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Ultrafast photonic reinforcement 
learning based on laser chaos
Makoto Naruse1, Yuta Terashima2, Atsushi Uchida2 & Song-Ju Kim3

Reinforcement learning involves decision making in dynamic and uncertain environments and 

constitutes an important element of artificial intelligence (AI). In this work, we experimentally 
demonstrate that the ultrafast chaotic oscillatory dynamics of lasers efficiently solve the multi-armed 
bandit problem (MAB), which requires decision making concerning a class of difficult trade-offs called 
the exploration–exploitation dilemma. To solve the MAB, a certain degree of randomness is required 
for exploration purposes. However, pseudorandom numbers generated using conventional electronic 
circuitry encounter severe limitations in terms of their data rate and the quality of randomness due to 
their algorithmic foundations. We generate laser chaos signals using a semiconductor laser sampled 
at a maximum rate of 100 GSample/s, and combine it with a simple decision-making principle called 
tug of war with a variable threshold, to ensure ultrafast, adaptive, and accurate decision making at a 
maximum adaptation speed of 1 GHz. We found that decision-making performance was maximized 
with an optimal sampling interval, and we highlight the exact coincidence between the negative 
autocorrelation inherent in laser chaos and decision-making performance. This study paves the way 
for a new realm of ultrafast photonics in the age of AI, where the ultrahigh bandwidth of light wave can 
provide new value.

Unique physical attributes of photons have been utilized in information processing in the literature on optical 
computing1. New photonic processing principles have recently emerged to solve complex time-series predic-
tion problems2–4, and issues in spatiotemporal dynamics5 and combinatorial optimization6, which coincide with 
the rapid shift to the age of artificial intelligence (AI). These novel approaches exploit the ultrahigh bandwidth 
attributes of light wave and their enabling device technologies2,3,6. This paper experimentally demonstrates the 
usefulness of ultrafast chaotic oscillatory dynamics in semiconductor lasers for reinforcement learning, which is 
among the most important elements in machine learning.

Reinforcement learning involves decision making in dynamic and uncertain environments7. It forms the foun-
dation of a variety of applications, such as information infrastructures8, online advertisements9, robotics10, trans-
portation11, and Monte Carlo tree search12, which is used in computer gaming13. A fundamental of reinforcement 
learning is known as the multi-armed bandit problem (MAB), where the goal is to maximize the total reward 
from multiple slot machines, the reward probabilities of which are unknown7,14,15. To solve the MAB, one needs 
to explore better slot machines. However, too much exploration may result in excessive loss, whereas too quick a 
decision, or insufficient exploration, may lead to the neglect of the best machine. There is a trade-off, referred to 
as the exploration–exploitation dilemma7. A variety of algorithms for solving the MAB have been proposed in the 
literature, such as ε-greedy14, softmax16, and upper confidence bound17.

These approaches typically involve probabilistic attributes, especially for exploration purposes. While the 
implementation and improvements of such algorithms on conventional digital computing systems are impor-
tant for various practical applications, understanding the limitations of the algorithms and investigating novel 
approaches are also important based on perspectives from postsilicon computing. For example, pseudorandom 
number generation (RNG) used in conventional algorithmic approaches has severe limitations, such as its data 
rate, owing to the operating frequencies of digital processors (~gigahertz (GHz) range). Moreover, the quality of 
randomness in RNG has serious limitations18. The usefulness of photonic random processes for machine learning 
is also discussed by utilizing multiple optical scattering19.
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We consider that directly utilizing physical irregular processes in nature is an exciting approach with the 
goal of realizing artificially constructed, physical decision-making machines20. Indeed, the intelligence of slime 
moulds or amoebae, single-cell natural organisms, has been used in solution searches, whereby complex intercel-
lular spatiotemporal dynamics play a key role21. This has stimulated the subsequent discovery of a new principle 
of decision-making strategy called tug of war (TOW), invented by Kim et al.22,23. The principle of the TOW 
method originated from the observation of the slime mould: its body dynamically expands and shrinks while 
maintaining a constant intracellular-resource volume, allowing the mould to collect environmental information; 
this conservation of the volume entails a nonlocal correlation within the body. The fluctuation, or probabil-
istic behaviour, in the body of amoeba is important for the exploration of better solutions. The name TOW is 
a metaphor used to represent such a nonlocal correlation while accommodating fluctuation, which enhances 
decision-making performance23.

This principle can be adapted to photonic processes. In past research, we experimentally showed physical deci-
sion making based on near-field-mediated optical excitation transfer at the nanoscale20,24 and with single pho-
tons25. These former studies pursued the ultimate physical attributes of photons in terms of diffraction limit-free 
spatial resolutions and energy efficiency by considering near-field photons26,27, and the quantum attributes of 
single-light quanta28. The nonlocal aspect of TOW is directly physically represented by the wave nature of a single 
photon or an exciton-polariton, whereas fluctuation is also directly represented by the intrinsic probabilistic 
attributes. However, fluctuations are limited by the practical limitations on the measurements and control systems 
(second order in the worst case) as well as the single-photon generation rate (kHz range).

The ultrafast, high-bandwidth aspect of light wave, for instance beyond THz order if the wavelength is around 
1.5 µm in optical communications, is another promising physical platform for TOW-based decision making 
to complement diffraction-limit-free and low-energy near-field photon approaches as well as quantum-level 
single-photon strategies. As demonstrated below, chaotic oscillatory dynamics of lasers that contains negative 
autocorrelation experimentally demonstrates 1-GHz decision making. In addition to the resultant speed merit, it 
should be emphasized that the technological maturity of ultrafast photonic devices allows for relatively easy and 
scalable system implementation through commercially available photonic devices. Furthermore, the applications 
of the proposed ultrafast photonics-based, and the former near-field/single-photon-based, decision making are 
complementary: the former targets high-end, data centre scenarios by highlighting ultrafast performance, whereas 
the latter appeals to low-energy, Internet-of-Things-related29, and security30 applications.

In this study, we demonstrate ultrafast reinforcement learning based on chaotic oscillatory dynamics in semi-
conductor lasers31–34 that yields adaptation from zero-prior knowledge at a GHz range. The randomness is based 
on complex dynamics in lasers32–34, and its resulting speed is unachievable in other mechanisms, at least through 
technologically reasonable means. We experimentally show that ultrafast photonics has significant potential for 
reinforcement learning. The proposed principles using ultrafast temporal dynamics can be matched to applica-
tions including an arbitration of resources at data centres35, high-frequency trading36, where decision making 
is required at least within milliseconds, and other such high-end utilities. Scientifically, this study paves a way 
toward the understanding of the physical origin of the enhancement of intelligent abilities (which is reinforce-
ment learning herein) when natural processes (laser chaos herein) are coupled with external systems; this is what 
we call natural intelligence.

Chaotic dynamics in lasers has been examined in the literature32–34, and its applications have exploited the 
ultrafast attributes of photonics for secure communication37–39, RNG31,40,41, remote sensing42, and reservoir com-
puting2–4. Reservoir computing is a type of neural network similar to deep learning13 that has been intensively 
studied to provide recognition- and prediction-related functionalities. Reinforcement learning described in 
this study differs completely from reservoir computing from the perspective that neither a virtual network nor 
machine learning for output weights is required. However, it should be noted that reinforcement learning is 
important in complementing the capabilities of neural networks, indicating the potential for the fusion of pho-
tonic reservoir computing with photonic reinforcement learning in future work.

Principle of reinforcement learning
For the simplest case that preserves the essence of solving the MAB, we consider a player who selects one of 
two slot machines, called slot machines 1 and 2 hereafter, with the goal of maximizing reward (known as the 
two-armed bandit problem). Denoting the reward probabilities of the slot machines by Pi (i = 1, 2), the problem is 
to select the machine with the highest reward probability. The amount of reward dispensed by each slot machine 
for a play is assumed to be the same in this study. That is, the probability of ‘win’ by playing the slot machine i is Pi 
and the probability of ‘lose’ by playing the slot machine i is 1 − Pi. The sum of ‘win’ and ‘lose’ is unity in playing a 
particular slot machine, whereas the sum of Pi among all slot machines may not be unity.

The measured chaotic signal s(t) is subjected to the threshold adjuster (TA), according to the TOW principle. 
The output of the TA is immediately the decision concerning the slot machine to choose. If s(t) is equal to or 
greater than the threshold value T(t), the decision is made to select slot machine 1. Otherwise, the decision is 
made to select slot machine 2. The reward—the win/lose information of a slot machine play—is fed back to the 
TA.

The chaotic signal level s(t) is compared with the threshold value T(t) denoted by

= × ⌊ ⌋T t k TA t( ) ( ) , (1)

where TA(t) is the threshold adjuster value at cycle t, ⌊ ⌋TA t( )  is the nearest integer to TA(t) rounded to zero, and 
k is a constant determining the range of the resultant T(t). In this study, we assumed that ⌊ ⌋TA t( )  takes the values 
− … − …N N, 1, 0, 1, , , where N is a natural number. Hence the number of the thresholds is 2N + 1, referred to 
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as TA’s resolution. The range of TA(t) is limited between −kN and kN by setting T(t) = kN when ⌊ ⌋TA t( )  is greater 
than N, as well as T(t) = −kN when ⌊ ⌋TA t( )  is smaller than −N.

If the selected slot machine yields a reward at cycle t (in other words, wins the slot machine play), the TA value 
is updated at cycle t + 1 based on

∆ α

∆ α

+ = − +

+ = + +

TA t TA t

TA t TA t

( 1) ( ) if slot machine 1 wins
( 1) ( ) if slot machine 2 wins

,
(2)

where α is referred to as the forgetting (memory) parameter20, and ∆ is the constant increment (in this experi-
ment, ∆ = 1 and α = 0.999). In this study, the initial TA value was zero. If the selected machine does not yield a 
reward (or loses in the slot machine play), the TA value is updated as follows:

Ω α

Ω α

+ = + +

+ = − +

TA t TA t

TA t TA t

( 1) ( ) if slot machine 1 fails
( 1) ( ) if slot machine 2 fails

,
(3)

where Ω is the increment parameter defined below. Intuitively speaking, the TA takes a smaller value if slot 
machine 1 is considered more likely to win, and a greater value if slot machine 2 is considered more likely to earn 
the reward. This is as if the TA value is being pulled by the two slot machines at both ends, coinciding with the 
notion of a tug of war.

The fluctuation, necessary for exploration, is realized by associating the TA value with the threshold of digiti-
zation of the chaotic signal train. If the chaotic signal level s(t) is equal to or greater than the assumed threshold 
T(t), the decision is immediately made to choose slot machine 1; otherwise, the decision is made to select slot 
machine 2. Initially, the threshold is zero; hence, the probability of choosing either slot machine 1 or 2 is 0.5. As 
time elapses, the TA value shifts (becomes positive or negative) towards the slot machine with the higher reward 
probability based on the dynamics shown in Eqs (2) and (3). We should note that due to the irregular nature of the 
incoming chaotic signal, the possibility of choosing the opposite machine is not zero, and this is a critical feature 
of exploration in reinforcement learning. For example, even when the TA value is sufficiently small (meaning 
that slot machine 1 seems highly likely to be the better machine), the probability of the decision to choose slot 
machine 2 is not zero.

In TOW-based decision making, the increment parameter Ω in Eq. (3) is determined based on the history of 
betting results. Let the number of times when slot machine i is selected in cycle t be Si and the number of wins in 
selecting slot machine i be Li. The estimated reward probabilities of slot machines 1 and 2 are given by

= = .ˆ ˆP
L

S
P

L

S
,

(4)
1

1

1
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Ω is then given by

Ω =
+

− +
.

ˆ ˆ

ˆ ˆ

P P

P P2 ( ) (5)

1 2

1 2

The initial Ω is assumed to be unity, and a constant value is assumed when the denominator of Eq. (5) is zero. 
The detailed derivation of Eq. (5) is shown in ref.23.

Results
The architecture of laser chaos-based reinforcement learning is schematically shown in Fig. 1a. A semiconductor 
laser is coupled with a polarization-maintaining (PM) coupler. The emitted light is incident on a variable fibre 
reflector, by which a delayed optical feedback is supplied to the laser, leading to laser chaos40. The output light 
at the other end of the PM coupler is detected by a high-speed, AC-coupled photodetector through an optical 
isolator (ISO) and an attenuator, and is sampled by a high-speed digital oscilloscope at a rate of 100 GSample/s (a 
10-ps sampling interval). The detailed specifications of the experimental apparatus are described in the Methods 
section.

Figure 1b(i) shows an example of the chaotic signal train. Figure 1c and d show the optical and radio frequency 
(RF) spectra of laser chaos measured by optical and RF spectrum analysers, respectively. The semiconductor laser 
was operated at a centre wavelength of 1547.785 nm. The standard bandwidth31 of the RF spectrum was estimated 
as 10.8 GHz. Figure 1e summarizes the histogram of the signal levels of the chaotic trains spanning from −0.5 to 
0.5, with the level zero at its maximum incidence, and slightly skewed between the positive and negative sides. 
A remark is that the small incidence peak at the lowest measured amplitude is due to our experimental appara-
tus (not the laser), and it does not critically affect the present study. Meanwhile, Fig. 1b(ii) exhibits an example 
of a quasiperiodic signal train generated from the same laser by changing the optical feedback power from the 
external reflector (see the Methods section for details). Besides, Fig. 1b(iii) shows an example of a coloured noise 
signal train containing negative autocorrelation calculated in a computer on the basis of the Ornstein–Uhlenbeck 
process using white Gaussian noise and a low-pass filter43 with the cut-off frequency of 10 GHz. Relevant details 
and performance comparisons with respect to decision making will be discussed later.

The rounded TA values, ⌊ ⌋TA t( ) , are also schematically illustrated at the right-hand side of Fig. 1b and the 
upper side of Fig. 1e, assuming N = 10. This means that ⌊ ⌋TA t( )  ranges from −10 to 10. Signal value s(t) spans 
between −0.5 and 0.5. The particular example of TA values shown in Fig. 1b and e shows the case when the con-
stant k in Eq. (1) is given by 0.05, so that the actual threshold T(t) spans from −0.5 to 0.5. In the experimental 
demonstration in this study, the TA and the slot machines were emulated in offline processing, whereas online 
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processing was technologically feasible owing to the simple procedure of the TA (Remarks are given in the 
Discussion section).

[EXPERIMENT-1] Adaptation to sudden environmental changes. We first solved the two-armed 
bandit problems given by the following two cases, where the reward probabilities {P1, P2} were given by {0.8, 0.2} 
and {0.6, 0.4}. We assumed that the sum of the reward probabilities P1 + P2 was known prior to slot machine plays. 
With this knowledge, Ω is unity by Eq. (5).

The slot machine was consecutively played 4,000 times, and this play was repeated 100 times. The red and blue 
curves in Fig. 2a show the evolution of the correct decision rate (CDR), defined by the ratio of the number of 
selections of the machines that yielded a higher reward probability at cycle t in 100 trials, with respect to the prob-
ability combination of {0.8, 0.2} and {0.6, 0.4}. The chaotic signal was sampled every 10 ps; hence, the total dura-
tion of the 4,000 plays of the slot machine was 40 ns. To represent sudden environmental changes (or uncertainty), 
the reward probability was forcibly interchanged every 10 ns, or every 1,000 plays (For example, {P1, P2} = {0.8, 
0.2} was reconfigured to {P1, P2} = {0.2, 0.8}). The resolution of the TA was set to 9 (or N = 4).

Figure 1. Architecture of photonic reinforcement learning based on laser chaos. (a) Architecture and 
experimental configuration of laser chaos-based reinforcement learning. Ultrafast chaotic optical signal is 
subjected to the tug-of-war (TOW) principle that determines the selection of slot machines. ISO: optical 
isolator. (b) (i) A snapshot of chaotic signal trains sampled at 100 GSample/s. The signal level is subjected to a 
threshold adjustment (TA) for decision making. (ii) A snapshot of quasiperiodic signal trains (also sampled at 
100 GSample/s). (iii) A snapshot of pseudorandom signals (coloured noise containing negative autocorrelation) 
numerically generated by a computer. (c) Optical spectrum and (d) RF spectrum of the laser chaos used in the 
experiment. (e) Incidence statistics (histogram) of the signal level of the laser chaos signal.
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We observed that the CDR curves quickly approached unity, even after sudden changes in the reward proba-
bilities, showing successful decision making. The adaptation was steeper in the case of a reward probability com-
bination of {0.8, 0.2} than that of {0.6, 0.4}, since the difference in the reward probability was greater in the former 
case (0.8 − 0.2 = 0.6) than the latter (0.6 − 0.4 = 0.2). This meant that decision making was easier. The red and blue 
curves in Fig. 2b represent the evolution of TA values (TA(t)) in the case of {0.8, 0.2} and {0.6, 0.4}, respectively, 
where the TA value became greater than 4 or −4; hence, it took a long time for the TA values to be inverted to the 
other polarity following environmental change. This is the origin of some delay in the CDR in responding to the 
environmental changes observed in Fig. 2a. A simple method of improving adaptation is to limit the maximum 
and minimum values of TA(t). The forgetting parameter α is also crucial to improving adaptation speed.

Figure 2c,d and e characterize decision-making performance dependencies with respect to the configuration 
of TA. Figure 2c concerns TA resolutions demonstrated by the eight curves therein, with corresponding TA reso-
lutions of 3 to 257 (or = = …

−N i2 ( 1, , 8)i 1 ), where the adaptation was quicker in the case of lower resolutions 
than in the case of higher resolutions. Figure 2d considers TA range dependencies: while keeping the centre of the 
TA value at zero and the TA resolution at 8, the three curves in Fig. 2d compare CDRs in the TA ranges of 1, 0.25, 
and 0.125. We observed that a full coverage (TA range of 1) of the chaotic signal yields the best performance. 
Figure 2e shows the TA’s centre value dependencies while maintaining a TA range of 1 and a resolution of 8, and 
we can clearly observe the deterioration of CDRs with the shift in the centre of the TA from zero.

[EXPERIMENT-2] Adaptation from zero prior knowledge. Here we considered decision-making 
problems without any prior knowledge of the slot machines. Hence, parameter Ω needed to be updated. The 
reward probabilities of the slot machines were set to {P1, P2} = {0.5, 0.1}, and 100 consecutive plays were executed. 
Figure 3a shows the time evolution of the CDR until the 75th slot play cycle to enlarge the early phase of the adap-
tation. The red and blue curves in Fig. 3a depict CDRs on the basis of chaotic signal trains with sampling intervals 
of 10 and 50 ps, respectively. Hence, the time needed to complete 100 consecutive slot machine plays differed 
among these; it ranges from × =10ps 100 1ns to × =50ps 100 5ns. Meanwhile, the green curve in Fig. 3a 
represents the CDR with quasiperiodic signal trains sampled at 50-ps intervals. We observed that the CDR based 
on chaotic signals sampled at 50-ps intervals exhibited more rapid adaptation than quasiperiodic signals. The 
time evolution of the CDR for the coloured noise signal is shown by the magenta curve in Fig. 3a, which stays 
lower than the experimentally observed chaotic signal trains.

Moreover, the black curve shows the CDR obtained by uniformly distributed pseudorandom numbers gen-
erated with the Mersenne Twister as the random signal source, instead of the experimentally observed chaotic 

Figure 2. Reinforcement learning in dynamically changing environments. (a) Evolution of the correct decision 
rate (CDR) when the reward probabilities of the two slot machines are {0.8, 0.2} and {0.6, 0.4}. The knowledge 
regarding the sum of the reward probability, which is unity in these cases, is supposed to be given. The reward 
probability is intentionally swapped every 10 ns to represent sudden environmental changes or uncertainty. 
Rapid and adequate adaptation is observed in both cases. (b) Evolution of the threshold adjuster (TA) value 
underlying correct decision making. (c–e) CDR performance dependency on the setting of TA. (c) TA 
resolution dependency. (d) TA range dependency. (e) TA centre value dependency.
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signals. In addition, we characterized CDRs with normally distributed random numbers (referred to as RANDN) 
to ensure that the statistical incidence patterns of the laser chaos, which were similar to a normal distribution 
shown in Fig. 1e, were not the origins of the fast adaptation of decision making. The solid, dotted, and dashed 
curves in Fig. 3a exhibit the CDR obtained by RANDN of which standard deviation (σ) was configured as 0.2, 
0.1, and 0.01 while keeping the mean value at zero. We observed that the CDRs based on chaotic signals exhibited 
more rapid adaptation than the uniformly and normally distributed pseudorandom numbers.

The most prompt adaptation, or the optimal performance, was obtained at a particular sampling interval. The 
blue square marks in Fig. 3b compare CDRs at the cycle t = 5 as a function of the sampling interval ranging from 
10 ps to 4000 ps. The sampling interval of 50 ps yielded the best performance, indicating that the original cha-
otic dynamics of the laser could physically be optimized such that the most prompt decision-making is realized. 
Indeed, the autocorrelation of the laser chaos signal trains was evaluated as shown by the blue square marks in 
Fig. 3c, and its negative maximum value is taken when the time lag is given by 5 or −5, corresponding exactly to 
the sampling interval of 50 ps (5 × 10 ps). In other words, the negative correlation of chaotic dynamics affects the 
exploration ability for decision making. Furthermore, this finding suggests that optimal performance is obtained 
at a particular sampling rate (or data rate) by physically tuning the dynamics of the original laser chaos, which 
will be an important and exciting topic for future investigation. The adaptation speed of decision making was 
estimated as 1 GHz in this optimal case, where CDR was larger than 0.95 at 20 cycles with a 50-ps sampling inter-
val (20 GSamples/s) in Fig. 3a (1 GHz = (50 ps × 20 cycles)−1). In other words, the latency of decision making is 
approximately 1 ns, and the throughput is 20 GDecision/s.

Meanwhile, the autocorrelation of the quasiperiodic signal train also yields negative values, as shown by the 
green circular marks in Fig. 3c. In fact, the absolute value of the negative autocorrelation at the time lag of 5 (and 
−5) is larger than that of the chaotic signal train. However, the adaptation performance of the chaotic signal trains 
is superior (see Fig. 3b). At the same time, the best adaptation performance of the quasiperiodic signal train is 
obtained when the sampling interval is 70 ps (see Fig. 3b), which coincides with the peak of the negative maxi-
mum value of autocorrelation with the time lag of 7 (=70 ps) (see Fig. 3c).

Another indication of the observation is that the coloured noise containing negative autocorrelation might 
contribute to performance improvement. We generated the coloured noise signal by computer simulations of 
which autocorrelation is shown by the diamond marks in Fig. 3c whereby the negative maximum is obtained 
at the time lag of 7 (sampling interval: 70 ps). The sampling-interval-dependence of the CDR is summarized by 
the diamond marks in Fig. 3b, where a peak is observed at the sampling interval of 7, and also coincides with the 
peak of negative autocorrelation. These results imply the necessity of gaining deeper insights in future studies as 
discussed in the Discussion section.

Figure 3. Reinforcement learning from zero prior knowledge. (a) Evolution of the CDR with laser chaos signals 
(sampling interval: 10 and 50 ps), quasiperiodic signals (sampling interval: 50 ps), coloured noise (sampling 
interval: 50 ps), and uniformly and normally distributed pseudorandom numbers. The CDR exhibits prompt 
adaptation with laser chaos when the sampling interval is 50 ps. (b) The CDR is evaluated as a function of the 
sampling interval from 10 ps to 400 ps, where the maximum performance is obtained at 50 ps with laser chaos. 
CDR with chaotic lasers yields superior performances compared to quasiperiodic and coloured noise signals. 
(c) Autocorrelation of the experimentally observed laser chaos, the quasiperiodic signal trains, and numerically 
generated coloured noises. The chaotic signals exhibit the negative maximum when the time lag is 5 or −5, 
exactly coinciding with the fact that the optimal adaptation is realized at 50-ps (10 ps × 5) sampling intervals.
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Figure 4 also presents the CDR at the cycle t = 5 obtained by the chaotic signal, quasiperiodic time series, 
coloured noise signal, and pseudorandom numbers. Moreover, the CDR at the cycle t = 5 was evaluated by sur-
rogating, or randomly permutating, the chaotic signal time series sampled at 50 ps intervals, and this resulted in 
poorer performance compared with the original chaotic signal, as shown in Fig. 4. These evaluations support the 
claim that laser chaos is beneficial to the performance of reinforcement learning, in addition to its ultrafast data 
rate for random signals.

Discussion
The performance enhancement of decision making by chaotic laser dynamics is demonstrated and the impacts of 
negative autocorrelation are clearly suggested. Further understanding between chaotic oscillatory dynamics and 
decision making is a part of important future research.

The first consideration involves physical insights. Toomey et al. recently showed that the complexity of laser 
chaos varies within the coherence collapse region in the given system44. The level of the optical feedback, injection 
current of the laser becomes an important parameter in determining the complexity of chaos, and leads to thor-
ough insights. We also consider the use of the bandwidth enhancement technique31 with optically injected lasers 
to improve the adaptation speed of decision higher than tens of GHz.

We showed the exact coincidence between the time lag that yielded the negative maximum of the autocor-
relation and the sampling interval that provided the highest adaptation performance with the use of laser chaos 
signals (Fig. 3b). The absolute value of the negative autocorrelation itself is, however, larger with the quasiperiodic 
signals rather than with chaotic signals (Fig. 3c). Nevertheless, superior adaptation performance is realized with 
the chaotic signals (Figs 3b and 4). These observations indicate that, besides the negative autocorrelation inherent 
in chaotic and quasiperiodic oscillatory dynamics of lasers as well as the coloured noise generated by computers, 
other perspectives could explain the underlying mechanism, such as diffusivity45 and Hurst exponents46.

The decision-making latency of 1 ns demonstrated by chaotic lasers in this study may overachieve the expected 
performance demanded by practical applications today. However, high-end applications require even shorter 
latency; for example, microseconds and nanoseconds applications are discussed in the literature47,48. Meanwhile, 
fully electrical online processing using multiple processors presents difficulties in reducing latency while having 
comparable throughput; such an architectural standpoint continues to be an important aspect in future studies.

Online processing can become feasible through electric circuitry, as already demonstrated for a random-bit 
generator40,49 since the required processing is very simple as described in Eqs (1) to (5). More specifically, com-
bining a demultiplexer and multiple data processing circuits (such as field-programmable gate array chips) could 
provide the requisite online processing capability. In this study, in contrast, the prime interest is to present the 
principle and the usefulness of laser chaos for reinforcement learning, and we do not experimentally adapt the 
electrical circuits for online processing that need substantial development costs. In addition, the performance 
comparison between laser chaos signals and numerically generated coloured noise signals shows the usefulness 
of direct usage of physical signal sources besides the advantages in terms of latency and technological implemen-
tations in the high-speed domain.

In the experimental demonstration, the nonlocal aspect of the TOW principle was not directly, physically 
relevant to the given chaotic oscillatory time series of the lasers whereas our former single photon-based decision 
maker directly utilizes the physical property therein (the wave–particle duality of single photons) for decision 
making as already mentioned in the introduction. By combining the chaotic dynamics with the threshold adjustor, 
the nonlocal and fluctuation properties of the TOW principle emerged which have not been completely reported 
in the literature nor realized in our past experimental studies24,25. Such a hybrid realization of nonlocality in TOW 
leads to higher likelihood of technological implementability and better scalability and extension to higher-grade 
problems.

Figure 4. Comparison of learning performance (CDR at the cycle t = 5) by laser chaos, quasiperiodic signals, 
coloured noise signals, uniformly and normally distributed pseudorandom numbers, and surrogate laser chaos 
signals. The laser chaos signal sampled at 50-ps intervals exhibits the best performance compared with other 
cases, showing that the dynamics of laser chaos positively influences reinforcement learning ability.
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All optical realization is an interesting issue to explore, and has already been implied by the analysis where the 
time-domain correlation of laser chaos strongly influences decision-making performances. The mode dynamics 
of multi-mode lasers50 are very promising for the implementation of nonlocal properties of fully photonic systems 
required for decision making. Synchronization and its clustering properties in coupled laser networks51,52 are also 
interesting approaches to physically realizing the nonlocality of the TOW. These systems can automatically tune 
the optimal settings for decision making (e.g., negative autocorrelation properties), which can lead to autono-
mous photonic intelligence.

For scalability, a variety of approaches can be considered, such as time-domain multiplication, which exploits 
the ultrafast attributes of chaotic lasers and is a frequently used strategy in ultrafast photonic systems. Introducing 
multi-threshold values31,41 is another simple extension of our proposed scheme. Furthermore, the relation 
between the difficulty level of the given MAB problem and the necessary irregularity of chaotic signal trains 
would be an interesting future study topic. In this respect, Naruse et al. experimentally examined a hierarchical 
method and successfully solved four-armed bandit problems using single photons53; the time-domain realization 
of such a hierarchical approach based on laser chaos may highlight the uniqueness of chaotic oscillatory dynamics 
of lasers.

We also make note of the extension of the principle demonstrated in this paper to higher-grade machine learn-
ing problems. This paper studied the MAB where the problem is decision making to maximize the income for a 
single player. The higher-grade problem in this context is competitive MAB54 where the issue is decision making 
to maximize the total reward for multiple players as a whole. The competitive MAB involves the so-called Nash 
equilibrium where the decisions based on an individual’s reward maximization do not yield maximum reward 
as a whole. This is a foundation of such important applications as resource allocation and social optimization. 
Investigating the possibilities of extending the present method and utilizing ultrafast laser dynamics for compet-
itive MAB is highly interesting.

Conclusion
We experimentally established that laser chaos provides ultrafast reinforcement learning and decision mak-
ing. The adaptation speed of decision making reached 1 GHz in the optimal case with the sampling rate of 20 
GSample/s (50-ps decision-making intervals) using the ultrafast dynamics inherent in laser chaos. The max-
imum adaptation performance coincided with the negative maximum of the autocorrelation of the original 
time-domain laser chaos sequences, demonstrating the strong impact of chaotic lasers on decision making. The 
origin of superior performance was also validated by comparing with experimentally observed quasiperiodic 
signals, computer-generated coloured noises, uniformly and normally distributed pseudorandom numbers, and 
surrogated arrangements of original chaotic signal trains. This study is the first demonstration of ultrafast pho-
tonic reinforcement learning or decision making, to the best of our knowledge, and paves the way for research on 
photonic intelligence and new applications of chaotic lasers in the realm of artificial intelligence.

Methods
Optical system. The laser used in the experiment was a distributed feedback semiconductor laser mounted 
on a butterfly package with optical fibre pigtails (NTT Electronics, KELD1C5GAAA). The injection current of 
the semiconductor laser was set to 58.5 mA (5.37 Ith), where the lasing threshold Ith was 10.9 mA. The relaxation 
oscillation frequency of the laser was 6.5 GHz. The temperature of the semiconductor laser was set to 294.83 K. 
The laser output power was 13.2 mW. The laser was connected to a variable fibre reflector which reflected a frac-
tion of light back into the laser, inducing high-frequency chaotic oscillations of optical intensity32–34. The values of 
the optical feedback power (ratio) from the external reflector to the laser were 211 µW (1.6%) and 15 µW (0.11%) 
in generating chaotic and quasiperiodic signals, respectively. The fibre length between the laser and the reflector 
was 4.55 m, corresponding to the feedback delay time (round trip) of 43.8 ns. Polarization-maintaining fibres were 
used for all optical fibre components. The optical output was converted to an electronic signal by a photodetector 
(New Focus, 1474-A, 38 GHz bandwidth) and sampled by a digital oscilloscope (Tektronics, DPO73304D, 33 GHz 
bandwidth, 100 GSample/s, eight-bit vertical resolution). The RF spectrum of the laser was measured by an RF 
spectrum analyser (Agilent, N9010A-544, 44 GHz bandwidth). The optical wavelength of the laser was measured 
by an optical spectrum analyser (Yokogawa, AQ6370C-20).

Data analysis. [EXPERIMENT-1]. A chaotically oscillated signal train was sampled at a rate of 100 
GSample/s by 10,000,000 points, and lasted approximately 10 µs. As described in the main text, 4,000 consecutive 
plays were repeated 100 times; hence, the total number of slot machine plays was 400,000. With a 10-ps interval 
sampling, the initial 400,000 points of the chaotic signal were used for the decision-making experiments. The 
processing time required for 400,000 iterations of slot machine plays was approximately 0.93 s (or 2.3 µs/deci-
sion), on a personal computer (Hewlett-Packard, Z-800, Intel Xeon CPU, 3.33 GHZ, 48 GB RAM, Windows 7, 
MATLAB R2011b).

[EXPERIMENT-2]. 

 (1) Sampling methods: A chaotic signal train was sampled at 10-ps intervals with 10,000,000 sampling points. 
Such a train was measured 120 times. Each chaotic signal train was referred to as chaosi, and there were 120 
kinds of such trains: = …i 1, , 120. In demonstrating 10 × M ps sampling intervals, where M was a natural 
number ranging from 1 to 400 (that is, the sampling intervals were 10 ps, 20 ps, … and 4000 ps), we chose 
one of every M samples from the original sequence.

 (2) Evaluation of CDR regarding a specific chaos sequence: For every chaotic signal train chaosi, 100 
consecutive plays were repeated 100 times. Consequently, 10,000 points were used from chaosi. Such 
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evaluations were repeated 100 times. Hence, 1,000,000 slot machine plays were conducted in total. These 
CDRs were calculated for all signal trains chaosi ( = …i 1, , 120).

 (3) Evaluation of CDR of all chaotic sequences: We evaluated the average CDR of all chaotic signal trains 
( = …i 1, , 120) derived in (2) above, which were the results discussed in the main text. The methods of 
the performance evaluation of CDR with respect to the experimentally observed quasiperiodic signals, 
RAND, and RANDN were the same as that described in (2) and (3).

 (4) Autocorrelation of chaotic signals: The autocorrelation was computed based on all 10,000,000 sampling 
points of chaosi, and was evaluated for all chaosi ( = …i 1, , 120). The autocorrelation demonstrated in 
Fig. 3c was evaluated as the average of these 120 kinds of autocorrelations. The autocorrelation of quasipe-
riodic signals was evaluated in the same manner.

 (5) Coloured noise: Coloured noise was calculated on the basis of the Ornstein–Uhlenbeck process using 
white Gaussian noise and a low-pass filter in numerical simulations43. We assumed that the coloured 
noise was generated at the sampling rate of 100 GHz, and the cut-off frequency of the low-pass filter was 
set to 10 GHz (the correlation time was 100 ps). Forty sequences of 10,000,000 points were generated. The 
methods of calculating CDR and autocorrelation were the same as that with (2), (3), and (4) whereas the 
number of sequences was 40 (not 120). The reduction in the number of sequences was due to the excessive 
computational costs in our computing environment.

 (6) Surrogate methods: The surrogate time series of original chaotic sequences were generated by the rand-
perm function in MATLAB which is based on the sorting of pseudorandom numbers generated by the 
Mersenne Twister.

Data availability. The data sets generated during the current study are available from the corresponding 
author on reasonable request.
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