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Abstract

Integrated photonics is poised to become a billion-dollar industry due to its vast

array of applications. However, designing and modeling photonic devices remain chal-

lenging due to lack of analytical solutions and difficulties with numerical simulation.

Recently, inverse design has emerged as a promising approach for designing photonic

devices; however, current implementations require major computational effort due to

their use of inefficient electromagnetic solvers based on finite-difference methods. Here

we report a new, highly-efficient method for simulating devices based on boundary

integral equations which is orders of magnitude faster and more accurate than existing

solvers, achieving almost spectral convergence and free from numerical dispersion. We

develop an optimization framework using our solver based on the adjoint method to

design new, ready-to-fabricate devices in just minutes on a single-core laptop. As a

1

Page 1 of 34

ACS Paragon Plus Environment

ACS Photonics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



demonstration, we optimize three different devices: a non-adiabatic waveguide taper,

a 1:2 1550nm power splitter, and a vertical-incidence grating coupler.

KEYWORDS: Inverse design; Nanophotonic Devices; Fast Maxwell Simulation/Optimization;

Integral Equations; High-order Accuracy; Computational Electromagnetics

Introduction

Silicon photonics is a rapidly expanding industry due to its potential for positively im-

pacting a broad range of exciting application domains, including high-speed interconnects,

biosensors [1], lens-less cameras [2], integrated LIDAR [3], etc. Significant efforts have been

devoted recently to the numerical simulation and inverse design of such structures [4–10].

Unfortunately, however, the design and optimization of photonic structures amounts to a

highly challenging computational problem due to their large electrical size and prevalence of

subwavelength features. This paper presents a novel methodology based on use of boundary

integral equations in conjunction with the recently introduced “Windowed Green Function”

(WGF) method, and an adjoint-based quasi-Newton optimization strategy, for the solution

of problems involving photonic structures. The use of the WGF approach which enables ap-

plication of highly-efficient integral equation methods to photonic-device problems, has given

rise to device simulation and optimization methods that are orders of magnitude faster and

more accurate than previously existing methodologies: to the best of our knowledge, this is

the first contribution which integrates integral methods in the problem of optimization of

photonic structures. In this paper the method is demonstrated for 2D configurations.

Existing computational approaches, both for two- and three-dimensional settings, are

generally based on direct volumetric discretization of the Maxwell equations usually on the

basis of the Finite Difference Time Domain method (FDTD) [4, 9]. In that context waveg-

uides are truncated after a finite length by means of the Perfectly Matched Layer (PML)

method [11] to approximate a semi-infinite waveguide, and ideally absorb any outgoing
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power flowing within the waveguide without reflecting any of it back into the device. Al-

though a number of successful photonic-device simulations have been produced using FDTD

algorithms, it is well known that the approach does present some difficulties. In particular,

issues arising from numerical dispersion figure prominently among the associated challenges,

as they cause the algorithm to require large numbers of points per wavelength, and, thus,

correspondingly large computing times, to counter the additive dispersion errors that accu-

mulate over the many wavelengths that need to be simulated in typical photonic structures.

A number of additional challenges associated with the FDTD methods in the context of

waveguiding systems, concerning avoidance of excitation of undesired modes, reactive fields

in the vicinity of a source, etc., are described in [13].

In addition to the simulation character of the FDTD method in this context, it is also

important to review certain matters that arise when the FDTD method is used in conjunc-

tion with device optimization methodologies. Indeed, due to the volumetric character of the

FDTD approach, device optimization has most often been sought via optimization with re-

spect to continuous variations of the refractive index distribution. Since ultimately the device

is comprised of a finite number of homogeneous dielectrics separated by sharp boundaries,

an optimization strategy based on continuous variations of the refractive index necessitates

some sort of a thresholding methodology [14] to convert a continuously varying distribution

into the required finite set of refractive index values—a process which may significantly de-

teriorate device performance. A few methodologies have recently been proposed that seek to

avoid a thresholding procedure in the FDTD context by adequately tracking boundaries as

the optimization procedure progresses. Reference [15], for example, utilizes representations

of dielectric interfaces by means of the level set method [16, 17] together with a mapping

function which translates values of the level-set function into values of the dielectric con-

stant. Reference [9], in turn, relies on use of a fine polygonal representation of all interfaces

together with a certain dielectric averaging methodology near the interface. While these

methods have produced useful optimized photonic devices they do incur certain difficulties.
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For example, it is difficult to incorporate certain types of important large-curvature features

such as interface corners and edges using the level-set method [15]. Furthermore, the level-set

function must be renormalized regularly to ensure that the level set equations remain well

behaved [18]—which can lead to uncontrolled perturbations of the interface and potentially

significant complications concerning the convergence of the optimization algorithm. The use

of a fine polygonal representation and associated cell averaging [9], on the other hand, while

leading to a well posed algorithm, does gives rise to significant computing costs on account

of the fineness of the interface discretization and the associated large number of optimization

parameters and small optimization step sizes.

The simulation methodology utilized in the present contribution is based on use of a

boundary integral equation formulation of the Maxwell problem—of the type commonly

employed in connection with the Method of Moments (MoM) [19]—which only requires dis-

cretization of unknowns on boundaries between regions of different material indices, so that,

in the present two-dimensional context, only unidimensional discretizations are necessary.

Even on the basis of coarse discretizations, the methodology used here approximates, with

high accuracy, the exact integral equation formulation on the fully infinite waveguide (in spite

of the Green function singularity). Since these interfaces are infinite in character, the recently

introduced Windowed Green Function (WGF) method is used, which relying on a smooth

“slow-rise” domain truncation, reduces integration over the complete infinite waveguide to

integration in a small portion of waveguide around each device structure while preserving ac-

curacy. The overall methodology can produce highly accurate solutions in computing times

that are orders of magnitude faster than existing solvers, it can be readily parallelized, and

it can be significantly further accelerated by methods such as those in [20] and references

therein.

A very significant additional advantage inherent in the integral-equation formulation in

the present context concerns optimization. Since in the integral method only boundaries are

discretized, the discretization points are easily carried along with the boundary as part of
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the optimization process, even if large boundary displacements are involved. This method

thus achieves, in a native fashion, and with high accuracy, the boundary motions, as well as

field and objective-function gradient evaluations—that, in other approaches, are produced in

a cumbersome and inaccurate fashion, either via thresholding, use of level set functions, or

finely discretized polygonal representation that, as mentioned above, are often not well suited

or not sufficiently efficient to treat some of the optimization problems under consideration.

(An advantage of level-set methods, on the other hand, is their capability for creating or

destroying “islands” within the design region. In the context of photonic design, since the

level sets are updated using the gradient of the objective function with respect to material

permittivities, rather than by evolving a governing partial differential equation, creation of

new islands typically requires seeding the initial design with a random set of islands, which

can be achieved equally well in the context of the proposed integral equation optimization

method. Destruction of islands, however, poses no difficulties for either approach.)

In this work, we first develop the boundary integral formulation utilized by our Win-

dowed Green’s Function Boundary Integral Equation (WGF-BIE) solver and demonstrate

the solver’s superior performance in the nanophotonics context by comparing simulation

times, accuracy, and numerical dispersion against commercial FDTD and FEM solvers, as

well as an open-source FDFD solver [21]. Finally, we showcase the potential of our solver,

when coupled with the adjoint method, for rapid design of new high-performance devices

by presenting the designs and performance of three different photonic devices: a short non-

adiabatic waveguide mode-preserving taper, a 1-to-2 1550nm in-plane power splitter, and

a high-efficiency, perfectly vertical incidence grating coupler. Further details regarding the

integral equation formulation, incident mode and Gaussian beam excitations, the deriva-

tion of the adjoint method for boundary integral methods, and the overall implementation

of the algorithms in a computationally efficient manner can be found in the Supporting

Information.
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Boundary Integral Formulation for Modeling Nanopho-

tonic Devices

We consider rather general photonic devices which, like the power-splitter structure depicted

in Fig. 1a, contain input and output waveguide structures which guide energy towards the

device and out from the device, respectively. For clarity and ease of reference this paper

uses the notations and boundary integral formulation introduced in [22]. Thus, following

that reference, we let Ωj (j = 1, ..., N) enumerate the set of (bounded or unbounded) con-

nected regions to be considered, and we call SIW (Semi-Infinite Waveguide) the input and

output waveguides themselves, as illustrated in Fig. 1. The standard symbols εj, µj, nj

and kj = ω
√
εjµj are used to denote the relative permittivity, relative permeability, refrac-

tive index, and wavenumber in the domain Ωj. The device may either be excited by an

external radiative-type excitation, such as a Gaussian beam incident on a grating coupler

(see e.g. Fig. 1b), or by incident modes illuminating the input SIWs; clearly, any arbitrary

combination of bound modes can be launched on any of the input SIWs.

Figure 1: (a) Illustration of a typical power splitting photonic device parametrized using B-
Spline curves. The splitter input is fed from a semi-infinite waveguide (SIW) incoming from
the left and the outputs connect to two SWIs extending to the right. (b) Illustration of a
grating coupler photonic device. Instead of having an SIW input, the input excitation for the
grating coupler is a radiative-type Gaussian-beam excitation representing the fundamental
free-space mode of an optical fiber. The function w̃A(r) is defined in equation (10).

As is well known [23], in the TE (resp. TM) case, the out-of-plane component u of the
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electric (resp. magnetic) field is a solution of the transmission problem





∆u+ k2ju = 0 in Ωj

u+ − u− = 0 on Γjℓ (j < ℓ)

∂u+

∂n
− νjℓ

∂u−

∂n
= 0 on Γjℓ (j < ℓ)

(1)

for the Helmholtz equation everywhere in space. Here νjℓ is a constant which equals 1 for TE

polarization and (
kj
kℓ
) for TM polarization. For every pair (j, ℓ) for which j < ℓ, Γjℓ represents

the boundary between domains Ωj and Ωℓ. Additionally, the unit normal n = n(r) (r ∈ Γjℓ)

to Γjℓ in equation (1) is defined as pointing into the ”plus” side Ωj of Γjℓ (j < ℓ), and the

values u+ and u− and their corresponding normal derivatives from the plus and minus sides

on the boundary Γjℓ are given by

u±(r) = limδ→0+ [u(r ± δn(r))] and ∂u±(r)
∂n

= limδ→0+ [∇u(r ± δn(r)) · n(r)], (r ∈ Γjℓ).

Note that 1) The boundaries Γjℓ are mutually disjoint, 2) Γj =
(
∪j−1

ℓ=1Γℓj

)
∪
(
∪N
ℓ=j+1Γjℓ

)

is the boundary of the domain Ωj, and 3) Γ = ∪N
j=1Γj is the totality of all of the boundaries

in the system.

For the two-dimensional problem under consideration we use a three-dimensional coordi-

nate system such that the propagation plane coincides with the (x, z) plane, where the y axis

is “out-of-plane” (that is, it is orthogonal to the plane of propagation), and we decompose

the electromagnetic field into its TE and TM components. In the TE problem we call u the

out-of-plane component of the total electric field, and we have

E = (0, u, 0) , H =
i

ωµj

(
∂u

∂z
, 0,−∂u

∂x

)
, (2)

In the TM case, on the other hand, we let u denote the out-of-plane component of the total

7
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magnetic field,

H = (0, u, 0) , E =
iωµj

k2j

(
−∂u
∂z
, 0,

∂u

∂x

)
. (3)

Letting φ(r) ≡ u+(r), ψ(r) ≡ ∂u+

∂n
(r) for r ∈ Γ, and

βj(r) =





1, for r ∈ Γjℓ (j < ℓ)

−1, for r ∈ Γℓj (j > ℓ)

, νj(r) =





1, for r ∈ Γjℓ (j < ℓ)

νℓj, for r ∈ Γℓj (j > ℓ)

, (4)

Green’s theorem gives us the representation formula

u(r) = D [βjφ]] (r)− S
[
βjν

−1
j ψ

]
(r), r ∈ Ωj, (5)

where

S[η](r) =

∫

Γj

Gj(r, r
′)η(r′)dsr′

D[η](r) =

∫

Γj

∂Gj

∂n(r′)
(r, r′)η(r′)dsr′

The densities φ and ψ in the representation formula (5), which, as mentioned above, are

given in terms of the total field, can be expressed as a sum of their incident and scattered

components. In other words φ = φinc + φscat and ψ = ψinc + ψscat. Then, following the

derivation and notations in [22] (so that, in particular, for j < ℓ and r ∈ Γjℓ we call

Γ+(r) = Γj and Γ−(r) = Γℓ), and letting Φscat and Φinc denote the column vectors of surface

densities in (5),

Φscat = (φscat, ψscat)T , Φinc = (φinc, ψinc)T (6)

(where T denotes transpose), the system of integral equations

F (r)Φscat(r) + T
[
Φscat

]
(r) = −F (r)Φinc(r)− T

[
Φinc

]
(r), for r ∈ Γ (7)
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results, where, letting

S±[η](r) =

∫

Γ±(r)

G±(r, r′)η(r′)dsr′ , D±[η](r) =

∫

Γ±(r)

∂G±(r, r′)

∂n(r′)
η(r′)dsr′ ,

K±[η](r) =

∫

Γ±(r)

∂G±(r, r′)

∂n(r)
η(r′)dsr′ , N±[η](r) =

∫

Γ±(r)

∂2G±(r, r′)

∂n(r)∂n(r′)
η(r′)dsr′

(r ∈ Γ).

(8)

the operators F and T are given by

F (r) = diag

[
1,

1 + ν(r)

2ν(r)

]
, T =



D− −D+ S+ − (1/ν)S−

N− −N+ K+ − (1/ν)K−


 . (9)

The integral equations (7) are posed on the union Γ of all interfaces. In our waveguide

context the interface set Γ is typically unbounded, but upon use of the rapidly conver-

gent windowing approach introduced in the following subsection, certain windowed integral

equations (11) over a bounded domain are obtained which closely approximate the original

unbounded problem, and which can subsequently be discretized by means of any integral-

equation methodology applicable to bounded domains. The reader may refer to [22, 23]

for background regarding the integral formulation used. More information regarding the

incident waveguide modes and Gaussian beam excitations can be found in the Supporting

Information.

Next, we use the WGF-BIE solver to design new nanophotonic devices via inverse design

based on the adjoint method. An in-depth derivation of the adjoint method for optimization

in the context of integral equations is presented in the “Rapid gradient...” section under

Supporting Information. That section presents the adjoint method as a technique that

proceeds by eliminating expensive-to-compute quantities from the chain-rule expression for

the gradient of the objective function. The necessary equations to effect the elimination

are obtained as linear combinations of known linear equations with coefficients that are

given, precisely, by the solution of a certain adjoint equation. The Supporting Information

derivation is presented in a formal framework which not only applies to the discrete set
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of equations after the integral equations are discretized, but it also applies, in a formal

mathematical setting, to the continuous, undiscretized form of the integral equations. This

is a matter of some interest, as it provides a sound methodology for accelerated evaluation

of the adjoint operators associated with the fast gradient evaluation algorithm, in addition

to the acceleration of the direct solution operators as discussed above.

Termination and Discretization of Infinite and Semi-

Infinite Waveguides: The Windowed Green Function

The system of equations (7) involves integration over the generally unbounded curves Γ+(r)

and Γ−(r) for points r ∈ Γ. As mentioned in the introduction, the PML truncation proce-

dures which are generally used in the context of FDTD and FEM approaches are not directly

amenable for use in conjunction with BIE methods. As shown in [22], on the other hand, an

appropriate application of a slow-rise window such as

w̃A(r) =





1, s < 0

exp

(
− 2

exp (−1/|s|2)
|1− s|2

)
, 0 ≤ s ≤ 1, s(r) =

|r| − αA

A(1− α)

0, s > 1

(10)

to the Green’s function effectively truncates the SIW boundaries and yields superalge-

braically fast convergence. More precisely, the solution Φscat
w of the “windowed” integral

equations

F (r)Φscat
w (r) + T [wAΦ

scat
w ](r) = −F (r)Φinc(r)− T [Φinc](r), for r ∈ Γ̃ (11)

on the bounded curve Γ̃ = Γ ∩ {wA(r) 6= 0} converges superalgebraically fast as A → ∞

(faster than any negative power of A) to the exact solution of equation (7) throughout the

10
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A-dependent set Γ ∩ {wA(r) = 1}.

Calling ξc = Φscat
w and bc(r) = −F (r)Φinc(r)− T [Φinc](r), and letting Kc denote the

operator

Kc[ξc] = F (r)ξc(r) + T [wAξc](r), (12)

equation (11) can be re-expressed in the form

Kc[ξc](r) = bc(r), r ∈ Γ. (13)

that, on the basis of a given discretization method, give rise to the M -point discrete linear

system of equations

Kdξd = bd (14)

where Kd is anM×M complex matrix and xd and bd areM element vectors representing the

discretized unknown boundary densities and the incident excitation respectively. Discrete

versions of the form (14) can be obtained from the corresponding continuous version (13)

by means of a variety of Nyström and Galerkin methodologies. The discrete systems of

equations can be readily solved using either direct or iterative algorithms, and they thus

yield discrete approximations ξd to the exact solution ξc. In this work we use Nyström-type

discretizations of the integral-equation systems; the resulting linear algebra problems are

then solved directly via LU factorization. But, as mentioned in the introduction, significant

further acceleration can be obtained by means of iterative methods further accelerated either

via FFT-based approaches or the Fast Multipole Method (FMM), as discussed in [20]. The

particular Nyström implementations utilized in this paper are based on the method described

in [24].
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Performance comparison with Finite Difference and Fi-

nite Element methods

We compare the convergence of our WGF-BIE solver with that of state-of-the-art commercial

FDTD and FEM solvers, as well as the open-source MaxwellFDFD solver [21], by evaluating

the relative error of each solver with respect to the number (N) of points per wavelength (λ)

used to discretize the domain (Fig. 2 Left) and the time required for solution for a given error

tolerance (Fig. 2 Right). For the FEM solver, we compare performance using both linear

and quadratic elements. We use a straight-waveguide as our test problem with parameters

representative of a typical integrated silicon photonic waveguide (220nm height, ncore = 3.48,

and nclad = 1.44) for which we can compute the exact solution analytically for comparison.

1 10 100 1000

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 -12 10 -9 10 -6 10 -3 10 0
10 0

10 1

10 2

10 3

10 4

10 5

Figure 2: Left: Convergence of the WGF-BIE solver, commercial FDTD and FEM solvers,
and open-source MaxwellFDFD solver against analytical solution vs. number of points per
wavelength. Dashed lines represent first, second, and third-order convergence for reference.
The WGF-BIE solver exhibits spectral accuracy, whereas the FDTD and FDFD solvers fail
to achieve even second order convergence. Only the FEM solver with quadratic elements
achieves third order convergence; however, this is a very expensive resource in terms of
memory and CPU time. Right: Comparison of relative error vs time required for the WGF-
BIE solver and the FDTD, FEM, and FDFD solvers. The higher order WGF-BIE accuracy
demonstrated in this figure is especially beneficial in countering the accuracy losses inherent
in the evaluation of the gradient of the objective function in the optimization context.

As can be seen in Fig. 2, the WGF-BIE solver exhibits spectral convergence with respect
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to the mesh resolution, whereas almost all of the other methods only approach second order

convergence. The FEM with quadratic elements, in contrast, does achieve third order conver-

gence, but it does so at very significant expense in terms memory and computing time—e.g.,

the quad-FEM data point with error 1.2 · 10−4 required over 100 GB of memory and eight

hours of computing time, whereas, for comparison, an error of 5.8 · 10−5 resulted from the

proposed solver in just 28 seconds of computing time and under 200 MB of memory. All the

other methods resulted in significantly larger errors, even for large numbers of points per

wavelength and long computing times. At only eleven points per wavelength, the WGF-BIE

solver reached near machine precision, achieving an error better than 1 · 1−12. In sum, the

proposed approach offers clear advantages in terms of memory, computing time requirements

and accuracy over previous solvers frequently used in nanophotonics and other applications.

5 10 15
10 -10

10 -9

[...]

10 -3

10 -2

10 -1

10 0

Figure 3: Comparison of relative error with respect to propagation distance away from the
incident mode excitation point. Note the increasing dispersion errors that result from use of
the finite-difference and finite-element solvers under consideration. The proposed WGF-BIE
solver, in contrast, is dispersion free.

In addition to slow convergence, the finite difference and finite element methods suffer

from significant numerical dispersion, which results as accmulation of inaccuracies stemming

from the local discrete differentiation methods. Numerical dispersion makes accurate mod-

eling of photonic devices challenging since the devices usually span many wavelengths in

size, incurring significant amounts of error per wavelength of propagation. On the other
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hand, the proposed WGF-BIE solver, which does not involve differentiation, is free from

numerical dispersion across arbitrary propagation distances. To demonstrate this, Fig. 3

plots the relative error along the same straight waveguide problem considered in Fig. 2 vs

increasing distance from the source mode excitation. As can be seen, the error increases

monotonically with respect to distance for the previous solvers, as is expected, whereas it

remains essentially unchanged at below 1 · 10−9 at all distances for the WGF-BIE solver. It

is also important to note that the WGF-BIE results presented in Fig. 3 were achieved with

a rather coarse resolution of ten points per wavelength, whereas much finer discretizations

were used for the other methods.

In the following subsections, we present three different devices designed using our frame-

work: a waveguide mode converting taper, an ultra-compact 1550nm power splitter, and a

vertical incidence grating coupler. All of the solutions presented in the following sections

were obtained on a single core of a 2018 Macbook Pro laptop 2.9 GHz Intel Core i9 with

32GB of RAM, although in most cases less than 100MB of RAM was needed to simulate

each device.

Non-adiabatic Waveguide Taper

Typically, waveguide tapers are transitioned adiabatically over a long propagation distance [25]

to ensure high efficiency and single mode preservation. Unfortunately, this results in ta-

pers which are very physically large, often spanning hundreds of wavelengths in size. By

parametrizing the transition boundaries with a set of B-splines, we can use the adjoint op-

timization approach to design a much shorter (18µm) non-adiabatic taper with near-unity

efficiency. Fig. 4a and 4b show the magnitude and real part of the out-of-plane Ey component

respectively of the initial taper design before optimization. An effective-index approximation

[5, 26] (neff
Si = 2.8) was used in order to model a 3D device using 2D simulations and the

taper structure is surrounded in oxide (nox = 1.44). The taper input and output waveguide
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widths are 500nm and 9µm respectively.

Figure 4: (a) Absolute value of Ey field component of initial taper. (b) Real part of Ey of
initial taper. (c) Absolute value of Ey of final optimized taper device. (d) Real part of Ey

of final optimized taper device. The initial design achieved only 49% efficiency, whereas the
final, optimized design exceeds 99% efficiency.

A TE-mode excitation is used to launch the fundamental symmetric mode on the 500nm

wide input guide and the objective function to be optimized is simply the power in funda-

mental mode of the output guide computed via a mode overlap integral. We could have

easily introduced radius of curvature constraints on the boundary, as in [9], however, they

were not required due to the choice of boundary representation. Advantages of using a B-

spline boundary representation include that considerable complexity can be modeled using

only a small set of control parameters, reducing the optimization difficulty, and furthermore

adjacent curves and their derivatives are continuous, leading to a smoothly varying structure

regardless of the choice of parameters. Each B-spline curve shares three of its control points

with neighboring curves, which ensures continuity from one curve to the next, as well as of

the derivatives along the whole boundary. Thus, the transition region to be optimized is

represented by 13 B-Spline curves which are described by 14 control knots. These control
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knots are the unknowns to be optimized. Each knot consists of two parameters to describe

its z and x coordinate and therefore the total number of optimization parameters is 28. The

top and botom boundaries of the taper are mirrors of each other since the device is expected

to be symmetric about the z − axis.

We used the adjoint method, described in the supporting information section, coupled

with the BIE solver to obtain the gradient of the objective function at each iteration and

used simple gradient descent with adaptive step size to apply gradient-based updates to

the design. The starting efficiency of the design was 49% and the algorithm was able to

achieve a design with over 99% efficiency in just 10 iterations. Due to the efficiency of the

methods used for modeling and gradient computation, the whole optimization procedure

took 10 minutes on a single core laptop computer and used only 150MB of memory. This is

over 200x faster than a similar device optimized in [9], which required 35 core-hrs (2.5 hrs on

a 14 core server with 128GB of RAM), highlighting the major computational improvements

provided by the present work. Fig. 4c and 4d show the magnitude and real part of Ey

respectively of the final optimized taper designs. As can be seen, the resulting structure

exhibits smooth curvature, making it readily amenable for lithographic fabrication.

1550nm 1:2 Power Splitter

In order to demonstrate that our design approach can readily generalize to any number of

waveguide inputs and outputs, we demonstrate a 1-to-2 power splitter optimized to split

incoming light at 1.55µm equally into two outputs. Note that due to reciprocity, this device

could also be used in reverse as a power combiner. Compact power splitting devices are

important building blocks of almost every nanophotonic system and are especially crucial

for phased arrays [27]. Unlike the Y-splitters optimized in [5, 26] whose outputs are oriented

at ±45◦ angles, we design the splitter outputs with the same orientation as the input (0◦)

which allows for more compact routing and easier integration with other blocks. Fig. 5a and
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5b show the magnitude and real part of the Ey fields of the initial splitter structure before

optimization. As with the taper, B-splines were used to parametrize the boundaries. Due

to symmetry about the z-axis, only the top boundary and top half of the divider boundary

were parametrized with unique unknowns and the remaining curves were mirrored from

these. The top boundary is parametrized with 11 B-splines which corresponds to 14 control

knots. The divider boundary between the two outputs is parametrized with 8 B-Splines which

corresponds to 11 control knots. Since the bottom half of the divider boundary must mirror

the top half, only 6 of these 11 knots are unique and the rest are mirrored about the z-axis.

All of the control knots for the bottom side boundary of the splitter are mirrored from the

top boundary about the z-axis. Thus, the full splitter device is parametrized with 20 control

knots and since each knot has two independent (x and z) coordinates, this corresponds to

40 optimization parameters. Since the enforced symmetry of the device ensures equal power

flow through the two outputs, it suffices to only optimize the power going through one of

them in the objective function. The objective function used in this scenario is therefore given

by

f(p) =
(
P top
out (p)− 0.5

)2
(15)

Unconstrained gradient descent is used for the local search algorithm and the gradients

are obtained via the efficient adjoint approach described in this work. The optimization

algorithm converges to a solution which is 99.6% efficient (49.8% of the input power makes

it to each output) after a total of 100 iterations. The whole optimization takes less than 2

minutes to run on a single core laptop computer. As with the taper design, this is orders

of magnitude faster than any previously reported work, highlighting the efficiency of the

WGF-BIE approach for modeling nanophotonic problems.

Fig. 5c and 5d show the magnitude and real part of Ey of the final splitter design. Like

the taper, due to the spline parametrization and boundary optimization approach used, the

final design maintains smooth features and does not suffer from sharp corners or difficult to

fabricate holes or islands.
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Figure 5: (a) Absolute value of Ey field component of initial splitter. (b) Real part of Ey

of initial splitter. (c) Absolute value of Ey of final optimized 1550nm 50:50 power splitter
device. (d) Real part of Ey of final optimized splitter device. The initial design achieved less
than 30% efficiency, whereas the final, optimized design exceeds 99.6% efficiency.

Perfectly Vertical Incidence Grating Coupler

Finally, we demonstrate the design of a grating coupler structure using the present frame-

work. Grating couplers are usually designed to couple into an external optical fiber at an

angle θ = 8-10 degrees with respect to the normal in order to provide directionality and

avoid back reflections from the coupler and buried oxide structure. Efficient vertical inci-

dence (θ = 0) grating couplers are considerably more challenging to design for these reasons.

On the other hand, such perfectly vertical grating couplers can be very useful for easier pack-

aging and fiber bonding and may be necessary for coupling light from other devices such as

VCSELs or other stacked wafers [28]. Thus, designing an efficient vertical incidence grating

coupler is a challenging, yet important engineering problem. With reference to Fig. 1b, a

typical SOI stackup is used with a 3µm top oxide layer (Ω2), 220nm silicon device layer

(Ω3), and a 2µm buried oxide layer (Ω4) on top of a silicon substrate (Ω5). The grating
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was optimized to couple efficiently 1550nm light emanating from a standard single-mode

optical fiber with effective mode width of 10µm. The incident fiber excitation is modeled as

a Gaussian beam source in free-space located 1µm above the top boundary of the passivation

layer and centered over the grating. The grating design width was allowed to vary up to

a maximum of 14.65µm. The locations and widths of 19 ”teeth” within the design region

were optimized to couple light efficiently into the waveguide extending towards the right.

In order to keep the parametrization simple while allowing representation of any arbitrary

grating within the permitted design region, we set as optimization parameters the widths of

each etched ”tooth” as well as the widths of the segments in between teeth. The width of

the segment before the first tooth is also included as an optimization parameter to allow for

translation of the complete grating for automatic alignment with the incident beam during

the optimization process. Thus, using a total of 19 · 2+1 = 39 optimization parameters, the

design under consideration requires solution of a 39-dimensional optimization problem. The

etch depth of each grating tooth is kept fixed in this design at 130nm. The limited-memory

quasi-Newton BFGS algorithm with simple box constraints (L-BFGS-B [29]) was used to

optimize the design under the given parametrization. The box constraints were used to limit

the minimum size and spacing of the grating teeth.

In order to show that design constraints specific to the fabrication process being used

can be easily incorporated in the proposed framework, two different grating couplers were

designed: one with minimum width and spacing of 50nm, fabricable via E-beam lithography,

and another one with minimum width and spacing of 160nm, compatible with a standard

UV lithography silicon photonics foundry process [30]. The 50nm version (shown in Fig. 6)

achieves a 61.2%(−2.1dB) coupling efficiency from fiber to on-chip waveguide, and the 160nm

version achieves a comparable efficiency of 56%(−2.5dB). To the best of our knowledge, this

is the best efficiency reported for a perfectly vertical grating coupler on a standard silicon

photonics SOI substrate which meets the design rule constraints of a standard foundry

process.
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Figure 6: (a) Absolute value of Ey field component of optimized vertical-coupling grating
coupler. (b) Real part of Ey of optimized vertical-coupling grating coupler. The final, opti-
mized design exceeds 61.2% coupling efficiency at 1550nm from an optical fiber with 10µm
effective mode width at perfect vertical coupling incidence. To the best of our knowledge,
this exceeds any previously published result for the proposed foundry-compatible SOI layer
arrangement.

The grating coupler designs presented here required 69 single-core minutes. As a com-

parison, computationally similar grating-coupler designs were presented in [14], containing

a number m of modes (which include the TE and TM modes as well as the number of fre-

quencies use), each one of which requires a separate solution at each optimization step. The

methodology introduced in that contribution requires design times of the order of 2m hours

on a 6-core computer, for a total of 12 core hours per design for single-mode device (m = 1)

like ours.

Discussion and Conclusion

This paper introduced a new methodology for the description, simulation, and optimization

of waveguide-based nanophotonic devices. We have demonstrated the use of integral equation

techniques in the context of modeling and optimization of waveguide-based nanophotonic

devices for the first time by utilizing the Windowed Green Function to implement absorbing

boundary conditions. Our WGF-BIE solver implementation is not only several orders of

magnitude faster than traditional finite difference based methods, but it also demonstrates

spectral convergence with respect to the discretization size and does not suffer from numerical

dispersion. This allows for the accurate and efficient simulation and optimization of large

devices spanning many wavelengths, such as tapers, splitters, and grating couplers. As
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examples of the capabilities of our new framework, we demonstrated the optimization of

a 1550nm power splitting device, a mode maintaining taper device, and a grating coupler

wavelength demultiplexer. All three devices, due to the nature of the boundary optimization,

are significantly simpler structures than previous work, while exhibiting improved or similar

performance at a very small fraction of the computational effort. Current work seeks to

extend the approach to fully-vectorial 3D nanophotonic device simulation and optimization.

Supporting Information Available

Incident excitations, full derivation of the integral-equation adjoint method for inverse design,

high-accuracy and efficient numerical implementation details
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Synopsis
The left figure depicts the structure, as well as absolute value of the electric field, for a

1550nm 50:50 power splitter device designed by means of the WGF-BIE solver and adjoint

optimization framework. The device achieves an efficiency exceeding 99.6%. The figure on

the right compares the amount of time required to reach a desired accuracy on a single core

laptop computer for four different simulation approaches: the proposed WGF-BIE solver, a

commercial FDTD solver, a commercial FEM solver with both linear and quadratic basis

elements, and an open-source FDFD solver (MaxwellFDFD).

The efficiency of the proposed methods effectively leads to orders of magnitude reduction

in energy requirements for the design process, and therefore the paper is aligned with the

general goals of the field of sustainable computing. As a contribution to the inverse design

field in general, on the other hand, the algorithms resulting from this work could be utilized

as part in the design of efficient switching and computing elements for advancing the field of

optical computing, as well as solar absorption or focusing devices, both of which are areas

with a significant impact on sustainability.
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