
ULTRAFAST OPTICAL SWITCHING

IN THREE-DIMENSIONAL

PHOTONIC CRYSTALS

Ultrasnel optisch schakelen

in driedimensionale fotonische kristallen





ULTRAFAST OPTICAL SWITCHING

IN THREE - DIMENSIONAL

PHOTONIC CRYSTALS

Ultrasnel optisch schakelen

in driedimensionale fotonische kristallen

(met een samenvatting in het Nederlands)

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN

DE UNIVERSITEIT UTRECHT OP GEZAG VAN DE RECTOR

MAGNIFICUS, PROF. DR. W. H. GISPEN, INGEVOLGE

HET BESLUIT VAN HET COLLEGE VOOR PROMOTIES

IN HET OPENBAAR TE VERDEDIGEN OP MAANDAG

6 SEPTEMBER 2004 DES MIDDAGS TE 14.30 UUR

DOOR

Dmitry Anatolievich Mazurenko

geboren op 26 Januari 1974 te Leningrad, USSR



PROMOTOR: PROF. DR. J. I. DIJKHUIS

FACULTEIT DER NATUUR- EN STERRENKUNDE

UNIVERSITEIT UTRECHT



CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Mazurenko, Dmitry Anatolievich

ULTRAFAST OPTICAL SWITCHING
IN THREE-DIMENSIONAL PHOTONIC CRYSTALS
Dmitry Anatolievich Mazurenko − Utrecht: Universiteit Utrecht,
Faculteit der Natuur- en Sterrenkunde
Thesis Universiteit Utrecht − with a summary in Dutch
ISBN 090-393-3772-1





C

1 Introduction 11

1.1 Photonic crystals: novel optical phenomena and applications . . . 11
1.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Fabrication methods . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Artificial opals . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Tunable photonic crystals . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 19
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Experimental details 27

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Experimental setup with high temporal resolution . . . . . . . . . 28

2.2.1 Experimental setup with high repetition rate . . . . . . . . 28
2.2.2 Double modulation technique . . . . . . . . . . . . . . . 30
2.2.3 Linear reflection . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Experimental setup with low repetition rate . . . . . . . . . . . . 32
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Optical switching in opal-Si 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Ultrafast dynamics in bulk silicon . . . . . . . . . . . . . . . . . 36
3.3 Sample and experimental details . . . . . . . . . . . . . . . . . . 39
3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Linear reflectance . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Transient changes in reflectance . . . . . . . . . . . . . . 41

3.5 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7



8 CONTENTS

3.7 Experiments with high excitation power density . . . . . . . . . . 49
3.7.1 Linear optical properties of the second-order photonic stop

band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7.2 Optical switching at high optical excitation . . . . . . . . 50

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Shifting of a stop-band induced by an ultrafast phase transition in

vanadium dioxide 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Ultrafast phase transitions in solids . . . . . . . . . . . . . . . . . 54
4.3 Phase transition in VO2 . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Opal-VO2 and experimental details . . . . . . . . . . . . . . . . . 57
4.5 Ultrafast band-shifting . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Linear optical properties . . . . . . . . . . . . . . . . . . 59
4.5.2 Nonlinear optical properties . . . . . . . . . . . . . . . . 60

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Linear optical properties of a core-shell silica-gold photonic crystal 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Sample and experimental details . . . . . . . . . . . . . . . . . . 72
5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Reflection from a single hexagonal layer of gold-shell par-
ticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.2 Reflection from a multi-layer gold-shell photonic crystal . 76
5.4 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.1 Layered KKR method . . . . . . . . . . . . . . . . . . . 78
5.4.2 Computation results . . . . . . . . . . . . . . . . . . . . 82

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Ultrafast dynamics in a silica-gold core-shell photonic crystal 91

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.1 Time-resolved detection of the reflectivity spectra . . . . . 92



CONTENTS 9

6.2.2 High-selectivity pump-probe detection at a specific wave-
length . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Ultrafast response of the gold-shell photonic crystal . . . . . . . . 94
6.4 Nature of the ultrafast changes in reflectivity . . . . . . . . . . . . 95
6.5 Calculation of the transient reflectivity . . . . . . . . . . . . . . . 96

6.5.1 Ultrafast dynamics in gold . . . . . . . . . . . . . . . . . 96
6.5.2 Two-temperature model . . . . . . . . . . . . . . . . . . 98
6.5.3 Calculation of the transient reflectivity . . . . . . . . . . . 100
6.5.4 Temperature dependence of the dielectric constant of gold 102
6.5.5 Comparison of the experiment and calculations results . . 103

6.6 Irreversible changes following excitation above the threshold limit 105
6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Coherent vibrations of submicron gold shells 109

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Coherent excitation of acoustic modes . . . . . . . . . . . . . . . 110
7.3 Interpretation of the experimental results . . . . . . . . . . . . . . 112
7.4 Lamb modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.4.1 Eigenfrequencies of a solid sphere . . . . . . . . . . . . . 114
7.4.2 Eigenfrequencies of a spherical shell . . . . . . . . . . . 115

7.5 Ringing in a hollow sphere: selection rules. . . . . . . . . . . . . 117
7.6 Nature of the optical response . . . . . . . . . . . . . . . . . . . 120
7.7 Origin of the damping of acoustic vibrations . . . . . . . . . . . . 122
7.8 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . 123
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Samenvatting 125

Acknowledgements 129

List of Publications and Conference Visits 133

Curriculum Vitae 135





C 1

I

1.1 Photonic crystals: novel optical phenomena and ap-

plications

Structures with a periodically modulated index of refraction, so-called photonic

crystals, have unusual optical properties. Multiple interference of light on a pe-
riodic lattice leads to a photonic stop band (PSB) and anomalous dispersion [1]
because light with a wavelength close to the period of modulation cannot prop-
agate in certain directions [2]. Photonic structures can be found in nature. For
example, the beautiful coloration of the Morpho butterfly’s wings is caused by
a periodic submicron structure within the scale [3, 4]. Of similar origin is the
spectacular iridescence of a spine from the sea mouse that produces bright colors
with changing the angle of observation [5]. Another famous example of a natu-
ral photonic crystal is natural opal [6] with the shining optical properties that are
described below.

Photonic crystals are special due to their fundamental optical properties and
allow us to test unusual regimes of light propagation. Recent experimental obser-
vations demonstrate among others extremely large group-velocity dispersion [7],
extraordinary angle-sensitive light propagation [8], slowing down of the pulse of
light [9], anomalous coherent backscattering of light [10], optical gap soliton for-
mation in nonlinear photonic crystals [11, 12], anomalously high transmission
through an array of sub-wavelength holes in a metal film [13], and highly direc-
tional beaming of light propagating through a hole in a periodically corrugated
metallic film [14].

Another quite unique fundamental optical property may be realized in so-
called left-handed materials, where both the effective permittivity and effective
permeability are negative. It was proposed that such left-handed materials may
be created on the basis of a so-called metallo-dielectric photonic crystal [15, 16].
Left-handed materials were introduced by Veselago [17] but were already dis-

11



12 Chapter 1 Introduction

cussed earlier by Schuster [18] and Sivukhin [19]. As was pointed out by these
authors, the propagation of electromagnetic waves in such kind of materials is pos-
sible, but the wavevector, the electric field vector, and magnetic field vector form
a left-handed set instead of a right-handed one, which is the case in usual mate-
rials. As a result, the Pointing vector and wavevector point in opposite directions
and the refractive index is negative. This implies that the electromagnetic wave
at the interface between positive and negative refractive index materials should
refract in opposite directions relative to the normal situation (negative refraction).
The phenomenon of negative refraction was recently demonstrated experimentally
[20]. However, the question of the existence of negative refraction in left-handed
materials is currently under controversial debate [21, 22]. A quarter of a century
ago Silin [23] proposed to use left-handed materials for fabricating plane-parallel
lenses that are free of abberations. Recently, Pendry [24] revealed another fasci-
nating property of these lenses, namely plane-parallel lenses with a negative re-
fractive index that surpass the limit of conventional lenses and are capable to form
an image with subwavelength resolution. This challenging idea has been recently
tested experimentally in a two-dimensional dielectric photonic crystal [20].

Less controversial potential applications of photonic crystals include ultrafast
optical switches, reconfigurable optical networks, holographic memories, low-
threshold lasers, optical computers, and novel types of harmonic generators [25,
26]. Some of them, e.g. low-threshold lasing in one- [27], two- [28], and three-
dimensional [29] photonic crystals, have already been demonstrated and others
are even commercially available at present such as dielectric mirrors and photonic
crystal fibers [30]. We finally mention that photonic structures made of tungsten
were recently proposed for enhancing a quantum efficiency of bulb lamps [31, 32].

1.2 History

The study of the photonic crystals in fact has a long history in science. Perhaps,
the first person who ever systematically studied the propagation of waves in a
periodic structure was Lord Rayleigh [33]. In 1946 Purcell [34] proposed that
spontaneous emission of atoms should be significantly altered in an optical res-
onator. His idea was developed further by Bykov [35] who suggested in 1972
to control spontaneous emission in a one-dimensional photonic crystal. His idea
can be illustrated by considering an atom placed in a one-dimensional photonic
crystal (see Fig. 1.1). Now, if a spontaneous emission frequency is chosen to fall
into the PSB of the photonic crystal, the atom will be unable to emit light in the
directions perpendicular the planes of photonic crystal simply because there are
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F 1.1 Inhibition of spontaneous emission in a photonic crystal.

no travelling electromagnetic states available to which light can escape and the
spontaneous emission rate must change. In 1987 Jablonovitch and John [36, 37]
pointed out that spontaneous emission must even vanish completely in case of a
three-dimensional (3D) photonic crystal if the frequency of the atom happens to
fall into a photonic band gap – a spectral range where light cannot propagate in
any direction. A photonic crystal with a complete band gap in the microwave
range was created already in 1991. The structure was fabricated by drilling holes
in high-refractive-index material. However, it appeared to be far from trivial to
reach a full photonic band gap in the visible spectral range. This was achieved
only recently [38–40]. The reason is that one needs a sufficiently high refractive
index contrast between the composed materials of a photonic crystal. For ex-
ample, a close-packed face-centered-cubic (fcc) lattice requires a refractive index
contrast higher than 2.8 (Refs. [41, 42]). Recently, control over light emission in
3D photonic crystals was demonstrated experimentally [43–45].

1.3 Fabrication methods

There exist a large number of methods to fabricate 3D photonic crystals with a
lattice parameter of the order of a wavelength of visible light. Here we empha-
size the three most common ones: holographic microfabrication, “layer-by-layer”
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  Focused

laser beams Light or ion fluence  Colloids in solution

(a) (c)(b)

F 1.2 Fabrication of three-dimensional photonic crystals. (a) Holographic mi-
crolithography: photonic structure is created by interference of laser beams in photo-
sensitive material and subsequent etching. (b) ”Layer-by-layer” fabrication: each layer is
created by light or ion beam and suitable mask. (c) Self-assembly of colloids in solution

fabrication, and self-assembly (see Fig. 1.2). The most precise and straightfor-
ward method is a femtosecond laser holographic microfabrication [46–48]. The
idea of this method is shown in Fig. 1.2(a). Here, the photonic crystal lattice is
constructed by a volume interference of several femtosecond laser beams in a pho-
tosensitive material that is subsequently etched. However, disadvantages of this
method include the limited number of materials that can be used for the laser etch-
ing and the expensive and rather complicated setup. Unfortunately, most of those
materials, have a low refractive index that decreases the possibilities to realize a
complete photonic band gap.

In contrast, the direct “layer-by-layer” fabrication method [49, 50] is flexible
in relation to the choice of materials and allow for the manufacturing of photonic
structures with a very complicated topology [see Fig. 1.2(b)]. The disadvantage of
this approach is the time needed for fabrication of reasonably thick 3D photonic
structure, and the costs.

Self-assembly of colloidal spheres [38, 39, 51] seems nowadays the most
promising way to create 3D photonic crystals with thicknesses of up to hundreds
of microns and higher [see Fig. 1.2(c)]. It is cheap and much simpler than the
other approaches. The main disadvantage of this method is that it is hard to avoid
the appearance of considerable amounts of lattice defects during the fabrication,
which may destroy the photonic band gap [52]. Recently, fabrication of ordered
arrays of ice [53], titania [54], zinc sulfide [55, 56], gold core-shell particles [57],
and other 3D photonic crystals were reported. In this thesis we will exclusively
use artificial opals fabricated by self-assembly.
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1.3.1 Artificial opals

Opal, a precious stone with a beautiful coloration, is probably the most famous
natural photonic crystal [6]. An opal usually consists of an ordered close-packed
fcc array of monodisperse silica spheres with a diameter of the order of hundreds
of nanometers [58]. As a result, the refractive index is modulated in space on the
scale of the wavelength of light. The spectral position of the first-order PSB in
such an opal can be roughly estimated from Bragg’s law,

λ = 2d
√

ε̄ − sin2θ, (1.1)

where λ is the wavelength of light in vacuum, d the lattice period, θ angle of
incident light with respect to the plane of opal, ε̄ the average-volume dielectric
constant of the opal, defined as the volume integral over the unit cell,

ε̄ =
1
V

∫

V

ε (r) d3r. (1.2)

More accurate formula can be found in a work of Moroz [59].
The spectral width of the PSB is dependent on refractive index contrast and

can be changed by filling the voids of opal with suitable substances [60]. Modern
technology allows to fill opal voids with various dielectrics [61], semiconductors
[38, 60], liquid crystals [62], and metals [63]. As an example, Fig. 1.3 shows a
transmission electron microscopy (TEM) image of opal partly filled with silicon.

1.4 Tunable photonic crystals

One of the most promising ideas is to use photonic crystal as the base material
for integrated optical circuits. The speed of these circuits are expected to sur-
pass that of traditional electronic devices because of the high velocity of the elec-
tromagnetic signals comparing with that of electrons. Since the key function in
circuits is switching, it is desirable to fabricate a photonic crystal with tunable
optical properties. The idea is to rapidly change the energy position of the PSB
of the photonic crystal and switch the channel for light propagation in specific
directions, by applying an external impact. To achieve all-optical switching in
photonic crystals, precise knowledge and control of the ultrafast non-linear prop-
erties is a prerequisite. In this thesis we analyze the ultrafast non-linear properties
of three types of 3D photonic materials, one based on opal filled with silicon, one
on opal filled with vanadium dioxide, and one on an array of close-packed mul-
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F 1.3 TEM image of an annealed opal-Si sample taken in diffraction contrast
mode. Picture is copied from Ref. [64]

tishells composed of a spherical silica core surrounded by a thin gold shell and
silica outer shell.

The control over the PSB can be realized via the modification of the effective
complex dielectric constant of the photonic crystal, ε̃ = ε̃′+iε̃′′. Here, one can dis-
tinguish effects on the modulation of ε̃′ that shifts the spectral position of the PSB,
and ones that increase ε̃′′ that suppresses interference of light inside the photonic
crystal and diminishes the interference effects in the PSB. The dynamic shift of
the spectral location of a PSB was first analyzed for the case of a one-dimensional
photonic crystal [25]. As noted above, in one-dimensional photonic crystals, light
propagation is only frustrated in limited directions and changes reached in the
photonic density of states are small. Complete dynamic control over the pho-
tonic density of states is only possible in 3D photonic structures [36]. Shifting of
the photonic bands can be achieved by applying external electric fields, magnetic
fields, temperature variation, pressure, or via optical excitation.

(I) Band-tuning by an external electric field. To use external electric fields
for tuning PSBs was proposed by Tran [65] in 1995. The tuning can be achieved
via the Kerr [65] and Pockels [66] non-linearity. However, to achieve substantial
band shifts, this method requires rather high electric fields that are not easy to
realize. An important practical scheme that exploits the Kerr nonlinearity was de-
vised by Busch and John [67]. They suggested to fill the void spaces of an opal by



1.4 Tunable photonic crystals 17

optically birefringent nematic liquid crystals, whose optical properties are known
to be quite sensitive to the presence of external electric fields. This idea resulted
in extensive experimental investigations and practical implementation followed a
few years later [68–71]. An alternative method is to use ferroelectric materials,
which was recently demonstrated by Li and co-authors for a ferroelectric inverse
opal [72].

(II) Band-tuning by an external magnetic field. Magnetic photonic crystals
[73] allow for several methods of PSB control by external magnetic fields. One
of them, band-tuning via field dependence of the permeability was discussed in a
recent review [74]. A quite different magnetic mechanism has been demonstrated
by Saado and co-workers [75] in a 3D photonic crystal composed of metal coated
disk-shaped magnetic particles floating at a liquid-air interface. They showed that
the lattice constant of an ordered array of these magnetic particles can be con-
trolled by an external magnetic field. Finally, Xu and co-authors pointed out [76]
that an external magnetic field can tune the dielectric constant of semiconductor
photonic crystals via the magneto-optic effect.

(III) Band-tuning by a temperature variation. Band tuning in three-dimen-
sional photonic crystals via the ambient temperature was first demonstrated in
liquid crystal materials [62, 77, 78]. Large band shifts were also shown in opals
filled with a suitable material exhibiting a phase transition in a convenient temper-
ature range. When temperature reaches the transition point, the effective refrac-
tive index of the photonic crystal abruptly changes and a PSB shifts. Recently,
PSB shifting, assisted by a ferroelectric phase transitions, has been experimentally
demonstrated [79]. However, the largest shift of a PSB in 3D photonic crystals,
was observed in a photonic crystal built from an opal filled with VO2 [80] that ex-
hibits a semiconductor-metal phase transition. At the phase transition, the change
in the effective refractive index of the opal results in PSB shifts of 40-nm [81].
The opal-VO2 structure can even be inverted by etching away the silica spheres,
which further increases the feasible PSB shift.

(IV) Band-tuning by an elastic strain. Strain-induced band-tuning in a
piezoelectric photonic crystal was analyzed by Kim and Gopalan [82]. In their
approach a field driven strain distorts the symmetry of the photonic crystal from a
regular hexagonal to a quasihexagonal lattice resulting in a band shift. Recently,
tuning the photonic band by stretching was studied for the particular case of an in-
verted fcc opal structure [83]. The first experimental evidence of a strain-induced
change in a photonic band structure was reported by Yoshino and co-workers [84].
They observed a reversible red shift of a PSB along the [1 1 1] direction of a poly-
mer opal under static mechanical stress applied in the perpendicular direction.
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In contrast, a blue shift of the [1 1 1] PSB was observed for pressure applied in
the parallel direction [85]. These phenomena can be explained by elongation and
contraction of the lattice in the [1 1 1] direction depending on the directions of
the applied uniaxial stresses. However, a photonic crystal lattice is fragile and
can be easily destructed even by moderate pressures. For example, irreversible
changes in polystyrene opals were already registered at 10 MPa [86]. It is in-
teresting to note that a dynamic shift of a PSB can be induced by a propagating
strain-wave. Recently, Reed and co-authors [87] pointed out that a shock wave
moving through a photonic crystal may even result in a very interesting and in-
triguing optical phenomenon: the reversed Doppler effect. However, up to now,
fast strain-induced shift of a photonic gap has not been demonstrated yet and
remains a challenge for experimentalists. In Chapter 7, we show that coherently
excited standing strain-waves induce large changes in the reflectivity of a 3D core-
shell metallo-dielectric photonic crystal suggesting that the strain-wave induced
switching is feasible. However, the rate of the strain-wave-induced shifting is ob-
viously limited by the oscillation frequency of the propagated strain-waves with a
wavelength of the order of the photonic crystal lattice parameter. In case of PSB’s
in the visible spectral range, the switching time will thus be on the order of tens
picoseconds or longer.

Unfortunately, tuning a PSB by an external electric field, a magnetic field,
temperature variations, or dynamical tensions takes place on an unpractically long
time scales. The by far fastest way of band-tuning would be by femtosecond
excitation.

(V) Band-tuning by optical excitation. The dynamic shift of the PSB in-
duced by the action of the optical nonlinearity was first analyzed by Scalora and
co-workers in one-dimensional photonic crystals [25], the theory was extended
for the case of two [88] and three dimensions [89, 90]. The first optically induced
switching in a 3D photonic crystal was observed in crystalline colloidal arrays
of dyed poly-spheres on the nanosecond timescale [91]. Later, distinct changes
in reflectivity induced by nanosecond optical pulses where reported in opals filled
with vanadium dioxide [92] (VO2). In this experiment the induced shift of the PSB
was associated with a heat-induced phase transition of the VO2. However, band-
shifting via optical free-carrier excitation was predicted to be much faster [90].
Recently, optical nonlinearity on a picosecond time scale was registered both in
an opal filled with carbon nanotubes [93] and in an array of ordered polystyrene
spheres [94]. At the same time, the required conditions for efficient band-shifting
are conflicting. On the one hand, one has to optimize the PSB properties, imply-
ing that the photonic crystal should be non-absorbing. On the other hand, one



1.5 Outline of this thesis 19

needs to create free-carriers via optical absorption. One solution to this problem
is to use two-photon absorption in transparent materials and another is to choose
weakly absorbing materials for free-carrier excitation. These ideas were imple-
mented for ultrafast band-tuning in one- [95] and two-dimensional [96] silicon
structures and in two-dimensional AlGaAs photonic crystals [97]. In silicon pho-
tonic crystals free carriers were excited via infrared two-photon absorption, while
in AlGaAs photonic crystals, carriers were excited by weak absorption at the edge
of the electronic bandgap of AlGaAs.

1.5 Outline of this thesis

This thesis explores the potential of ultrafast control over the propagation of light
in three-dimensional photonic crystals by ultrashort optical pulses. In our ap-
proach, the tuning of PSBs is triggered by femtosecond optical pulses that rapidly
modify the mean dielectric constant of the photonic crystal. As a result, reflectiv-
ity and transmission of the photonic crystal change with a speed and to a degree
depending on the duration and power of an optical excitation and the materials that
form the photonic crystal. In this thesis we analyze various schemes for all-optical
switching. In opal-Si composites, the optical nonlinearity is induced by photoex-
cited free carriers (Chapter 3), in the opal-VO2 composites by an optically induced
phase transition of vanadium dioxide (Chapter 4), in a silica-gold core-shell pho-
tonic crystal by heating the free-electron gas in the gold shells (Chapter 6), and,
finally, in the same sample by impulsive mechanical expansion of the material
(Chapter 7). We show that in all demonstrated schemes (except those induced
by the mechanical expansions as discussed in Chapter 7) optical switching in 3D
photonic crystals occurs on the subpicosecond time scale. We also point out that
depending on whether the real or the imaginary part of the mean dielectric con-
stant of a photonic crystal is affected, the PSB switching occurs in quite different
fashions: In Chapter 3 and Chapter 4, we show that in case the imaginary part
increases the PSB effects weaken , while in case the real part of the dielectric con-
stant is changed the spectral position of a PSB shifts. This thesis is organized as
follows:

In Chapter 2, we describe two pump-probe setups used for our ultrafast dy-
namic optical measurements. Standard pump-probe setups are extended with two
features that are not commonly used, e.g. a phase modulation to avoid interfer-
ence between pump and probe optical pulses and increase the sensitivity, and the
possibility to separate the specular reflected beam from the surface of the pho-
tonic crystal, and the diffracted beam from the photonic crystal lattice. The latter
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procedure has not been used in earlier dynamic experiments, but turns out to be
very important to be able to study the dynamical optical properties of finite pho-
tonic crystals. The reason is that the surface specular reflection and the volume
diffracted reflection have a completely different nature and, as a consequence, re-
spond in a quite different fashion to the optical excitation.

In Chapter 3, we demonstrate ultrafast switching of the PSB in an opal-silicon
composite. In this photonic crystal the optical nonlinearity is governed by pho-
toexcited carriers and appears instantaneously with the optical excitation. The
special design of our pump-probe setup allows us to separate the contribution of
ordinary transient surface reflection from those of the transient Bragg reflectivity
originating from the volume of the photonic crystal. By analyzing the changes
in the Bragg reflection at different wavelengths, we arrive to the conclusion that
the changes in PSB spectra are governed by photoinduced absorption, i.e. by the
transient modification of the imaginary part of the effective dielectric constant of
the opal-silica photonic crystal. The obtained experimental results are compared
with calculations made in the framework of “two-band mixing” theory.

In Chapter 4, we show the second type of switching of a PSB, namely in opal
filled with vanadium dioxide. In this sample the optical switching is triggered by
an optically induced ultrafast phase transition in vanadium dioxide that produces
a shift of the spectral position of a PSB on the subpicosecond time scale. In
contrast to the experiment of Chapter 3, optical excitation leads to changes of
predominantly the real part of the effective dielectric constant of the photonic
crystal.

In Chapter 5, we introduce metallo-dielectric photonic crystals, which turn
out to be more complicated. Here, the interplay between surface plasmons and
the periodic structure of the photonic crystal, results in the appearance of quite
interesting phenomena already in the linear regime. We study the linear optical
phenomena in a recently fabricated 3D photonic crystal composed of silica-core
gold-shell spheres. The interference between the surface plasmon resonances of
the individual spheres and enhanced interparticle interaction of the photonic ar-
rangement results in quite complicated reflection spectra in the visible spectral
range. We analyze these spectra and attempt to classify the observed reflection
maxima and minima. We also compare the measured spectra with the ab-initio

calculated ones using the so-called photonic Karringa-Kohn-Rostocker method.
We further find evidence of beaming of the diffracted light on a single layer, in the
form of the observed hexagonal diffraction pattern with divergence angles as small
as 8°. This effect can be traced back to interference between surface plasmons and
propagating surface waves.



References 21

In Chapter 6, we study the non-linear picosecond dynamics of the metallo-
dielectric photonic crystal. Depending on the selected wavelength, we observe
both transient absorption and bleaching on the subpicosecond time scale. We at-
tribute the observed changes to photoinduced absorption in gold and the resulting
broadening of the plasmon resonance. The observed dynamics is analyzed in the
framework of the so-called “two-temperature model”.

In Chapter 7, we finally analyze the dynamics of the silica-core gold-shell pho-
tonic crystal on the subnanosecond timescale. We discovered that the reflectivity
is strongly affected by standing-wave acoustic vibrations in the form of coherent
expansions and contractions of the gold shell. This observation, perhaps, forms
the bridge between photonic and phononic crystals, in which the acoustic wave
instead of the light wave undergoes resonant scattering on a periodic lattice. The
detected period of the acoustic oscillations was found to be in perfect agreement
with the vibration period of thin free spherical gold shells calculated in the frame-
work of Lamb theory. To best of our knowledge, this is the first demonstration of
acoustic vibrations of a free nanoscale shell detected in a pump-probe experiment.
Furthermore, this result can be relevant for switching photonic crystals by strain
waves.

Our studies form a step towards complete ultrafast control over the dynamical
optical properties of three-dimensional photonic crystals. We demonstrate that
already at the present level of technology, the switching in a three-dimensional
photonic crystals can be made as fast as several tens of femtoseconds with the
efficiency of 50% and higher.
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[95] A. Haché and M. Bourgeois, Appl. Phys. Lett. 77, 4089 (2000).
[96] S. W. Leonard, H. M. van Driel, J. Schilling, and R. Wehrspohn, Phys. Rev. B 66,

161102(R) (2002).
[97] A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whit-

taker, A. Tahraoui, T. F. Krauss, and J. S. Robert, Appl. Phys. Lett 83, 851 (2003).





C 2

E 

Abstract

We describe two pump-probe setups designed for studying the dynamical ultrafast optical
properties of photonic crystals down to the femtosecond time domain.

2.1 Introduction

The measurement of the dynamical optical properties on the femtosecond time
scale cannot be achieved by electronic devices but require an optical technique.
The so-called pump-probe method allows us to resolve the dynamics of optical
properties such as reflection, transmission, and absorption in both the visible and
infrared spectral range, on the ultrafast time scale, say down to 4 fs [1]. This
method uses two short optical pulses, one of which, called pump generally has a
strong intensity and the other, called probe, is taken usually much weaker. The
pump pulse excites the sample under study and induces changes in its optical prop-
erties. The probe pulse arrives on the excited spot with a variable delay and mon-
itors the induced changes in the optical properties. The delay between pump and
probe pulses can be adjusted by an optical delay line with high accuracy allowing
for monitoring changes of the optical properties on the femtosecond timescale.
The time resolution of this method is limited by the duration of the pump and
probe pulses. Unfortunately, the pump-probe method yields only one measure-
ment point per setting of the delay between pump and probe pulses. In order to
be able to compose a temporal dependence of the dynamic effects, one needs to
perform a set of measurements at different settings of time delay. This imposes
the constraint that the optical setup must be stable during the entire measurement
run. Another difficulty in pump-probe measurements can be caused by the usu-
ally very weak amplitude of the signals that may be comparable or even less than
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the background noise level. In this case, one uses phase-sensitive techniques to
extract the signal and average out the incoherent noise fluctuations.

The experiments described in this thesis were carried out employing two dif-
ferent pump-probe setups, whose principles of operation are described below.
Specific details related to each individual experiment will be described in the cor-
responding chapters. The first setup allowed us to study the transient reflectivity
at high temporal resolution (∼ 30 fs) and moderate excitation power density. The
second setup has much lower repetition rate and reaches much higher excitation
power densities, at the expense of a lower temporal resolution (∼ 170 fs).

2.2 Experimental setup with high temporal resolution

The experimental setup with the highest temporal resolution (∼ 30 fs) is designed
to be able to examine both stationary reflection spectra in the visible and transient
changes in the reflectivity induced by ultrashort optical excitation at 800 nm in
strongly scattering samples such as a photonic crystal [2, 3]. The setup has a sen-
sitivity better than 10−4 and was used to demonstrate ultrafast all-optical switching
in opal-Si composites (see Chapter 3).

2.2.1 Experimental setup with high repetition rate

The pump-probe setup with a high repetition rate and temporal resolution has a
special design in order to suppress interference of pump and probe pulses during
temporal overlap (Fig. 2.1). The beam from a 15-fs Ti-sapphire laser (-
) with a repetition rate of 75 MHz was split in a pump and a probe by a
standing wave acousto-optic modulator (AOM) operating at 35.5 MHz. The first-
order diffracted beam, acting as the probe, is strongly phase-modulated relative
to the zero-order (non-diffracted) beam, acting as the pump. The modulation fre-
quency of the probe beam was chosen far beyond the photodetector bandwidth.
As a result, linear interference effects during pulse overlap are reduced to val-
ues well below 10−4. In addition, the pump and the probe beams were made
cross-polarized that further suppresses interference. To compensate for the chirp
induced by the AOM crystal, both pump and probe beams were reflected 16 times
from mirrors with a negative dispersion, leading to an overall 30-fs time resolu-
tion. The collimated probe beam was passed via a computer-controlled delay line
with 1-µm precision. The pump and probe beams (4 and 2 mm diameter, respec-
tively) were focused on the same 85-µm spot at the sample surface at near-zero
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F 2.1 Pump-probe setup operated at 75-MHz repetition rate. The interference dur-
ing the temporal overlap between the pump and probe pulses is suppressed by shifting the
probe frequency with an AOM.

angle of normal incidence using a parabolic mirror. The energy densities of the
probe and pump pulse at the surface were typically 5 µJ/cm2 and 70 µJ/cm2, re-
spectively. The reflected probe light was picked up by a beam splitter, passed
through the spatial filter, and focused on a photodiode. Scattered pump light was
rejected by a polarizer.

This method allows us to study effects close to zero time delay. In order to
increase the signal-to-noise ratio further, each beam was chopped before the sam-
ple at frequencies ν1 and ν2, respectively, and the nonlinear changes in the probe
intensity were extracted with an accumulation time of 1 s by a calibrated lock-in
amplifier operating at the sum frequency ν1 + ν2 ∼ 1 kHz. At each position of the
delay line, we performed 10 measurements, which were subsequently averaged.
Obtained values were divided by the intensity of the reference beam split off from
the probe beam prior to the sample.
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2.2.2 Double modulation technique

The principle of the double modulation technique used in this thesis can be ex-
plained as follows. For small changes induced by the pump pulse, the intensity of
light reflected from the sample, Ir, can be written as

Ir = RIprobe + γIprobeIpump, (2.1)

where R is the linear reflectivity of the sample, Iprobe and Ipump the intensities
of the probe and the pump pulses, respectively, and γ a constant describing the
nonlinear reflectivity.

Then, the relative change in the reflectivity reads

∆R

R
=
γ

R
Ipump. (2.2)

On the millisecond timescale both pump and probe light are modulated ac-
cording to Ipump = IA

pumpΘ (sin 2πν1t) and Iprobe = IA
probe
Θ (sin 2πν2t), respec-

tively, where t is time, IA
pump and IA

probe
the maximal intensity of the pump and the

probe light, respectively, and Θ the Heaviside step function defined as

Θ(x) =
{

0, x < 0
1, x ≥ 0

. (2.3)

Since both pump and probe intensities are periodic in time, Eq. (2.1) can be
expanded in a Fourier series

Ir = RIA
probe
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, (2.4)

with

Ωmn = 2π (ν2Nm ± ν1Nl) ,
Ψmn = ϕ2Nm ± ϕ1Nl.

(2.5)

Here, Nm = 2m − 1, Nn = 2n − 1, m and l are natural integers. Further, ϕ1 and ϕ2

are the phases of pump and probe modulations, respectively.
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The double-modulation technique employs a lock-in amplifier as a narrow-
band frequency filter. In our experimental condition, the measured signal Ir was
passed via a lock-in that admits only ν1+ν2, and has maximum transmission when
the phase of the lock-in is adjusted according to ϕ1+ϕ2 = 0. Now, in order to reject
the frequency components of the linearly reflected probe and the scattered pump
light and to admit exclusively the non-linear signal, the modulation frequencies
must be chosen such that ν1l , ν2m for any integers l and m. (However, this
requirement is difficult to fulfil, since the phases of the modulations should be
locked, ϕ1 + ϕ2 = 0. In practice, one aims at (ν1/s1)p = (ν2/s2)q, where s1 and
s2 are the numbers of slits in each chopper, and p ≫ 1, q ≫ 1 are large integers.
Moreover, qs1 and ps2 should not have a common denominator). Under these
conditions, the transmitted signal is proportional to the nonlinear signal,

Ir (ν1 + ν2) =
2
π2
γIA

probeIA
pump. (2.6)

This scheme virtually rejects all low-frequency noise of the laser source.
When applied in a real sample, the technique described above suffers, from

a strong spurious signal related to the sample heating induced by the modulated
pump intensity. Heating, namely, modifies the sample reflectivity and thus de-
creases the effectiveness of the lock-in scheme. We discovered, however, that the
sign of the thermally induced changes depends on the locations chosen on the
sample. It appeared that there exist specific areas in the sample, on which, quite
fortuitously, the amplitude of the thermally induced modification is negligible.
Although the nature of this phenomenon is not clear, we took advantage of it to
suppress spurious effects of heating.

2.2.3 Linear reflection

Stationary reflectance spectra were measured with a halogen lamp, a spectrome-
ter, and a charge-coupled device (CCD) from OO. The collimated 2-mm
diameter beam from the lamp was sent along the same optical path as the probe
laser beam (Fig. 2.2). The difference in the propagation direction of the Bragg-
diffracted beam and the specular beam allowed us to separate the effects from the
3D opal structure from the ordinary surface reflection of the sample. In the first
configuration the specular beam was blocked, and only the Bragg diffracted light
was collected over a solid angle of 3.5 × 10−2π. In the second configuration, a di-
aphragm of 2-mm diameter selected the specular beam and suppressed the Bragg
light. Due to structural defects in the opal lattice [4–7], the Bragg light emerges
as a cone extending over several degrees, depending on the point selected on the
sample surface.
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F 2.2 Diagram illustrating the beam paths of the incident probe-, the specular-,
and the Bragg diffracted beam. Inset schematically shows the faceted sample surface.

2.3 Experimental setup with low repetition rate

The 1-kHz pump-probe experimental setup is shown in Fig. 2.3. Ultrafast ex-
citation of the photonic crystal was induced by an intense optical 120-fs pump
pulse from an amplified femtosecond Ti-sapphire laser operating at 1 kHz and
800 nm (Spectra Physics, ) [8–10]. The pump pulse was focused onto
a 400-µm spot at the sample surface with a surface energy density in the range of
0.5−10 mJ/cm2 per pulse. The pump power density was controlled by the aperture
of a diaphragm placed in the pump beam. The time-resolved reflection spectrum
was monitored by a weak, ultrafast, white light continuum probe pulse generated
in a thin sapphire plate by part of the same Ti-sapphire laser pulse train used in
the pump. In order to reject the residual 800-nm pump light, the white light was
passed via an optical band-pass filter. The probe pulse propagating close to the
[1 1 1] direction of the photonic crystal was focused onto a 25-µm spot at the sam-
ple surface within the area illuminated by the pump. The Bragg-reflected probe
light was picked up by a lens, passed via a spatial filter, and focused onto the en-
trance of an optical fiber. The fiber transferred the Bragg-reflected light to a spec-
trometer (Action Research, SP 300) with a spectral resolution of 1 nm
and equipped with a cooled CCD (Roper Scientific, model CCD-1340-EB/1) read
out by a computer. An optical delay line controls the time delay between pump
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F 2.3 Pump-probe setup operated at 1-kHz repetition rate.

and probe pulses with 10-µm precision. Correction for the chirp of the probe light
is possible relying on time-resolved transmission spectra taken in an amorphous
silicon film at otherwise the same experimental conditions. Since the response of
the silicon film is virtually instantaneous [11], we readily obtained the spectral
dependence of the chirp and corrected the spectral-temporal dependencies of the
Bragg-reflectivity. After correction, our temporal resolution was only limited by
the pump-probe temporal overlap (τp ≈ 170 fs). In order to increase the signal-
to-noise ratio, all spectra have been averaged over a spectral width of 15 nm. The
stationary reflection spectra were obtained in the same experimental configuration
but in absence of the pump pulse.
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The pump-probe experiment with low repetition rate (1 kHz) allows us to ap-
ply higher power densities of the pump excitation without destroying the sample.
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[6] J. F. G. Lòpez and W. L. Vos, Phys. Rev. E 66, 036616 (2002).
[7] J. Huang et al., Phys. Rev. Lett. 86, 4815 (2001).
[8] D. A. Mazurenko, A. V. Akimov, A. B. Pevtsov, D. A. Kurdyukov, V. G. Golubev,

and J. I. Dijkhuis, J. Lumin. 108, 163 (2004).
[9] D. A. Mazurenko, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov,

R. Kerst, and J. I. Dijkhuis, in Photonic Crystal Materials and Nanostructures,
edited by R. M. de la Rue, P. Viktorovitch, C. M. Sotomayor-Torres, and M. Midrio
(2004), vol. 5450 of Proc. SPIE, p. 250.

[10] D. A. Mazurenko, A. Moroz, C. M. Graf, A. van Blaaderen, and J. I. Dijkhuis, in
Photonic Crystal Materials and Nanostructures, edited by R. M. de la Rue, P. Vik-
torovitch, C. M. Sotomayor-Torres, and M. Midrio (2004), vol. 5450 of Proc. SPIE,
p. 569.

[11] K. E. Myers, Q. Wang, and S. L. Dexheimer, Phys. Rev. B 64, 161309(R) (2001).



C 3

O   -S

Abstract

We present the first experimental investigation of ultrafast optical switching in a three-
dimensional photonic crystal made of a Si-opal composite. Photoinduced changes turn
out to be enhanced around the photonic stop bands and reach 46% at high excitation power
(5 mJ/cm2). Short-lived photoexcited carriers in silicon induce changes in the dielectric
constant of Si and diminish the constructive interference inside the photonic crystal. We
show that the switching-on time is faster than 30 fs and determined by the pump pulse
duration. The switching-off time is in the order of several picoseconds. Obtained results
for moderate pump powers (70 µJ/cm2) are analyzed within a model based on a two-band
mixing formalism.

3.1 Introduction

The rapidly expanding research in photonics is driven by various opportunities to
create novel devices, such as all-optical switches and optical computers [1]. The
performance of such devices might surpass the speed of traditional electronics
by several orders of magnitude and result in a true revolution in nanotechnology.
These devices will likely be based on photonic crystals where multiple Bragg
diffraction is capable to inhibit or promote propagation of light at specific fre-
quencies. One of the most spectacular phenomena of a photonic crystal is the
existence of a photonic stop band (PSB) - a range of wavelengths on which light
cannot propagate in certain directions [2]. Spontaneous emission of an excited
atom with a transition frequency in the PSB is suppressed. In case of a three-
dimensional (3D) photonic crystal, a PSB may extend even over the full space
angle, form a true bandgap for photons, and may completely quench spontaneous
emission [3]. For applications based on the all-optical switching principle (e.g.
all-optical processors, pulsed lasers, and optical memories), it is important to
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36 Chapter 3 Optical switching in opal-Si

realize dynamic control over the optical properties of a photonic crystal on the
shortest timescale possible. In order to achieve this goal, precise knowledge of
the ultrafast non-linear properties of photonic crystals is a prerequisite.

Switching of a photonic crystal can be realized by rapidly changing its re-
fractive index by some external impact. As has been predicted recently [4, 5],
3D photonic crystals should be switchable on the femtosecond time scale by hot
carriers generated in a semiconductor by absorption of a short optical pulse. Re-
cently, ultrafast switching has been realized in 1D [6] and 2D [7] silicon-based
photonic crystals. Switching in 3D photonic crystals was studied only down to
the nanosecond time scale [8, 9].

Here, we present the first experimental results of femtosecond pump-probe
experiments in a 3D photonic crystal in the region of the PSB [10]. To demon-
strate ultrafast optical switching, we chose Si-embedded opals. Opals are known
to be model objects for studying PSB effects [1, 11]; silicon is very suitable for a
dynamic experiment, because of its weak, but noticeable absorption in the near-
infrared region, its high index of refraction, and its short carrier lifetime. Quite
importantly, Si-opal structures can be integrated in optical circuits [12]. Since sil-
icon is the material in the opal-Si composite, which absorbs the visible light, its
optical properties largely determine the optical switching of opal-Si by external
light. Therefore, we will first describe the dynamical properties of bulk amor-
phous silicon.

3.2 Ultrafast dynamics in bulk silicon

Nowadays silicon is the most popular material for semiconductor devices. This
is, perhaps, the main reason to explain the general interest in its ultrafast optical
properties. Dynamic optical response in thin silicon films on a short timescale has
been intensively studied during the last decades. However, the evolution of the
dielectric constant of silicon after an optical excitation is rather complicated and
presents many opportunities for novel experiments [13].

It is important to distinguish two types of optical non-linearity. The first one,
usually referred to the Kerr non-linearity, is instantaneous and occurs when pump
and probe pulses are temporally overlapped. In this case, a change in the complex
dielectric constant of silicon εS i = ε

′
S i
+ iε′′

S i
is induced by the strong electric field

of the pump pulse. The effect is governed by two-photon absorption and Stark
shift of the band-edge absorption [14]. It was established that for all semicon-
ductors the Kerr nonlinearity ∆ε′

S i
has a maximum when excited at approximately

0.6Eg and changes its sign at 0.8Eg. Here, Eg is the electron bandgap energy. The
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change in ∆ε′′
S i

increases for the light frequency ranging from Eg/2 to Eg. We
note, that the amplitude of the Kerr effect is directly proportional to the intensity

of the pump pulse.
The second type of nonlinearity is related to residual changes that remain or

even develop in the material after excitation. In silicon such changes are induced
by photoexcited electrons and holes that are formed during excitation. At low
and moderate pump power densities, when two-photon absorption is negligible
compared to linear absorption, this nonlinearity is directly proportional to the in-
tegrated power of the pump pulse. The excited carriers act as an electron-hole
plasma and according to Drude theory modify the complex dielectric constant of
silicon [15]. The amplitude of these changes scales linearly with the plasma den-
sity up to the melting threshold [16, 17]. We note, that ∆ε′

S i
< 0 and ∆ε′′

S i
> 0.

The subsequent dynamics of the dielectric constant in the infrared spectral region
has a multi-exponential shape and the following stages can be distinguished (see
Fig. 3.1):

(I) Decoherence. Initially, the excited electron-hole pairs loose their coher-
ence due to momentum scattering that occurs on typical timescales well below
100 fs [18] and can be hardly resolved in experiments [19].

(II) Electron energy relaxation. On a timescale of the order of a few hun-
dred femtoseconds, electron-phonon relaxation takes place, and electrons loose
they kinetic energy via phonon emission [20, 21]. It turns out that the electron-
phonon relaxation rate slightly depends on the energy [19] and the power density
of a pump excitation [22]. In addition, the electron-electron relaxation occurs on
the same or even faster timescale [23]. Both processes result in a relaxation of the
electrons towards the bottom of the conduction band thereby changing the elec-
tron effective masses. Consequently, the plasma frequency also changes, and as a
result, the dielectric constant.

(III) Carrier trapping. On the picosecond timescale, electrons and holes are
recombining and descending on the band-tail traps. The dynamics is different for
amorphous and nanocrystalline silicon and further depends on the pump power
density signifying a bi-molecular type of recombination processes [16]. However,
the precise microscopic mechanism of recombination is not fully understood [24].
Next to bimolecular recombination, thermal effects can play a role: both nonra-
diative recombination and the trapping processes create acoustic phonons that also
affect the dielectric constant [25]. The thermally-induced ∆εS i

′ has an opposite
sign (positive) with respect to the electron-induced one. At some specific time,
∆εS i

′ may even change its sign from negative to positive [26], thus effectively
accelerating the recovery dynamics.
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F 3.1 Schematics of ultrafast dynamics in silicon, (I) optical excitation of
electron-hole pairs and decoherence, (II) energy relaxation of hot carriers and phonon
emission, (III) trapping of carriers, and (IV) heat diffusion.

(IV) Recombination of trapped carriers and heat diffusion. Recombina-
tion of trapped carriers govern the dynamics of the dielectric constant of silicon
on the sub-nanosecond and nanosecond timescales [27]. Obviously, nonradiative
recombination of the trapped carriers supply additional heating to the silicon lat-
tice thus further increasing the real part of the dielectric constant. The long-term
kinetics is, finally, determined by thermal diffusion. Characteristic times of the
thermal diffusion may vary from 100 ps, e.g. in case of excitation on silicon-
sapphire interface, to micro- and even millisecond time scales, e.g. when silicon
is surrounded by material with a low heat conductivity, as the case in point where
silicon is grown in the voids of opal.
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F 3.2 SEM image of the (111) plane of a bare opal used as a template for fabri-
cating opal-Si photonic crystal. This picture is taken from the Ref. [28].

3.3 Sample and experimental details

The sample used for the demonstration of all-optical switching was fabricated
in the Ioffe Physico-Technical Institute in St. Petersburg, Russia. The sample is
composed of close-packed SiO2 spheres, 230 nm in diameter, forming an ordered
face-centered cubic (fcc) polydomain opalescent matrix. A scanning electron mi-
croscope (SEM) image of this matrix is shown in Fig. 3.2. The voids of this
opal have been filled by silicon using thermal decomposition of 5% SiH4-Ar gas
mixture. The filling factor was chosen close to 100% in order to arrive at a PSB
located around the wavelength of the Ti-sapphire laser (800 nm). After the growth
of the silicon in the voids, the sample was annealed in air at 800°C. Finally, we ob-
tained an opal with amorphous-nanocrystalline silicon (a-nc-Si) in the voids. The
SEM [28, 29] studies showed that the size of a single domain ranges from 30 µm
to 100 µm. The sample was cut out to a 0.5-mm thick plate, with the surface (area
of 10 mm2) almost parallel to the (1 1 1) surface. Further details of growth and
optical properties of the sample can be found in Ref. [28, 29].

Transient changes in the reflectivity and stationary reflectance spectra of both
the Bragg diffracted and specular beam were measured using the high-repetition-
rate (75 MHz) pump-probe setup described in Sec. 2.2. The Bragg diffracted light
and the specular beam were separated and measured independently. It is worth
noting that the average reflectivity of the opal-Si was gradually drifting away dur-
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F 3.3 Measured (symbols) and calculated (solid lines) linear spectra of the specu-
lar reflection (R0) and Bragg diffraction efficiency (Rd). Experimental data are normalized
to the maximum of the Rd theoretical curve. Vertical arrows point at the calculated po-
sitions of the photonic band edges when the imaginary part of the dielectric constant is
neglected.

ing the course of the pump-probe experiments due to the Staebler-Wronski effect
[30] that appeared to increase the background noise level but did not affect neither
the amplitude nor shape of the differential reflectivity.

3.4 Experimental results

3.4.1 Linear reflectance

In Fig. 3.3 the symbols show the measured linear stationary reflection spectra
for the two configurations, the specular and the Bragg-diffracted one. The Bragg
diffracted spectrum Rd peaks around λ = 790 nm and has a width of 66 nm,
in agreement with earlier studies of similar samples. The origin of the peak is
attributed to the PSB [29]. The specularly reflected light R0 has a higher intensity,
but does not exhibit the PSB structure.
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F 3.4 Temporal evolutions of transient changes in the specular reflection (dashed
line) and Bragg diffraction efficiency (solid line).

3.4.2 Transient changes in reflectance

Typical pump-probe signals are presented in Fig. 3.4 for the specular (∆R0(t)/R0,
dashed line) and Bragg-diffracted case (∆Rd(t)/Rd, solid line). In Fig. 3.5 we
display an expanded time trace of ∆R0(t)/R0. Both signals exhibit switching in
less than 30 fs, limited by the time resolution of our experimental setup. The
subsequent decay is multi-exponential with time constants τ1 = 0.5 ± 0.2 ps and
τ2 = 5 ± 2 ps. We note that the measured values for the time constants vary over
the sample surface, but not more than by 50%.

The most important experimental result is the large difference between the
relative amplitudes of the transient signals, ∆Rd(t)/Rd = −(1.2 ± 0.2) × 10−2 and
∆R0(t)/R0 = −(9 ± 2) × 10−4. This effect, observed for all points studied at the
sample surface, leads us to the conclusion that the pump light induces substantial
ultrafast changes in the PSB properties of our 3D Si-opal photonic crystal. Quite
naturally, these pump-induced changes in the optical properties of the photonic
crystal should depend on the pump-probe wavelength. To check this, we carried
out experiments in the PSB spectral range with a tunable 170-fs Ti-sapphire laser
(), further using the same setup but without a spatial filter. The dependence of
the amplitude of the obtained transient signal ∆(R0 + Rd)/(R0 + Rd) on the pump-
probe wavelength is shown in Fig. 3.6 as symbols. Unfortunately, the high noise
level of the intensity of the  introduces quite sizable errors. However, in the
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F 3.5 Transient changes in the specular reflection measured with 30 fs time reso-
lution.

spectral region which was available in the laser tuning range, we observed that
the photo-induced signal is not constant but clearly rises upon entering the PSB
wavelength region.

The measured temporal evolution of ∆R(t) (Fig. 3.4) has a complicated shape.
The pronounced peak around zero time delay is the instantaneous contribution
from the Kerr effect [14]. The subsequent evolution of ∆R(t) is controlled by
photoexcited electrons and holes in silicon. The presence of free carriers modifies
the complex dielectric constant of Si, εS i = ε

′
S i
+ iε′′

S i
, that, in turn, changes the

mean dielectric constant ε, and correspondingly, modifies the photonic density of
states of the photonic crystal. The temporal shape of ∆R(t) (Fig. 3.4) is similar
to the signals obtained in nanocrystalline Si films [21] and amorphous Si films
[16, 31] and was attributed to the energy relaxation of free carriers.

3.5 Theory

In order to explain the observed reflection and diffraction phenomena, we use a
quantitative model developed by A. V. Sel’kin. This model is based on the two-
band mixing formalism [32] that analyzes the relevant surface reflection effects
in photonic crystal and yields theoretical estimates for both the specular and the
Bragg reflectivity near the first-order PSB. We assume that the incoming probe
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light propagates close to the [111] direction of the fcc photonic crystal near the
L-point of the first Brillouin zone. Propagation of electromagnetic waves with a
frequency ω through an uncharged dielectric medium is described by Maxwell’s
equations

∇ × E = −iωB, (3.1)

∇ ×H = −iωD, (3.2)

∇ · (B) = 0, (3.3)

∇ · (D) = 0, (3.4)

together with the relation for a non-magnetic media

D (r) = ε0ε (r) E (r) ,
B = µ0H,

(3.5)

where E and H are the electric and magnetic fields, respectively, ε0 and µ0 the
permittivity and the permeability of vacuum, respectively, and r the radius-vector.
Further, the dielectric constant, ε (r), is taken static and dispersionless in the fre-
quency range under consideration, but possesses a spatial periodicity according
to

ε (r) = ε (r + p111) . (3.6)

Here, p111 is the lattice vector in the [1 1 1] direction with |p111| =
√

2/3d. Within
the framework of this model, the modulation of ε (r) in the (1 1 1) plane is not
taken into account.

Equation (3.3) combined with Eq. (3.5) can be expressed as

ε (r)∇ · E (r) = −E (r) · ∇ε (r) . (3.7)

We note, that E and ∇ε are orthogonal which reduces Eq. (3.7) to

∇ · E (r) = 0. (3.8)

It is well known, that Eq. (3.8) combined with the Maxwell equations leads to
the wave equation

−∇2E (r) − ω
2

c2
εr (r) E (r) =

ω2

c2
ε̄E (r) . (3.9)
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Here, we have chosen to separate the dielectric constant into two parts: ε (r) =
ε̄ + εr (r), where εr (r) is the spatially varying part and ε = εS i(1 − f ) + εs f + iε′′

the volume averaged dielectric constant, with εs the dielectric constant of SiO2

spheres occupying a relative volume f =
√

2/6π ≈ 0.74 and ε′′ the imaginary
part of ε governed by elastic light scattering at imperfections of the opal.

Equation (3.9) is a vector equation but reminiscent of the scalar time-inde-
pendent Schrödinger equation for electrons in a crystal lattice. Similar to the
standard theory of electrons near a bandgap, E (r) can be considered as a super-
position of Bloch modes. Close to the L−point only two vectors, K and K-G, are
relevant,

E (r) ≈
∑

K

(

AKeiKr + AK−Gei(K−G)r
)

. (3.10)

Here, G is the reciprocal-lattice vector for the [1 1 1] direction, with |G| =
2π/|p111| and K is the Bloch vector satisfying the condition (K ·G) ≈ |G|2/2 near
the L point of the first Brillouin zone. Further, AK is the coordinate-independent
Bloch amplitude of the electric field. In the same fashion, the periodic part of the
dielectric constant can be expanded as

εr (r) ≈ εGeiGr + ε−Ge−iGr, (3.11)

where εG and ε−G are the appropriate Fourier coefficients, which characterize the
spatial modulation of ε(r) along the [1 1 1] direction. It is clear, that the absolute
dielectric constant contrast of the photonic crystal |εG| ∝ |Re(εS i − εs)|.

Near the L-point, Bloch states with K = ±G/2 are degenerate and Eq. (3.9)
can be solved in the framework of perturbation theory:

(

n2 − ε̄
)

AK = ε−GAK−G,
[

(n − g)2 − ε̄
]

AK−G = εGAK

(3.12)

where n ≡ Kλ/2π and g ≡ Gλ/2πwith λ being the wavelength of light in vacuum.
Equations (3.12) co-exist when the wavevector satisfies the dispersion equa-

tion

n2 − ε = |εG|2

(n − g)2 − ε
. (3.13)

We chose the z-axis coincident with the normal to the surface of the photonic
crystal (Fig. 2.2), which slightly deviates from the (1 1 1) plane of the photonic
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crystal. Further, x and z define the plane of incidence and Gy = 0. Naturally, the
tangential component of the incident wave vector is equal to that of the transmitted
Bloch wave vector Kx, i.e. nx = sin θ , where θ is the angle of incidence.

Equation (3.13) has four roots n jz ( j = 1 . . . 4) for the z-component of the
n-vector. Since only roots with positive imaginary parts are physical

n−,+ =
1
2
|g| + 1

2

√

F−,+, (3.14)

where

F−,+ = |g|2 + 4ε ± 4
√

|g|2 ε + |εG|2.

Each n-vector corresponds to a Bloch-mode electric filed

EK(r) = AKeiKr

[

1 +
ε−G

(n − g)2 − ε
e−iGr

]

. (3.15)

We are left with two y-polarized Bloch modes, with K1z and K2z at a given θ.
Propagating band modes with real K corresponds to F > 0. In the opposite case,
i.e. for gap modes, F < 0, the wave has a complex K and decays in the photonic
crystal.

Allowing for a small but non-zero incident tangential wavevector component
on the surface, and using the correct boundary conditions at the surface, we have
obtained a propagating (or decaying in the PSB) wave in the photonic crystal and
two outgoing waves propagating in slightly different directions corresponding to
the specular reflections on the surface and Bragg diffraction at the (1 1 1) planes
of the photonic crystal, respectively. We note, that the boundary conditions also
yield surface modes decaying both in vacuum and in photonic crystal [33], which
are the optical analogue of the electronic Tamm modes. In our photonic crystal,
however, these modes do not couple with outgoing waves propagating in vacuum
[34] and, therefore, are not contributing to the reflection signal. However, in some
other type of photonic crystal these modes can play an important role (see Chap-
ter 5). Assuming θ → 0 after some algebraic manipulations, we finally arrive at a
specular reflection coefficient R0 and nonspecular, diffracted reflection coefficient
Rd,

R0 =

∣

∣

∣

∣

∣

a − b

a + b

∣

∣

∣

∣

∣

2

and Rd =

∣

∣

∣

∣

∣

h

a + b

∣

∣

∣

∣

∣

2

, (3.16)
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with

a = (n− + n+)(n− + n+ + 1 − |g|) − n−n+ − ε ,

b = (n−n+ + ε)(1 − |g|) + n−n+(n− + n+) ,

h = 2(n2
− − ε)(n2

+ − ε)/εG .

3.6 Discussion

The calculated spectra of Rd and R0 are indicated as solid lines in Fig. 3.3 for
227-nm-diameter SiO2 spheres and εs = 1.98. In the calculations, |εG| = 0.308,
ε′

S i
= 12.25, and ε′′ = 0.34. Further, the value for ε′′

S i
= 0.49 was taken from the

absorption coefficient at 800 nm, α = 104 cm−1, for amorphous silicon grown at
low annealing temperatures [35, 36]. Both the central position and the width of
Rd (Fig. 3.3) are satisfactorily reproduced. Only the calculated specular reflection
spectrum R0 deviates from the measured one and Rd does not show the experimen-
tally observed background. The very general reason for this background, which
turns out to vary over the sample surface, is the spectral dependence of the ex-
tinction due to various imperfections, grain boundaries between crystal domains,
and transition layers that may exist at the surface, and causes light to be diffracted
non-specularly.

Transient changes ∆Rd and ∆R0 may also be calculated from Eq. (3.16), given
the photoinduced changes ∆εS i = ∆ε

′
S i
+ i∆ε′′

S i
in the dielectric constant of Si

known from the Drude model [15, 16]:

∆ε′S i =
−Ne2

m∗ε0

(

ω2 + τ−2
d

) and ∆ε′′S i =
−∆ε′

S i

ωτd
. (3.17)

Here, m∗ = 0.15m0 (see Ref. [17] and Ref. [48] therein) the electronic reduced
mass, τd = 0.5 fs [26] the Drude damping time, ω = 2.4 × 1015 rad/s the center
frequency of the laser, and N = αPpump/~ω the density of photoinduced carriers.
We obtain ∆εS i = (−6.2 + i5.3) × 10−3 for our experimental conditions (Ppump =

70 µJ/cm2). Inserting this value in Eq. (3.16) yields ∆Rd/Rd = −5 × 10−3 and
∆R0/R0 = −3 × 10−4 at 800 nm. Our calculation reproduces the more-than-one-
order-of-magnitude higher photoinduced changes in the Bragg reflection spectra
compared to the specular ones.

The main reason for the strong transient Bragg signal is the high sensitivity
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F 3.6 Calculated (solid line) and measured (symbols) spectra of the photo-induced
relative changes in the total reflection. Dashed line shows the calculated relative changes
in the specular reflection.

of the photonic band structure in the opal-Si to photoinduced changes in the di-
electric constant of Si. The absolute calculated values for ∆Rd/Rd and ∆R0/R0 at
800 nm deviate from the experimental values only by a factor of two and a factor
of three, respectively. We attribute this to a higher optical density of pump light
in Si than assumed in the model, due to local field localization effect [37]. In
Fig. 3.6 we show calculated (solid line) and measured (symbols) spectra of the
relative changes in the total reflection ∆R/R = ∆ (Rd + R0) / (Rd + R0). Dashed
line shows the calculated ∆R0/R0. As mentioned above, the experimental val-
ues of the differential reflection are somewhat higher than the calculated ones in
the region of PSB. Nevertheless, the calculated and measured values for various
wavelengths of the photoinduced effects (Fig. 3.6) are in reasonable agreement.
We note that the amplitude of the photoinduced changes of the Bragg diffrac-



48 Chapter 3 Optical switching in opal-Si

700 750 800 850

20

40

60

700 750 800 850
-0.6

-0.4

-0.2

0. 0
450 500 550

18

20

22

24

26

450 500 550

-0.01

-0.05

0.10

L
a

s
e

r 
 l
in

e

(a)

(b)

Wavelength (nm)

∆t=0.3 ps

(d)

(c)

R
e

fl
e

c
ti

v
it

y
 (

a
rb

. 
u

.)

R
e

fl
e

c
ti

v
it

y
 (

a
rb

. 
u

.)

∆
R

 /
 R

∆t=2.0 ps

∆t=2.0 ps

∆t=0.3 ps

∆t<0

∆t=0.3 ps
∆t=2.0 ps

∆t=2.0 ps

∆t=0.3 ps

∆t<0 ps

L
a

s
e

r 
 l
in

e

Wavelength (nm)

∆
R

 /
 R

F 3.7 Chirp-corrected spectra of the Bragg reflection for negative time delay (solid
line), positive delays 0.3 ps (dashed line), and 2 ps (dotted line), in case of strong 5 mJ/cm2

optical excitation (a) and (c) in the near-infrared and in the visible range, respectively, and
corresponding transient differential reflection ∆Rd/Rd (b) and (d).

tion intensity depends on the pump power density [26]. Although the amplitude
of observed changes was low (∼ 1%), a higher power of the optical excitation
(which is not possible in a high-repetition-rate experiment due to heating) should
increase ∆Rd/Rd. In order to check this we performed pump-probe experiments
with higher optical excitation, but lower repetition rate [38, 39].
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3.7 Experiments with high excitation power density

The pump-probe setup operating at low repetition rate and described in Section 2.2
allows us to monitor photoinduced changes in the Bragg reflectivity at higher
power of optical excitation and over the full visible spectral range. In this case
the sample has been excited by 0.12-ps pump pulses from an 800-nm Ti-sapphire
laser with a pulse repetition rate of 500 Hz. The power density of the optical
excitation at the sample was 5 mJ/cm2 per pump pulse which is close to, but below
the melting threshold [17]. The reflectance spectrum was probed by a weak pulse
of white-light continuum focused to a diameter of less than 30 µm in the central
spot of the pump beam at the sample surface. To gain in signal-to-noise ratio, the
spectral intensity has been averaged over 10-nm. In order to suppress the strong
contribution of 800 nm pump light of the white light probe beam, we inserted two
filters that cut light above 700 nm and below 850 nm and admit light in the spectral
bandwidths of 400− 780 nm and 820− 1100 nm, respectively. As a consequence,
the intensity of the white light was significantly suppressed in the spectral range
of 700 − 850 nm, except for the region 780 − 820 nm, that is sufficient for our
measurements thanks to the high dynamic range of the CCD.

3.7.1 Linear optical properties of the second-order photonic stop band

In Figs. 3.7(a) and (c), the solid line displays the measured Bragg reflectivity spec-
tra for 690− 870 nm and 450− 565 nm, respectively. As noted above, the spectral
region from 790 nm to 810 nm was not accessible for measurement due to the
strong scattering of 800-nm pump light. At negative delay, when the probe pulse
arrives before the pump pulse, the sample is not excited and the reflectivity spec-
trum corresponds to the linear spectrum of the photonic crystal. As was already
mentioned in Sec. 3.4.1, the first and largest maximum of the reflectivity corre-
sponds to the first order PSB that is centered at λ1 = 790 nm [Fig. 3.7(a), solid
line] in our photonic crystal.

A second maximum is located at λ2 = 480 nm and can be attributed to the
second order PSB. Here, the Bragg diffraction is significantly suppressed due to
the higher absorption of silicon in that spectral range [40]. Nevertheless, the cor-
responding peak is clearly observed in the reflectivity spectrum [Fig. 3.7(c), solid
line]. Although, one would expect to observe the second order PSB at the double
frequency with respect to the first order PSB [41], λ1 = 2λ2, in our case the dis-
persion of the refractive index of silicon shifts the position of the second PSB to
the short wavelength according to
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2λ2

λ1
=

√

ε̄ (λ2)
ε̄ (λ1)

. (3.18)

Using f = 0.74 for an fcc lattice, nS = 1.4, and nS i(λ1) = 3.5 we obtain
nS i(λ2) = 4.4 at λ2 = 480 nm, which is in excellent agreement with data from
literature [40].

3.7.2 Optical switching at high optical excitation

At positive delays, the reflectivity spectra change dramatically. Figures 3.7(a)
and (c), demonstrate photo-induced changes in the Bragg reflectivity at∆t = 0.3 ps
(dashed curve) and ∆t = 2 ps by dashed and dotted curves, respectively. For clar-
ity, the corresponding relative changes of the reflectivity ∆Rd/Rd are also shown
in Figs. 3.7(b) and (d). It is clear, that the amplitude of |∆Rd/Rd | is enhanced in
the spectral region of the PSBs and reaches values as high as 46% at 785 nm. At
this wavelength a significant recovery can be observed at ∆t=2 ps. In addition, at
∆t=0.3 ps we observe a small blue-shift of the second order PSB peak, which also
returns to the initial position for ∆t = 2 ps.

As was already pointed out in Sec. 3.6, the changes in reflectivity are governed
by increased absorption induced by hot carriers. This generates rapid switching
of the amplitude of the reflectivity peak of the opal. The changes in the real part
of the silicon refractive index, however, result in a shift of the second order PSB
position at ∆t=0.3 ps [Fig. 3.7(c), dashed line]. The amplitude of the dynamic
shift of the PSB position can be estimated by the relation

∆λ2

λ2
=

√

∆ε̄ (λ2)
ε̄ (λ2)

. (3.19)

Using Eq. (3.17) and inserting nS i(λ2) = 4.4, we obtain a shift ∆λ = −2 nm, which
is in agreement with experiment within instrumental errors.

The fast recovery of the real part of the silicon refractive index, which results
in a back shift of the PSB position [Fig. 3.7(c), dotted line], has been observed
earlier in experiments with silicon films and attributed to carrier relaxation via
phonon emission [16, 26, 42]. The emitted phonons, namely, lead to an increase
of the lattice temperature that affect the refractive index of silicon over pico- and
nanoseconds time scales [26].
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3.8 Conclusions

In conclusion, we have demonstrated ultrafast switching of the PSB in an opal-
silicon composite. In case of relatively weak excitation pulses (70 µJ/cm2), we
measured photoinduced changes for the Bragg diffraction intensity up to ∼ 1%,
much higher than relative changes in the specular reflectance from the surface.
The switching of the Bragg reflectivity is controlled by photo-excited free carriers
and can be as fast as 30 fs. Our results are in agreement with a theoretical model
that properly takes into account surface effects and multiple scattering in the 3D
photonic crystal. We showed that the photo-induced changes are enhanced in the
spectral regions of PSBs and may reach values as high as 46% at high excitation
power (5 mJ/cm2). Our results show a way to control the photonic band structure
in 3D photonic crystal on the femtosecond time scale. This result is promising and
perhaps relevant for a variety of applications, including switching of spontaneous
emission.
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Abstract

We demonstrate ultrafast shifting of a photonic stop band driven by a photo-induced phase
transition in a vanadium-dioxide (VO2) forming a three-dimensional photonic crystal. An
ultrashort laser pulse (120 fs) induces a phase transition in VO2 residing in the pores of
an artificial silica opal, and changes the effective dielectric constant of the opal. As a
result, the spectral position of the photonic stop band blue-shifts leading to large changes
in the reflectivity. The observed switching of the photonic crystal appears to be faster than
350 fs. The demonstrated properties of this opal-VO2 composite may become relevant for
potential applications in all-optical switches, optical memories, low-threshold lasers, and
optical computers.

4.1 Introduction

The main goal of photonics is to design optical devices working similarly to tra-
ditional electronic devices but without the need of electrical contacts and much
faster. In a photonic crystal a forbidden gap for photons may form a so-called
photonic stop band (PSB), where light with a wavelength close to the period of
modulation cannot propagate in certain directions [1]. In case of sufficient di-
electric contrast, a complete photonic band gap may be realized, where light can-
not propagate in any direction [2–4]. The spectral position and width of such a
PSB in three-dimensional (3D) photonic crystals depends on the complex refrac-
tive index, which can be modified by some external impact. To date, numerous
schemes have been tested experimentally that allow for external control over the
PSB spectral position in 3D photonic crystals on a time scale up to nanoseconds,
e.g. applying an external electric field [5–8], optical excitation [9], and temper-
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ature variation [10–14]. Exceptionally large shifts of the PSB can potentially be
reached taking advantage of structural phase transitions of one or more materials
forming the photonic crystal. For example, Zhou et al. [11] recently demonstrated
a small PSB shift induced by a ferroelectric phase transition. However, the largest
observed shift of the PSB, was demonstrated in a photonic crystal formed of a
SiO2 opal filled with VO2 by virtue of the semiconductor-metal phase transition
in this compound [12].

Unfortunately, tuning the PSB by a temperature variation is impractically
slow. In practice, optical excitation is by far the fastest way to control the PSB
properties. Recently, ultrafast switching of one- [15], two- [16, 17] and three-
dimensional [18, 19] photonic crystals via photo-excited free-carriers was demon-
strated on the femtosecond timescale. In a 3D photonic crystal built from an
opal-Si composite we demonstrated switching times shorter than 30 fs, the fastest
switching ever reported (see Chapter 3). Unfortunately, a large increase of the
imaginary part of the refractive index cannot be avoided in these samples and
masks effects of the PSB shifting. Thus, demonstration of optical shifting of the
PSB spectral position on the femtosecond time scale remains to be demonstrated
in 3D photonic crystals [20, 21].

In this Chapter we explore a novel scenario of ultrafast switching in opals
filled with VO2 and demonstrate that the shift of the PSB can be made both large
and fast. We report subpicosecond shifting of the PSB associated with a photoin-
duced phase transition of VO2 [22]. Quite importantly, the imaginary part of the
dielectric constant ε̃′′ of VO2 is essentially independent of the crystal phase and,
in contrast to the case of opal-Si, the PSB reflectivity intensity does not vanish
under an optical excitation.

4.2 Ultrafast phase transitions in solids

Ultrafast phase transitions followed by femtosecond high-power optical excitation
were intensively studied during the past two decades. Time-resolved second har-
monic generation and reflectivity of silicon [23–25], gallium arsenide [24, 26–28],
carbon [29], and indium antimonide [30] revealed pico- and subpicosecond dy-
namics associated with melting the lattice. Unfortunately, optical measurements
provide only indirect information about the structural dynamics. For example,
on the femtosecond timescale, the reflectivity changes associated with a struc-
tural transition can be masked by an intense electron-hole plasma that changes
the dielectric constant of the studied material [24, 25]. Direct evidence for phase
transitions to occur on a subpicosecond time scale, however, was obtained in time-
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resolved x-ray measurements [31, 32].
It was established that large changes in the reflectivity and x-ray diffraction

associated with a lattice transformation, occur only when the fluence of the ex-
citation pulse exceeds a certain threshold. When the fluence is slightly above
this threshold, the phase transition appears to take 10 − 100 ps, which is consis-
tent with the classical thermodynamic picture of melting. For higher fluences the
dynamics of melting rapidly accelerates and transition time drops below 1 ps at
fluences only a few times higher than the threshold value [24]. The precise mech-
anism of such ultrafast phase transitions is under controversial debate. Obviously,
a phase transition can be caused by the heat generated by the energy relaxation of
photoexcited carriers to the lattice. However, the observed subpicosecond melt-
ing is much faster than the typical thermalization time of phonons [33] except,
perhaps, longitudinal optical (LO) phonons that indeed happen to be relevant be-
cause exactly these phonon drive the phase transition [31]. In semiconductors
the characteristic time of LO phonon emission from hot electrons can be as short
as few tens of femtoseconds. Most likely, the phase transition is governed by
non-equilibrium phonons created by hot carriers. This idea is supported by obser-
vations of large coherent oscillations of the lattice at the frequency corresponding
to the LO phonon. These oscillations were observed both in optical [34–37] and
x-ray experiments [32], and appear only at the fluences below the melting thresh-
old. As soon as the fluence exceeds this threshold, the amplitude of LO oscillation
surpasses the Lindemann stability limit [38] and the oscillations quench. In an-
other report, van Vechten and co-workers [39, 40] proposed that the high-density
electron-hole plasma may screen the atomic potentials and destabilize the crystal
lattice leading to the phase transition. This screening is thought to appear imme-
diately after optical excitation. In case of a highly dense electron-hole plasma
(≥ 1022 cm−3), this model predicts a rapid disordering within one cycle of the LO
phonon [41–43].

Optically induced structural phase transitions in vanadium dioxide may be
governed by similar scenarios [44]. Here, the phase transition appears at 800-nm
excitation when the fluence exceeds ∼ 7 mJ/cm2, which is much less than the
melting threshold. At this excitation level, the phase transition needs about 50 ps
to develop. For higher fluences, say 25 mJ/cm2, the phase transition rapidly speeds
up and occurs within 100 fs. In the following section we supply all relevant infor-
mation about the phase transition in VO2 under static conditions.
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F 4.1 Crystal structure of vanadium dioxide. (a) Rutile structure in the metallic
phase, i.e. at T > Tc. (b) Monoclinic structure in semiconducting phase at T < Tc.
Positions of the oxygen atoms in the monoclinic phase are virtually the same as in the
rutile phase and not shown.

4.3 Phase transition in VO2

In contrast to other vanadium oxides, VO2 exists exclusively in a narrow stoi-
chiometric range VO2−δ (δ < 0.006). At Tt = 68°C, VO2 possesses a first-order
phase transition from the semiconducting (T < Tt) to the metallic (T > Tt) phase
[45]. The phase transition requires a heat absorption of ∆Ht ∼ 4 kJ/mol [46]. Fig-
ure 4.1 illustrates the spatial positions of vanadium (grey dots) and oxygen (full
dots) atoms in the “hot” [Fig. 4.1(a)] and the “cold” [Fig. 4.1(b)] phases, respec-
tively. The displacement of the oxygen atoms [not shown in Fig. 4.1(b)] at the
phase transition appears to be much smaller than the displacement of the vana-
dium atoms. Above the transition temperature, VO2 has the rutile structure and
the distance between nearest-neighbor vanadium atoms is 2.87 Å [Fig. 4.1(a)].
Below the transition temperature, the position of the vanadium atoms deviates
slightly from the high-temperature position leading to an irregular coordination
of vanadium atoms: the shortest V-V distance equals 2.65 Å, while longer V-V
distance is 3.12 Å [Fig. 4.1(b)]. Quite importantly, the volume expansion at the
phase transition is very small, ∆V/V < 0.1%, which makes this material very con-
venient as a filling substance [46]. The phase transition results in the formation
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of a monoclinic lattice composed of two shifted sublattices [Fig. 4.1(b)]. Lower-
ing the crystal symmetry leads to a band gap for electrons, and VO2 becomes a
semiconductor. The relation between the high- and low-temperature phases can
be visualized in terms of translation vectors of the high-symmetric rutile phase.
The primitive translation vectors of VO2 rutile structure are orthogonal and equal
to ar = br = 4.53 Å and cr = 2.87 Å. The crystallographic transformation at Tt

can be represented by

am ↔ 2cr, bm ↔ 2cr, cm ↔ ar − cr,

where am, bm, and cm are the primitive translation vectors of the monoclinic lattice
with am = 5.74 Å, bm = 4.52 Å, and cm = 5.38 Å. The angle between am and cm

is β = 122.6°.
The idea of using VO2 as a filling material of opals is inspired by the fact that

the phase transition in VO2 is accompanied by a substantial change in the real part
of the dielectric constant from ε′c(VO2) = 8 in the “cold” semiconductor phase to
ε′

h
(VO2) = 6 in the “hot” metallic phase, for the red spectral region [47, 48]. Quite

importantly as stressed earlier, the corresponding change in the imaginary part is
weak. The idea of our experiment is to achieve ultrafast control over the PSB
position in opal-VO2 by optically inducing a phase transition in VO2.

4.4 Opal-VO2 and experimental details

Our opal-VO2 was fabricated in the Ioffe Physico-Technical Institute in St. Pe-
tersburg, Russia. The sample was synthesized from an opal template composed
of close-packed (fcc) mono-dispersed (±5%) silica spheres of 0.23 ± 5 µm in di-
ameter. The template had a polydomain structure. The size of the highly-ordered
domains was of the order of 30 − 100 µm. The voids of the opal template were
first filled with a solution of vanadium pentoxide in nitric acid and then subse-
quently reduced to VO2 by high temperature annealing in vacuum. The details of
the fabrication method can be found in Refs. [12, 49]. The (1 1 1) plane of the
photonic crystal makes an angle of several degrees with the polished sample sur-
face. This allowed us to separate the ordinary surface reflection from the Bragg
diffraction from the (1 1 1) planes of the 3D photonic crystal by simply passing
the reflected beam via a spatial filter that blocks the specular light, but captures
the Bragg-diffracted light [19].

The sample was mounted on a copper holder supplied with an internal heater,
allowing us to vary the sample temperature in a range of 20 − 150°C. The tem-
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F 4.2 Stationary Bragg reflection spectra of opal-VO2 below (solid line) and above
(dotted line) the transition temperature of VO2. Peak is the first-order PSB.

perature of the sample was monitored by a calibrated semiconductor thermistor
placed close to the sample. The stationary spectra at different temperatures were
obtained by reflection of a beam of white light continuum pulses, in absence of a
pump on the sample.

Time-resolved reflection spectra were taken at room temperature using the
1-kHz pump-probe setup described in Chapter 2.2. In brief, the pump pulse was
focused onto a 400-µm spot at the sample surface with a surface energy density
of 10 mJ/cm2. The optical pulse is absorbed in VO2 in the opal voids, and is to
produce a rapid phase transition of VO2. The power density used in the experiment
was chosen just above the threshold, on which the phase transition is known to
occur [44]. At the phase transition, the mean refractive index of the photonic
crystal rapidly changes, and the position of the PSB shifts. The time-resolved
reflection spectrum was monitored by a weak ultrafast, white light continuum
probe pulse generated in a thin sapphire plate, excited by the same Ti-sapphire
laser. In order to reject the residual 800-nm light, the white light was passed via
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F 4.3 Spectral position of the PSB of opal-VO2 during the sample heating and
cooling. This picture is taken from Ref. [12].

an optical band-pass filter (580 − 710 nm). The probe pulse propagating close to
the [1 1 1] direction of the photonic crystal was focused onto a 25-µm spot at the
sample surface within the area illuminated by the pump.

4.5 Ultrafast band-shifting

4.5.1 Linear optical properties

Figure 4.2 shows typical stationary Bragg reflection spectra taken below and above
the transition temperature as indicated by solid and dashed lines, respectively. The
Bragg reflection spectrum in the direction perpendicular to the (1 1 1) surface,
consists of one maximum that corresponds to the first-order PSB. As soon as the
temperature passes the transition point, the spectral position of the Bragg reflec-
tion maximum, λ, shifts over 4 nm towards the short wavelengths. The maximum
shift observed for other samples can be as much as 40 nm [12] and possesses a
hysteresis (Fig. 4.3) In addition, the spectral position of λ appears to vary over the
sample surface, possibly due to the variation of the filling factor and the presence
of vanadium oxide of other stoichiometry. Further details of the linear optical
properties of VO2 can be found in Ref. [49] together with a calculation of the re-
flectivity near the first order PSB using the two-band-mixing theory described in
Section 3.5.



60 Chapter 4 Shifting of a PSB induced by an ultrafast phase transition

5

4

600 620 640 660 680

3

2

t = 2.5 ps

t > 0 ps

R
e

fl
e

c
ti

v
it

y
 (

a
rb

. 
u

.)

Wavelength  (nm)

F 4.4 Bragg reflection spectra of opal-VO2 prior (solid line) and following (dotted
line) a 10-mJ/cm2 pump pulse.

4.5.2 Nonlinear optical properties

In Fig. 4.4(a) the ultrafast shift of the PSB is shown induced by a strong pump
pulse. Here, solid and dashed lines correspond to the Bragg reflection spectrum
measured just before and 2.5 ps after the optical excitation, respectively. It ap-
pears that the optical excitation induces a rapid shift of the PSB towards the short
wavelengths. Moreover, the magnitude of the transient optically induced shift of
the PSB turns out to coincide with the thermally induced one, observed under
stationary conditions (Fig. 4.2).

Figure 4.5 shows the spectral-temporal evolution of the Bragg reflectivity.
Colors indicate relative changes of the reflectivity, ∆R/R: red an increase, blue
a decrease, and green no changes of the intensity. Of course, no differences in
reflectivity are observed prior to the arrival of the pump pulse. At zero delay,
when the pump pulse arrives, the intensity slightly decreases, most significantly
at the long-wavelength side of the PSB. At 200-fs delay, however, ∆R/R changes
drastically and rapidly increases on the short-wavelength side and decreases on
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the long-wavelength side. This signals rapid shifting of the PSB. Within half a pi-
cosecond, the transition is completed and the amplitude of the differential Bragg
reflectivity reaches ∆R/R = 0.12 at 605 nm and ∆R/R = −0.15 at 670 nm. In
this connection we note that the observed change in the differential reflection may
reach values as high as ∆R/R = −0.35 on other sample points. At longer delays
the reflectivity remains virtually constant over at least hundreds of picoseconds.
This time is determined by the cooling down of the excited volume and takes as
long as 100 µs in such samples [50]. No significant ultrafast changes in the re-
flectivity spectra were observed in case the sample was held above the transition
temperature, confirming that the rapid shifting is induced by the phase transi-
tion. Further, these remarkable shifts of the PSB were exclusively [44] observed
when the pump power density exceeded the threshold of 5 − 10 mJ/cm2. Above
50 mJ/cm2, irreversible changes in the reflectivity spectra are observed possibly
due to chemical reactions and surface damage.
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Figure 4.6 (a) displays as solid lines the observed switching dynamics of∆R/R

at the short-wavelength (610 nm) wing, at the long-wavelength (670 nm) wing,
near the maximum (630 nm) of the PSB, and at an intermediate spectral position
(640 nm). Beyond delays of ∼ 500 fs, ∆R/R reaches the stationary values A (λ),
indicated in Fig. 4.6(a) as horizontal arrows. Further, the leading edge at the
short-wavelength side is delayed with respect to the pump pulse by a few hundred
femtoseconds. At 630 nm the time span over which the differential reflection
changes is approximately equal to the duration of the pump pulse and turns out to
be the fastest feature in the time-dependent reflection spectra. The dynamics of the
phase transition, which is the main contribution to ∆R (t) /R at the short- and the
long-wavelength side of the PSB, appears to be slower. The observed switching
times, taken at the time the reflectivity reaches 50% of its full amplitude, equal to
350 fs at λ = 605 nm and 200 fs at λ = 670 nm.

4.6 Discussion

The origin of the ultrafast shift of the PSB (Fig. 4.4) in our opal-VO2 photonic
crystal is a photo-induced phase transition of VO2. The wavelength of the re-
flection maximum in the reflectivity spectrum of the opal, λm, can be estimated
from λm = 2dñ′, where d is the distance between the layers of spheres and ñ′

the real part of the effective refractive index of the opal. As soon as the temper-
ature reaches Tt, the value of n(VO2) decreases. This results in a rapid change
of ñ′ leading to a short-wavelength shift the PSB spectral position, as observed.
Consequently, ∆R/R increases on the short-wavelength and decreases on the long-
wavelength wings of the PSB (Fig. 4.2). Strikingly, the amplitude of |∆R/R|
is higher at the long-wavelength side of the PSB spectrum than at the short-
wavelength side. This phenomenon can be readily explained by a reduction of the
refractive index contrast of the photonic crystal when VO2 turns from the dielec-
tric into the metallic phase. The reduction of the refractive index contrast, namely,
leads to narrowing of the PSB and, consequently, results in a larger amplitude of
∆R/R at long wavelengths.

In case the dynamics of the PSB shifting is exclusively controlled by the phase
transition, one would expect no wavelength-dependence in ∆R (t) /R. However,
the dynamics at short and long wavelength sides of the PSB appears to be different
[Fig. 4.6(a)]. At λ = 670 nm, ∆R/R monotonically decreases, while at λ = 605 nm
∆R/R is negative during the first 200 fs and subsequently changes sign. Such
behavior indicates the presence of two independent contributions governing the
refractive index of the photonic crystal. The first is the already described phase
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Fp (λ) is shown in arbitrary units.

transition. The second is light absorption by photoexcited carriers in VO2 and
(or), perhaps, two-photon absorption in silica that may take place when pump and
probe pulses are temporally overlapping (t < 200 fs) [51]. The induced absorp-
tion suppresses the Bragg interference in the photonic crystal (see Chapter 3) and
explains the initial decrease of ∆R/R observed at all wavelengths. At longer time
delays (t > 200 fs) the suppression of Bragg interference is compensated by the
phase transition itself that tends to increase ∆R/R at the short-wavelength side of
the spectrum. This explanation is supported by the observed weak ∆R (t) /R sig-
nals at λ = 630 nm [Fig. 4.6(a)], close to the center of the PSB where A (λ) ∼ 0.
Here, ∆R (t) /R is essentially independent of the PSB shift induced by the phase
transition, and only affected by small photoinduced changes in the imaginary part
of the refractive index.
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In the analysis, that we present now, we assume that the observed differ-
ential change in the Bragg reflectivity is a sum of two contributions: (i) the
phase transition, characterized by A (λ) Fp (t), and (ii) the generation and decay
of photo-excited carriers, characterized by the wavelength-independent function
Fe (t). These functions can be extracted from the data by subtracting and sum-
ming, respectively, the experimental curves of ∆R/R (λ, t) measured at two differ-
ent wavelengths, for each combination of curves,

Fe (t) =
1
2

[

∆R

R
(λ1, t) +

∆R

R
(λ2, t)

]

,

A (λ) Fp (t) =
[

∆R

R
(λ1, t) −

∆R

R
(λ2, t)

]

∆R

R
(λ, t > ts) (4.1)

×
[

∆R

R
(λ1, t > ts) −

∆R

R
(λ2, t > ts)

]−1

where λ1 and λ2 are arbitrary wavelengths. We note, that A (λ) Fp (t) and Fe (t) are
essentially independent of the λ1 and λ2 chosen. The calculated Fe (t) and Fp (t)
are shown in Fig. 4.6(b) by red dashed and solid lines, respectively. The experi-
mental dependencies of ∆R (t) /R depicted in Fig. 4.6(a) (black solid lines) can be
compared to the sum of Fe (t) and A (λ) Fp (t) (dotted lines). We obtain excellent
agreement between the measured and the calculated curves. From the empirical
curve Fp (t), we estimate that the optically induced phase transition takes place
at a 250-fs delay after the pump pulse. Finally, we note that the presence of two
contributions in the dynamics is most clearly visible in the ∆R (t) /R dependence
at 640 nm.

The observed dynamics of the phase transition is in agreement with two-step
model proposed by Sokolowski-Tinten and co-workers [24]. According to this
model, an electron-hole plasma is excited during the optical excitation while the
transition, where atoms need time to reach their new spatial positions, occurs only
with some delay. The observed delay is much shorter than the thermalization time
of phonons and signifies that the phase transition cannot be described by thermal
processes and must be a nonequilibrium process [33]. The phase transition in VO2

can be governed by one of two mechanisms (or by both): (i) non-equilibrium LO
phonons created by hot carriers and (ii) screening the electronic states by dense
electron-hole plasma. The latter may change the electron band structure and di-
minish the energy barrier separating the two phases of VO2 [44]. Unfortunately,
the temporal resolution of our experiment is comparable with the observed dy-
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namics of the structural transformation, Fp (t). Therefore, we cannot distinguish
the roles of these two mechanisms in our experiment. We hope that future exper-
iments with higher temporal resolution might resolve the decay of photoexcited
carriers. For that to achieve, one, of course, needs to probe the slope of Fp (t) with
a time resolution shorter than the rise of Fp (t). In any case, we may conclude
that the electron-hole plasma produces a non-equilibrium energy distribution of
phonons that promote the phase transition.

4.7 Conclusion

We demonstrated that a 3D photonic crystal based on vanadium dioxide is a
promising material for ultrafast photonic applications. The shift of the PSB in
opal-VO2 was observed to take place on the subpicosecond time scale. The rela-
tive change in the Bragg reflectivity was demonstrated to be as much as 35%. The
effect is attributed to the modulation of the real part of the effective dielectric con-
stant of the photonic crystal due to an ultrafast phase transition in VO2. Further,
the high refractive index of VO2 and the possibility of fabrication of inverted VO2

opals [49] make this material a candidate for all-optical switching applications.
Indeed, in the near infrared region, i.e 1.5 µm (Telecom standard), the refractive
index is 3.5 in the semiconductor phase [47] high enough [2] to create a photonic
device capable of ultrafast switching of a complete photonic bandgap.

Already at the low concentration of VO2 in the opal voids (∼ 8%) in our sam-
ple, substantial ultrafast shifts (∼ 5 nm) of the PSB were reached. In nanosecond
experiments and in other opal samples with a higher concentration of VO2 in the
pores, spectral shifts up to 40 nm were recently observed, quite sizable relative
to the PSB bandwidth [49, 50]. This suggests that ultrafast control of light in
VO2-based photonic crystals may prove to be relevant for applications.
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[13] G. Mertens, T. Röder, R. Schweins, K. Huber, and H.-S. Kitzerow, Appl. Phys. Lett.
80, 1885 (2002).
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[15] A. Haché and M. Bourgeois, Appl. Phys. Lett. 77, 4089 (2000).
[16] S. W. Leonard, H. M. van Driel, J. Schilling, and R. Wehrspohn, Phys. Rev. B 66,

161102(R) (2002).
[17] A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whit-

taker, A. Tahraoui, T. F. Krauss, and J. S. Robert, Appl. Phys. Lett 83, 851 (2003).
[18] X. Hu, Q. Zhang, Y. Liu, B. Cheng, and D. Zhang, Appl. Phys. Lett. 83, 2518

(2003).
[19] D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A.

Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, Phys. Rev. Lett. 91, 213903 (2003).
[20] Y.-K. Ha, J.-E. Kim, H. Park, C.-S. Kee, and H. Lim, Phys. Rev. B 66, 075109

(2002).
[21] P. M. Johnson, A. F. Koenderink, and W. L. Vos, Phys. Rev. B 66, 081102(R) (2002).
[22] D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, A. A.

Kaplyanskii, D. A. Kurdyukov, and A. B. Pevtsov (2004).
[23] C. V. Shank, R. Yen, and C. Hirlimann, Phys. Rev. Lett. 51, 900 (1983).
[24] K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, Phys. Rev. B 51, 14186

(1995).
[25] K. Sokolowski-Tinten and D. von der Linde, Phys. Rev. B 61, 2643 (2000).
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Abstract

We analyze the linear optical properties of a three-dimensional photonic crystal composed
of close-packed SiO2/Au/SiO2 core-shell colloidal particles. Strong coupling between in-
cident light and the surface plasmons of the spherical gold microcavities appears as sharp
features in the observed reflectivity spectra in the visible. In a single layer of gold-shell
particles, a highly directional diffraction pattern was observed with hexagonal symmetry.
The results are compared with theory.

5.1 Introduction

Progress in the fabrication of self-assembled nanostructures that possess a well
defined and controllable spatial periodicity explains the rapid growth and interest
in research on photonic crystals. From the fundamental side it is stimulated by
the challenging idea to control in a photonic crystal the spontaneous emission of
atoms or radiative electron-hole recombination [1, 2]. However, photonic crys-
tals are also thought to be relevant for various future applications ranging from
telecommunication data processing to the realization of ultrafast switches, opti-
cal chips, and computers. In order to achieve full control over light flow in a
photonic crystal, one needs to create structures with a complete photonic band
gap – i.e. a material, in which light in some spectral range cannot propagate in
any direction. A photonic band gap may arise in a three-dimensional (3D) pho-
tonic crystal, which possesses 3D periodicity in the dielectric constant on the scale
of the wavelength of light. However, spatial ordering is not sufficient to form a
band gap. The additional requirement is to reach a sufficiently high refractive in-
dex contrast between the host and dielectric structure. For example, the required

69
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refractive index contrast to achieve a full bandgap for close-packed face-centered-
cubic (fcc) lattice of spheres should exceed 2.8 (Refs. [3, 4]). A photonic crystal
with a complete band gap was demonstrated for the first time by Yablonovitch and
co-workers [5, 6] in the microwave range. The wavelength position of the pho-
tonic band gap was scaled all the way down to the infrared range by Blanco and
co-workers [7]. They use a sample fabricated from a monodisperse suspension of
colloidal microspheres that self-assemble into a 3D matrix with long-range peri-
odicity. In such case, the most common approach to increase the refractive index
contrast above the threshold is infiltrating the voids of the photonic crystal with
high-index semiconductor materials. Subsequently, the contrast can be increased
further by etching out the dielectric spheres [7]. For such inverted photonic crys-
tals, the required refractive index contrast limits the material choice to highly re-
fractive semiconductors, which are unfortunately opaque in the visible. Metallo-
dielectric photonic crystals, however, are novel and very attractive alternatives in
this context because of their high refractive index contrast. It was predicted that a
large photonic band gap may open up in the visible in metallo-dielectric photonic
crystals [8]. Further, metallo-dielectric photonic crystals turn out to be interesting
objects from the point of view of fundamental optics and nano-plasmonics.

In fact, the first, very well known, and widely utilized periodic metallic struc-
tures are, of course, metallic gratings [9]. In 1902, Wood discovered anomalously
sharp minima and maxima in the reflection spectra of metallic gratings [10]. Since
that discovery, it took about 60 years to complete a theory that could account for
all observed phenomena [11]. Roughly speaking, the anomalies can be traced
back to the presence of the two resonances: (i) one in which the diffraction orders
graze the surface of the grating (proposed by Rayleigh) [12] and (ii) the plasmon
resonance. These resonances may even interfere with each other and produce a
Fano-like profile of the reflectivity spectrum [13, 14]. At the end of the twentieth
century, the interest in the metallic gratings was renewed by the work of Ebbe-
sen and co-workers [15] who discovered unexpectedly high transmission through
an array of sub-wavelength holes in a metal film, namely one-order-of-magnitude
higher than predicted by standard aperture theory. This phenomenon was ex-
plained as follows: the incoming light excites the surface plasmons on the front
side of the perforated film [16]. The excited plasmons subsequently tunnel via the
holes to the other side of the film and, subsequently, radiate light into free space.

A related fascinating phenomenon takes place when light is transmitted
through a suitably corrugated metal film having one single aperture of a size much
smaller than the wavelength of light. Standard diffraction theory prescribes that
light emerging from a sub-wavelength hole should be diffracted equally intense in
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all directions. However, Lezec with co-workers [17] demonstrated that the out-
coming beam from a hole in a corrugated film can be unexpectedly directional.
The explanation of this phenomenon was found in the coupling of the plasmon
resonance with the corrugation at the rear surface of the film. The direction and
width of the outcoming beam can be controlled by the geometry of the structure
and the incident wavelength. Very recently, Kramper and co-workers [18] showed
both theoretically and experimentally, that a highly directional beam can be cou-
pled out from a sub-wavelength waveguide even in a dielectric photonic crystal,
demonstrating that these effects are not restricted to metallo-dielectric structures.

Recent progress in the synthesis of metallo-dielectric composites now allows
us to fabricate periodic 2D or 3D arrays of metallo-dielectric core-shell particles
with a lattice constant of the order of the wavelength of light in the visible [19]. An
important additional feature of such structures compared to a dielectric photonic
crystal is the presence of surface plasmon resonances, i.e. coherent oscillations
of free electrons at optical frequencies in each individual particle. Therefore, the
optical response of an ordered array of a dielectric-metal core-shell particles can
be viewed as a superposition of the multiple lattice diffraction and surface plasmon
resonances. The latter are determined by the geometry of the individual particle
and the dielectric function of the metal.

The surface plasmon resonance of an isolated metallic sphere appears at wave-
lengths, where the dielectric constant of the metal, εm, is approaching εm = −2.
For a sphere of a size much smaller than the wavelength of light, the spectral
position of the surface plasmon resonance is weakly size dependent. When the
diameter of the sphere is comparable to the wavelength of light, the surface plas-
mon resonance shifts towards lower energies, becomes broader, and finally splits
into a series of separate multipole modes. This phenomenon is caused by phase
retardation [20, 21].

A hollow spherical metallic nanoshell supports two types of surface plasmons,
one on the internal and one on the external surfaces of the sphere, respectively. In
case of a sufficiently thin shell, the inner and outer plasmons may interact result-
ing in “hybridization” of the plasmon excitations [22]. In resonance one expects
the plasmon mode to split into symmetrically and antisymmetrically coupled plas-
mon modes as shown in Fig. 5.1. Recently, hybridization of the plasmon modes
was reported in very complex multishell particles composed of a silica core and
consecutive shells of gold and silica [22]. In this particle the hybridization of the
plasmon states is the result of a strong coupling of plasmon states in the inner
and outer metal shells and appeared to be very sensitive to the thickness of the
separating dielectric layer.
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F 5.1 Sketch of the internal and external surface plasmons on a metallic shell for
(a) symmetrical and (b) antisymmetrical coupling, respectively.

In this Chapter we examine simpler submicron “nano-matryoshka’s” but ar-
ranged in the 3D periodic lattice. We study the linear optical properties of a
3D photonic crystals composed of gold-shell spheres with an outer diameter of
276 nm grown on a thick silica core and covered by a thin silica outer layer. Our
studies were stimulated by predictions that such a structure possesses a complete
photonic band gap in the infrared. Here, however, we aim to establish the physics
of the interacting resonance modes in our photonic crystal and confine ourselves
to optical properties in the visible range where surface plasmon resonances are ex-
pected to coexist with diffraction resonances of the periodic lattice. We examine
both the reflection spectra and the angular distribution of the diffracted light from
the photonic crystal. In contrast to the case of a metallic film, this type of pho-
tonic crystal does not support a propagating plasmon-polariton, because the gold
shells are not touching each other. Instead, light can only excite discrete surface
plasmon resonances, which results in the interplay between external and internal
plasmonic resonances of single particles, accounted for by Mie theory [23].

5.2 Sample and experimental details

Metallo-dielectric photonic crystal were fabricated by C. M. Graf in the Debye In-
stitute, Department of Soft Condensed Matter, University of Utrecht, the Nether-
lands. The sample consists of close-packed metallo-dielectric particles, forming
a photonic crystal. Each particle has a silica core with a radius of r1 = 228 nm
covered by a gold shell and capped with a silica outer shell with thicknesses of
r2 − r1 = 38 nm and r3 − r2 = 10 nm, respectively, as shown in Fig. 5.2.



5.2 Sample and experimental details 73

r3  

r2 

r1 

SiO2  

Au

SiO2 

F 5.2 Silica-core gold-shell particle with silica outer shell.

The metallic-dielectric spheres were synthesized in a multistep reaction. First,
spherical silica particles of 228 nm radius were grown in a stepwise seeded Stöber
growth process. In the second step, gold nanoclusters of 1−2 nm in diameter were
attached to the silica spheres. Subsequently, these precursor spheres were put in
an HAuCl4/K2CO3 solution. Addition of hydroxylamine to this solution results in
reductive growth and coalescence of the deposited gold nanoclusters and the for-
mation of a closed thin gold shell. Finally, capping the colloidal particles with an
outer silica layer was achieved by surface functionalization with polyvinylpyrroli-
done and subsequent growth by a Stöber-like process [24].

Since the silica outer shell reduces the Van-der-Waals interparticle forces, the
particles can self-assemble in a periodic fashion. For this, a droplet of ethanol
containing the silica coated gold-shell colloidal particles was carefully dried on
a silicon wafer as to produce a close-packed array of the particles. Depending
on the sample point, the thickness of the obtained photonic crystal appeared to
gradually vary from one monolayer to tens of monolayers. The scanning electron
microscope (SEM) picture of a highly ordered part of the sample is shown in
Fig. 5.3. We assume in the following that studied points of our sample have an fcc
structure. Further details of the fabrication method can be found in Ref. [19].

All experiments were carried out at room temperature. Stationary reflection
spectra were obtained using a continuum white light source generated by ampli-
fied femtosecond pulses on a sapphire plate. The experimental setup was the same
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F 5.3 SEM image of the fcc gold-shell photonic crystal on a silicon substrate.

as described in Section 2.3, except that for the stationary experiments the pump
pulse was not applied. The white light was directed at an angle θ to the [1 1 1]
direction of the photonic crystal and focused onto a 25-µm spot at the sample
surface. The reflected light was picked up by a lens, passed via a spatial filter,
and focused onto the entrance of an optical fiber (Fig. 2.2). This fiber transferred
the reflected light to the entrance slit of a spectrometer. The spectrum was de-
tected by a cooled charge-coupled device (CCD) controlled by a computer. In
order to obtain the absolute reflectivity from the photonic crystal, we gauged our
measurements against the well-known reflectivity spectra of bulk silicon by mea-
suring the reflection of a part of the sample, that happens not to be covered by
gold-shell particles. The angular distribution of the reflected and diffracted light
can be displayed on a screen inserted in front of the spatial filter (see Fig. 2.2).

5.3 Experimental results

The linear optical properties of our photonic crystal turn out to depend strongly
on the number of layers of the gold-shell spheres on the substrate. However, as
will be shown later, there are some general features, that are found irrespective of
the actual number of layers of the photonic crystal. Therefore, we describe the
linear properties of a single-layer of gold-shell particles first and subsequently ex-
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F 5.4 Diffraction pattern from one layer of ordered gold-shell particles on the sil-
icon substrate. The angle between the propagation direction of the specularly reflected
beam and the diffraction maxima is θ = 8◦.

amine the differences that appear when more layers are present in the fcc-ordered
photonic structure.

5.3.1 Reflection from a single hexagonal layer of gold-shell particles

A single layer of close-packed gold-shell particles is expected to be semitranspar-
ent for visible light. As a result, the main part of the reflected intensity should
be due to specularly reflected light from the silicon substrate that manages to
leak back and forth through the layer of particles. In addition to this, the reflec-
tion should have a “photonic” contribution, i.e. due to diffraction on the periodic
structure of ordered gold-shells. Figure 5.4 displays the measured diffracted light
intensity incident on a screen placed near the sample (the position of the screen is
schematically shown on Fig. 2.2). Here, the central spot corresponds to the specu-
larly reflected light. The specularly reflected beam propagates in a cone, which is
limited by the aperture of the incident white light. The angular distribution of the
diffraction pattern is strongly inhomogeneous and peaks roughly at the apexes of
a hexagon. Surprisingly, the angle between the propagation direction of the spec-
ular beam and the diffracted ones amounts to only θ ≈ 8◦. This small angle cannot
be explained neither in terms of single-particle scattering, nor by simple diffrac-
tion on a close-packed layer or 3Dfcc structure. The spectra of the diffracted and
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F 5.5 Linear reflection spectra of the specularly reflected (solid line) and
diffracted light (dashed line), respectively, from one layer of gold-shell particles on a
silicon substrate.

specular signals are shown in Fig. 5.5 by dashed and solid lines, respectively. The
specular reflection peaks at 700 nm and has no spectral feature in the green range
of the spectrum (550 − 600 nm). However, the spectrum of the diffracted light
peaks at 570 nm and does not exhibit a maximum at 700 nm. We obtained the
same spectra from the sample points where hexagonal pattern was not found and
the scattered light was distributed chaotically.

5.3.2 Reflection from a multi-layer gold-shell photonic crystal

Let us now describe the optical properties of more than one layer of ordered gold-
shell particles that are stacked in a hexagonal fashion, corresponding to a 3D
hexagonal of fcc matrix. Unfortunately, during self-assembly, we do not have
control of the stacking order in the sample introducing inherent disorder in the
growth direction. In sufficiently thick regions of the crystal, the contribution from



5.4 Theory 77

the reflection from the substrate vanishes. Moreover, the hexagonal diffraction
pattern (Fig. 5.4) disappeared completely and only one beam was observed. For
the most part of the sample this beam is weak and has a broad angular distribu-
tion, which as we suppose is due to disorder. However, at some specific points
at the sample reflectivity dramatically enhances and the angular distribution of
the reflected beam becomes much narrower but, however, slightly wider than the
incident probe beam. We believe that these specific points correspond to highly
ordered parts of the sample. These specific points have the identical linear reflec-
tion spectra, such as the ones shown in Figure 5.6(a) for some selected angles of
incidence. The spectra have a rather complicated structure consisting of several
peaks at 500, 570, 650, and 700 nm denoted as P1, P2, P3, and P4, respectively,
and several dips at 530, 615, and 680 nm, denoted as D1, D2, and D3, respectively.
The exact position of the maxima and minima slightly depends on the incident an-
gle but not on the specific location on the sample. We note that positions P2 and
P4 coincide with the single-layer reflection maxima of the diffracted and specular
beams, respectively [see Fig. 5.5 and 5.6(a)].

In the range of 600−750 nm, the spectral positions of the minima and maxima
in the reflection spectra (Fig. 5.6) exhibit no angular dependence. However, below
550 nm and above 800 nm [not shown in Fig. 5.6(a)] the maxima and minima
strongly depend on the angle of incidence.

5.4 Theory

In Chapter 3 we calculated a reflectivity spectrum around the stop band of a non-
metallic photonic crystal in a framework of the two-band mixing formalism. This
method takes into account only two waves interacting near the edge of the first
Brillouin zone. Therefore, the validity of the two-band mixing theory is limited
to the spectral range around a photonic stop band. Moreover, this method cannot
be fully applicable to photonic crystals containing metals because it does not take
into account plasmon modes of individual particles. Therefore, calculations of
optical properties of a complicated photonic crystal as our array of dielectric-
metal core-shells require more sophisticated methods.

The band structure of an infinite photonic crystal can be calculated by using
a 3D photonic variant of the Korringa-Kohn-Rostocker (KKR) method developed
by A. Moroz [8, 25, 26]. In the framework of the KKR method scattering from an
isolated sphere is calculated on the basis of spherical functions taking into account
a sufficient number of higher harmonics.
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F 5.6 (a) Reflection spectra from thick (> 5 layers) gold-shell photonic crystal at
various angles of incidence, θ. (b) Calculated reflection spectrum of a single close-packed
hexagonal layer of gold-shell particles on an infinite silicon substrate for r1 = 228 nm,
r2 = 266 nm, r3 = 276 nm, and θ = 0.

5.4.1 Layered KKR method

Transmission, reflection, and absorption of a finite-size photonic crystal can be
calculated using the layered variant of the photonic Korringa-Kohn-Rostocker
method (LKKR) [27–29]. This method has been recently used to calculate the
linear reflection and transmission spectra of various photonic structures, such as
ZnS-SiO2 core-shell 3D photonic crystal and metallo-dielectric photonic glasses
of colloidal silver spheres, and demonstrated to be in agreement with experimen-
tal spectra [30–32]. In the framework of the LKKR method, space is divided into
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F 5.7 Scattering from a 2D plane of ordered spheres.

three parts: (i) the substrate, (ii) the photonic crystal composed of a close-packed
periodic array of the multi-shells, and (iii) air. The substrate and the photonic crys-
tal parts are considered to extend infinitely far in x and y directions. In addition
to this, one assumes that the incident light propagates along the z-axis. Further,
the periodic array of non-overlapping spheres is considered as a stack of the 2D
layers. Each layer is infinite and periodic in the x and y directions. In order to ob-
tain the transmission and reflectivity of the photonic crystal, one needs to find the
solution of Maxwell equations in the substrate, air, and each of 2D layers of the
spheres. Finally, the obtained solutions are connected by applying proper bound-
ary conditions described in terms of transfer and transmission matrixes. We start
our analysis describing the scattering by only one plane of 2D-ordered spheres.

In the following, we denote E+
in

and E−
in

as the electric field of a plane wave that
is incident on the layer of spheres and propagate to the right, and left, respectively,
as shown in Fig. 5.7. Similarly, E−sc and E+sc correspond to the scattered waves.
The reflected wave can be expanded in a Fourier series,

E−sc (r) =
∑

G, j

[Esc]−G j exp
(

iK−G · r
)

û j (5.1)

where G is the reciprocal-lattice vector, û j with j = x, y, z denotes the base vec-
tors, and

K±G =

(

k‖ +G‖,±
√

εhσ2 −
(

k‖ +G‖
)2
)

. (5.2)
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Here, σ = ω/c with ω frequency of the light, c speed of light in vacuum, and εh is
the dielectric constant of the host. We note that in our particular case, spheres are
in air and εh = 1. Further, the first and the second components of the right-hand
part of Eq. (5.2) define the parallel and transverse components of the wavevector,
respectively, and k‖ is the component of the wavevector of the incident light in
the 2D plane of spheres. We note, that when σ2 <

(

k‖ +G‖
)

the wavevector is
imaginary and the wave is decaying.

The Fourier coefficient in Eq. (5.1) can be expressed as

[Esc]−G j =
∑

G, j′

M−+G j,G′ j′ [Ein]+G, (5.3)

where [Ein]+
G

is the Fourier coefficient of the incident wave and M−+
G j,G′ j′ the re-

flection matrix element. The transmitted wave E+tr = E+
in
+ E+sc can be expressed

as

[Etr]+G j = [Etr]+G j δGG′ + [Esc]+G j =
∑

G, j′

M++G j,G′ j′ [Ein]+G j, (5.4)

where M++
G j,G′ j′ is the transmission matrix element. Analogously, we can define

the reflection matrix element M+−
G j,G′ j′ and transmission matrix element M−−

G j,G′ j′

for the plane wave incident on the right side of the layer. The transmission and
reflection matrices are functions of k‖, σ, the scattering properties of an individual
sphere [33], and the geometrical properties of the layer of particles. The detailed
description of these matrices can be found in Refs. [29, 34].

It is important to note that Eqs. (5.3) and (5.4) also correctly describe the
much simpler case of reflection and transmission through a homogeneous plate
of thickness dl. In this case, the reflection and transmission matrices reduce to
Fresnel’s law. Generally, a photonic crystal can be treated as a stack of layers
of thickness dl, and each layer can be either a 2D periodic array of spheres or
a homogeneous plate. In Fig. 5.8 we schematically sketch our sample that is
composed of N−1 layers of gold-shell particles and one homogeneous thick layer
of silicon.

In order to obtain the reflected and transmitted waves propagating through all

layers, we have to apply the continuity condition on the interfaces between the 2D
layers. For this purpose we introduce new Q-matrices that express the incoming
and outgoing waves on the left and the right interfaces of the layers, respectively.
For a plane of spheres the transmission and reflection matrix elements then read
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F 5.8 Reflection and transmission through the gold-shell photonic crystal on a
silicon substrate. Vertical dotted lines show the interfaces between the 2D layers.

QI
G j,G′ j′ =M++

G j,G′ j′ exp
(

iK+
G
· d

)

,

QII
G j,G′ j′ =M+−

G j,G′ j′ exp
[

1
2 i

(

K+
G
−K−

G

)

· d
]

,

QIII
G j,G′ j′ =M−+

G j,G′ j′ exp
[

1
2 i

(

K+
G
−K−

G

)

· d
]

,

QIV
G j,G′ j′ =M−+

G j,G′ j′ exp−
(

iK−
G
· d

)

.

(5.5)

Here, d is a vector perpendicular to the plane interfaces with d = dl. For the case
of a homogeneous plate the Q-matrices become

QI
G j,G′ j′ = N++

G j,G′ j′ exp
[

i 1
2

(

K+3G
+K+1G

)

· d
]

,

QII
G j,G′ j′ = N+−

G j,G′ j′ exp
[

i 1
2

(

K+3G
−K−3G

)

· d
]

,

QIII
G j,G′ j′ = N−+

G j,G′ j′ exp
[

i 1
2

(

K+1G
−K−1G

)

· d
]

,

QIV
G j,G′ j′ = N−+

G j,G′ j′ exp−
[

i 1
2

(

K−3G
+K−1G

)

· d
]

,

(5.6)

with

K±m,g =

(

k‖ +G‖,±
√

εmσ2 −
(

k‖ +G‖
)2
)

. (5.7)
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Here, ε1 and ε3 are the host dielectric constants of the preceding and successive
layers, respectively, and N±±

G j,G′ j′ the reflection and transmission matrix elements
for a homogeneous plate. The exact form of this matrix can be found in Ref. [29].

Finally, the Q (n, n + 1)-matrix of a combination of two successive layers, n

and n + 1, can be obtained according to the following rule,

QI (n, n + 1) = QI (n + 1)
[

I −QI (n) QIII (n + 1)
]−1

QI (n) ,

QII (n, n + 1) = QII (n + 1) +QI (n + 1) QII (n)

×
[

I −QIII (n + 1) QII (n)
]−1

QIV (n + 1) , (5.8)

QIII (n, n + 1) = QIII (n) +QIV (n) QIII (n + 1)

×
[

I −QII (n) QIII (n + 1)
]−1

QI (n) ,

QIV (n, n + 1) = QIV (n)
[

I −QIII (n + 1) QII (n)
]−1

QIV (n + 1) .

Applying this rule recursively for each contributing layer we obtain QI (1,N)
and QIII (1,N), which determine the total transmission and reflection of the stud-
ied structure (Fig. 5.8), respectively. We note, that this method of calculation can
also account for stacking failure by inserting a random lateral shift between two
successive layers. However, in this chapter we limit ourselves for calculating only
perfectly ordered structures.

5.4.2 Computation results

In this Section we present the results of the of the ab initio calculation of the
reflectivity spectrum of our sample relying on the LKKR method using a computer
code composed by A. Moroz [26] (see also http://www.wave-scattering.com).

For the calculation we inserted the refractive index of silica n(SiO2) = 1.45,
the wavelength-dependent dielectric constant of gold [35] depicted in Fig. 5.9,
and the geometrical parameters of the silica-gold multishell spheres known from
the SEM measurements, r1 = 228 nm, r2 = 266 nm, and r3 = 276 nm. We stress
that our calculation allows for no fitting parameters.

Figure 5.6(b) shows the calculated reflection spectrum of a single layer of
close-packed gold-shell particles on an infinite silicon substrate at θ = 0 angle
of incidence. The spectrum already reasonably resembles the experimentally ob-
served one [Fig. 5.6(a), solid line]. This is remarkable because the calculation
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refers to the case of only one single layer, while the measurements are taken on
a multi-layer structure. The maxima P1, P2, P3, and P4 and minima D1, D2,
and D3 of the measured spectrum are nicely reproduced in the calculation. The
spectral positions of the dips at 550 nm (D1) and 660 nm (D3) in the calculated
spectrum coincide, respectively, with the calculated dipole and the quadrupole
resonances of individual gold shell particles that are shown in Fig. 5.10. In that
figure, the solid and dotted lines correspond to the scattering and absorption effi-
ciency of an individual particle.

In Fig. 5.11, the dotted line shows the result of a calculation of the reflec-
tivity from a thick photonic crystal. For comparison, the solid line displays the
experimental data reproduced from Fig. 5.6(a). The calculation was performed
for the (1 1 1) oriented structure composed of 12 close-packed fcc layers (i.e. per-
fect stacking order) on an infinite silicon substrate. We note that already 6 layers
are sufficient in order to approximate the infinite photonic crystal. Unfortunately,
the calculated reflectivity from the multilayered photonic crystal does not satis-
factorily track the experimental curves at least with the parameter values used
[Fig. 5.11(b)].



84 Chapter 5 Linear optical properties of a SiO2/Au core-shell photonic crystal

500 600 700 800 900
0

1

2

3

 

S
c
a

tt
e

ri
n

g
, 

A
b

s
o

rp
ti
o

n
 (

a
rb

. 
u

.)

Wavelength (nm)

F 5.10 Calculated scattering (solid line) and absorption (dotted line) efficiencies
of a single gold-shell particle for r1 = 228 nm, r2 = 266 nm, r3 = 276 nm. The ar-
rows at 540 nm and 870 nm show the positions of the dipole and at 660 nm quadrupole
resonances.

In order to examine possible effects of non-monodispersity of our spheres, we
have performed a set of computations for up to 10%-variation for the geometrical
parameters of r1, r2, and r3 over initial values. One favorable example of a cal-
culated spectrum is presented in Fig. 5.12 and compared with experiment. These
computations show that the spectral position of D2 strongly depends on r1 but is
independent of r3. Further, the position of peak P1 does depend on r3 but not on
r1, while P2, P3, and P4 depend both on r1 and r3. Finally, the spectral positions
of P1, P2, P3, P4, and D2 appear to be essentially independent of r2.

5.5 Discussion

The optical properties of gold-shell photonic crystal are governed by two types
of resonances: the surface plasmons of the gold shell (Mie resonances) and the
resonant scattering off the periodic array of particles (Bragg scattering). The in-
dividual contributions of these resonances can be separated by examining the an-
gular dependence of the reflection. In case when a resonance is associated with
a plasmon resonance of an isolated particle with spherical symmetry, the spec-
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F 5.11 Calculated reflection spectrum (dotted line) along the (1 1 1) crystallo-
graphic axis of a photonic crystal composed of 12 fcc-ordered layers of the gold-shell
particles on an infinite silicon substrate for r1 = 228 nm, r2 = 266 nm, r3 = 276 nm,
and θ = 0. The calculation compared with the experimental reflection (solid line) at
θ = 4°taken from Fig. 5.6(a).

tral position of the resonance should be angle independent. In case when the
resonance is associated with the ordering of the particles, however,no anglar de-
pendence is expectred of the reflection spectrum. The observed maxima (P1-P4)
and minima (D1-D3) in reflection [Fig. 5.6(a)] spectrum can be classified into two
groups: The first group, P1, D1, and P2, has maxima and minima that depend on
the angle of incidence. Therefore, their properties must be associated with a scat-
tering on the periodic lattice that may, however, couple with the plasmon modes.
The second group, D2, D3, P3, and P4, has no angular dependence and, therefore,
can be attributed to the pure plasmon modes. We found that the minimum D3 in
the reflection spectrum coincides with the absorption maximum of a single parti-
cle associated with the quadrupole plasmon resonance. Therefore, we believe that
in the spectral range of 600 − 750 nm the spectral features of the photonic crystal
are governed by the plasmon modes excited in the particles. Very recently, Miclea
and co-authors reported similar effects in the reflectivity spectra in 3D photonic
crystal composed of 640 nm latex spheres coated by 6-nm gold shells but detected
no angular dependence of the spectral resonances in the visible spectral range. At
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F 5.12 Calculated reflection spectrum (dotted line) along the (1 1 1) crystallo-
graphic axis of a photonic crystal composed of 12 fcc-ordered layers of the gold-shell
particles on an infinite silicon substrate for r1 = 202 nm, r2 = 264 nm, r3 = 274 nm,
and θ = 0. The calculation compared with the experimental reflection (solid line) at
θ = 4°taken from Fig. 5.6(a).

the same time, they revealed a strong angular dependence of the spectral max-
ima in the near-infrared and attribute this phenomenon to the Bragg diffraction on
a periodic lattice [36]. Their observation was obtained independently of our first
studies on metallo-dielectric structures [37]. Another related observation has been
made in an inverted gold opal with 350-nm spherical cavities by Coyle et al. [38].
The cavities of this opal support localized surface plasmons that appear as sharp
features of the reflection spectra in the visible range. Again, the spectral positions
of these features are independent of the angle of incidence. All these observations
support our conclusion that in the range of 600 − 750 nm the reflection of our
sample is fully controlled by surface plasmon resonances.

On the other hand the dip D1 in the experimental spectra [Fig. 5.6(a)] is close
to the calculated plasmon dipole resonance (Fig. 5.10) that appeared to have an
angular dependence. Therefore, we can attribute D1 as a result of coupling be-
tween a plasmon resonance of an individual sphere and the scattering on a periodic
crystal lattice.
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This classification is also supported by the sensitivity of the calculated reflec-
tion intensity to a variation of the particle sizes r1, r2, and r3. Thus, the spectral
position of D2 depends on r1, and does not depend on r3, which is half the lat-
tice parameter. Since D2 is also independent of r2 we suppose that D2 may be
attributed to the internal plasmon resonance in the gold shell cavity. In contrast,
P1 depends strongly on r3 but not on r1. Therefore, we may safely conclude that
P1 is governed by the lattice ordering.

At this point we discuss the poor agreement between the experimental and
the calculated reflection spectra of the thick photonic crystal [Fig. 5.11]. The
calculated spectrum (dotted line) is shifted compared to the measured one (solid
line) by about 30 nm. The reason of this discrepancy is unknown and we found
that it cannot be accounted for by assuming deviations of either gold or silica
dielectric constants from the bulk ones. We also checked that this deviation cannot
be traced back to enhanced absorption in the gold due to electron scattering on the
imperfections. However, we note that the calculated spectra can be brought quite
close to the experimental ones if we simply assume smaller internal radii of an
individual particles. The result of a calculation for the photonic crystal composed
of 12 fcc-ordered layers of the gold-shell particles on an infinite silicon substrate
with inserted r1 = 202 nm, r2 = 264 nm, r3 = 274 nm, and θ = 0 is shown in
Fig. 5.12.

Finally, we note that the position of the dipole resonance at 545 nm is very
close to the lattice parameter 2r3 = 552 nm, which may result in a strong interfer-
ence and possibly lead to some interesting phenomena. In Figure 5.4 we discov-
ered that the propagation direction of light with a wavelength ∼ 570 nm, diffracted
on a single layer of ordered gold-shell particles, deviates from the specularly re-
flected light by θ = 8° and produces a hexagonal diffraction pattern. Although,
the origin of this phenomena is not fully understood we speculate that interfer-
ence of the localized plasmon and surface modes takes place. Effects reminiscent
of ours, were discussed recently by Martı́n-Moreno and co-authors [16] in their
theory explaining highly directional beaming of light propagating through a hole
in a corrugated metallic film [17]. They explain this phenomenon by formation of
electromagnetic surface resonances as a result of coupling between single groove
cavity modes and the periodic corrugation at the rear surface of the film. An-
other, perhaps related phenomenon, was discussed by Félidj and co-workers [39]
in an attempt to explain the extinction spectra of gold oblate spheroidal particles
deposited on 20-nm gold film on a glass substrate. They found that an ordered
array of gold nanoparticles on the gold film with interparticle spacing smaller
than 250 nm possesses extinction spectra with an additional band in the green
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part of the spectra, which was not observed for similar particles but deposited on
indium tin oxide substrate. This result was interpreted by the authors as a result
of coupling between a localized surface plasmon of an individual particle and a
propagating plasmon at the glass-gold interface. However, in our sample all plas-
mon modes are localized and excitation of the propagating surface modes on a
photonic-crystal-air interface is not obvious. In this connection it may be relevant
to note that these intricate effects are not restricted to metallo-dielectric structures.
For example, Kramper and co-workers recently demonstrated a highly directional
emission from a subwavelength waveguide in a dielectric photonic crystal [18].

However, the nature of the surface modes in our experiment remains ambigu-
ous. Alternatively, our observation may be related to interference of the localized
plasmon modes with waveguide modes of the underlying silicon substrate. A sim-
ilar explanation was recently proposed by Yannopapas and Stefanou [40] in order
to explain the transmission spectra of rectangular two-dimensional arrays of gold
particles on an indium-tin-oxide substrate [41].

5.6 Conclusions

In this Chapter we examined reflection spectra of an fcc-ordered three-dimensional
crystal composed of silica-gold core-shell colloidal particles. The observed linear
spectra in the visible show several maxima that can be traced down to stop-bands.
However, most linear optical properties of our gold-shell photonic crystals ap-
peared to be governed by surface plasmon resonances of an individual gold-shell
particle. We conclude that in the range of 600−750 nm the reflection properties of
our sample are fully controlled by surface plasmon resonances, while in the ranges
below 550 nm and above 800 nm the reflectivity is affected by resonant scattering
off the photonic crystal lattice. The reflection spectra are in agreement with cal-
culations made for a single layer of the gold-shell spheres but, unfortunately have
bad agreement with calculated spectra made for an ordered multilayered photonic
crystal with the correct particle dimensions. In addition, we found that a single
layer of gold-shell particles may produce a surprising, highly-directional hexag-
onal diffraction pattern. We speculate that the observed phenomenon relates to
interference of the localized surface plasmon modes and surface modes.
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Abstract

We analyze the non-linear optical properties of a three-dimensional photonic crystal com-
posed of close-packed SiO2/Au/SiO2 core-shell colloidal particles. The transient reflec-
tion spectra of the photonic crystal following excitation by intense femtosecond optical
pulses demonstrate subpicosecond dynamics associated with rapid heating of the electron
gas. Photoinduced absorption results in a broadening of the plasmon resonances and mod-
ifies the reflection spectrum. Depending on the wavelength, we observed both transient
bleaching and transient absorption. The observed dynamics is interpreted in terms of the
temperature dependence of the dielectric constant of gold and analyzed in the framework
of the “two-temperature model”.

6.1 Introduction

Dielectric spheres coated with metallic shells hold a great promise for non-linear
optics [1–3] and ultrafast photodetection [4, 5]. There is an obvious reason to
expect enhanced non-linear properties in such kind of particles: metallic sphere
possesses surface plasmon resonances that may enhance the local electric field. It
was proposed that intense optical excitation may shift the spectral position of the
plasmon resonance and, under some circumstances even lead to optical bistability
[3, 6]. Subpicosecond non-linear responses from metallic nanoshells were demon-
strated for the first time by Averitt and co-workers [7] for particles composed of a
∼ 40-nm Au2S core surrounded by an ultrathin Au layer. The dynamical response
of these particles following femtosecond optical excitation, however, turned out to
be similar to the response of solid metal particles, which were already extensively
studied during the previous decade [8–14]. Quite importantly, the spectral posi-
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tion of the plasmon resonance in metallic nanoshells depends on the core-shell
ratio that makes their optical properties tunable by choosing appropriate geomet-
rical parameters [1, 15, 16]. It was established that the ultrafast signal induced
by femtosecond optical excitation is caused by rapid heating of the electron gas
in the metal. Electron heating, in turn, changes both the real and the imaginary
part of the dielectric constant of a metal and appears to account for the observed
wavelength-dependent transient changes in the absorption spectra. It is important
to note that non-linear properties can be dramatically enhanced in an ensemble of
metallic particles. For example, strong enhancement of second harmonic gener-
ation was recently reported in randomly distributed arrays of gold nanoparticles
[17].

Nowadays, progress in nanotechnology allows us to fabricate periodic arrays
of metallic nanoshells [18, 19] forming a photonic crystal. These structures are
very promising for ultrafast switching of light. On one hand, it was predicted that
these structures may possess a sizable photonic bandgap in the visible or infrared
spectral range [20, 21]. On the other hand, in such structures light can be localized
in extremely small volumes boosting their non-linear optical properties.

In Chapter 5, we analyzed the linear properties of a 3D photonic crystal com-
posed of a silica core surrounded by a gold shell and capped by an outer silica
nanoshell. In the visible spectral range we observed that the optical properties
of this photonic crystal are governed by plasmon resonances. In this Chapter we
examine the ultrafast nonlinear response of the photonic crystal, and analyze both
the spectral response and subpicosecond dynamics of the transient reflectivity fol-
lowed by femtosecond optical excitation.

6.2 Experimental details

6.2.1 Time-resolved detection of the reflectivity spectra

Our sample is a three-dimensional photonic crystal with submicron core-multi-
shell spheres on the lattice points. Each particle consists of a 228-nm radius silica
core, gold shell with a thickness of 38-nm, and an outer silica shell with a thick-
ness of 10-nm. A more detailed description of our sample and its linear optical
properties can be found in Chapter 5.

The ultrafast response of our photonic crystal was examined by the low-
repetition-rate pump-probe setup described in Section 2.3. The angle of incidence
of the probe beam was chosen to be θ = 14°. The transient changes of the reflec-
tivity were measured from the thick, highly ordered part of the photonic crystal
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containing more than five layers of gold-shell particles. The studied sample areas
were carefully selected by checking that the linear reflection spectrum coincides
with the spectrum depicted in Fig. 5.6. In thick samples, the reflected light is con-
centrated in the specular direction and the scattering at other angles vanishes. In
order to reject the residual scattering of the pump light in these transient reflectiv-
ity experiments, the reflected probe beam was passed through a spatial filter that
admits exclusively the specular beam. The intensity of the pump beam was chosen
to be ∼ 0.5 mJ/cm2, which is slightly below the damage threshold. Dispite these
high illumination, both the linear reflection spectra and the dynamics of the tran-
sient reflectivity spectra appeared to remain stable and reproducible for at least
several hours.

6.2.2 High-selectivity pump-probe detection at a specific wavelength

Some high-sensitivity pump-probe measurements at a specific wavelength were
performed employing another detection technique developed by E. Hesseling and
O. L. Muskens [22]. In this configuration the pump pulse was modulated by a
mechanical chopper operating at a frequency νm = ν/4, where ν = 1 kHz is the
repetition frequency of our Ti-sapphire laser. The phase of the chopper was syn-
chronized with the Ti-sapphire laser. The reflected probe beam from the sample
was collected, guided by a lens into the fiber, and transported to the entrance slit
of the spectrometer. The intensity of the light at a wavelength selected by the
end slit was detected by a slow InGaAs photodetector with amplifier, yielding a
sufficient optical sensitivity in a large spectral range, 400 − 2000 nm. In order
to enhance the signal-to-noise ratio of the photodetector, we decided to increase
the intensity of the incoming light on the entrance of the photodetector by open-
ing the output slit of the spectrometer at the expense of decreasing the spectral
resolution to 35 nm. Since the detected probe light was chirped, the temporal res-
olution of the detection is reduced to about 1 ps. The electronic signal from the
photodetector was analyzed by a digital multimeter (H P 3458A)
with a 300-kΩ load resistor at the input. The digital multimeter was synchronized
with the pump pulses by an external trigger and a digital delay generator. Both the
multimeter and the digital delay generator were controlled by a computer. In order
to increase the signal-to-noise ratio further, the multimeter was set to measure the
average voltage of the photodetector with a precision of 5 digits in a 100-µs time
window during the electrical signal of the probe pulse. For each measurement
the multimeter registered one pulse of the reflected probe beam with the pump
excitation and one without. The difference between these two measurements is
subsequently stored in the memory of the multimeter. The collected values were
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F 6.1 (a) Reflection spectra before (solid line) and 500 fs after (dotted line) 800-
nm optical excitation pulse for ∼ 0.5-mJ/cm2 pump power density; (b) differential changes
in the reflectivity at a delay of 500 fs (dotted line) and 17 ps (dashed line).

averaged over 4000 measurements for each position of the delay line and the re-
sult was transferred to the computer. The final signal-to-noise ratio of the detected
∆R/R was about 103. Further details of this technique can be found in Ref. [22].

All experiments have been carried out at room temperature.

6.3 Ultrafast response of the gold-shell photonic crystal

Figure 6.1(a) shows time-resolved reflection spectra of the gold-shell photonic
crystal taken before (solid line) and 0.5 ps after (dotted line) the 120-fs optical
excitation for a surface density of 800-nm pump pulse of about 0.5-mJ/cm2 per
pulse. The reflection spectrum measured at a negative delay (solid line) was found
to coincide with the stationary reflection spectrum measured in the absence of
the pump pulse. This fact ensures that cooling of the excited sample volume
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F 6.2 Temporal evolution of the transient reflectivity at 670 nm. The red dotted
line is a fit by the two-temperature model.

occurs well within the time interval between two consecutive pump pulses. The
reflection spectrum measured at 0.5-ps delay of the pump excitation (dotted line)
demonstrates pronounced changes in the reflectivity intensity in the range 630 −
700 nm. In order to show this to a better advantage, we also plotted in Fig. 6.1(b)
the differential changes of the reflectivity, ∆R/R, and dashed lines for 500 fs and
17 ps delays, respectively. We note, that the error in the measured values is smaller
than 1%.

For the first 100 ps following the optical excitation, the temporal evolution of
the transient reflectivity was found to exhibit the same shape over the full visible
spectral range but different amplitudes. A typical time dependence of ∆R/R mea-
sured at 670-nm is shown on Fig. 6.2 by the solid line. In this graph the duration
of the initial rise ∼ 1 ps is limited by the temporal resolution of the setup. Accu-
rate measurements using the chirp-correction technique (Section 2.3) allowed us
to determine this rise time to be ∼ 300 fs.

6.4 Nature of the ultrafast changes in reflectivity

Reflection spectra of the photonic crystal [Fig. 6.1(a)] change substantially upon
optical excitation. Around 550 nm and 680 nm, the differential reflectivity is nega-
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tive while at 610 nm it increases abruptly and even becomes positive [Fig. 6.1(b)].
Since silica is transparent for 800-nm light, the core will not absorb and the pump
pulse can only affect the optical parameters of the gold shell. We can also exclude
influences from the thermal expansion because the subpicosecond time scale is
too short to develop perceptible mechanical movements. Therefore, we explain
the ultrafast change in the reflectivity by a transient modification of the dielectric
constant of the gold shell, ε = ε′ + iε′′, due to a rapid heating of the electron gas.
In the following we discuss on the cooling mechanisms of the gold nanoshells
[7, 23].

Several studies of the dynamic optical response of solid and hollow gold
nanospheres revealed that optical excitation tends to suppress the surface plas-
mon resonances on the subpicosecond timescale [7, 14, 23–26]. This results in a
bleaching in the center and enhanced absorption at the wings of the surface plas-
mon resonance. Comparing the differential reflection spectra [Fig. 6.1(b)], ∆R/R,
with the stationary reflection spectrum [Fig. 6.1(a), solid line] we observe that the
areas of enhanced absorption (i.e. reduction of the ∆R/R) around 550 nm and
680 nm coincide with the reflection maxima denoted by P2, P3, and P4 in the lin-
ear spectra. In contrast, the positive peak of the ∆R/R at 610 nm [Fig. 6.1(b)] co-
incides with a dip in the reflectivity denoted by D2 [Fig. 6.1(a)]. In Chapter 5 this
dip was attributed to the surface plasmon resonance and our present observation
confirms this conclusion. Indeed, the optical excitation of the electrons broadens
the D2 surface plasmon resonance, decreases the absorption, and increases the
reflectivity at the plasmon resonance.

6.5 Calculation of the transient reflectivity

Our photonic crystal is composed of two components: silica and gold, of which
only gold can absorb light at 800 nm. As mentioned above the observed dynamics
of ∆R/R on the picosecond time scale is far too fast to be caused by geometrical
changes in the spheres and, for that matter, in the lattice parameter of the photonic
crystal, and must be due to transient modulation of the dielectric constant of gold.

6.5.1 Ultrafast dynamics in gold

The dynamical changes of the optical properties of gold induced by ultrashort
optical pulses are commonly assigned to the excitation of the free electron gas
[8–14]. The widely accepted model for the electron dynamics feature four steps
(see Fig. 6.3).
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F 6.3 Schematics of ultrafast dynamic in gold. (a) Optical excitation of electron
gas followed by thermalization; (b) Equilibration of electrons and lattice followed by heat
diffusion from the excited volume to the surroundings.

(I) Excitation. In the first step, part of the pump pulse is absorbed by elec-
trons. In our particular case, the photon energy of the pump light (~ω = 1.55 eV)
is below the energy transition from the d band to the Fermi level near the L-point,
~ΩL = 2.3 eV, and below d-p transition near the X-point, ~ΩX = 1.7 eV. There-
fore, electrons are predominantly excited via surface plasmons, which dephase
on a timescale well below 100 fs. At the first moment following plasmon ex-
citation and dephasing into individual electron excitations, the electrons have a
non-Fermi-Dirac energy distribution with some hot electrons but leaving the main
part cold [11]. Therefore, the initial change of the dielectric constant of gold∆εAu,
and hence ∆R/R, is very weak. This is in contrast to the dynamics generally ob-
served in semiconductors (see Section 3.2), where at a sufficient level of optical
excitation virtually all electrons are initially hot and reflectivity changes appear
instantaneously with the pump excitation pulse.

(II) Thermalization of the electron gas. In the second step, the excited elec-
trons equilibrate with the remaining free electrons [11]. This changes the occupa-
tion numbers of the electronic state near the Fermi level that alter the absorption.
Within the first picosecond, the electron energies reach a new Fermi-Dirac distri-
bution and the amplitude of ∆εAu its maximum value. However, up to this moment
the lattice remains cold and the hot electron gas is far from equilibrium with the
lattice.

(III) Equilibration of the electron gas with the lattice. In the third step,
free electrons loose their energy via electron-phonon interaction to the lattice.
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Consequently, the electron temperature decreases leading to a recovery of ∆εAu.
Generally, the electron-phonon exchange time τe−ph depends on the size of the
gold particles. However, for particles sufficiently larger than 10 nm this effect is
negligible and τe−ph ≈ 1 ps [27].

(IV) Heat diffusion. In the forth and last step, the lattice cools down via heat
transfer to the surrounding temperature bath. The rate of this process depends on
the size of the excited volume and the heat conductivity, but is much slower than
our experimental window allows to monitor.

6.5.2 Two-temperature model

The dynamics of the electron temperature in the third step can readily be described
by the so-called “two-temperature model” [28, 29]. This model assumes that
both electrons and phonons are in internal thermal equilibrium but not in mutual
equilibrium. In that case, these subsystems can be characterized by an electron
temperature Te and a lattice temperature Tl, respectively. The relaxation dynamics
of these temperatures follows from the heat exchange equation,

Ce

∂Te

∂t
= ∇ · (κ∇Te) −Ge−p (Te − Tl) + h (r, t)

Cl

∂Tl

∂t
= −Ge−p (Tl − Te) ,

(6.1)

where Ce = 1/3π2D f k
2
B
Te = γTe [30] and Cl are the electronic and lattice heat ca-

pacities, respectively, and Ge−p represents the electron-phonon coupling constant.
Further, κ is the thermal conductivity of the electrons, kB the Boltzmann constant,
D f the electronic density of states at the Fermi level, and h (r, t) the electron heat-
ing source term. Since the duration of the pump pulse is much shorter than the
electron-phonon interaction, h (r, t) can readily be considered as a δ-function. For
gold γ = 67 J m−3 K−2, Cl = 2.5×106 J m−3 K−1, and Ge−p ≈ 3×1016 W m−3 K−1

[10, 12, 13]. The “two-temperature model” assumes that electron-electron ther-
malization appears much faster than equilibration with the lattice. In case of weak
excitation, when ∆Te < Te, this assumption may not be valid [11, 13, 31], and the
measured dynamics in the low-excitation limit appears to be slower than predicted
by the model. However, at high degrees of excitations, relevant for the present ex-
periments, the electron-electron interaction speeds up and the electron gas can be
treated as being in internal equilibrium [32]. In our experiment the excitation is
close to the damage threshold and we believe that the two-temperature model is
quite suitable for our case.
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Further, we assume that hot electrons, by virtue of their high Fermi velocities
tend to quickly spatially homogenize the hot electron distribution over the shell
and omitting the diffusion term in Eq. (6.1), we arrive at two coupled non-linear
differential equations

γ Te

∂Te

∂t
= −Ge−p (Te − Tl) (6.2)

Cl

∂Tl

∂t
= −Ge−p (Tl − Te) ,

which can be solved analytically. We observe that the decay of the electron tem-
perature is characterized by a time constant τ = γTe/Ge−p, which depends on the
electron temperature. This implies that the decay is slower for higher tempera-
tures. This elongation of the equilibration dynamics with increasing excitation
power was indeed observed experimentally [8, 33]. Further, in case of very high
electron temperature Te ≫ Tl the electron temperature will linearly decrease in
time. In the opposite case (Te − Tl) ≪ Tl, the electron temperature will exponen-
tially decay to a final equilibrium temperature, T∞, which can be calculated from
the energy balance between the electron gas and the lattice, noting that Ce ≪ Cl,

T∞ − T0 =
γ

2Cl

(

T i
e

)2
, (6.3)

where T i
e is the initial temperature of the electron gas after the excitation, T0 the

temperature of the electron gas and lattice before the excitation (t < 0).
In order to solve the differential equations (6.2) we neglect the small variation

of Tl comparing with the large variation of Te, (∂Tl/∂t ≪ ∂Te/∂t). This approach
is accurate because γTe ≪ Cl and allows us to omit the second equation in (6.2).
Assuming in first approximation Tl ≈ T∞ we are left with solving

γTe

∂Te

∂t
= −Ge−p (Te − T∞) . (6.4)

The solution of this equation is

Te (t) = T∞W

[

χ exp
(

χ −
Ge−p

γT∞
t

)]

+ T∞, (6.5)

where W (t) is the Lambert function and χ =
(

T i
e − T∞

)

/T∞. Corresponding
changes in Tl are approximately
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Tl (t) − T0 ≈
Ge−p

Cl

t
∫

0

(Te (τ) − T∞) dτ. (6.6)

The electron temperatures T i
e and T∞ can be estimated within this model from

the experimental curve ∆R (t) /R vs t shown in Fig. 6.2. Assuming a linear relation
between ∆Te and ∆R, the transient reflectivity can be estimated by

∆R (t)
R
= {A [Te (t) − T0] + B [Tl (t) − T0]} exp (−t/τc) . (6.7)

Here, the first and second terms on the right hand correspond to the electron and
lattice contributions, respectively. Exponential decay, characterized by τc, ac-
counts for residual coupling with the core and parameters A, B, τc, and T i

e can be
found from the experimental data.

In Fig. 6.2 dotted line shows a fit of the experimental ∆R (t) /R using Eq. (6.7).
From the fit we obtain A = −8 × 10−3 K−1, B = −9 × 10−3, τc = 350 ps, and
T i

e = 4100 K. Further, inserting T i
e in Eq. (6.3) we find T∞ − T0 = 225 K.

We note, that the estimated T∞ = 518 K for T0 = 293 K is close but slightly
below the melting threshold Tm = 600 K reported for similar gold shells capped
by a 6 − 8 nm silica shell [34]. Indeed, we observed irreversible changes in the
reflection spectra already for pump fluences of about 2 times higher than used for
the measurements in Fig. 6.2.

6.5.3 Calculation of the transient reflectivity

Assuming a small change in the dielectric function, ∆ε′ ≪ ε′ and ∆ε′′ ≪ ε′′, the
transient reflectivity can be written in the following form

∆R

R
=
∂R

R∂ε′
∆ε′ +

∂R

R∂ε′′
∆ε′′. (6.8)

The partial derivatives can subsequently be calculated in the framework of
the layered variant of the photonic Korringa-Kohn-Rostocker method (LKKR)
described in Chapter 5. As a starting point we again take the reflection spectrum
of a single layer of gold nanoshells deposited on a silicon substrate calculated in
Chapter 5. For the sake of clarity we reproduce this spectrum in Fig. 6.4(a). The
partial derivatives in Eq. (6.8) were obtained by calculating the spectrum with a
slightly different dielectric constant ε + ε∆ where Re (ε∆) ≪ ε′ and Im (ε∆) ≪
ε′′, subtracting the result from the spectrum of Fig. 6.4(a) and normalizing to
it. For this calculation we again used the computer code written by A. Moroz.
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F 6.4 (a) Calculated reflection spectrum of a single close-pack hexagonal layer of
the gold-shell particles on an infinite silicon substrate [the same as in Fig. 5.6(b)] and (b)
corresponding ∂R/R∂ε′ (solid line) and ∂R/R∂ε′′ (dotted line) calculated for the dielectric
constant of bulk gold taken at room temperature.

In the calculation we inserted the refractive index of silica n(SiO2) = 1.45, the
wavelength-dependent dielectric constant of gold [35] depicted in Fig. 5.9, and
the geometrical parameters of the particles, r1 = 228 nm, r2 = 266 nm, and
r3 = 276 nm. The results of the computations are shown in Fig. 6.4(b). The
computed partial derivatives confirm that the dips D1, D2, and D3 of the ∆R/R

in Fig. 6.4(a) rather than the maxima correspond to the plasmon resonances. As
a natural feature of an optical resonance, the reflectivity is sensitive to the ∆ε′′ at
the center and to the ∆ε′ at the side of the resonances, respectively. It is also clear
that for non-zero ∆ε′′ the response in ∆R/R will be spectrally asymmetric.

In order to estimate the magnitude of ∆R/R, the dielectric constant of gold
need to be calculated at a given electron temperature.
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6.5.4 Temperature dependence of the dielectric constant of gold

The dielectric constant of gold ε = ε′ + iε′′ can be separated into interband and
intraband Drude contribution of the free electrons

ε = εIB + εD. (6.9)

In the following we will neglect the intraband contribution and focus on the in-
terband part, which was found to be the most important for the changes in surface-
plasmons resonances with electron temperature [24]. The imaginary part of the
dielectric constant due to the interband absorption was found to be [13, 36]

ε′′IB (ω,Te) =
8π2e2

~
2

3m2
0ω

2

∣

∣

∣Mp−d

∣

∣

∣

2
∫

D (E, ω) [1 − n (E, Te)] dE, (6.10)

where m0 is the free electron mass, e the change of electron, ω frequency of
light, Mp−d the transition matrix element, E the energy, and n (E, Te) the Fermi
distribution function. Further, D (E, ω) is the energy distributed joint density of
states given by

D (E, ω) ∝
Θ

[

vd~

(

ω − ωd−p

)

− E
]

√

vd~

(

ω − ωd−p

)

− E

, (6.11)

with the Heaviside step function Θ and vd = mp/
(

mp + md

)

, where mp and md are
the effective masses for the p and d bands [13]. For gold ~ωd−p = 2.38 eV and
vd = 0.86.

The real part of the dielectric constant can be obtained from the Kramers-
Krönig relations [37],

ε′IB (ω,Te) =
2
π
P
∞

∫

0

ω′ε′′
IB

(ω′, Te)

ω′2 − ω2
dω′, (6.12)

where P denotes the Cauchy principal value of the integral.
The change in the dielectric constant of gold induced by a temperature rise

from T0 = 293 K to T i
e, ∆ε = ε (Te) − ε (T0) was calculated by a computer

program made by O. L. Muskens [38]. As an example, in Fig. 6.5 we plot the real
(solid line) and imaginary (dashed line) parts of the difference in the dielectric
constants of gold calculated for Te = 2000 K and room temperature.
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dielectric constant of gold caused by electron heating from 293 K to 2000 K.

6.5.5 Comparison of the experiment and calculations results

Now we are in the position to calculate the difference in the reflection spectra of
the gold-shell photonic crystal induced by a large nonequilibrium electron tem-
perature T i

e. ∆R/R can be obtained from the curves of Fig. 6.4(b) with those from
Fig. 6.5 as long as the curves in Fig. 6.4(b) have a sufficiently weak temperature
dependence. To check this, we performed the direct calculation of ∆R/R using the
correct function ε (λ,Te) and compare result with the simple approach. The result
of the calculations is shown in Fig. 6.6(b) and demonstrate the validity of the sim-
ple approach in the visible spectral range except around the narrow resonances in
Fig. 6.4(b).

In Fig. 6.6 we compare the measured and the calculated ∆R/R. In Fig. 6.6(a)
we reproduce the experimentally detected ∆R/R of Fig. 6.1(b) taken at 0.5 ps de-
lay after optical excitation. According to our estimation made in the framework
of two-temperature mode and discussed in Section 6.5.2, the effective temperature
of the electron gas at a given delay is Te ∼ 4100 K. In Fig. 6.6(b) we show the
calculated spectrum of the ∆R/R for Te = 2000 K using Moroz’s computer pro-
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gram for a one-layer photonic crystal of our core-shell particles. The calculated
spectrum has four peaks. Two of them, at 490 nm and 620 nm, roughly coincide
with the experimental ones, but the remaining ones at 560 nm and 660 nm were
not reproduced in the experiment. This discrepancy is not unexpected, because
of the unfortunate deviations between the already measured and calculated linear

spectra for our sample, the solid lines in Fig. 6.1(a) and Fig. 6.4(a), respectively.
In the calculated spectrum the dips D1 and D3 are quite suppressed but visible.

Another deviation of the calculation forms the absolute values found for∆R/R.
Although the measured and calculated spectra of ∆R/R coincide at 490 nm, for
the remaining part of the spectrum the calculated ∆R/R are overestimated already
at 2000 K, and for 4100 K even more. These discrepancies, perhaps, can be ac-
counted for by the polydispersity of the gold-shell spheres, which is apparent from
SEM measurements and amounts to∼ 5%. Unfortunately, this spurious effect can-
not easily be taken into account in the calculation scheme. Indeed, polydispersity
of the particles results in inhomogeneous broadening of the plasmon resonances.
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As a result, the sharp peaks in the transient reflectivity spectra will be “washed
out” and the resulting amplitude of ∆R/R will decrease. We speculate that the
overestimation of ∆R/R by the theory can also be partly explained by a higher ini-
tial absorption of gold shell than was accounted by the theory. Indeed, our theory
assumes the bulk dielectric constant of gold. However, the dielectric constant of
the gold shell can deviate from the bulk value because of the enhanced electron
scattering at the metal-silica interfaces and imperfections in the gold shell. The en-
hanced scattering may account for increase in absorption in gold nanoshells that,
in turn, makes plasmon resonance broader. As a result, the nonlinear changes will
come less pronounced.

In spite of the fact that our calculations fail to fully explain our experimental
curves for ∆R/R, they correctly predict the order of magnitude and produce rea-
sonably good qualitative agreement with the experiment. Indeed, the calculations
yield the correct sign of the ∆R/R for all wavelengths excluding the resonances
D1 and D3, at 550 nm and 650 nm, respectively. Moreover, the theory predicts
correctly the sharp positive peak of the ∆R/R that corresponds to the resonance
D2 at 620 nm.

Finally, we discuss irreversible changes of the sample following very strong
optical excitation, above the damage threshold.

6.6 Irreversible changes following excitation above the

threshold limit

At pump fluences exceeding 1 mJ/cm2, we observed irreversible changes in the
reflectivity. The intensities of the P1 and P2 in the linear reflection spectrum
[Fig. 6.1(a)] decrease and do not recover even in the case the pump pulses are
switched off. However, the intensity of P4 remained constant. We attribute this
phenomenon to “melting” of the photonic crystal, - i.e. breaking long-distance
periodicity due to spatial disordering of the gold-nanoshell particles. Disordering
leads to nonreversible changes in the blue and the green parts of the stationary and
transient reflectivity spectra, which were found to be quite sensitive to the particle
ordering (see Chapter 5).

At even higher intensities i.e. above 1.5 mJ/cm2, the reflectivity drops irre-
versibly over the entire spectrum by several orders of magnitude. Figure 6.7(a)
demonstrates an SEM image of a non-damaged area in the sample and Fig. 6.7(b)
a part damaged by the optical irradiation. We see that the ordering of particles is
completely lost. Moreover, the concentration of the particles is significantly lower
than in non-damaged area due to “evaporation” from the excited volume, which
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(a) 

(b) (d) 

(c)

F 6.7 SEM image of (a) non-irradiated area of the photonic crystal, (b), (c), and
(d) damages induced by a strong irradiation of the sample surface. (c) and (d) are taken
with higher magnifications.

naturally explains the observed decrease in reflectivity. In the “area of disaster”
shown in Fig. 6.7(c) and (d) with higher magnification, we observe that particles
have desintegrated, possibly due to explosive melting of gold.

6.7 Conclusions

In this Chapter, we analyzed the dynamic changes in the reflectivity spectra of
gold-nanoshell 3D photonic crystals induced by strong optical pump pulses. Sub-
picosecond ultrafast changes in the reflectivity were induced by 800-nm optical
excitation with 120-fs pulse. The observed changes in the reflectivity reach val-
ues as high as 35% for pump power fluences of about 0.5 mJ/cm2, one-order-of-
magnitude lower than needed to induce comparable changes in silicon (Chapter 3)
and vanadium dioxide (Chapter 4) photonic crystals. The dynamics of the tran-
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sient changes in the reflectivity is controlled by hot electrons and was analyzed in
the framework of the “two-temperature model”. The observed temporal evolution
of the transient reflectivity exhibits a form described by non-linear differential
equations of the two-temperature model, yielding in our specific case electron
temperatures as high as 4100 K and inducing lattice temperatures of 518 K. On
longer time scales, the transient reflectivity is governed by heat diffusion that ac-
counts for the decay on the nanosecond time scale.

The transient changes in the reflectivity appeared to strongly depend on wave-
length. We observed pronounced peaks in the spectrum of the transient reflectiv-
ity, which we attributed to photoinduced quenching of the surface plasmon reso-
nance. The obtained experimental results appeared to be in qualitative agreement
with theory.
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48, 15488 (1993).
[13] R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, Phys. Rev. B 51, 11433 (1995).
[14] M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig,

M. Schmitt, and H. Schmidt, Phys. Rev. Lett. 78, 2192 (1997).
[15] A. E. Neeves and M. H. Birnboim, J. Opt. Soc. Am. B 6, 787 (1989).
[16] R. D. Averitt, D. Sarkar, and N. J. Halas, Phys. Rev. Lett. 78, 4217 (1997).
[17] S. I. Bozhevolnyi, J. Beermann, and V. Coello, Phys. Rev. Lett. 90, 197403 (2003).
[18] C. Graf and A. van Blaaderen, Langmuir 18, 524 (2002).
[19] L. M. Liz-Marzán and P. Mulvaney, J. Phys. Chem. B 107, 7312 (2003).



108 References

[20] A. Moroz, Phys. Rev. Lett. 83, 5274 (1999).
[21] A. Moroz, Phys. Rev. B 66, 115109 (2002).
[22] O. L. Muskens, Ph.D. thesis, Universiteit Utrecht (2004).
[23] J. H. Hodak, I. Martini, and G. V. Hartland, J. Phys. Chem. B 102, 6958 (1998).
[24] H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao, Phys. Rev. B 57, 11334 (1998).
[25] S. L. L. ans T. S. Ahmadi, M. A. ElSayed, J. T. Khoury, and R. L. Whetten,

J. Phys. Chem. 101, 3713 (1997).
[26] C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé,
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Abstract

We demonstrate coherent acoustic radial oscillations of a submicron gold shell loosely
bound to a silica core. The vibrational mode is excited by an ultrafast optical pulse and
appears as a pronounced modulation of the transient reflectivity on the subnanosecond
time scale. The frequency of these oscillations is demonstrated to be in excellent agree-
ment with Lamb theory.

7.1 Introduction

In the previous chapter, we demonstrated the dynamic response of silica-core
gold-shell photonic crystal to a femtosecond optical pulse. On the picosecond
time scale, the transient reflectivity appeared to be governed by electrons. In this
chapter, we examine the dynamical optical response of the same sample on the
subnanosecond time scale, on which the optical properties are mainly governed
by lattice motion. In composite structures such as photonic crystals, these motions
are expected to be localized in a small volume because the mechanical interparti-
cle coupling is small [1]. If the typical size of the vibrational volume is sufficiently
small this motion produces a discrete spectrum of energies. Such modes have been
observed in Raman scattering experiments [2–4] and in time-domain pump-probe
spectroscopy [5–12]. In the latter case the acoustic vibrations were excited by an
ultrashort pulse that excites the electron gas, which in turn, induces a lattice stress
via electron-phonon interaction setting up a coherent vibration. To date coherent
excitation of the breathing modes has been demonstrated in silver [5], gold [6, 7],
tin [8], and gallium [8] solid spheres, silver ellipsoids [9], gold nanorods [10],
and bimetallic core-shell particles [11, 12]. In most of these experiments, the
frequency of coherently excited breathing vibrations was demonstrated to be in a
good agreement with the calculations. However, even in bimetallic spheres only

109
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one acoustic mode has been detected - the ground mode of the radial vibration
of the solid sphere. Recently, a quadrupolar-hollow-shell mode was observed in
Raman scattering in nickel-silver core-shell nanoparticles [4]. In this chapter we
demonstrate for the first time a time-resolved coherent oscillation of a nanometer-
thick gold shell loosely bound to an inner silica core of submicrometer diameter.

7.2 Coherent excitation of acoustic modes

For our experiments we used the 3D photonic crystal composed of core-multishell
spheres. Each particle consists of a 228-nm silica core, a 38-nm gold shell, and a
10-nm silica outer shell [13]. The geometrical parameters of this sample, its linear
responce, and ultrafast nonlinear optical properties were described in Chapter 5
and 6. Acoustic modes have been excited by a 120-fs pulse extracted from a fem-
tosecond amplified Ti-sapphire laser operating at 1 kHz. The transient reflectivity
induced by the optical excitation was registered in exactly the same way as de-
scribed in Section 6.2.2. For our studies we select a highly ordered area of the
sample containing more than five layers of particles. Linear reflection spectra
taken in those areas have a shape as depicted in Fig. 5.6.

In Figure 7.1, the solid lines show evolutions of the transient reflectivity,
∆R/R, registered at (a) 950 nm and (b) 700 nm. Inset in Fig. 7.1(b) shows the
signal at 700 nm including the fast decay of the electronic contribution. Both
curves demonstrate an intense and sharp peak with a duration of several picosec-
onds immediately after the optical excitation. This peak has been analyzed in
detail in Chapter 6 and was attributed to the rapid cooling of the photoexcited
electron gas. In Fig. 7.1(a) and (b), we observe pronounced oscillations of the
reflectivity with a period of about 400 ps. The amplitude of these oscillations
appeared to depend on the probe wavelength, λ. The maximum amplitude of the
oscillations was registered at λ = 950 nm and amounts to as much as 4% from the
total reflection intensity [Fig. 7.1(a)]. At λ = 700 nm, the amplitude of the oscilla-
tions is smaller but still quite sizable. Further, we did observe weak oscillations at
605 nm (not shown in Fig. 7.1) but found no oscillations in the spectral ranges of
500−590 nm and 640−780 nm. Unfortunately, the spectral range of 740−850 nm
was not accessible for measurements because of the presence of elastic scattering
of the intense 800-nm pump beam. It is interesting to note that the dependencies
at 950 nm and 700 nm have the same signs for the initial fast electron peaks while
the slow oscillations have opposite polarities. The temporal evolution of the slow
oscillations can be approximated quite faithfully by the function
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F 7.1 Transient reflectivity dynamics of the gold-shell photonic crystal measured
at (a) 950 nm and (b) 700 nm. Solid lines depict experimental data, dotted show the
fits. Inset shows the signal measured at 700 nm plotted including the entire electronic
contribution.

∆R

R
= A1 exp (−t/τ1) cos

(

2π
T

t + ϕ

)

+ A2 exp (−t/τ2) . (7.1)

Here, t is time and the fitting parameters T and ϕ are the period and phase of
the oscillations, respectively, τ1 and τ2 decay times, and A1 and A2 amplitudes
referring to the oscillatory and non-oscillatory decay, respectively. The best fits
of ∆R/R for 950 nm and 650 nm are shown by dotted lines in Fig. 7.1(a) and
(b), respectively, and track the experiments excellently. The set of values of the
fitting parameters for the different wavelengths are collected in Table 7.1. It is
remarkable that the period and the phase of the oscillations are almost the same
over the full spectral range. Moreover, τ1 and τ2 also appeared to be virtually
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Fitting parametersWavelength, nm 

λ  
1A  2A  1 , ps 2 , ps T, ps , rad 

950 -0.021  -0.028 482 1176 406 0 

700 0.0047 -0.015 633 1510 378 0.08π  

600 0.0043 -0.025 770 >1000 381 -0.06π 

Average
depends

on   on   
600

± 200

1300 

± 300

390

± 20
0±0.1π  

 

depends

λ λ 

τ τ ϕ

T 7.1 Fitting parameters of the transient reflectivity using Eq. (7.1). Last row sum-
marizes average values from different measurements.

independent of the selected wavelengths. The last line in the Table 7.1 shows the
average values for the fitting parameters collected at different wavelengths and
points on the sample. We note that the detected phase of the oscillations is zero
radians and the period of oscillation is 390 ps with a standard deviation of 5%.

7.3 Interpretation of the experimental results

The dynamics of the reflectivity during the first 10 ps has already been analyzed
in Chapter 6. The initial peak in the transient reflectivity was attributed to the
changes in the dielectric constant of gold induced by hot electrons. The subse-
quent dynamics lasts no longer than 20 ps and was attributed to equilibration of
the electron gas with the lattice. At the same time, the sign of the subnanosecond
oscillations observed in the transient reflectivity (Fig. 7.1) can deviate from the
sign of the electronic effect. Therefore, the nature of this oscillation can not be
found in electron-temperature variations. We attribute the 400-ps oscillation in the
transient reflectivity to acoustic vibrations of the submicron gold-shells coherently
excited by an impulsive stress. As noted in the Introduction, similar oscillations
have been recently reported for solid spherical metal particles [5–7].
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7.4 Lamb modes

The problem of a vibrating sphere was first addressed by Poisson [14]. The fun-
damental acoustic modes of an elastic sphere were classified later by Jaerish [15].
The complete analysis of the acoustic vibrations of a free elastic sphere was ob-
tained by Lamb [16, 17]. He found explicit analytical solutions for the eigenfunc-
tions and eigenfrequencies of a solid sphere. He also extended this analysis for
the case of a free-standing thin hollow sphere [17].

The wave equation for elastic, and isotropic media has the from [18]

∂2u

∂t2
=

(

c2
l − c2

t

)

∇ (∇ · u) + c2
t ∇2u, (7.2)

where t is time and u the lattice displacement. Further cl and ct are the lon-
gitudinal and transverse sound velocities, respectively. For periodic oscillations
u ∼ exp (−iΩt), where Ω is the frequency, Eq. (7.2) reduces to

(

c2
l − c2

t

)

∇ (∇ · u) + c2
t ∇2u + Ω2u = 0. (7.3)

Accounting for the spherical symmetry of our particles, we express the solu-
tion of Eq. (7.3) in spherical coordinates (r, ϕ, θ)

ur =
∂Υml (hlr)
∂r

+ l

{

∂2 [rΥml (htr)]
∂r2

− r∇2Υml (htr)
}

,

uθ =
1
r

∂Υml (hlr)
∂θ

+
1

sin θ
∂Υml (htr)
∂ϕ

+
l

r

∂2 [rΥml (htr)]
∂r∂θ

, and

uϕ =
1

r sin θ
∂Υml (hlr)
∂ϕ

+
∂Υml (htr)
∂θ

+
l

r sin θ
∂2 [rΥml (htr)]
∂r∂ϕ

,

(7.4)

with ur, uθ, and uϕ the radial and the angular displacements, respectively, hl =

Ω/cl, ht = Ω/ct, and Υml the spherical distribution function,

Υlm (kr) =
(

Al

√

π
2kr

Jl+1/2 (kr) + Bl

√

π
2kr

Yl+1/2 (kr)
)

×Plm (cos θ) eimϕ−iωt. (7.5)

Here, Al and Bl are constants to be determined from the boundary conditions,
Jn (kr) and Yn (kr) the n-th order Bessel functions of the first and the second kind,
respectively. We note that for the case of a solid sphere Bl = 0, because Yn (kr) is
infinite when r → 0. Further, Plm (cos θ) is the Legendre function with the angular
numbers l and n. We note, that n and m are integers with l ≥ 0 and −l ≤ m ≤ l.
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Torsional modes Radial mode,

      ℓ = 0

  Spheroidal mode,

            ℓ = 2                      
(a) (c)(b)

F 7.2 Sketch of (a) torsional, (b) radial, and (c) spheroidal vibration modes of a
solid sphere.

Applying the free-boundary conditions at the interfaces, we arrive at the equa-
tions for the normal frequencies that can be found in the book of Eringen and
Şuhubi [19].

7.4.1 Eigenfrequencies of a solid sphere

Vibrational modes of a solid sphere can be classified into two categories.
Torsional modes. These modes are purely transversal and have no radial dis-

placement. All movements are purely tangential as shown in Fig. 7.2(a). The
displacements of the torsional modes keep a constant volume and satisfy the con-
dition ∇ · u = 0. We also note, that these modes are independent of cl as apparent
from Eq. (7.3). The eigenfrequencies of the torsional modes can be found from
the equation

(l − 1) jl (htrs) − htrs jl+1 (htrs) = 0 (7.6)

with rs the radius of the sphere and

jl (kr) =

√

π

2kr
Jl+1/2 (kr) . (7.7)

Torsional modes exist only for l ≥ 1 since for l = 0 Eq. (7.6) gives a trivial
solution.

Radial and spheroidal modes. For the ground mode, l = 0, displacements
are purely radial as shown in Fig. 7.2(b), and Eqs. (7.4) reduce to one simple
equation
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ur = A0
∂ j0 (hlr)
∂r

. (7.8)

Applying the conditions of zero stress on the surface of the sphere, we arrive
at the transcendental equation

tan (hlrs)
hlrs

=
1

1 − (htrs/2)2
, (7.9)

which yields the eigenfrequencies.
For l ≥ 1 displacements have a mixed character of radial and tangential move-

ments. One example of such vibrational modes is shown in Fig. 7.2(c) for l = 2.
Here we see that the sphere contracts and elongates along a certain axis peri-
odically transforming from sphere to ellipsoid. In this case the equation for the
eigenfrequencies has the more complicated form

−1
2

(htrs)2
[

2l2 − l − 1 − 1
2

(htrs)2
]

jl (hlrs) jl (htrs)

+
[

l3 + 2l2 − l − 2 − (htrs)2
]

(hlrs) jl+1 (hlrs) jl (htrs)

+

[

l2 + l2 − 2l − 1
2

(htrs)2
]

(htrs) jl (hlrs) jl+1 (htrs) (7.10)

+(2 − l2 − l) (hlrs) (htrs) jl+1 (hlrs) jl+1 (htrs) = 0.

7.4.2 Eigenfrequencies of a spherical shell

Displacements in a spherical shell with external and internal radii, r1 and r2 , re-
spectively, can be expressed by the same functions as in the case of a solid sphere,
but with different boundary conditions. In order to obtain the eigenfrequencies
one needs to apply free boundary conditions at both sides of the shell. This prob-
lem was first solved by Lamb [17]. He also found that in case of a very thin shell,
(r2 − r1) ≪ r1,2, the eigenfrequencies, generally, are non-zero and in first approx-
imation independent of the thickness of the shell. In the following we assume
that the shell is thin and r1 ≈ r2 = rs. Similar to the case of a solid sphere the
fundamental modes of a spherical shell fall into two classes, namely torsional and
spheroidal modes.

Torsional modes. The motion in torsion modes are fully tangential [see
Fig. 7.3(a)] and growing in frequency with increasing the angular number l. The
frequency spectrum is given by the expression
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Torsional modes
Radial mode

      ℓ = 0

 Spheroidal mode,  

ℓ = 2,  lower mode
  Spheroidal mode,

 ℓ = 2,  higher mode

      

     

(a) (b)

(c) (d)

F 7.3 Sketch of (a) torsional, (b) radial, and (c) and (d) two types of spheroidal
vibrational modes of a hollow spherical shell.

Ωl = htrs

√

(l − 1) (l + 2), (7.11)

where rs is the radius of the sphere. In contrast to the case of a solid sphere, the
lowest mode appears for l = 2.

Radial and spheroidal modes. Similar to the case of a solid sphere, solutions
for a hollow shell are different for the cases l = 0 and l , 0, respectively. The case
l = 0 corresponds to a purely radial mode as shown in Fig. 7.3(b). The frequency
of this mode is

Ω0 = 2htrs

√

ξ, (7.12)

where ξ reads

ξ = 3 − 2
(

ct

cl

)2

. (7.13)
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For l ≥ 1 the displacements have both radial and transverse components. For each
l, these modes have two branches with a spectrum given by

Ωl± = htrs

√

ς

2
± 1

2

√

ς2 − 16ξ
(

l2 + l − 2
)

, (7.14)

with ς =
(

l2 + l + 4
)

ξ + l2 + l − 2. These two branches have a quite different

character. For l = 1 the high frequency root of Eq. (7.14) is htrs

√

6ξ while the
lower one is zero, corresponding to a pure translation of the shell. For l ≥ 2
both branches have a non-trivial solution. The lower and the higher modes for
l = 2 are shown in Fig. 7.3. These modes correspond to a periodic elongation
and contraction of the polar and equatorial diameters with opposite phases. For
the mode corresponding to the lower root the tangential motion is directed towards
the poles when the polar diameter is elongated, while for the high frequency mode
the tangential motion is directed in the opposite direction. It is important to note
that the frequency of the higher mode growths monotonically and infinitely with
increasing l. In contrast, the lower which is finite obeys

lim
l→+∞

Ωl− = 2htrs

√

ξ

1 + ξ
. (7.15)

We note, that around this frequency the density of the vibrational state is very
high and produces a quasi-continuum spectrum. The lowest vibrational mode of
a hollow shell is the lower l = 2 mode.

7.5 Ringing in a hollow sphere: selection rules.

Let us now consider what kind of Lamb mode can be responsible for the exper-
imentally observed vibrations in the pump-probe experiment of Fig. 7.1. First
of all, we note that heating induced by an optical excitation results in expansion
and, hence, drives modes of the free shell that do not maintain a constant volume.
Therefore, we have to exclude the pure torsional modes. Further, we can show
that the heat induced by the optical excitation of a homogeneous sphere can ex-
cite exclusively the modes with even l (including l = 0). The photon energy of the
excitation, in our case, is below the energies of the interband transitions in gold.
Therefore, we can safely assume that the heat is induced via surface plasmon
excitation, i.e. via dipole, quadrupole and, perhaps, higher multipoles. For the
sake of simplicity we assume that the excitation is dipolar. The dipolar excitation
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will induce a rapidly oscillating electron current on the surface of the shell with an
electron current density having inversion symmetry. We note that the same applies
for higher multipole excitation. According to Ohm’s law, the dissipation and, for
that matter, the induced stress in the metallic shell is proportional to the square of
the current, and the inversion symmetry of the current distribution excludes exci-
tation of on even-l Lamb modes. This selection rule was first formulated by Duval
for far-infrared and Raman transitions of a solid sphere [20]. Of all even-l modes,
the most important ones are expected to be the l = 0 and the l = 2 modes because
they possess the highest symmetry.

Although, the selection rules for Raman scattering and pump-probe excitation
are indentical there is a striking difference in the experiments. In Raman experi-
ments the most active mode has l = 2, while the l = 0-mode is difficult to observe
[2, 3] and has only recently been revealed [1, 21]. In contrast, in pump-probe
experiments with spherically symmetric particles only l = 0 was observed [5–
8, 10, 11]. The reason of these paradoxial discrepancy lays in different conditions
of excitations [22]. Indeed, in Raman scattering measurements the excitation is
thermal and all modes are occupied according to the Planckian distribution. Since
Raman scattering is primarily sensitive to dipolar plasmon coupling with the mod-
ulation of the surface charges induced by a quadrupole vibration (l = 2) of the
sphere, the l = 2 peak prevails. In contrast, in pump-probe experiments, the exci-
tation is impulsive and after a short time (much shorter than the period of acoustic
oscillation) electrons are expected to reach an equilibrium distribution in the entire
volume of the metal shell. As a result, the l = 0 mode is predominantly excited.

In Table 7.2 we present the calculated values of the Lamb mode for an isolated
solid silica core with a radius r1 = 228 nm and an isolated hollow gold shell with
an average radius (r1 + r2)/2 = 247 nm. For our calculations of the Lamb modes
on a gold shell, we used the approximation of a thin shell, which is valid because
r2 ≫ (r2 − r1). Further, in the calculations for the silica core and the gold shell
with the free-boundary condition, we used the longitudinal and transverse sound
velocities for gold of cl = 3240 m/s and ct = 1200 m/s, respectively, and for silica
cl = 5970 m/s and ct = 3760 m/s, respectively. The results of the calculations
show that the Lamb oscillations of the solid silica core are all too fast to explain
the experiments. For the hollow gold shell, however, the calculated period for the
l = 0 mode (T = 392 ps) is remarkably close to experiment T = 390 ps, while the
lower l = 2 mode is even too slow. Taking into account a 5-% spread in the mea-
sured period at different locations on the sample, we arrive at the conclusion that
agreement between the calculated l = 0 mode and the experiment is remarkable.
Although, it may look surprising that the model, which does not take into account
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Period of oscillations, ps 

Silica core

(solid sphere) 

R = 228 nm 

Gold sphere

(hollow sphere) 

R = 247 nm 

0ℓ =  100  

2ℓ =  145

Experiment 390 ± 20 

 

1060

392

and 237

Mode

T 7.2 Calculated periods of Lamb modes for 228-nm silica core and 247-nm gold
hollow shell for l = 0 and l = 2. The last row shows the experimental value for compari-
son.

the internal core, produces such good agreement with experiment, we note that
this model is equally valid in the case of poor mechanical contact between silica
and gold, which is very likely because gold and silica possess very different tem-
perature expansion coefficients and apparently easily loose mechanical contact by
drying and during repeated heating and cooling cycles. We note, that similar ob-
servations were recently reported by Portales and co-workers in [4]. They studied
resonant Raman scattering from nickel-silver core-shell particles and found that
their spectra can be explained quantitatively just by a free vibration of the sil-
ver shell, i.e. assuming stress-free internal boundary condition with the core. In
contrast to our measurement, their oscillation frequency corresponds to the l = 2
mode that is, as we explained above, however, not excited in our pump-probe
experiment.

The picture of the subnanosecond dynamics is now complete: our ultrashort
optical pulse excites electrons that reach a high-temperature equilibrium distribu-
tion within a picosecond (see Chapter 6). By virtue of their high velocity free
electrons quickly homogenize around the gold shell. Within several picoseconds
the electron gas further equilibrates with the lattice, generating phonons that in-
duce a homogeneous stress in the gold shell and impulsively excite the ground
Lamb mode of the isolated hollow shell.

Our explanation is also in agreement with the observed zero phase of the op-
tical oscillations (see Table 7.1). Indeed, under our experimental conditions the



120 Chapter 7 Coherent vibrations of submicron gold shells

equilibration of electrons and lattice occurs within several picoseconds (see Chap-
ter 6), i.e. much faster than the oscillation period. In our experimental conditions,
we did not observe any evidence of hot-electron pressure driving the vibration as
reported by Perner and co-workers [9].

If in our case the nonhomogeneously distributed hot electrons had driven
the vibration directly they would have excited predominantly non-spherically-
symmetric modes (e.g. l = 2), which were not observed. In contrast, vibrations of
ellipsoidal particles have no spherically-symmetric modes and hot electrons may
even couple with the ground mode. This results in a phase shift of the vibrational
oscillations as was observed by Perner.

7.6 Nature of the optical response

Now, having established the selection rules, how can we explain quantitatively
the changes in the reflectivity induced by excited Lamb modes? The first obvious
effect, that we have to consider, is the sensitivity of the dielectric constant of gold
to compression and dilatation. Indeed, significant oscillations of the transient
reflectivity have been registered only at those wavelengths that have a sizeable
slope in the reflectivity spectrum. This suggests that the changes in the real part
of the dielectric constant of gold shifts the position of the plasmon resonances and
converts vibrations into modulations of the optical reflectivity.

In the infrared part of the spectrum where our vibrational signals are the
strongest, we can neglect the influence of intraband transitions in gold and may
consider only the free-electron Drude contributions. The real part of the intraband
dielectric constant ε′

ib
= Re (εib) reads

ε′ib (ω) = 1 −
ω2

p

ω2 − Γ2
. (7.16)

Here, ω is the optical frequency, Γ the damping constant for free electrons [23],
and ωp the plasma frequency given by

ωp =

√

ne2

ε0me

, (7.17)

with n the electron density, me the electron effective mass, ε0 the permittivity of
vacuum, and e the electron charge.

The amplitude of the gold-shell expansion can be estimated by the expression
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∆rs

rs

≈ 2αT∆Tl, (7.18)

where αT is the linear thermal expansion coefficient, rs is the radius of the gold
shell, and ∆Tl is the ultrafast rise in lattice temperature induced by optical exci-
tation. Since the changes are small, the relative volume expansion ∆V/V of the
volume V of the gold shell reads

∆V

V
≈ 6αT∆Tl. (7.19)

Noting that n is inversely proportional to the volume, the relative decrease in elec-
tron concentration equals ∆n/n = −∆V/V . Combining Eqs. (7.16), (7.17), and
(7.19), we obtain

∆ε′
ib

(ω,∆Tl)

ε′
ib

(ω)
≈ 6αT∆Tl. (7.20)

Inserting αT = 1.42×10−5 K−1 [24] and ∆Tl = 225 K (see Chapter 6) we arrive at
∆ε′

ib
/ε′

ib
= 1.9×10−2. The resulting shift of the spectral position of the quadrupole

plasmon resonance, λp, can be estimated as [7]

∆λp

λp

=

√

∆ε′

ε′
≈ 1

2
∆ε′

ε′
. (7.21)

Hence, the change in reflectivity at the wavelength λ can be expressed in terms of
the differential reflectivity ∂R/∂λ as

∆R

R
= −1

2
∆ε

ε

∂R

∂λ
λ. (7.22)

For λ = 700 nm, we insert ∂R/∂λ = −0.023 nm−1 taken from the linear spectrum
in Fig. 5.6(a) and find ∆R/R ≈ 0.15, which is one order of magnitude higher
than experimental value of 0.01 (see Table 7.1). In spite of the overestimation
of the absolute values our estimate correctly explains the sign of the oscillations.
Indeed, for λ = 950 nm the slope of the reflectivity observed in the linear spectra
is positive, ∂R/∂λ > 0, that implies that ∆R/R should be negative, as observed
(∆R/R = −0.04, see Table 7.1).
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7.7 Origin of the damping of acoustic vibrations

We now examine the possible origins of the observed damping of the acoustic
vibrations. First of all, we calculate the free-induction decay of an inhomoge-
neous distribution of oscillation frequencies due to the variation in the size of the
gold shell. We assume that the particles are normally distributed with a standard
deviation σr. Then the transient reflectivity can be expressed as

∆R

R
=

1
√

2πσr

∞
∫

0

exp
[

−
(

rs − r̄s√
2σr

)]

cos [Ω (rs) t] drs, (7.23)

where r̄s is an average radius of the gold shell and Ω (rs) the frequency of the
oscillations, also dependent on the size of the sphere. In our case σr/r̄s ≪ 1 and
Eq. (7.23) yields

∆R

R
= cos

(

Ω̄t
)

exp

















− t2

τ2
d f

















. (7.24)

Here, Ω̄ = 2π/T̄ is the mean oscillation frequency corresponding to the mean
radius of the gold shells and

τd f =
r̄sT̄√
2πσr

. (7.25)

Inserting T̄ = 390 ps and σr/r̄s = 0.05 taken from the experimentally observed
distribution of T̄ (see Table 7.1) and also known from the SEM data we compute
τd f = 1.75 ns, which is three times longer than the experimentally observed decay
0.6 ns.

Additional damping may occurs thank to energy transfer to the silica core
[6, 25], which, however, is hard to estimate because the degree of mechanical
contact between shell and core is unknown. Additionally, the decay of oscillation
can be caused by electron-phonon interaction. It is known that electron-phonon
interaction results in significant attenuation of gigahertz acoustic wave in metals.
The reason is oscillations of the Fermi-level that induce an electric current [26].
In our case electron current appears between the domains of the polycrystalline
gold shell because acoustic wave shifts their Fermi-levels. The current acts as
friction and converts the energy of the oscillation into heat. We also mention
that the ground mode oscillation, of course, can funnel energy to other modes via
anharmonic decay.
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Finally, we note that similar to the observations of Courty and co-workers
made in self-organized silver nanocrystals [1], we found no influence of the regu-
lar ordering on the vibration spectrum of the gold shell.

7.8 Conclusions and perspectives

In this Chapter we analyzed the subnanosecond dynamics of the transient reflec-
tivity of a photonic crystal composed of a silica-core thin gold-shell particles. The
transient reflectivity exhibits pronounced oscillations with a period of 390 ps with
an amplitude as high as 4% of the total reflectivity. These oscillations are caused
by a coherent vibration of the gold-shell diameter. The frequency of the acoustic
vibration has been shown to be in excellent agreement with a model assuming
free boundary conditions on both sides of the shell. This situation corresponds to
a poor contact between the silica core and the gold shell.

In our experiment we observed exclusively the ground vibrational mode (l = 0)
corresponding to a pure radial expansion and contraction of the gold shell. How-
ever, we suppose that the lowest frequency quadrupole mode (l = 2) can be ob-
served in a Raman spectroscopy. We note, that this mode was recently observed
in a Raman scattering experiment in the case of nickel-silver core-shell nanopar-
ticles [4]. In our sample this mode should appear with a 2.5-GHz shift from the
laser line, which can be an interesting point for future investigations. Observation
of this mode will be a good test for our model of free gold shell loosely bound to
a silica core.
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S

Dit proefschrift beschrijft een experimentele studie van de lineaire en niet-lineaire
optische eigenschappen van zogenaamde fotonische kristallen: materialen met
een periodieke variatie van de brekingsindex in de ruimte. Fotonische kristallen
zijn ontworpen om de voortplanting van licht te beı̈nvloeden door middel van
meervoudige verstrooiı̈ng. Hoewel het lichtveld in een dergelijke structuur strikt
genomen niet is gekwantiseerd en eenvoudig met de vergelijking van Maxwell
kan worden beschreven, wordt niettemin gesproken over fotonische kristallen. In
de afgelopen tien jaar is de interesse in de studie van fotonische kristallen expo-
nentieel gegroeid, vanwege hun opmerkelijke optische eigenschappen. In het bij-
zonder treedt in deze structuren een stop-band op voor licht wat zich in bepaalde
richtingen voortplant, als de golflengte bijna gelijk is aan de periode van de mod-
ulatie in brekingsindex. In sommige gevallen hebben driedimensionale fotonische
kristallen zelfs een complete stop-band, een bandkloof, waarin licht zich in geen
enkele richting kan voortplanten. Dit betekent dat licht in het spectrale bereik
van de fotonische band-gap totaal zal worden gereflecteerd. Een ander interessant
optisch fenomeen treedt op als er een trilholte in het fotonische kristal is uitges-
paard. Doordat de voortplanting van licht in het omringende fotonische kristal
niet mogelijk is, kan het licht niet uit de holte ontsnappen en zit gevangen. Dit
kan zorgen voor spectaculaire veranderingen in de stralingseigenschappen van
het medium. Spontane emissie zou bijvoorbeeld helemaal onmogelijk zijn in het
spectrale bereik van de fotonische band kloof. Deze eigenschappen zijn uniek en
kunnen niet in andere materialen gevonden worden.

Een van de doelen van het onderzoek in fotonica is het ontwerpen van optis-
che componenten gebaseerd op fotonische kristallen, waarin fotonen een vergeli-
jkbare functie hebben als elektronen in traditionele elektronica, maar dan veel
sneller. Fotonen kunnen worden gestuurd en gecontroleerd op een vergelijk-
bare manier als elektronen in halfgeleidercomponenten. In het bijzonder maken
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dergelijke optische componenten het mogelijk om geı̈ntegreerde optische circuits
te bouwen. In zulke optische circuits zullen halfgeleiderlasers de rol spelen van
de elektrische stroombron en kunnen golfgeleiders het licht transporteren zoals
een draad de elektronen transporteert. Het licht kan zelfs worden verzameld in
trilholtes in het fotonische kristal om fotonische LC-kringen te realiseren en ter-
wijl absorberende materialen kunnen worden gebruikt als weerstanden. De be-
langrijkste elementen van geı̈ntegreerde circuits zijn natuurlijk transistoren, elek-
trische schakelaars. Optisch schakelen kan worden bereikt met behulp van niet-
lineaire optica. Om dit optisch schakelen te bereiken in fotonische kristallen is
een begrip en nauwkeurige controle van de ultrasnelle niet-lineaire eigenschap-
pen een vereiste. In dit proefschrift wordt een analyse gegeven van de optische
respons in verschillende regimes, in verschillende typen driedimensionale fotonis-
che kristallen, en op tijdschalen van femto- tot picoseconden (10−15−10−12 ). Het
blijkt dat de dynamische veranderingen in de reflectie aan een driedimensionaal
fotonisch kristal groot en snel kan worden gemaakt.

Het idee van optisch schakelen kan als volgt worden uitgelegd: een ultrasnelle
optische puls slaat een fotonische kristal aan, waardoor de complexe diëlectrische
constante verandert en de reflectie aan het kristal wordt aangepast. Een veran-
dering in het imaginaire deel van de diëlectrische constante onderdrukt interfer-
entie in het fotonische kristal en verandert de amplitude van de reflectie. Een
verandering in het reële deel van de dielectrische constante echter verschuift de
spectrale positie van de fotonische stop band. Beide effecten worden in dit proef-
schrift beschreven. Het eerste type schakelaar is gemaakt van een opaal, ge-
vuld met amorf silicium. Het sample bestaat uit een dicht-gepakt vlakgecen-
treerd rooster van silica balletjes met een diameter van 230 nm. De holtes in
deze opalen werden gevuld met silicium. In dit kristal wordt schakelen bereikt
door gebruik te maken van de niet-lineaire eigenschappen van het silicium. Wij
beschrijven hoe een optische puls de elektronen en gaten in het silicium aanslaat.
Deze aangeslagen ladingsdragers vormen een plasma en verhogen daardoor de ab-
sorptie. Dientengevolge wordt de constructieve interferentie van meervoudig ver-
strooid licht in het opaal onderdrukt en vermindert de Bragg reflectie. Dit proces
gebeurt zeer snel en wordt slechts beperkt door de duur van de optische excitatie
puls. In het experiment in dit proefschrift zijn schakeltijden van 30 femtoseconde
waargenomen, en dat gepaard gaande met een verandering van de relatieve am-
plitude van meer dan 50%, veel hoger dan in optische schakelaar van “gewoon”
amorf silicium.

Het is belangrijk om onderscheid te maken tussen twee bijdragen aan de re-
flectie aan de opalen: de coherente verstrooiı̈ng aan het periodieke rooster (Bragg
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diffractie) en rest-verstrooiı̈ng aan de lucht-opaal overgang. De niet-lineaire eigen-
schappen van deze twee bijdragen zijn apart onderzocht in twee experimenten. In
het eerste experiment werd de “speculaire” bundel geblokkeerd zodat alleen het
Bragg-gereflecteerde licht werd opgevangen en geanalyseerd. In het tweede ex-
periment werd een klein diafragma in de detectiebundel geplaatst om het Bragg-
licht tegen te houden. Het is opmerkelijk dat de verandering van de Braggdiffrac-
tie 10 keer groter was dan de verandering in de speculare reflectie. Dit resultaat
bleek in goede overeenstemming met de theorie. Dit demonstreert de intrinsieke
versterking van niet-lineaire effecten in fotonische kristallen.

Een tweede manier om te schakelen werd aangetoord in een opaal gevuld
met vanadium-dioxide. Het is bekend dat vanadium-dioxide een structurele fase-
overgang ondergaat bij een temperatuur van 68°C. Bij temperaturen onder het
transitiepunt is het materiaal een halfgeleider, erboven een metaal. Het is belan-
grijk dat het reële deel van de dielectrische constante van vanadium-dioxide in
deze twee toestanden veel verschillen. Het is dit feit wat we hebben gebruikt om
de tweede manier van optische schakelen te demonstreren. In ons experiment
wordt de faseovergang tot stand gebracht met behulp van een intense optische
puls. Het blijkt dat de faseovergang in slechts enkele honderden femtosecon-
den plaatsvindt. Als gevolg hiervan verschuift de fotonische stopband binnen
350 femtoseconden naar het blauw, waardoor de reflectie sterk verandert. Het
herstel vindt plaats op een tijdschaal van microseconden en wordt bepaald door
het afkoelen van het geëxciteerde materiaal.

Een compleet nieuw type fotonische kristallen, de zogenaamde metallo-diëlec-

trische fotonische kristallen, bieden nog meer mogelijkheden om de fotonische
band te er stemmen. Deze structuren hebben oppervlakte plasmonresonanties
die in feite collectieve oscillaties van het elektronen gas zijn. De lineaire en
niet-lineaire optische eigenschappen van deze structuren zijn in dit proefschrift
beschreven. We hebben de lineaire eigenschappen geanalyseerd van een fotonis-
che kristal wat bestaat uit periodiek geordende deeltjes met een meervoudige schil,
bestaande uit een silica kern met een straal van 228 nm, bedekt met een dunne
gouden schil en dunne silica schil, met diktes van respectievelijk 38 en 10 nm.
Dit fotonische kristal van “nano-uien” levert spectaculaire optische fenomenen
op. Licht wat aan deze structuur wordt gereflecteerd, produceert bijvoorbeeld
onverwachte licht bundeltjes in richtingen met een hexagonale symmetrie en een
verstrooiı̈ngshoek tophoek van slechts 8°. Deze hoek is te klein om toegeschreven
te worden aan simple diffractie aan een periodiek rooster van deze nano-uien,
maar kan worden uitgelegd door interferentie tussen oppervlakte plasmonen en
oppervlakte golven te beschouwen.
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In het visuele gebied blijkt het reflectie spectrum van het goud-schil fotonis-
che kristal te worden bepaald door de oppervlakte plasmonresonanties. Het is
interessant dat deze resonanties kunnen worden beı̈nvloed op een femtoseconde
tijdschaal. Een optische puls kan het elektronengas in goud tot duizenden Kelvins
verhitten, wat de dielectrische constante op een femtoseconde schaal kan doen
veranderen. Afhankelijk van de golflengte kunnen zowel, bleking en absorp-
tie worden geobserveerd in onze structuren. De dynamica van het herstel duurt
meerdere picoseconden (10−12 s) en wordt bepaald door het energietransport van
het elektron gas naar het rooster. Ook hier is het schakelen zeer efficiënt. We
kunnen veranderingen in reflectie bereiken van 35% bij een excitatie-vermogen
van 0.5-mW/cm2, dat 20 keer lager is dan nodig om vergelijkbare veranderingen
te bereiken in opaal-silicium en opaal-vanadium-dioxide composieten.

Als laatste beschrijven we een heel ander schakelmechanisme, wat geı̈ndu-
ceerd wordt door coherente akoestische radiële vibraties van de nanogoudschillen,
in andere woorden, periodike compressie en uitrekking. Deze oscillaties wor-
den Lamb-vibraties genoemd, maar zijn tot nu toe nooit in nanometer-schillen
gezien. Door mechanische oscillaties ontstaan vergelijkbare veranderingen in re-
flectie als door hete elektronen. De geobserveerde oscillatie eigenschappen van
onze nanogoudschillen komen goed overeen met berekeningen. Dit experiment
kan een brug slaan tussen fotonische en zogenaamde fononische kristallen, peri-
odieke media voor akoestische golven, waarin bandkloven bestaan voor akoestis-
che golven.

Dit proefschrift beschrijft een paar eerste stappen in de richting van complete
ultrasnelle controle over de voortplanting van licht in fotonische kristallen en de
toepassing hiervan in bijvoorbeeld optische schakelaars, optisch geheugens, lage-
drempel lasers, holografische geheugens, configureerbare optische netwerken en
optische computers.
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