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Abstract: We present an ultrafast thin-disk based multipass amplifier operating at a wavelength

of 1030 nm, designed for atmospheric research in the framework of the Laser Lightning Rod

project. The CPA system delivers a pulse energy of 720 mJ and a pulse duration of 920 fs at

a repetition rate of 1 kHz. The 240 mJ seed pulses generated by a regenerative amplifier are

amplified to the final energy in a multipass amplifier via four industrial thin-disk laser heads. The

beam quality factor remains ∼ 2.1 at the output. First results on horizontal long-range filament

generation are presented.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

During the past two decades, atmospheric research has been propelled by studies on laser

filamentation, enabled by high energy ultrafast laser technology. The advent of CPA-based Ti:Sa

laser technology allowed to investigate the dynamics of the self-channeling process [1] prompted

by terawatt peak powers within femtosecond pulse durations. The ability to remotely deliver

high intensities by laser filaments has unlocked new potential in atmospheric applications such as

laser-induced water condensation [2–4], remote pollution monitoring [5–7], free-space optical

communication through fog [8–10], and the laser-based lightning rod [11–15]. For the latter, the

increased electrical conductivity associated with the path of the laser pulses during filamentation

can trigger and guide high-voltage (HV) electric discharges (i.e., the lightning). Thus the natural

sparking which typically occurs along an erratic path can be controlled and overridden [11,16].

The Laser Lightning Rod (LLR) project [17–19] addresses lightning protection with a

specifically designed laser source. The completion of the permanent conductive channel from

ground to clouds requires ultrashort pulses with terawatt peak powers at kHz repetition rates.

Although the lifetime of the free carriers in the plasma generated by the laser filaments is only

short-lived on the order of <1 µs, a channel of heated and under-dense air with reduced resistivity

can be initiated and sustained over several milliseconds by the large lineic energy deposited in the

filaments [19–21]. It was shown that there is a cumulative effect when increasing the repetition

rate towards the inverse channel lifetime, sustaining a permanent conductive channel, that can

significantly reduce the breakdown voltage in air [10,22].
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The laser source for the LLR project must therefore operate at a kilohertz repetition rate

and provide ultrashort pulses with sufficient pulse energy to reach terawatt-class peak powers.

Ti:Sa-based lasers can today provide hundreds of mJ of pulse energy at pulse durations below

100 fs (e.g., ENSTA TT Mobile, Amplitude technologies). However, their average powers are

currently limited to a few tens of watts. In contrast, kilowatt average power levels are routinely

achieved with Yb-based diode-pumped ultrafast laser systems. Their architecture can be based on

slab [23,24], fiber [25,26] or thin-disk geometries [27]. Pulse energy scaling has been particularly

successful in thin-disk based regenerative amplifiers. Recently, pulse energies above 200 mJ

[28,29] with multi-kilowatt average powers [30] and pulse durations as short as <500 fs [31,32]

have been demonstrated. These achievements bring the possibility of laser driven lightning

protection, as in the LLR project, closer than ever. In addition, such laser systems deliver

near-diffraction-limited beam quality, unravelling new insights in high-intensity physics and

dazzling new applications. The generation of secondary (e.g., x-ray) radiation [33,34], particle

acceleration [35,36], or the pumping of OPCPAs [37,38] have an avid demand for higher energies.

Currently, however, the pulse energy obtained from such platforms has stagnated at the 200 mJ

level.

Thin-disk based multipass amplifiers provide a simple and flexible platform to further increase

pulse energies. By circumventing a closed optical resonator, and hence making an optical switch

redundant, this platform enables unmatched pulse energies at high repetition rates. Multi-kilowatt

output powers have been demonstrated with CPA-free multipass amplifiers, applied for materials

processing [39,40]. Pulse energies above 1 Joule have been attained in a CPA multipass scheme

at a repetition rate of 100 Hz [41]. The combination of Joule-class pulse energies with kW-class

average powers has recently been demonstrated with a multipass amplifier using cryogenically

cooled laser crystals. Here, pulse energies up to 1.5 J were extracted at 500 to 1000 Hz [42].

However, due to the strongly narrowed emission cross section at cryogenic temperatures, pulse

durations of such cryogenic systems are typically limited to durations of ∼4 ps [43].

Here, we present a Joule-class ultrafast thin-disk based multipass amplifier, developed as a

transportable laser source for experimental campaigns within the framework of the LLR project.

The 1-kHz CPA system produces up to 720-mJ pulses with a sub-picosecond pulse duration.

The amplifier is operating at room temperature and under atmospheric pressure, simplifying the

setup and auxiliary equipment. This allows for low maintenance operation at remote sites such

as the Säntis station in Switzerland. The Joule-class pulse energy combined with an average

power approaching the kilowatt range are unprecedented for such sub-picosecond laser systems

operated at room-temperature. With these parameters, the laser system will be able to generate

continuous, extended conductive channels, intended to eventually trigger atmospheric lightning

discharges. First experiments of horizontal filament generation performed in the laboratory are

promising for future extensive studies on the laser-based lightning rod [44].

2. Experimental setup

2.1. Overview of the laser system

The layout of the high-energy CPA laser amplifier is shown in Fig. 1. The system includes two

main amplifier stages, namely, a regenerative amplifier followed by a high-energy multipass

amplifier, both of which are based on the TRUMPF thin-disk technology. The whole system

operates at room temperature and under atmospheric pressure, without any need for vacuum

pumps or liquid gas supply (as required for cryogenically cooled laser systems). The overall

dimensions including the compressor are 8.20 m in length and 1.40 m in width. The whole

laser system is divided into five modules which are mounted onto a rigid aluminum frame

structure. Castor wheels are attached to the frames, enabling mobility and transportability of the

laser system. Centering pins allow for a precisely aligned reassembly of the laser modules at

experimental sites after transport.
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Fig. 1. Schematic flow-chart of the complete laser system. The seed pulses are stretched

using a CFBG and amplified to 240 mJ in the regenerative amplifier. Further amplification

takes place in the multipass stage 1 to 550 mJ and in the multipass stage 2 to 800 mJ. After

compression, a pulse energy of 720 mJ and a pulse duration of <1 ps are obtained.

2.2. Seed laser

The seed laser is a commercial ultrafast laser typically used for micromachining (TruMicro 2000).

It delivers typically femtosecond pulses centered around 1030 nm with an energy up to 100 µJ at

a pulse-picked repetition rate of 1 kHz. The seed laser is fiber based and exhibits an excellent

beam quality of typically M2
= 1.15 [45]. For our purposes, the laser is equipped with a chirped

fiber Bragg grating (CFBG) that temporally stretches the pulses to a duration of ∼1 ns while the

pulse compressor was removed for the following amplification.

2.3. Regenerative amplifier

The regenerative amplifier is based on the Dira 200-1 series, first presented by TRUMPF Scientific

Lasers GmbH & Co. KG in 2015 [28]. It includes an industrial thin-disk laser head that is

pumped by 940-nm laser diodes with up to 1 kW average pump power. A BBO-based Pockels

cell combined with a thin-film polarizer (TFP) are used to couple in and out the pulses. The

resonator of the regenerative amplifier is arranged in a ring configuration and designed for

fundamental-mode operation. Within multiple resonator roundtrips, the pulse energy is amplified

up to 240 mJ, while maintaining a near-diffraction limited beam quality with M2
< 1.2. A

monolithic, ruggedized housing provides excellent long-term stability, which is further improved

by an active intracavity beam pointing stabilization, compensating for thermal drifts and reducing

the warmup time to a few minutes. The output energy is actively stabilized via the pump power

using feedback from an internal photodiode, allowing for a long-term stable operation. The shot

to shot pulse energy stability is <0.25% (rms). The laser is fully automated by a ramp-up and

alignment sequence, providing a turn-key high-energy ultrafast amplifier system.

2.4. Multipass amplifier

The multipass amplifier comprises four industrial thin-disk laser heads. Each laser head can be

pumped with up to 10 kW of pump power at a wavelength of 940 nm. To minimize the thermal

load on the disks, the disks are pumped in a quasi-continuous-wave regime with a duty cycle

of 25% at the pulse repetition rate of 1 kHz. The heat load in the thin-disks causes a slight

change of their refractive powers, inducing an additional small thermal lens. Several concepts

have been investigated to ensure a stable propagation of the laser beam along the multipass

amplifiers despite a variation of the thermal lens when operating at different pump powers. In

4-f -configurations, the plane of the thin-disk is continuously relay-imaged for each pass. This is

advantageous to maintain a stable mode diameter on the thin-disk [46]. However, for intense laser

pulses, the resulting foci in between the disk passes require operation in vacuum to prevent optical

breakdown due to air ionization. Stable propagation can also be achieved with a concatenation of
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resonator-like segments, however, at the cost of either small beam diameters at certain points

along the propagation, or very long propagation distances [47,48]. Other approaches allow

near-collimated propagation by balancing the beam divergence with a periodic focusing, which is

provided by a well-chosen dioptric power of the thin-disk itself [39,49].

For our high-energy multipass amplifier, we designed a near-collimated propagation by means

of refractive optics optimized for the thermal lens at the operation point. Due to the small

divergence of the near-fundamental mode and large-diameter seed beam, the propagation is

therefore stable only for small variations of the thermal lens. The amplifier requires accordingly

a narrow pump power interval, which is experimentally determined to optimally balance the

performance with respect to gain and beam quality. This approach allows to guide the seed beam

over the thin-disks multiple times, each time with adjustable beam diameter using appropriate

mirrors, depending on the evolved beam size and divergence. The complete multipass amplifier

is arranged in two stages, as highlighted in Fig. 2(c). In the first stage, the pulses are amplified

from 240 mJ to 550 mJ using 7 passes distributed on the two laser heads. In the second stage,

the pulse energy is increased to 800 mJ via four additional disk reflections distributed on the

laser heads 3 and 4. Curved mirrors can be placed conveniently between the two disks of each

stage, eliminating transfer mirrors and reducing the overall propagation distance. Each disk is

pumped with an average power of 2.3 kW. The super-Gaussian shaped pump spot has a diameter

of approximately 12 mm. The cumulated total average pump power is >9 kW for the four

amplifier heads, which is efficiently absorbed in the water-cooled disks, even without optical

energy extraction. Stray pump light and fluorescence from the disk are mainly blocked by the

pump head. The remaining portion of light exiting the pump head is dissipated by water-cooled

structures, thereby strongly reducing thermal drifts of the mirror assembly in front of the disks.

To further reduce and compensate for the residual thermal drift during operation, piezo-controlled

mirrors are used to actively stabilize the beam pointing inside the multipass amplifier. Concepts

to overcome thermal effects such as non-absorbing monolithic all-glass reflection arrays [39]

were disregarded in this laser system but may be implemented for future systems.

regenerative amplifier

BBO
PCrotator

multipass amplifier

pump diodes

pump diodes
pump diodes

isolator

HWP

TFP HWP

TFP

thin-disk
head

thin-disk
heads

gr
at

in
g

grating

be
am

 d
um

p

compressor

H
W

P
TF

P

(b) (c) (d)

oscillator

(a)

seed laser, 
stretcher,
picker & 
preamp

pre-
amplifier

CFBG

pulse
picker

Fig. 2. Detailed sketch of the complete laser system. The seed pulses from the oscillator

are stretched with a CFBG and first amplified by the regenerative amplifier, employing an

industrial thin-disk laser head. The multipass contains 2 amplification stages, as indicated

by the green (stage 1) and red (stage 2) areas. In each stage two industrial thin disk laser

heads are employed. The grating compressor is set up in a folded Treacy-type near-Littrow

configuration. TFP: Thin-film polarizer. HWP: Half-wave plate. BBO PC: BBO-based

Pockels cell.

2.5. Grating compressor

The output pulses are compressed by a pair of multilayer dielectric (MLD) reflection gratings,

arranged in a Treacy-type configuration under a near-Littrow angle of incidence [50]. The

mechanical mounts for the large-size optics enable fine adjustment for tip, tilt, and in-plane
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rotation [51] of the gratings for optimal alignment of the compressor. A total bandwidth of

5.0 nm is supported by the compressor configuration. The diffraction efficiency of each of the

gratings is about 97%, leading to an overall compressor efficiency of ∼90%. At the full output

power of the multipass amplifier (800 W uncompressed), 720 W average power were measured

after compression, corresponding to a pulse energy of 720 mJ.

3. Results at high-power operation

In Fig. 3, the amplification slopes for the two stages of the multipass amplifier at high-energy

operation are shown. The pump power is maintained constant while ramping up the seed pulse

energy to 240 mJ, resulting in an amplified pulse energy of 550 mJ after stage 1 and 800 mJ after

stage 2. From the measured curves, the tangential gain G(Eseed) at different seed pulse energies

Eseed can be calculated according to

G(Eseed) =
∆Eout

∆Eseed

, (1)

with Eout being the output pulse energy, which is shown with the dashed lines in Fig. 3. Here, the

energy increments ∆E = En − En−1 are calculated from two consecutive data points n and (n− 1).

The tangential gain therefore defines the gain that an additional incremental multipass input pulse

energy would experience. Hence, G = 1 implies a complete energy depletion, i.e. no further

gain is to be expected despite an increase of seed energy.
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Fig. 3. Amplification characteristics of the multipass amplifier. (a) Output pulse energy of

the two stages as a function of the seed pulse energy (solid lines, left-hand y-axis). The pump

power is maintained at the operation point while ramping up the energy. The tangential gain

is included as derived from the measurement (dashed lines, right-hand y-axis). (b) Beam

profile of the collimated output after stage 1. (c) Beam profile of the collimated output after

stage 2.

In consequence for the presented laser amplifier, it is important to note that it still has potential

to generate pulse energies significantly higher than demonstrated in this paper. This can be

inferred from the tangential gain at full seed energy G(240 mJ) approaching a value of >2.3. As

a result, both stages are still operated in a regime far from reaching the saturation fluence, i.e.

a significant amount of stored energy is still available in the laser disks. At the demonstrated

point of operation with an output pulse energy of 800 mJ, an increase in seed pulse energy will

still be amplified with a gain of >2.3. The multipass could hence allow for even higher energies,

enabled by a higher-energy seed source or further carefully implemented amplification passes

while maintaining a good beam quality.

Typical near-field beam profiles of the collimated output beams of stages 1 and 2 can be

seen in Fig. 3(b) and 3(c). Measurements to characterize the M2 beam quality parameter of the
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output pulses. A spectral FWHM bandwidth of 1.7 nm is obtained at a center wavelength
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uncompressed and compressed pulses were performed according to the ISO standard 11146,

using a home-built linear stage in combination with a CCD camera, and applying the second

moment method to determine the beam diameter in the major and minor axis [52]. Figure 4

shows the results of the M2 measurements. For each measurement, the corresponding far-field

beam profiles are presented as an inset. Before the compressor, we evaluated the average M2

parameter to be 1.6 (1.54/1.71 for the major/minor axis) at a pulse energy of 800 mJ. After

compression, i.e. at 720 mJ, this value increases to 2.1 (1.89/2.32 for the major/minor axis). The

far-field beam profiles resemble smooth near-Gaussian modes in both cases. We attribute the
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(a) Diagram of the output pulse energy over time, measured with a calibrated photodiode. (b)

Fast-time measurement of the pulse energy stability using 10,000 consecutive laser pulses

measured by a calibrated photodiode.
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degradation of the beam quality after compression primarily to the imperfect surface quality of

the large-sized optics, as it was observed also at low compressed output power.

The pulse duration of the high-power compressor output was measured with an SHG au-

tocorrelator. The measurement resulting in a pulse duration of τpulse = 920 fs is plotted in

Fig. 5(a). To obtain the deconvolution factor (1.44), the Fourier transform limited pulse shape as

well as its autocorrelation function were calculated from the pulse spectrum. The peak power

resulting from the measured pulse duration and pulse energy Eout = 720 mJ can be estimated via

Ppeak = 0.88 ·Eout/τpulse = 689 GW, assuming a sech2-pulse shape. The spectrum was measured

using a commercial grating spectrometer and is shown in Fig. 5(b). The corresponding spectral

bandwidth is 1.7 nm (FWHM), which is mainly limited by gain narrowing during the overall

amplification of the low-energy seed oscillator pulses by 45 dB. The generation of even shorter

pulses, without significant modifications of the presented laser system, would be possible by

pre-shaping the seed pulses spectrally, thus counteracting gain narrowing [53].

The long-term stability of the multipass amplifier was recorded over a time period of 3 hours, as

shown in Fig. 6. The output energy was measured using a calibrated photodiode. The shot-to-shot

pulse energy stability was measured over 10,000 consecutive shots [Fig. 6(b)], exhibiting a

pulse-to-pulse energy stability of 0.76% (rms) and a near-Gaussian distribution.

 

Fig. 7. White light from the filamentation of the collimated, compressed output beam at 720

mJ pulse energy. The emission scattered in forward direction is captured by the camera. The

filament length was estimated to exceed 70 m, indicated by the darkening of photographic

paper. The inset shows the white-light generated by the filament, visualized on the target

(beam dump).

4. Generation of laser filaments

To test the generation of long-range filaments, the laser was installed inside the hall of an old

linear accelerator (Laboratoire de l’Accélérateur Linéaire (LAL), Université Paris-Sud, France),

providing up to ∼200 m of straight distance for beam propagation. In a first experiment, the

collimated output beam was directed to a beam dump at a distance of 130 m. By the darkening

of photographic paper, filamentary structures could be detected over a range of >70 m. The

scattered light from the laser beam in forward direction is visible in the photograph in Fig. 7.

White light generated during the filamentation is emitted in the typical cone shape and could

be observed on the concrete wall serving as a beam dump, as shown in the inset of Fig. 7. The
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results are promising for future experiments planned in preparation for the field campaign of the

LLR project. By employing a sending telescope, longer and remotely generated filaments will be

enabled, ultimately used for the control of atmospheric lightning.

5. Summary and outlook

In summary, we have developed a Joule-class and kilowatt-level thin disk based sub-picosecond

multipass amplifier system operating at room temperature and atmospheric pressure. The CPA

laser system was developed for the Laser Lightning Rod project, aiming at the laser-based control

and triggering of atmospheric lightning events via remote and long-range laser filamentation

[18]. The system is currently providing long-term stable 720 mJ of pulse energy at a pulse

duration of 920 fs at 1 kHz repetition rate, leading to a peak power of 689 GW. A beam quality

of M2
= 2.1 was measured at full output power. Further scaling of the pulse energy could be

obtained by a higher energy extraction efficiency, via an increased seed energy or by adding more

disk passes. Additionally, shorter pulse durations should be feasible by spectrally pre-shaping the

seed oscillator pulses to pre-compensate for gain narrowing during amplification. Compensation

of residual astigmatism would improve the output beam quality. With the developed laser source,

first experiments were conducted to generate long-range filaments. A filament with a length

exceeding 70 m could be achieved. Further experiments within the Laser Lightning Rod project

will aim at increasing the filament length and the filamentation distance using a magnifying

telescope.
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