,}:

S~(t)= peX(nr, Vr , Jr )pdet(nr, Vr , Jr )’exp[--kobs(nr, Vr , Jr ]. 14.
{~,,~,,~,}

The corresponding expression for the signal when a product state is being
monitored is also a sum, with Pdet(n,, Vr, Jr) being replaced by the prob-

ability for detecting the final state and the exponential decay replaced by
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34 KHUNDKAR & ZEWAIL

a kinetically weighted buildup term:

~ k(nr, vr, Jr; np, Vp, Jp; b)

s,,(t)= 15.
{n,,Vr,Jr} kobs

For a purely microcanonical initial state, i.e. a system whose energy and

angular momentum are uniquely determined, a statistical reaction will

result in identical temporal evolution in all product channels and a random
distribution of survival probabilities (98) (single exponential decays). 

single molecular eigenstate is excited, one will also see the same behavior.

Restrictions in phase space or incomplete (in a spatial sense) redistribution
may result in nonexponential behavior, depending on hoW the system is

prepared. For example, consider the case where the reagent phase space
is divided into two noncommunicating parts, A1 and A2, the first leading

to product B~ only and A2 yielding a different product quantum state BE

only. If the exponential rate constants from A 1 and A 2 are substantially
different, the population of reactants (A ~ + A 2) will show a biexponential

decay, while B~ and Ba will show exponential buildup with different charac-

teristic constants. Finally, it should be emphasized that if a coherent

preparation of eigenstates is made, then an initial rapid redistribution

(dephasing) followed by the decay of eigenstates will be observed.

As a concrete, illustrative example we discuss the photodissociation of
nitrosyl cyanide (NCNO) into the diatomic radicals NO and CN:

NCNO ~ CN + NO..

This molecule has a low-lying excitedsinglet electronic state that is heavily

mixed, presumably with the ground state, as evidenced by the excitation
and fluorescence spectra. In a series of state-of-the-art experiments, Wittig

and Reisler have obtained the complete nascent internal state distribution

of the products of the visible photolysis of the weak (17085 cm-1) central
C-N bond were measured for excess energies up to 5000 cm-1 above

threshold (99-102). The rotational state distributions for both CN and
NO were found to be almost exactly as predicted by phase space theory

(PST). The observed relative populations in the two spin-orbit states 
NO were found to be different from expectations based on PST; recent

correlated Doppler spectroscopy of the fragments suggests that a plane of
symmetry may be preserved during dissociation.

We have measured (103) rates of dissociation near threshold (5-600
cm-~) from jet-cooled NCNO (Figure 8) and found them to increase
generally with excess energy. Product buildup in different rotational states

of the CN fragment for a fixed excitation energy was independent of the
character of the final state if the initial state was internally cold. The
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Microcanonical state-to-state rates for the reaction of NCNO. The upper panel

shows the rates as a function of energy. In the lower panel (right), logarithms of the

experimental rates (+) are compared with variational RRKM calculations for two different

surfaces (squares and open circles). The lower left is a comparison of experiments with

quantum PST calculations that show the large discrepancy above threshold. Note the features

in kMc(E) (see text and 103, 107).

exponential time-constant for loss of NCNO, measured by using a UV

photon to promote the dissociating system to a higher electronic state that

formed electronically excited CN fragments, was identical to the lifetime

measured in the buildup of fragments. This has helped us to separate the
dynamics in terms of IVR and bond-breakage. The barrier to dissociation

on the triplet surface (104, 105) has been calculated to be much higher

than the energies considered here. Accordingly, the triplet state is assumed

to play a minor role.
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The excess energy dependence of the rates shows large deviations from

Phase Space Theory, particularly for energies significantly higher than

threshold. It also shows some unusual features: a change to smaller

increases with energy in the range of 200-350 cm-1, and a weak local

maximum at ,-, 320 cm 1. The trends of k(E) vs E cannot be explained
quantitatively by PST, which was used successfully to model the product

state distributions at these energies. The variational RRKM method .can

be used to get results that are in better agreement with our experimental

rates (107). In contrast to a quantum PST calculation, the variational

RRKM (and the classical PST) calculations circumvent the problem 

determining the proper electronic degeneracy by the choice of the adiabatic

potential surface on which the reaction occurs. The results suggest the

change in the position of the effective transition-state along the reaction

coordinate as a function of energy. The importance of rotations on reaction

rates has been shown by Troe (106), but SACM has not been applied 

this reaction yet.

The differences between trends in the measured and calculated rates

could be the result of a poor choice of the potential energy surface. The

features in the excess energy dependence mentioned above, however, may

suggest the possibility of incomplete energy redistribution in NCNO at
these energies. Other indications that these subtleties may be signatures of

the coherent excitation process or dynamics of energy flow include sharp,

well-defined resonance absorption features in the photofragment yield

spectrum and the nonstatistical distribution of products in the different

spin-orbit states of NO.
Overtone-initiated dissociation in a collisionless gas (108-115) provides

a case in which the effects of vibrational redistribution on dissociation

rates can be studied on the ground electronic surface. Rates estimated
from linewidth studies on peroxides and product state distributions (PSD)

have been compared favorably with calculations (111-115) based on the
SACM theory by Troe and Crim. Direct time-resolved measurements on

the dissociation of hydrogen peroxide (116)

HOOH(voH = 5) ~ HO+OH

in a bulb at room temperature showed nonexponential buildup of frag-

ments and a strong dependence on the excess energy and the fragment

rotational state being monitored. The observed trends could be quali-
tatively explained by rates estimated from PST and a distribution of

energies and angular momenta in the ensemble; this underscores the need

for measuring microcanonical rates for testing rate theories. The width
corresponding to these measured rates has no relationship to the apparent
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spectral bandwidth, which was shown to be inhomogeneously broadened

(l 11-116).

Product state distributions for the near UV photolysis of ketene (117,

118)

H2C = C = O -~ CH2+CO

have also been found to be consistent with PST. Microcanonical rates for

this reaction have been measured (119) over a much larger range of excess

energies than the previous example of NCNO (Figure 9). In this case

as well, PST greatly overestimates rates; the variational RRKM theory

calculations (120) (assuming a potential surface) show a dramatic improve-

ment over the PST model and are in good agreement with the overall trend

of experimental results. No SACM calculations are available yet.

In the UV (266-308 nm) photolysis of 1,2-diiodotetrafluoroethane, 
sequential bond fission mechanism was identified 021,122):

C2F4I2 "-~ C2F41 + I (2p1/2, 2p3/2) (primary)

C2F4I "-~ C2F4+ I (2p3/2) (secondary)

In the first step, I atoms are formed in a very short time (< 1 ps), and

the radical C2F41 is formed with enough internal energy to dissociate

spontaneously. For high photolysis energies (266 nm), I atoms are formed

predominantly in the excited spin-orbit state whereas only ground state I

atoms are formed in the second step. The buildups in the two different

product channels are drastically different (Figure 10). This second step

12

11

10

7

1000 200o 3000 400O 5000 600O

Excess Energy (cm-l)

FixTure 9 Microcanonical state-to-state rates as a function of excess energy in the reaction

of ketene to carbon monoxide and methylene. The variational RRKM treatment agrees well

with the data, in contrast to standard RRKM or PST rates (see text and 119, 120).
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shows a biexponential buildup due to the distribution of internal energies

resulting from the first step. The slow component changes from ~ 30 ps

to ~ 120 ps when the photolysis wavelength is increased, a result of less

energy being channeled into radical internal states.

In this group, several other reactions have been studied: phenol- and p-

cresol-benzene complexes (123), stilbene-He(Ne, Ar) complexes (124, 

isomerization of trans-stilbene (126), proton transfer studies in methyl

salicylate (127), and intramolecular charge transfer reactions (128). Other
groups have also studied the predissociation of tetrazine-Ar in both the

excited state (129) and the ground state (130), and dimers of NO in 

ground state (131). The topic of predissociation dynamics as obtained

from high resolution studies has been reviewed recently (132, 133) and 

not covered here.

FTS AND TRANSITION-STATE DYNAMICS IN
REAL-TIME

The precise shape of the multidimensional potential energy surface is

critical to our understanding of chemical reaction dynamics. Until recently,

direct spectroscopic studies were used to explore only a small region

around the stable configurations but not including transitory species--

transition state species--that correspond to nonequilibrium configura-
tions that are neither reactants nor products. The unique "critical com-

plex" of transition state, activated complex, or absolute rate theory, is one

of many such nonequilibrium configurations. Major efforts have been

focused on advancing transition-state spectroscopy (for reviews see 32-34).

Emission, scattering, absorption, CARS, and electron photodetachment

methods have been developed to probe nonequilibrium regions of potential

energy surfaces (13~-139).
In recent years, it has become possible to study the dynamics of transi-

tion states in real-time by using femtosecond transition-state spectroscopy

(FTS) (32-34, 140-144). The duration of the pulses is generally shorter

than the "lifetime" of the transition states, and this allows one to monitor
the evolution from reagents to products with ~ 106-fold greater sensitivity.

The concepts involved in FTS have been discussed elsewhere (32-34, 140-

144), and the idea is simple. Long-lived products have narrow spectro-

scopic linewidths, and in measuring the buildup of population in product

states spectroscopically, one would normally tune the frequency of the
laser to the peak of a resonance in its absorption spectrum. The observed

temporal behavior is a monotonic increase in signal. If the laser is tuned off-

resonance, those transition-state species whose energy levels are perturbed

relative to the products such that their transition energy is now resonant
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with the probe frequency, will be preferentially excited. The temporal

behavior in this case will exhibit an initial increase in signal, followed by

a drop and ultimate leveling-off at some value lower than the maximum.

The ratio of the amplitude at very long time to the maximum signal depends

on the amount of detuning. Thus, these transients bear the signature of

the interaction potential and provide a means of selectively observing

perturbed products or transition-state species. Basically, the ultrashort

pulse "opens" a window on the potential surface and the FTS data can be

inverted to deduce the potential as prescribed in (145) for simple reactions.

A simple classical description of FTS applied to bond fission has been

given (146). For illustration, we consider a pair of one-dimensional poten-

tial energy curves, one on which the initially prepared state evolves and

the other that of an electronic excited state of one of the products which

is being monitored (Figure 11). The evolution is simply the classical motion

of particle (reduced mass m) on potential VI. If E is the initial energy, 

is the position at zero time and VI(Ro) = E, then by elementary Newtonian

mechanics:

R(t) = Ro+ {E-- V~(R(~c))} 16.

The energy of the optical transition at time t is given by V2[R(t)] -- VI[R(t)].

These equations can be analytically solved for some cases such as: (a) when

V~(R) is an exponential function of R and (b) when it is an inverse square

function of R. The exact form of the observed transient behavior will

depend on the extent ofdetuning (i.e. probe wavelength), its spectral width,

and of course the intrinsic molecular dynamics. Some typical results are

shown in Figure 12.

For the case of a repulsive potential, the system continues to move

indefinitely. Since the transition from reactants to products is continuous

and does not occur randomly in time, a reaction rate constant cannot be

defined. On the other hand, a phenomenological reaction time, Zd, anal-

ogous in spirit to the concept of time-delay in scattering studies, can be
defined. Because the pulse opens a window of finite width on the PES, the

exact definition of bond-breaking time can be related to this window and

characteristic of the PES; this is discussed in greater detail in Refs. (140-

146). From a practical point of view, the bond may be considered broken

when the window no longer distinguishes between transition-states and
free products, within the limit of the uncertainty principle.

We illustrate these concepts with two examples, one involving the direct

breakage of a bond (repulsive PES) and the other involving a nonadiabatic

dissociation due to the avoided crossing of covalent and ionic potential
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curves. Figure 12 shows experimental transients (140-144) obtained with

different probe wavelengths for the dissociation of ICN:

ICN -~ [I-.-CN] ~* -~ CN+ I(ZP3/2).

Although both spin-orbit states of I are known to be formed in this

reaction, the photolysis energy in these FTS experiments is not sufficient

for dissociation into the spin-orbit excited (2P1/2) channel. The measure-

ment of the system response function is an important part of the experi-

ment, since pulse broadening in transmission through dispersive media

can be a major source of error in pump-probe transients with ultrashort

pulses. In addition, one can determine the initial time (t = 0) accurately.

This measurement was made by monitoring the photo-ion current obtained

from the [1 + l] UV photoionization of a standard compound (N, N-

diethylaniline) in situ.

The classical mechanical model of the dynamics describes the results

fairly well (142, 143, 146). Quantum calculations using Heller’s wave-packet

method (147) have been performed by Williams &Imre (148); trajectory
calculations by Benjamin & Wilson have also been reported (149). They

are both in agreement with experimental results. The effect of rotations
was considered by Metiu’s (150) and by Heller’s groups (131) and by 

of us (85). Mukamel (152) has formally shown the effects of quantum

coherence and dephasing, and his results are also in accord with experi-
ments. Shapiro & Bersohn have considered the problem using the fre-

quency domain approach (153). For a related problem, Kono & Fujimura

(154) have treated wave packet dynamics and Yamashita & Morokuma

(155) have computed trajectories on dressed PES, with an interesting new

focus.

In the dissociation of sodium iodide (156-158), direct observation 
photofragment trapping resonances were made:

NaI -~ [Na... I] ** ~ Na+l.

When the probe is resonant with "free" Na atomic transitions, the buildup

consists of a periodic sequence of step functions; when it is tuned off-

resonance, an oscillatory signal is seen (Figure 13). The period of these
oscillations reflects the nature of the potential that has been studied by

other methods (see 156 for details). In this system, there are covalent and

ionic surfaces that cross at ~ 7 ,~. The covalent surface leads to free atoms

and the other leads to ionic products. The observed resonances are the

quantum states of the heavily distorted, mixed ionic and covalent potential

well. The decay of the initial state and the buildup of free products in ,-~ 10

ps yields the interaction (coupling strength) between the two surfaces (156-
158). Note also that the formation of products is not random in time, as
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Experimental FTS: ICN

2S0 ~0 750 ~000
time delay/fl

FT5 Theory: Classical Mechanical

0.8

05

03,

0.2

o 3GO

FTS Theory: Trajectory calculations FT$ Theory: Quantum Mechanical

Probe pulse delay (fs)

Figure 12 Experimental and theoretical FTS results on ICN reaction. Top left: transient
behavior observed in the dissociation of ICN by the FTS method at different probe wave-
lengths (see Fig. 11 and Ref. 143). Top right: the predicted transient behavior from the
classical model for the dissociation of ICN 042, 143). Bottom left: time-dependent spectrum
from trajectory calculations (149). Bottom right: the results of a quantum simulation (148).
All calculations are in agreement with experiments.
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should be the case if a kinetic scheme were appropriate for this reaction,

and the effects last tens of picoseconds, i.e. the system exhibits resonance

effects! Detailed studies of these alkali halide reactions have allowed us

further to characterize the dynamics in terms of the dephasing of wave-

packets, the Landau-Zener escape probability, and the period of wave-

packet motion. The period of recurrences varies with the excitation energy

and has been related to the anharmonic interatomic potential. These results

therefore provide a direct view of the evolution of the quantum wavefunc-

tion and the potential energy (ionic/covalent) for fragment separation. 

these prototype systems, classical and semiclassical (156-161), and quan-
(urn (162-165) calculations have all reproduced the major features of 

FTS experiments.

FTS of iodine 02) (166-168) has also shown that vibrational 
rotational motion can be observed in real-time (Figure 14). The period 

the observed vibrational oscillations and the recurrences observed on a

longer timescale due to rotations have been inverted to obtain accurate

potential energy curves (168). When the system is excited to a dissociative

surface, features similar to those presented earlier for ICN are seen:

I~ --, [I... I]** ~ I+I (a)

I2 ~ [I-.. I]** -, I2 (b)

FTS studies have been recently extended (169, 170) to treat systems with

more than one degree-of-freedom:

HgI2 -~ [IHg--- I]** --, HgI+I (a)

HgI2 --r [I... Hg". I]** --* Hg+I+I (b)

In this system, the vibrational motion of the HgI fragment participates

directly in the dissociation process and the PES has a well-defined saddle

point--the symmetric coordinate is "bound" and the antisymmetric one

is repulsive (see Figure 15). As before, the pump pulse initiates the reaction
and the probe pulse excites a distribution of vibrational states of the HgI

fragment to a fluorescent, excited electronic state. The emission from this

state can be spectrally resolved and used to deduce the nascent distribution
of HgI vibrational states. With a narrow spectral window and both pump
and probe frequencies fixed, the evolution of population in these

vibrational states can be monitored in real-time. The I-Hg-I bending

motion evolves into rotations of the HgI fragment and measurements of

the time-dependent anisotropy (see section on Polarized Photofragment

Spectroscopy, above) provides a means of monitoring this degree of free-
dom as well (85, 86, 169, 170). Typical results are shown in Figure 

Detailed classical and semiclassical calculatious of FTS are in good agree-
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(a)

: ~~,#~ ~l~_,~ (b)

¯

0 2 4 6 8
Time delay/picoseconds

0.5 1.0

Cov~Jent
component

Ionic
component

Distance/nanometres

Figure 13 (Top) FTS of sodium iodide showing the photofragment trapping resonance.

The phenomenon can be visualized as the motion of a wavepacket in an anharmonic well

formed by the avoided crossing between the covalent and ionic surfaces (lower leJi), with a

small probability of forming products during each period of its motion. Results of quantum

calculations (lower right) show how the initial wavepacket splits into two parts--ionic and

covalent--each time it passes through the crossing region (see 156-158, 162, 32, 200).
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620,f310 (340)

Time Delay

Potential Energy Fuactioo of’ Iodine

Bond Distance..~

Fiyure 14 (Top) FTS transients of molecular 12: a long (time) scan showing constructive

and destructive interferences between the different states in the wavepacket. The pump

wavelength was 620 nm, the probe wavelength 310 nm and emission at 340 nm was detected.

The high frequency oscillation corresponds to the period of the wavepacket. The second

trace (shorter time range) shows the effect of changing the probe wavelength to 390 nm and
detecting at 426 nm. Bottom (left): the various schemes for FTS detection; (right) the deduced

PES from inversion of FTS data. Note the excellent agreement between these results (solid

circles) and the known PES (for details see 168).
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3 4 5 6

q (~)

.t=Ofs

-1000 an-t

Figure 15 The PES and wavepacket motion for the reaction of IHgI on the excited surface.

FTS transients are shown in Figure 7. The upper figure shows contours of the potential

energy as a function of the symmetric and antisymmetric stretching coordinates (169, 170).

The lower figure shows a quantum calculation of a wavepaeket at 0 fs and at 600 fs for this
reaction. The latter indicates how the fragments separate into products in the HgI+I

channels. The available energy in these simulations was 1000 era-1 below dissociation into

Hg+2I. Recent calculations have provided both the PSD and FTS of the reaction (M.

Gruebele, G. Roberts, A. H. Zewail, Philos. Trans. R. Soc. London, Ser. ,4, in press).

ment with experimental results (169, 170). Quantum calculations in 2-D

have also been performed in this laboratory (Gruebele et al; see Figure 15)

and agreement with experiments has been used to deduce details of the
dynamics on the PES.
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Other systems under consideration are methyl iodide (171, 172) and

hydrogen peroxide (173):

CH3I -~ [CH3.-. I] ~* ~ CHa+I

HOOH -~ [HO-.- OH]s* -~ OH+OH

Preliminary studies were made with picosecond pulses and yielded the

expected results depending on detuning. FTS studies are underway.

REAL-TIME CLOCKING OF BIMOLECULAR

REACTIONS

In a photoinitiated unimolecular reaction, half-collision, the initial time is

precisely defined by the excitation pulse. An equivalent initial time for a
bimolecular reaction is the instant the two reactant species "find each

other." Although this is conceptually simple, its experimental deter-

mination is somewhat complicated. Simply using a laser to photodissociate

a precursor for one of the reactants is not sufficient, since the delay between
initiation and an encounter is random and can be very long (nanoseconds

to microseconds), depending on the concentration (partial pressure) of 

reactants.
One class of reactive molecular systems offers a rather unique oppor-

tunity to define initial time more precisely. In these systems, the precursor

and one of the reactants are prepared in a weakly bound complex. Now,

the reactive group of atoms is held close together and the reaction--the

so-called "vdW impacted bimolecular reaction"--can be initiated by a

pulse that photolyzes the precursor. This also defines the initiation of

the reaction. If the reaction is direct, i.e. potential scattering without

resonances, the buildup of products should show delay times as in the

previous case of half collisions. When intermediates are observed, the
buildup and decay should be a function of the lifetime of the intermediate.

As pointed out elsewhere (85), the vector properties of the reaction can

also be identified if polarized pulses are used.

An added advantage to studying dynamics in such a "precursor com-
plex" is that the reactants are arranged in a restricted range of possible

geometries, thus the range of impact parameters is limited. However,

the amplitude of the intermolecular vibration is large and the impact

parameters are not really narrowly restricted. For product state distri-

butions, such studies were pioneered by Soep and coworkers (174, 175)
and by Wittig and coworkers (176, 177). The Wittig group has shown that

the OH rotational distributions from the hot atom reaction initiated by

the photolysis of HBr in the BrH- ̄  ¯ OCO complex were found to be colder
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than the distributions obtained for the same reaction in a bulk gas (178-

184). The HOCO molecule is known to be bound from matrix isolation
studies 085, 186) and can exist in either a cis or a trans geometry 087).

It has been postulated as an intermediate in the hot atom reaction (Figure

16) and has also been invoked in the interpretation of kinetic data obtained

by Smith (188-190), by Golden (191), and by Benson (192). In the 

and trajectory calculations of Harding and Schatz (193, 194t).

The real-time measurements (195, 196) of the buildup of free OH radicals

from this reaction

H+CO2 --~ [HOCO]~* -~ CO+OH

initiated in the IH..- OCO precurser indicate that the reaction is of the
complex-mode type and the lifetime is relatively long, ,-~ 5 ps (Figure 16).

A simple interpretation of the rate of OH formation as the rate of HOCO

decomposition overlooks the dynamics of formation of the intermediate;
the timescale of the formation reaction appears to be on the order of ~ 1

ps, close to the resolution for these initial experiments. Since there are two

channels for the dissociation of HI associated with the two lowest spin-
orbit states of a free I atom, the kinetic energy distribution of H atoms is

likely to be bimodal, and hence two energies are available for the hot atom

reaction for each photolysis wavelength. The effects of these two channels
may be manifested in a variation of the buildup time among different

product states, as has been observed in these experiments (195, 196).

In the future, FTS experiments should reveal the passage through the

transition-state as in the half-collision studies. A great deal of work in this

area is underway, as we now can study a whole class of bimolecular

reactions with the zero-of-time precisely defined.

A new study for a different class of bimolecular reactions has just

been initiated in this group. These are intracluster reactions in which, for

example, a hydrogen atom is transferred to another molecule in the cluster.

For the case of a-naphthol-(NH3),, there is no proton transfer until > 3

(Figure 17). In clusters of water instead of ammonia, there is no proton

transfer from naphthol up to 20 water molecules (197). These studies are

for neutral species. Recent work on If(CO), clusters in the Lineberger
group (198) has shown that such "ion-molecule" reactions can be studied

in real-time.

CONCLUDING REMARKS

Over the last decade, ultrafast (femtosecond to picosecond) dynamics 
real-time has been developed and applied in a number of areas. This review

has focused on three of the major areas: (a) vibrational and rotational
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¯ I 1-NpOH(NH3) 

200 25o 300 250 400 ,~50 5o0
Mass (amu)

n=3

0.0 0.$ 1.0 1.$ 2.0

Time (nsec)

Figure 17 Bimolecular reactions in a cluster: proton transfer in 1-naphthoP(NH3)~ as a

function of cluster size. The insert is a mass spectrum showing clusters of different sizes. The

difference between the transients for n = 1 and n = 3 is due to proton transfer in the larger

cluster (see 197).

energy redistribution in polyatomics; (b) state-to-state dynamics of uni-

and bi-molecular reactions; and (c) direct observations of transition states.
Figure 18 shows the progress made and the systems studied so far.

Picosecond energy flow vibrational-energy redistribution (IVR)--has

now been observed in many molecules. Basically, three regions, depending

on energy, have been identified: no IVR, restricted IVR, and dissipative

IVR. Each region has a direct signature in real-time measurements, ranging
from the observation of vibrational quantum beats (in-phase and out-of-

phase) between few levels (at a total vibrational state density of 200-1000
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states/cm-1) to quasiexponential decays. A key feature in making the

observations is the ability to excite the vibrational levels with a coherent

pulse and to resolve the emission in frequency and in time (picoseconds).

For rotational energy redistribution (and dephasing), an initial align-

ment is created and the temporal evolution is monitored. Rephasing of

rotational motion was observed in polyatomics(!) and exploited to provide

a Doppler-free method for determining excited state rotational constants

in a number of systems. The concept of rotational energy scrambling in

polyatomic molecules is not generally correct. Indeed, as in the case of

vibrational energy redistribution, coherent (not chaotic) motion has been

observed at relatively higher energies and even in reactive systems.

Picosecond photofragment spectroscopy has been applied to a number

of elementary reactions. The time-resolution in these experiments is limited

only by the pulse-widths; hence, microcanonical state-to-state rates can be

measured directly. This advance allows us to map the microscopic dyna-
mics, and together with product state distributions, critically test theories

of unimolecular reactions, as illustrated in the text.
Femtosecond transition-state spectroscopy (FTS) has exposed transi-

tion-states of reactions in real-time. Since fragments move with a velocity
typically 1 km. s-l, FTS provides a "shutter speed" of ~0.01 /~/fs. So far,

the elementary reactions studied involve "simple" quasi-bound surfaces,

repulsive surfaces, surfaces with avoided crossings, and surfaces with two

vibrational degrees-of-freedom. These real-time techniques have been

extended to a special class of bimolecular reactions (e.g. I’-I+CO2) , and

more recently, to reactions in clusters. Femtosecond alignment experi-

ments have also been successful.

Much more will be done in the coming years both in theory and in

experiments. The general theme emerging is that the techniques and

methodology in this field are now at a stage where it is possible to study

reaction dynamics, from reagents to products (32, 33, 199-202), in real-

time, from the picosecond to the femtosecond time scale ("femto-
chemistry"). With complementary energy (state) resolved techniques, 

should now be able to obtain the fundamentals of the dynamics: the

ultrashort time dynamics of transition states, the state-to-state rates,

and the quantum state distributions in products. We hope that this

article will stimulate many more studies, as indeed the number of new

questions continues to grow--a healthy sign!
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