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Key insights into the behaviour of materials can be gained by observing their structure dur-

ing phase transitions or when they undergo lattice distortion. Laser pulses on the femtosec-

ond time scale can be used to induce disorder in a “pump-probe” experiment with the sub-

sequent transients being probed stroboscopically using femtosecond pulses of visible light 1,

X-rays 2 or electrons 3. Using these techniques, many fundamental phenomena have been
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observed, such as non-thermal melting in semiconductors 4, thermal melting in metals 5 and

bond softening 6. However, until now, it has been impossible to resolve these phenomena

fully in three dimensions, on nanometre length scales and femotsecond time scales. Here we

capitalise on recent developments in X-ray free electron sources 7, which extended the ca-

pabilities of ultra-fast X-ray diffraction by providing even brighter and shorter pulses with

the added property that the X-rays are highly coherent. This has already allowed coherent

diffraction imaging 8 of single particle structures 9 and weakly scattering biological samples

10. Here we report three dimensional imaging of the generation and subsequent evolution

of coherent acoustic phonons on the picosecond time scale within a single gold nanocrystal

using an X-ray free electron laser, providing valuable insights into the fundamental physics

of this phenomenon. In the broader context this work will find immediate applications in

the imaging of phonons in semiconductors as well as samples undergoing phase transitions11,

providing access to structure with unprecedented temporal and spatial resolution.

Coherent lattice vibrations (phonons) in solids play an important role in many phenomena

such as melting 2, 5, 12, 13, phase transitions 11 as well as ferroelectric materials 14. Ultrashort (fem-

tosecond) laser pulses have been used to reveal great detail about the dynamics of these phenomena,

however, many of these studies have been confined to bulk samples or ensembles of nanoparticles.

With nanoparticles playing an increasingly important role in technology, from catalysis 15 and

photonic devices 16 to single particle mass spectrometry 17 and sensing, understanding their me-

chanical and dynamical properties becomes very important as many of the processes occur over

femtosecond (fs) and picosecond (ps) timescales.
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Characterisation of lattice displacements in individual nanoparticles over very short time scales

with atomic sensitivity has so far been elusive. The interrogation of individual particles is im-

portant, as sample heterogeneity can give the effect of significantly shorter-lived dynamics than

actually exist 18, 19 and may hide the presence of high order phonon modes or anharmonicity. Opti-

cal pump-probe experiments have shown promising results , particularly for single particles 20 over

very short time scales, however due to the long wavelength of the probe, atomic scale motions can-

not be measured without relying on interpretations from continuum elasticity theory. Pump-probe

experiments on nanoparticles using electrons or X-rays overcomes this problem by probing the

atomic scale motions directly 3, 21. The low scattering cross-sections of X-rays and (relatively) low

number of photons in the ultra-short X-ray pulses from plasma sources (required for the short pulse

duration) limits the ability to study individual nanoparticles. Likewise for electrons, the number of

electrons per ultrashort pulse has meant probing individual nanoparticles has been difficult. The

increased flux of synchrotron sources in comparison to plasma sources provides sufficient X-ray

photons to probe individual nanoparticles but at the expense of time resolution. Probing of indi-

vidual particles also allows in-depth studies of the mechanical response of particles with defects or

very specific structure. This is particularly important for investigations of surface melting where

the presence of occlusions or defects could act as nucleation points for the melting with the possi-

ble formation of core-shell structures22. Additionally, the role of defects and surface morphology

on bond-softening in individual particles 22 could be investigated. These applications, among many

others, provide strong motivation for us to develop ultrafast pump-probe X-ray diffraction methods
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on individual nanocrystals using X-ray free electron lasers (XFELs). The data obtained, using this

approach can elucidate the elastic response of the atomic lattice to laser irradiation while simulta-

neously obtaining high-resolution real-space images of the deformation field inside the nanocrystal

using Bragg coherent diffraction imaging (BCDI) 23.

BCDI is sensitive to very small variations in strain within nano-crystals since it recovers the pro-

jected distortion of the electron density with pico-meter (pm) sensitivity. The recovered image

comprises the amplitude, which is related to the electron density, and the phase, φ(r), which is

related to the (vector) displacement field u(r) of the atoms from the ideal lattice points and the

scattering vector, Q via φ(r) = u(r) ·Q (see Supplementary Information). Images obtained from

non-coplanar Bragg peaks can be combined to recover the full displacement field 24.

Figure 1 shows a schematic of the experimental arrangement for ultrafast BCDI, which was per-

formed at the X-ray pump probe (XPP) end station at the Linac Coherent Light Source (LCLS).

Gold nanocrystals, approximately 300-400 nm in diameter (see Methods Summary) were placed

at the center of a diffractometer. A Ti-Sapphire laser of wavelength 800 nm and pulse length of

50 fs (full-duration at half-maximum, FDHM) was used to generate coherent acoustic phonons in

the gold nanocrystals. The incident fluence used in the experiment was 1 µJ/cm2. The sample was

illuminated with monochromatic 1.347 Å (9.2 keV) X-rays generated by the LCLS operating at

a repetition rate of 120 Hz with each pulse being approximately 80 fs long (FDHM). Beryllium

lenses were used to focus the illumination onto the sample to an approximately 30 × 30 µm2
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spot. Multiple nanocrystals are illuminated simultaneously, but orientation differences between

them allows Bragg peaks from individual nanocrystals to be spatially separated on the detector.

The relative timing (accurate to sub ps) of the optical and X-ray pulse was adjusted to provide the

time-resolved data with the two beams almost parallel for spatial coincidence. Both fluences were

below the damage threshold to allow repeated measurements. The coherent diffraction patterns

were recorded using a Cornell-SLAC pixel array detector (CS-PAD) positioned 1.2 m from the

sample at the gold (111) Bragg peak, a sufficient distance to over-sample 8 the diffraction patterns.

A helium filled bag was placed between the sample and detector to reduce air scatter.

Shown in Fig. 2a and b are examples of the coherent diffraction patterns that were recorded from

individual nanocrystals. The diffraction patterns clearly show the modulated diffraction fringes due

to the coherent illumination and finite sample size, which was much smaller than the X-ray beam.

The fringes are most prominent in the facetted directions of the nanocrystal. The diffraction pattern

collected immediately before the pump laser (Fig. 2a) shows a relatively symmetric fringe pattern,

while the diffraction pattern +60ps after (Fig. 2b) shows a more asymmetric diffraction pattern

which is attributed to inhomogenous lattice distortions i.e. an elastic strain gradient. Homogenous

contraction and expansion of the lattice (radial breathing modes) manifests itself as a shift of the

entire diffraction pattern (see Supplementary Information) as the average lattice spacing changes

across the nanocrystal. Shown in Fig. 2c and d is the angular shift of the gold (111) Bragg peak for

two nanocrystals, A and B. For each time delay, the center of mass from the sum of 100 diffracted

LCLS pulses was used to obtain the angular shift, with the error for each delay point given by the
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standard deviation. At the center of the rocking curve, ∼ 104 diffracted photons are recorded per

pulse. The homogenous lattice expansion and contraction is evident as harmonic motion of the

Bragg peak angular shift. Immediately after the arrival of the optical pump laser (positive delay

times) the diffraction pattern starts shifting to lower angles. Because the crystal is much bigger

than the electromagnetic “skin depth”, this behaviour is only consistent with an electron-mediated

model, such as the “Two-temperature” model 25 of heating in which electrons are excited first and

subsequently transfer energy to the lattice through electron-phonon coupling. Also plotted (solid

red line), is the fitted peak shift, S(τ), as a function of delay time, τ , and is given by

S (τ) =
N
∑

n=1

An exp

[

−
τ

τd,n

]

cos

[

2π

Tn

(τ + τ0,n)

]

+ Cn. (1)

n is the mode number, N(=2) is the total number of fitted modes, A is the amplitude, τd is the

decay time, Tn is the period of the oscillation and τ0 is the time offset. Two oscillation modes

are sufficient to fit the data shown in Fig. 2c and d within their errors with the fitted parameters

summarised in Supplementary Table 1. The fitted values of the two periods from the data for

nanocrystal A were 101 ps and 241 ps and for nanocrystal B were 90 ps and 256 ps. These two

oscillation modes are well reproduced by a Molecular Dynamics (MD) simulation (see Supple-

mentary Information) shown in Supplementary Fig. 1. Using the thermal expansion coefficient for

bulk gold of 14.4(2)×10−6K−1 and the maximum change in the lattice constant, the temperature

increase on each pump-probe cycle was estimated to be 44 K for each of the two nanocrystals. The

fitted vibration amplitudes correspond to a maximum displacement of 600pm at the surface of the

crystal.
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The peak position versus delay time shown in Fig. 2 agrees well with previous studies of gold

nanoparticles 18, 22, 26 or thin films 13. However, the important distinction in this study is that we

are able to monitor the behaviour of individual nanocrystals using X-ray diffraction rather than the

behaviour of an ensemble 18, 22, 26. X-rays provide the structural sensitivity evident in Fig. 2c and

d where both in-plane and out-of-plane cylinder oscillations are observed owing to the fact the Q

vector couples to both these directions. Importantly, the relatively long lifetime of the oscillations

in comparison to previous studies can be attributed to the fact that there is no ensemble average of

heterogeneous periods in our experiment 18–20 (see Supplementary Information).

Thus far, we have identified two clear vibration modes in the expansion of the crystal. Further

modes, such as shear modes, can only be identified by imaging the crystal distortions directly be-

cause these do not result in a shift of the Bragg peak position. Three dimensional (3D) images

as a function of delay time were obtained for nanocrystal A by collecting 3D coherent diffraction

patterns and then recovering the lost phase information using phase retrieval 27(see Methods Sum-

mary). The homogenous (linear) lattice expansion and contraction due to the breathing modes of

the nanocrystal have been removed (see Supplementary Information) leaving only the inhomoge-

nous component which would manifest itself as a broadening/distortion of the Bragg peak rather

than a peak shift.

Figure 3 shows images of the phase of nanocrystal A, displayed as orthogonal cuts through the

center for selected times. This phase is the change in the displacement of the crystal, projected
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onto the diffraction vector Q, whose direction is also shown in Fig. 3. To emphasise the changes,

we have subtracted the image at -40 ps from the subsequent times, which removes the contribution

of small static residual stresses in the nanocrystal. The spatial pattern of oscillating regions of

expansion and contraction are well within the resolution of the image (see Methods Summary),

estimated as 51±7 nm, 22±3 nm and 55±6 nm in the x, y and z directions respectively.

What is particularly evident in Fig. 3 is that the regions of expansion become regions of con-

traction and vice versa as the delay time increases. This spatial and temporal reversal of expansion

and contraction is indicative of the presence of a shear vibration mode of higher order than a simple

breathing mode. We compare this pattern of displacements with the theoretical (1,1) shear mode

of a cylinder with a radius of 200 nm and a height of 220nm (see Supplementary Information for

details), which is compared with the experimental images in Fig. 4 at +110ps delay time. The

good agreement between the data and the theory strongly supports the presence of this otherwise

invisible higher order mode. A comparison can also be made with Supplementary Fig. 2 which

compares the data to a MD simulation. Our observation of this 50pm amplitude mode in the pres-

ence of a 600pm breathing mode, shows the significant sensitivity gain by BCDI imaging.

The combination of intense, coherent and ultra-short X-ray pulses provided by XFEL’s has en-

abled direct, unambiguous imaging of coherent acoustic phonons in gold nanocrystals in three

dimensions. We have been able to image a higher order phonon mode in a single gold nanocrystal

over ps time scales which agrees well with a (1,1) shear mode in a cylinder and with our MD

8



simulations. The ability to spatially resolve inhomogenous lattice distortions over very short time

scales is an invaluable tool to investigate fundamental phenomena such as coherent phonon gen-

eration and propagation, melting and phase transitions. The technique demonstrated here can be

applied widely to investigate other materials such as semiconductors and nano structures. Many

other applications will become possible with the advent of coherent, ultrashort electron sources 28

which could provide atomic scale images when used with diffractive imaging.

Methods Summary

Sample preparation. A 2 nm layer of titanium was deposited using thermal evaporation onto an

silicon wafer followed by 20 nm of gold. The thin film was then annealed in air at 1000◦C for

approximately 10 hours after which time the film had dewetted and formed nanocrystals.

Experiment. The experiment was performed at the XPP instrument at the LCLS. A 1520×1520

pixel CS-PAD with 110 µm square pixels was used to record the diffraction. The Beryllium lenses

were positioned so that the sample position was out of the nominal focus. This regime was chosen

so that the X-ray pulses from the LCLS did not destroy the sample. Damage from either the optical

or X-ray pulses was monitored using a confocal microscope (Olympus LEXT) mounted directly

above the sample. To record the 3D diffraction pattern, the nanocrystals were rocked in 41 0.02◦

steps. At each position, 1000 diffraction patterns were recorded. Filtering of the data was done ex

post facto to remove saturated frames and blank shots, with the final summed patterns consisting

of the 100 brightest, non-saturated shots (see Supplementary Information).
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Phase Retrieval Phase retrieval was performed using a guided approach29. 15 random starts were

initiated with each member being subjected to 10 iterations of error reduction 27 followed by 160

iterations of hybrid-input output 27 and then a further 30 iterations of error reduction. After this

first generation, the best iterate was selected and used to generate a further 15 new iterates29. This

process was repeated for a total of 5 generations with the final solution comprising the average

of the 5 best iterates. After the phase retrieval was completed, transformation of the image to

an orthogonal laboratory frame was performed with the details found elsewhere 30. The final

resolution was calculated on the transformed image by taking a line-out and fitting a Gaussian to

its derivative. The resolution is given as the full-width at half maximum of this Gaussian. This was

repeated for each of the orthogonal directions.
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Figure 1: Schematic of the setup for ultrafast time resolved Bragg coherent diffraction imag-

ing. Optical pulses (red) perturb the sample, generating phonons. Coherent X-ray pulses (gen-

erated from an XFEL) arrive a short time later where the diffracted pulses are recorded using a

CS-PAD area detector.
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Figure 2: Time resolved Bragg coherent diffraction data from single nanocrystals. a,b, Ex-

perimentally recorded coherent diffraction patterns from a single nanocrystal for delay times of

-10 ps and +60 ps respectively. The diffraction patterns are the sum of 100 shots and are scaled

logarithmically. c, Gold (111) Bragg peak angular shift as a function of delay time from the same

nanocrystal. d) Angular shift as a function of delay time from a different nanocrystal. The blue

dots are the experimental data and the solid red line is the modelled peak shift.
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Figure 3: Imaging of acoustic phonons in a nanocrystal. Orthogonal cut planes through the

nanocrystal showing the projected displacement as a function of delay time. For each delay time

orthogonal slices taken from the center of the nanocrystal are shown. The direction of the displace-

ment field is given by the Q vector in red. It should be noted that the range of displacement has

been truncated to ±26pm instead of the full range of ±53pm for clarity.

Figure 4: Comparison of data with simulation Orthogonal cut planes comparing the +110 ps

delay time (top) with a simulated (1,1) mode for a cylinder (bottom). Two slices for each viewing

direction are shown, taken either side of the center of nanocrystal A. The black bar indicates a

scale of 100 nm.
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