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Abstract—Conventional ultrasound (US) image reconstruction
methods rely on delay-and-sum (DAS) beamforming, which is
a relatively poor solution of the image reconstruction problem.
An alternative to DAS consists in using iterative techniques
which require both an accurate measurement model and a strong
prior on the image under scrutiny. Towards this goal, much
effort has been deployed in formulating models for US imaging
which usually require a large amount of memory to store the
matrix coefficients. We present two different techniques which
take advantage of fast and matrix-free formulations derived for
the measurement model and its adjoint, and rely on sparsity of
US images in well-chosen models. Sparse regularization is used
for enhanced image reconstruction. Compressed beamforming
exploits the compressed sensing framework to restore high quality
images from fewer raw-data than state-of-the-art approaches.
Using simulated data and in vivo experimental acquisitions, we
show that the proposed approach is three orders of magnitude
faster than non-DAS state-of-the-art methods, with comparable
or better image quality.

Index Terms—Ultrafast ultrasound imaging, compressed sens-
ing, beamforming, sparse regularization

I. INTRODUCTION

Ultrasound (US) imaging is one of the most used medi-

cal imaging modalities enabling real-time, safe and low-cost

procedures such as fetal, abdominal and cardiac imaging.

Recently, a new paradigm, denoted as ultrafast US imaging,

has enabled US imaging to reach more than thousands of

frames per second, paving the way to a whole range of new

applications such as tracking of induced and intrinsic shear

waves in organs [1].

Pulse-echo US imaging uses an array of transducer elements

to transmit short acoustical pulses through the body. The

backscattered echo waveforms are then received by the same

array and detected as so-called element raw-data. Retrieving

an image of the medium inhomogeneities from the element

raw-data poses an ill-posed inverse problem. Current real-time

US imaging is generally based on the well-known delay-and-

sum (DAS) beamforming algorithm which can be seen as a

back-projection solution of the inverse problem under several

A. Besson, D. Perdios, F. Martinez, M. Arditi and J.-Ph. Thiran are with
the Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de
Lausanne, CH-1015, Lausanne, Switzerland.

R. E. Carrillo is with the Centre Suisse d’électronique et microtech-
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assumptions [2]. While being suitable for real-time imaging,

DAS suffers from a relatively low quality, in terms of signal-

to-noise ratio, and requires sampling the element raw-data at

a rate few times higher than the Nyquist rate for sufficient

accuracy in the delay calculations [3], [4].

An alternative to back-projection methods consists of sparse

regularization (SR) techniques [5]. These methods are built

upon forward models of the problem and introduce additional

information on the signal under scrutiny in order to solve the

ill-posed inverse problem, leading to a higher image quality

than back-projection methods.

Medical imaging is well-suited to SR methods. Indeed, in

many medical imaging modalities, the image reconstruction

process amounts to solving a linear inverse problem. In

magnetic resonance imaging (MRI), the image is reconstructed

from k-space samples and the measurement model is an

inverse Fourier transform [6]. In X-ray computed tomogra-

phy (CT), the sinogram is related to the measurements by the

Beer-Lambert law which can be expressed as a linear inverse

problem in the discrete domain [7]. Moreover, sparsity priors

have been expressed for medical images. Lustig et al. [6] have

exploited sparsity of MRI images in the wavelet domain and

under the total-variation (TV) transform. In X-ray CT, sparsity

priors under the TV-norm have been extensively used [8], [9].

In US imaging, several formulations of forward models

have been recently investigated. David et al. [10], Wang et

al. [11] and Besson et al. [12] have proposed time-domain

formulations of the problem. In the Fourier domain, Zhang et

al. [13] have suggested a formulation of the model derived by

David et al. [10]. Besson et al. [14] have presented a forward

model in the Fourier domain in which US propagation is seen

as a projection on a non-uniform Fourier space. Schiffner

and Schmitz [15] have proposed a time-frequency model in

which each frequency of the transducer-element bandwidth

is treated independently, enabling the model to deal with

distortion effects. The main problem of these models resides

in their computational complexity, usually translated in storage

requirements of the corresponding matrix representation. The

models proposed by David et al. [10] and Schiffner and

Schmitz [15] require the storage of several hundreds of GB

for matrix coefficients in 2D. Zhang et al. [13] have divided

the image in stripes in order to make the problem tractable.

This issue severely limits the appeal of iterative methods

against classical approaches. Ozmen et al. [2] have suggested

the use of matrix-free operators but did not provide any

implementation detail and only applied their model to low
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frequencies.

SR methods have raised a growing interest recently in US

imaging. They have been used for despeckling [16], [17] and

deconvolution [18], [19] of radio-frequency images. They have

been exploited to solve inverse scattering problems, e.g. using

the constrast-source-inversion method [2]. They have also been

used in the context of the compressed sensing (CS) framework.

It has been explored in a pre-beamforming step, where the

problem has been formulated on the element raw-data [20].

It has also been investigated in a post-beamforming step in

order to reduce the amount of data to be stored [21], [22] as

well as combined with a deconvolution framework for image

enhancement [19]. In a similar direction, it has been used

in the image reconstruction process, in order to reduce the

amount of data necessary to retrieve a high quality image

either by reducing the number of transducer elements [10],

[12] or by sub-Nyquist rate sampling [4], and to improve the

image quality compared to backprojection methods [13], [14],

[15], [23], [24], [25], [26].

Three main contributions are proposed in this work. Firstly,

parametric, fast and matrix-free formulations of the measure-

ment model and its adjoint are described for both plane-

wave (PW) and diverging-wave (DW) compounding. Secondly,

a fully parallel implementation of these formulations is in-

cluded in a sparse regularization framework, resulting in high-

quality imaging with near real-time capability and no memory

footprint, paving the way to sparse regularization for 3D US

imaging. Lastly, the proposed model is coupled with innovative

compression strategies which outperform existing compressed

beamforming (CB) schemes [10], [12].

The remainder of the paper is organized as follows. The

matrix-free formulations of the measurement model and its

adjoint are described in Section II. The proposed image

reconstruction method is described in Section III and evaluated

on simulated and in vivo data in Section IV. Results are

reported in Sections V and VI and discussed in Section VII.

Concluding remarks are given in Section VIII.

II. PARAMETRIC MATRIX-FREE FORMULATIONS OF THE

MEASUREMENT MODEL AND ITS ADJOINT

A. Formulation of the measurement model

Ultrafast US imaging involves transmission of either steered

PW (SPW) or DWs. In this case, it has been shown that

one may express the image reconstruction as an inverse

problem [10], [15]. More precisely, let us consider a pulse-

echo experiment, described on Figure 1, where the propagation

medium Ω ∈ R
2 \ {z ≤ 0} contains inhomogeneities as local

fluctuations in acoustic velocity and/or density, defining a

tissue reflectivity function (TRF) γ (r) with r = [x, z]
T ∈

Ω [15], [27]. The medium is insonified with a 1D-array of

Nel transducer elements, located at rt = [xt, 0]
T

, where xt ∈
Ξ ⊂ R, and the echo signals detected by the same elements are
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Fig. 1: Standard 2D-ultrafast ultrasound imaging configura-

tion.

denoted as m (xt, t). Thus, the following relationship holds:

m (xt, t) =

∫

r∈Ω

od (r, xt) γ (r)

vpe (t− tTx (r)− tRx (r, xt)) dr , (1)

which can be rewritten as:

m (xt, t) =

∫∫

τ∈R,r∈Γ(xt,τ)

od (r, xt) γ (r)

| ∇rg | dσ (r) vpe (t− τ) dτ,

(2)

where vpe (t) denotes the pulse-echo waveform, od (r, xt) is

defined as

od (r, xt) = o (r, xt) /(2π

√

(x− xt)
2
+ z2), (3)

with o (r, xt) the element directivity according to Selfridge et

al. [28], g (r, xt, t) is defined as:

g (r, xt, t) = t− tTx (r)− tRx (r, xt) , (4)

with tTx (r) the propagation delay in transmit and tRx (r, xt)
the propagation delay in receive defined as:

tRx (r, xt) =

√

(x− xt)
2
+ z2/c, (5)

∇rg denotes the gradient of g with respect to the variable r

and dσ (r) is the measure over the 1D-curve Γ (xt, t) defined

as:

Γ (xt, t) = {r ∈ Ω | g (r, xt, t) = 0} (6)

This model is a pulse-echo-spatial-impulse-response model

firstly introduced by Tupholme [29] and Stepanishen [30], later

used by Jensen and Svendsen [31].
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Equation (2) can be written as follows:

m (xt, t) =

∫

τ∈R

h (xt, τ) vpe (t− τ) dτ, (7)

where

h (xt, t) =

∫

r∈Γ(xt,t)

od (r, xt) γ (r)

| ∇rg | dσ (r) . (8)

Let us now introduce the parametrization z = z (x, xt, t) of

the 1D-conic described by Γ (xt, t). The curvilinear integral

defined in Equation (8) can then be recast as the following 1D

integral:

h (xt, t) =

∫

x∈R

od (x, z (x, xt, t) , xt)

| ∇(x,z(x,xt,t))g |

γ (x, z (x, xt, t)) | Jz (x) | dx, (9)

where | Jz (x) |=
√

1 +
(

dz
dx

)2
is the Jacobian associated with

the parameterization of the curve.

The parametric formulations used in Equation (8) depend

on the transmit scheme and are expressed in Appendix A for

PW and DW imaging, respectively.

Let us introduce the lateral position of the j-th transducer

element, given by xj
t = x0

t + j∆xt with ∆xt the pitch and x0
t

the position of the reference transducer element. Let us also

consider that the pulse-echo experiment is achieved at time

samples tl = t0 + l∆t, for l ∈ {1, ..., Nt}, where ∆t = 1/fs,

fs is the sampling frequency and t0 the initial recording time

sample. Let us also introduce the image grid defined by xn =
x0 + n∆x and zq = z0 + q∆z with (n, q) ∈ {1, ..., Nx} ×
{1, ..., Nz}.

It is demonstrated, in Appendix B, that, for each samples

of the element-raw data, the following relationship holds:

m
(

xj
t , t

l
)

= H
(

γ, xj
t , t

l
)

+ ν′
(

xj
t , t

l
)

, (10)

where γ ∈ R
Nx×Nz are the values of the TRF evaluated on the

image grid defined above, H is the matrix-free measurement

model and ν′
(

xj
t , t

l
)

is the noise which accounts for the

model, interpolation and measurement errors.

The signal received by the j-th transducer element can

thus be written as a vector mj ∈ R
Nt which contains

the backscattered echoes from the medium, recorded at time

samples defined above. By concatenating the signals sensed by

all the transducer elements in a single vector, one may come

up with a measurement vector m ∈ R
NelNt .

B. The adjoint of the proposed measurement model and its

relationship with the delay-and-sum algorithm

Image reconstruction methods, either analytical or iterative,

require the computation of the adjoint of the operator defined

in Equation (10) [5]. Indeed, back-projection methods are

based on applying the adjoint operator of the measurement

model. In regularization approaches, the adjoint operator is

used at each iteration of the reconstruction algorithms.

In this section, we derive the adjoint of the measurement

model proposed in Section II-A. First, it is demonstrated that

the adjoint operator of the continuous forward model described

in Equation (2) can be written as:

γ̂ (r) =

∫

xt∈Ξ

od (r, xt)

(m (xt) ∗t u) (tTx (r) + tRx (r, xt)) dxt, (11)

where u (t) = vpe (−t) is the matched filter corresponding to

vpe. The proof of Equation (11) is given in Appendix C.

Thus the parameterization of the adjoint operator is straight-

forward since t = tTx (r) + tRx (r, xt). A matrix-free formu-

lation of the adjoint operator can therefore be derived, for

each point of the image grid, which leads to the following

relationship:

γ̂ (xn, zq) = H⋆ (m, xn, zq) + ξ′ (xn, zq) , (12)

where H⋆ is the adjoint operator described in Appendix B

and ξ′ (xn, zq) is the noise which accounts for the model,

interpolation and measurement errors.

The DAS algorithm is the standard image reconstruction

method employed in US imaging because of its simplicity

and real-time capability. The DAS algorithm can be mathe-

matically formulated as:

γDAS (r) =

∫

xt∈Ξ

a (r, xt)m (xt, tTx (r) + tRx (r, xt)) dxt,

(13)

where a (r, xt) accounts for the apodization weights, and

γDAS (r) is the DAS estimate of the TRF. In the light of

Equation (11), it is demonstrated that DAS achieves a back-

projection solution of the inverse problem when the effect of

the pulse-echo waveform is neglected (u considered as a Dirac)

and when the apodization weights a (r, xt) are set to be equal

to od (r, xt).
Such solution can therefore be straightforwardly defined in

the context of the adjoint operator H⋆:

γDAS (xn, zq) = HDAS (m, xn, zq) + ξDAS (xn, zq) , (14)

where HDAS denotes the approximation of the operator H⋆

and ξDAS (xn, zq) is the corresponding noise, taking into

account the assumptions of DAS.

The DAS solution, while suited to real-time imaging, is

therefore a relatively poor approximation of the solution of

Problem (2). Indeed, DAS beamforming does not address the

problem of the noise n, neglects pulse-shape, and requires

a sampling rate higher than Nyquist sampling requirements

because of the high-delay resolution required [3], [4]. Indeed,

to apply the delay defined in Equation (13) digitally, received

signals must be sampled on a sufficiently dense grid.

C. The inverse problem of interest

In the literature, two different groups of image reconstruc-

tion methods may be distinguished, since they aim at solving

two different problems.

The first group of methods can be denoted as regularized

beamforming methods. They do not take into account the

pulse-echo waveform and retrieve a low-resolution estimate
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of the TRF γ, usually denoted as the radio-frequency (RF)

image γRF [11], [12], [23], [24], [32], [33]. One reason for

this choice resides in the fact that γRF preserves speckle

information (due to the low-resolution), which is of interest

in many US applications.

The second group of methods aims at performing inverse

scattering, i.e. at retrieving the high-resolution TRF γ from

the element-raw data [2], [10], [15]. This problem is far more

complex, highly ill-posed, and usually requires more sophisti-

cated models than the ones used for regularized beamforming

methods.

While the model described in Section II can be used

for inverse scattering problems, we focus, in this work, on

regularized beamforming, which means that we neglect the

effect of the pulse-echo waveform vpe in the model. This

results in approximating the pulse-echo waveform as a Dirac

delta function and Equation (2) is greatly simplified as:

m (xt, t) =

∫

r∈Γ(xt,t)

od (r, xt) γ (r)

| ∇rg | dσ (r) . (15)

Moreover, it can be noticed that Equation (10) can be ex-

pressed using a matrix formalism, leading to a more standard

formulation of the inverse problem as:

m = H
RFγRF + νRF , (16)

where H
RF ∈ R

NelNt×NxNz and νRF ∈ R
NelNt are the

operator and the noise evaluated at each sample of the element-

raw data grid.

In the light of Problem (16), the DAS estimate described in

Section II-B can be seen as a low-quality estimate of γRF .

III. SPARSITY-DRIVEN IMAGE RECONSTRUCTION

METHODS

A. A quick tour on sparse regularization and compressed

sensing

1) Sparse regularization: Regularization techniques intro-

duce additional prior information to solve an ill-posed linear

inverse problem of the form y = Φs + n, where y ∈ C
M

are the measurements, s ∈ C
N is the image under scrutiny,

Φ ∈ C
M×N is the measurement model and n ∈ C

M is the

observation noise. The problem associated with regularization

techniques is of the following form:

min
s

F (Φs,y) + βR (s) , (17)

where F is a distance function between Φs and y, R is a non-

negative functional, which accounts for the prior information

on s, and β denotes the regularization parameter. One well-

known technique is Tikhonov regularization in which R is the

ℓ2-norm. It has been studied by Szasz et al. [33] in the case

of US image reconstruction.

SR techniques offer an alternative to Tikhonov regulariza-

tion and exploit a sparsity prior of the signals of interest under

a given model Ψ, usually expressed in terms of the ℓ1-norm.

The following problem is thus expressed:

min
s

‖Φs− y‖22 + λ‖Ψ†s‖1, (18)

where Ψ
† accounts for the adjoint operator of Ψ and λ is the

regularization parameter. Problem (18) can also be written as:

min
s

‖Ψ†s‖1 subject to ‖y − Φs‖2 ≤ ǫ, (19)

where ǫ is a upper bound of the ℓ2-norm of the noise. Prob-

lems (18) and (19) can be solved using convex-optimization al-

gorithms such as primal-dual-forward-backward (PDFB) [34],

used in the proposed work and described in Appendix D.

2) Compressed sensing: The now famous theory of CS

introduces a signal acquisition framework that goes beyond

the traditional Nyquist sampling paradigm [35], [36], [37].

CS demonstrates that sparse or compressible signals can be

acquired using a small number of linear measurements and

recovered by solving a non-linear optimization problem [35],

[36], [37].

Formally, the signal s is acquired through the linear mea-

surement model Φ ∈ C
M×N and y = Φs + n as defined in

Section III-A1. When M < N , recovering s from y amounts

to solving an ill-posed inverse problem and CS demonstrates

that s can be recovered exactly from y, with high probability,

by solving Problem (19).

If we consider a matrix A = [a1, ...,aL] ∈ C
M×L, its

mutual coherence is measured as:

µ (A) = max
k,j,k 6=j

| < ak,aj > |
‖ak‖2·‖aj‖2

, (20)

where < ·, · > accounts for the inner-product in C
M .

Theorem 3.1 from [35] tells us that the perfect recovery

condition of s relies on a trade-off between the coherence of

A and the sparsity of Ψ
†s. It can be shown that µ (A) lies

between the Welch bound [38] and 1. The Welch bound gives

a higher bound on the sparsity of the solution [35]. Putting

everything together, to maximize the benefits of Theorem 3.1

from [35], one should be able to:

• build a measurement model Φ in such a way that µ (ΦΨ)
is as close as possible to the Welch bound;

• build a sparsity model Ψ in such a way that α = Ψ
†s is

as sparse as possible.

B. Sparse regularization for enhanced ultrasound image re-

construction

SR for enhanced US image reconstruction proposes an alter-

native to DAS for solving Problem (16) by exploiting the SR

framework described in Section III-A1. Indeed, Problem (16)

is an ill-posed linear inverse problem, thus suited to the SR

framework. The underlying idea consists of the introduction

of a sparsity prior on RF images in a well-chosen model,

described hereafter, in order to recover a high quality image

by solving Problem (19).

The sparsifying model Ψ, denoted as sparsity averag-

ing (SA) is composed of a concatenation of 8 Daubechies

wavelet transforms with different mother wavelets ranging

from Daubechies 1 (db1) to Daubechies 8 (db8) [39]. The

operator is written as:

Ψ =
1√
q
[Ψ1, ...,Ψq] , (21)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

where q is equal to 8 and Ψi denotes the i-th Daubechies

wavelet transform. The choice of the SA model is justified by

its superior results on US images [14], compared to simpler

wavelet-based models.

C. Compressed beamforming

CB aims at reducing the amount of data needed to recover

high-quality US images. It is built upon the CS framework

described in Section III-A2.

To account for the undersampling process, supposed to be

linear, we introduce a matrix D ∈ R
M×NelNt , with M ≤

NelNt, such that md = Dm and Hd = DH
RF . The inverse

problem can be naturally expressed as:

md = Hdγ
RF + νd, (22)

where νd ∈ R
M accounts for the noise.

CB uses SR approaches, described in Section III-A, to solve

Problem (22). The sparsity prior is expressed in the SA model

and CB exploits the requirements of Theorem 3.1 from [35]

for the design of the undersampling operator D.

The perfect recovery condition of CB relies on the incoher-

ence between the measurement model Hd and the sparsifying

model Ψ. In the case of US imaging, the measurement model

H is imposed by the problem and the undersampling operator

D should be defined in such a way that the coherence between

Hd and Ψ is minimized.

1) Selection of transducer elements: In our previous work

[12], we have proposed several designs for the undersampling

operator which selects a subset of transducer elements, either

uniformly- or randomly-spaced. In this case, the operator

D selects the transducer elements of interest. It has been

shown that high quality reconstructions may be achieved with

approximately 40 % to 50 % of the initial data, for PW and

DW imaging [32]. However, the corresponding measurement

model Hd suffers from a high coherence [10], [12].

2) Mixing of the raw data: Taking into account the increase

of the coherence induced by these simple undersampling

schemes, one may think about designing a strategy such

that the mutual coherence of the measurement operator is

optimized. The underlying idea is to spread the information as

much as possible between the element raw-data space and the

desired-image space, hence lowering the coherence, similarly

to sparse MRI acquisition [6]. Put formally, we introduce a

linear operator W ∈ R
NelNt×NelNt such that D = PW, where

P ∈ R
M×NelNt represents an undersampling operator.

The relationship between the desired-image space and the

element raw-data space is described by projections onto 1D-

conics. It can be deduced that only few samples of the desired-

image space are contributing to every samples of the element

raw-data space, leading to a highly coherent measurement

model.

Nevertheless, it is interesting to note that each point of

the element raw-data space generates a different conic in

the desired-image space. Since two non-identical conics may

intersect on four points at most, the information contained in

different samples of the element raw-data space are comple-

mentary. Taking into account such an observation, our idea

consists in mixing the information contained in various points

of the element raw-data space in order to increase the amount

of information carried by each measurement, which may lead

to a lower coherence of the matrix.

Formally, the matrix W is designed as a random matrix,

i.e. with i.i.d. entries drawn from a probability distribution.

If we denote by m
(

xj
t , t

l
)

the element raw-data received at

sample tl by the transducer element positioned at xj
t and by

mW

(

xk
t , t

u
)

the mixed element raw-data samples at sample

tu on the synthetic mixed channel xk
t , the following equation

holds:

mW

(

xk
t , t

u
)

=

Nel
∑

j=1

Nt
∑

l=1

wjlkum
(

xj
t , t

l
)

, ∀k ∈ {1, ..., Nel} .

(23)

where wjlku are drawn from a probability distribution. It can

be observed that each mixed element raw-data mW

(

xk
t , t

u
)

is related to γRF (xn, zq) by an integration on ΓW

(

xk
t , t

u
)

=
Nt
⋃

l=1

Nel
⋃

j=1

Γ
(

xj
t , t

l
)

, where Γ
(

xj
t , t

l
)

is a 1D-conic defined in

Section II-A. Since each 1D-conic carries complementary

information about the desired-image space, it can be stated

that Γ
(

xj
t , t

l
)

⊂ ΓW

(

xk
t , t

u
)

.

Finally, one can vectorize Equation (23) in order to come

up with the following equation:

md = PWm, (24)

The main drawback of this strategy resides in the design

of the linear operator W. As an example, if we consider

element raw-data acquired over 1000 depth samples, with 128

transducer elements, and that the grid of the desired image is

the same as the grid of the element raw-data, then W requires

131 GB of memory to store the matrix coefficients, in double

precision. In order to overcome this drawback, two strategies,

denoted as ‘Channel mixing’ (CMIX) and ‘Channel and time

mixing’ (CTMIX) are proposed.

CMIX consists of a random summation of the signals

coming from the different transducers elements at a given time

instant in order to create a mixed output. In this case, Equation

(23) becomes:

mW

(

xk
t , t

u
)

=

Nel
∑

j=1

wjkum
(

xj
t , t

u
)

, ∀k ∈ {1, ..., Nel} .

(25)

The matrix W only contains Nel values per row which drasti-

cally reduces its complexity. In addition, such a mixing could

be achievable in hardware, providing a probe which integrates

a system able to perform CMIX in a pre-beamforming step.

However, it is clear that the mixing and resulting coherence

reduction effects of CMIX are rather limited compared to a

fully random mixing.

CTMIX extends the principle of CMIX by considering

mixing across both transducer elements and Dt time samples
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to limit the complexity. Put formally, the following relationship

holds:

mW

(

xk
t , t

u
)

=

Nel
∑

j=1

Dt
∑

l=1

wjlkum
(

xj
t , t

l
)

, ∀k ∈ {1, ..., Nel} ,

(26)

in which the samples tl are chosen randomly in the entire

range of time. When Dt = Nt, CTMIX is equivalent to the

case where a fully random matrix is used. When Dt =1 and

tl = tu, CTMIX is equivalent to CMIX.

IV. EXPERIMENTS

A. Experimental setup

1) Plane wave imaging: All the measurements (except the

ones from the PICMUS dataset) are achieved with a standard

linear-probe (designed to work at 7.8 MHz) whose settings

are given in Table I. For each experiment, a sequence of

15 SPWs (5 MHz, 1-cycle, tri-state waveforms) is transmitted

with steering angles uniformly distributed between −7.5◦ and

7.5◦. No apodization is used on transmit.

TABLE I: Characteristics of the ATL L12-5 50 mm probe used

for PW imaging.

Parameter Value

Number of elements 128
Center frequency 5 MHz
Wavelength 0.31 mm
Sampling frequency 31.2 MHz
Pitch 0.195 mm
Kerf 0.05 mm

• Numerical simulations: The system described above is

simulated using Field II software [31]. Two phantoms are

insonified:

– Point-reflector phantom: It consists of bright reflec-

tors laterally positioned at 5 mm and spaced in depth

by 10 mm. At depths of 10 mm and 30 mm, bright

reflectors are distributed laterally with a step of

5 mm.

– Anechoic-inclusion phantom: It consists of an ane-

choic inclusion of 8 mm diameter, centered at a

depth of 40 mm, embedded in a medium with a

high density of scatterers with random positions and

amplitudes (20 scatterers per resolution cell).

• PICMUS dataset: The methods are also evaluated on the

standardized PICMUS dataset [40]. More precisely, the

simulated dataset as well as the in vivo carotids are used.

The corresponding settings are available on the PICMUS

website1.

• In vivo experiments: Two in vivo carotid images were

acquired using a Verasonics US scanner (Redmond, WA,

USA) with the ATL probe whose settings are given in

Table I.

1https://www.creatis.insa-lyon.fr/Challenge/IEEE IUS 2016/home

2) Diverging wave imaging: All the measurements are

performed with a simulated phased-array probe whose settings

are given in Table II. For each experiment, a sequence of 15

DWs (2.5 MHz, 1-cycle, tri-state waveforms) is transmitted

with virtual point sources located at zn equal to −2.9 mm and

uniformly distributed at xn between −5.9 mm and 5.9 mm. No

apodization is used on transmit.

TABLE II: Characteristics of the probe used for DW imaging.

Parameter Value

Number of elements 64
Center frequency 2.5 MHz
Wavelength 0.62 mm
Sampling frequency 15.6 MHz
Pitch 0.32 mm
Kerf 0.05 mm

• Numerical simulations: We exploit the numerical simu-

lation of the following phantoms:

– Point-reflector phantom: It consists of bright re-

flectors centered in the field and spaced in depth

every 20 mm. At 50 mm depth, bright reflectors are

laterally distributed with a step of 20 mm.

– Anechoic-inclusion phantom: The anechoic-inclusion

phantom is the same as for the PW experiment.

B. Image recontruction methods

The proposed image reconstruction methods are evaluated

against classical DAS algorithm as well as against best state-

of-the-art image reconstruction algorithms on the PICMUS

dataset, based on the log-compressed B-mode image. The

envelope image is extracted from the US RF-image through

the Hilbert transform, log-compressed over a range of 40 dB

and finally converted to 8-bit gray scale to get the B-mode

image.

The DAS algorithm used in this study is the one described

by Montaldo et al. [41] for PW imaging and by Papadacci et

al. [42] for DW imaging. It is used with a linear interpolation

for delay calculations and with a factor correcting for the

obliquity. For the iterative approaches, the measurement model

and the adjoint described in Section II are used with a linear

interpolation. The hyper-parameters of the optimization algo-

rithm are empirically tuned depending on the reconstruction

method. The stopping criterion is set to be a maximum number

of iterations.

C. Computation time

The proposed image reconstruction methods are imple-

mented on a NVIDIA Titan X GPU card for evaluation

in terms of computation time. The timings are calculated

as an average computation time over 500 draws of each

reconstruction method. It has to be noted that the proposed

implementation is not optimized and a substantial gain may

be achieved by working on simple acceleration strategies.

V. RESULTS: SPARSE REGULARIZATION FOR ENHANCED

IMAGE RECONSTRUCTION

As explained in Section III-B, SR is a powerful framework

to solve ill-posed inverse problems. In this section, we expose

https://www.creatis.insa-lyon.fr/Challenge/IEEE_IUS_2016/home
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the results obtained with SR on the simulated point-reflector

and anechoic-inclusion phantoms (described in Section IV-A),

for both PW and DW imaging. We also present results on the

in vivo carotid images obtained with PW imaging. We finally

compare SR to the best state-of-the-art mage reconstruction

algorithms on the PICMUS dataset.

A. Contrast study on the anechoic-inclusion phantom

In order to evaluate image contrast, the anechoic-inclusion

phantom is used. The proposed method is coupled with a

sparsity prior in the SA model described in Section III-B. The

maximum number of iterations is set to 50. The dB contrast-

to-noise ratio (CNR) [43] is calculated on the normalized

envelope image, i.e. on the envelope image divided by its

maximum value, using the following formula:

CNR = 20 log10
|µt − µb|
√

σ2

t+σ2

b

2

, (27)

where (µt, µb) and (σ2
t , σ

2
b ) are the means and the variances

of the target inclusion and the background, respectively.

Figures 2a and 2b display the CNR values for PW and DW

imaging, respectively, with 1 insonification for the proposed

approach and 1 to 15 insonifications for DAS. It can be noticed

that, with only 1 insonification, the proposed method leads to

a contrast similar to DAS with more than 9 insonifications,

and considerably better than DAS for 1 to 9 insonifications.
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Fig. 2: CNR (in dB) calculated on the simulated anechoic-

inclusion phantom as a function of the number of insonifica-

tions for (a) PW imaging and (b) DW imaging. The solid-red

line corresponds to the CNR of the proposed approach with

1 insonification and the dotted-blue line is the CNR obtained

with DAS for 1 to 15 insonifications.

Figures 3a and 3b display the B-mode images of the

anechoic-inclusion phantom reconstructed with DAS (11 PW

insonifications) and using the proposed approach (1 PW in-

sonification), respectively. It can be noticed that the quality

is comparable between the two images. The noise inside the

anechoic area, due to the side lobes of the PSF, has been

suppressed by the regularization. It can also be noticed that

the speckle density is slightly decreased with the proposed

approach, resulting in a darkening of the image in the deepest

part of the Figure 3b. This effect is due to the fact that

part of the speckle is not well preserved by the SA model,

thus considered as noise and suppressed during the image

reconstruction process [14].

B. Reconstruction of the point-reflector phantom

The point-reflector phantom is used to assess the quality

of the proposed approach (100 iterations) in the particular

case where only few sparse sources are present. One typical

application is harmonic imaging of microbubbles in low-

concentrations where the individual responses of the sparse

microbubbles are visible. The quality is evaluated on the

resolution, calculated as the full width at half maximum

(FWHM) of the point spread function.

For PW imaging, the proposed approach leads to lateral

and axial resolutions of 0.10 mm for every points with 1

PW insonification, while the DAS algorithm gives lateral and

axial resolutions of 0.20 mm for both points, constant for

compounding experiments with 1 to 11 PW insonifications.

The increase is more pronounced in DW imaging where the

proposed approach leads to lateral resolutions of 0.50 mm

and 0.90 mm and axial resolutions of 0.50 mm for the points

located at 30 mm and 50 mm, while the DAS algorithm with

11 DW insonifications exhibits lateral resolutions of 1.40 mm

and 2.80 mm and axial resolutions of 0.50 mm.

The increase in resolution is visible when comparing Fig-

ures 3c and 3d, which display the B-mode images of the point-

reflector phantom reconstructed with DAS (11 DW insonifica-

tions) and with the proposed approach (1 DW insonification),

respectively.

C. Reconstruction of the in vivo carotids

The proposed method is evaluated on the in vivo carotid

images. In this case, the SR is coupled with the SA model, the

number of iterations is set to 50. Due to the lack of a ground

truth image, the evaluation of the image quality is limited to

visual assessment.

Figure 4 displays B-mode images for two different carotid

acquisitions, reconstructed with the proposed method with 1

PW insonification and using DAS with 9 PW insonifications.

It can be observed, by comparing Figure 4a with 4b and

Figure 4c with 4d that the proposed method with 1 PW leads

to imaging quality similar to DAS with 9 PWs insonifications.

Both the anechoic artery and the tissue area are well preserved

with the proposed approach.

This illustrates the great potential of SR for reducing the

number of insonifications required to reach a given image

quality.

D. Reconstruction of the PICMUS dataset

In the above sections, the proposed approach has been

compared to DAS. It is now well-known that DAS is not the

highest quality beamforming and it could be interesting to

compare the proposed approach to the best image reconstruc-

tion algorithms.

The proposed method is thus used to reconstruct simu-

lated images from the standardized PICMUS dataset [40]

and compared against two minimum-variance beamforming

approaches [44], [45] and two sparse-based approaches [23],

[24]. The results, displayed in Table III, show that the pro-

posed method is competitive against the best state-of-the-art
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Fig. 3: B-mode images of the anechoic-inclusion phantom reconstructed with (a) DAS for 11 PW insonifications and (b)

the proposed approach for 1 PW insonification, and of the point-reflector phantom reconstructed with (c) DAS for 11 DW

insonifications and (d) the proposed approach for 1 DW insonification.
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Fig. 4: B-mode images of two in vivo carotids reconstructed with DAS for 9 PW insonifications ((a) and (c)) and with the

proposed approach for 1 PW insonification ((b) and (d)).
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Fig. 5: B-mode images of the in vivo carotids of the PICMUS dataset for 1 PW insonification reconstructed with DAS ((a)

and (c)) and with the proposed method ((b) and (d)).

approaches in terms of contrast. Regarding the resolution, the

method outperforms the other approaches.

The proposed method is lastly used to reconstruct in vivo

carotid images of the PICMUS dataset. The B-mode images,

displayed on Figures 5b and 5d show a significant improve-

ment compared to DAS, whose corresponding B-mode images

are displayed on Figures 5a and 5c, as already demonstrated

in Section VI-D. A visual comparison of Figures 5b and 5d

against images obtained with best state-of-the-art methods,

that one can find on the PICMUS website2, shows that the

2https://www.creatis.insa-lyon.fr/Challenge/IEEE IUS 2016/home

proposed method outperforms most of them in terms of visual

quality (in both contrast and resolution).

E. Computation times for sparse regularization

The computation times for the proposed sparse regular-

ization method (50 iterations of PDFB) are 119 ms, 164 ms

and 163 ms for the cyst phantom, the carotid displayed on

Figure 4b and the carotid displayed on Figure 4d respectively.

In the case of DW imaging, the point-reflector phantom

displayed on Figure 3d is reconstructed in 319 ms.

These timings are two to three orders of magnitude faster

than state-of-the-art methods. Indeed, in their latest work,

https://www.creatis.insa-lyon.fr/Challenge/IEEE_IUS_2016/home
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TABLE III: Comparison of the proposed algorithm against

state-of-the-art methods for sparse reconstruction on the sim-

ulated PICMUS dataset.

Method
Contrast ph. Resolution ph.
CNR [dB] Lat. res. [mm] Ax. res. [mm]

DAS 9.96 0.57 0.40
Besson et al. [23] 15.81 0.15 0.17

Deylami et al. [45] 17.19 0.08 0.24
Szasz et al. [24] 15.52 0.14 0.11

Varray et al. [44] 12.65 0.38 0.14
Proposed method 15.71 0.08 0.11

David et al. [46] reported computation times between 3 and

5 min. Szasz et al. [33] reported reconstruction times between

10 s and 1 min. The relative timings of the main operations

TABLE IV: Relative timings of the main operations involved

in the proposed method for the cyst phantom for PW imaging

and the point-reflector phantom for DW imaging.

Operation Plane wave (cyst.) Diverging wave (point ref.)
Hγ 22.1 % 32.9 %
H
⋆
m 22.5 % 11.7 %

Ψγ 24.9 % 25.5 %
Ψ

⋆
α 24.0 % 24.1 %

Others 6.5 % 5.8 %

involved in the image reconstruction process are reported in

Table IV. It can be observed that the timings are balanced

between the different operations. It can also be noticed that

the computation times of the operations Hγ and H
⋆m highly

depend on the relative size of the element-raw-data and desired

image grids. Indeed, the computation time of the operation Hγ

is relatively longer than the one of H⋆m in the DW case since

the image grid is larger than the element-raw-data grid. It is

not the case in the PW case where the two grids are the same.

VI. RESULTS: COMPRESSED BEAMFORMING

One issue in US imaging, when analog-to-digital conver-

sion (ADC) is carried out in the probe head, is the amount

of data that needs to be transferred from the probe to the

US system for each insonification. When ADC is carried

out in the main system, state-of-the art coaxial cables are

not able to embed more than few hundreds coaxial lines,

therefore limiting the connections to a few hundreds transducer

elements. For probes with a higher number of elements, such

as in matrix probes for 3D-imaging, time multiplexing is used

which may severely impact the frame rate and the range of

application. In this section, we explore how the CB framework

described in Section III-C could alleviate this bottleneck and

benefit the 3D-imaging case.

A. A deep dive into coherence

In order to study US image reconstruction in a CS per-

spective, the mutual coherence of the matrix HdΨ, defined

in Section III-C, is evaluated for different sampling strategies

and sparsifying bases Ψ. For computational purposes, only

32 transducer elements are simulated and 256 samples are

considered in the axial direction with corresponding depth

ranging between 5 mm and 11 mm. The measurement model

considered in the study is based on SPW imaging. The

coherence is calculated as the maximum non-diagonal value

of the Gram matrix of HdΨ [47]. Two different bases Ψ

are evaluated, namely the Dirac basis (Ψ is the identity) and

the Haar wavelet (Daubechies 1 wavelet) basis, since we are

interested in wavelet-based models. Our choice of wavelet

basis is limited to Haar wavelet since it is the only one that has

a corresponding matrix expression, making the computation of

the mutual coherence feasible. Four different sampling strate-

gies are compared: uniform selection of transducer elements,

random selection of transducer elements, CMIX and CTMIX.

Regarding CMIX and CTMIX, the matrix W is generated with

coefficients distributed according to normal and Rademacher

distributions. For CTMIX, the coherence is evaluated for

several values of Dt.

Figures 6a and 6b display the mutual coherence µ (HdΨ) for

a number of measurements ranging between 5 % and 100 %,

where Hd is square in the case of 100 %, with Ψ being Dirac

and Haar bases, respectively. It can be seen that the main

benefit of the CMIX and CTMIX strategies reside in their

ability to limit the increase of the coherence µ (HdΨ) induced

by the undersampling of the raw data. In addition, it can be

noticed that this effect is more pronounced for the Haar basis

than for the Dirac basis. A comparison between CMIX and

CTMIX shows that CTMIX has lower coherence than CMIX.

This is expected, since CTMIX provides a better mixing than

CMIX.

Regarding the impact of the probability distribution of the

random coefficients on µ (HdΨ), Figure 6c shows that there is

no significant difference in coherence between Gaussian and

Rademacher random coefficients.

Regarding CTMIX, Figure 6d displays the values of

µ (HdΨ) for the different values of Dt. It can be seen that

the mutual coherence decreases when Dt increases. Such a

result is consistent with the theoretical analysis carried out

in Section III-C2. For Dt ≥ 10, one may observe that the

coherence values are rather similar. A finer analysis of the

coherence for a number of measurements between 0.11 %

and 10 % may exhibit the differences in terms of coherence

between the values of Dt. However, such high number of

measurements are not considered in the current study.

B. Reconstruction of the point-reflector phantom

The B-mode images, displayed on Figure 7 for PW and DW

imaging, show that CB (50 iterations), coupled with CMIX,

leads to high-quality reconstruction of point sources even for

low numbers of measurements (less than 5 %) for both PW

and DW imaging. Two reasons may explain such a result.

First, point sources are very sparse, thus well suited to the CS

framework. In addition, the measurement matrices associated

with CMIX and CTMIX still have a sufficiently low mutual

coherence to ensure the perfect recovery condition stated in

Theorem 3.1 from [35].

Figure 8 illustrates the peak-signal-to-noise ratio (PSNR)

values, calculated on the normalized envelope image (normal-

ized means divided by its maximum value), of the different
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Fig. 6: Mutual coherence µ (HdΨ) against the number of measurements for (a) Dirac basis and (b) Haar basis for the uniform

selection of transducer elements, the random selection of transducer elements, CMIX and CTMIX (Dt = 10). Additionally, the

coherence is evaluated (c) for CMIX and CTMIX with mixing coefficients drawn using normal and Rademacher distributions

and (d) for CTMIX at different depths.

methods against the reference image, chosen to be the one

reconstructed with DAS without data compression.

It can be concluded that CMIX and CTMIX achieve high

quality reconstructions for all the considered number of mea-

surements. It can also be observed that, in the case of CMIX,

the PSNR drops for numbers of measurements lower than 5 %

while it remains constant for CTMIX at lower numbers of

measurements. Such results are in agreement with the results

on the mutual coherence described in Section VI-A.

Regarding the naive strategy where the undersampling cor-

responds to the selection of few transducer elements, it can be

seen that the PSNR remains high until 10 % measurements and

dramatically decreases for lower numbers of measurements.

Indeed, because the proposed undersampling strategy is highly

coherent, the number of measurements required for perfect

reconstruction is higher. Thus, the recovery condition stated

by Theorem 3.1 from [35] breaks down for higher numbers of

measurements than more incoherent strategies such as CMIX

and CTMIX.

C. Reconstruction of the anechoic phantom

The CNR values, summarized in Table V for a number of

measurements between 20 % and 50 %, show that CTMIX and

CMIX outperform existing strategies. It can also be noticed

that CMIX and CTMIX leads to similar results, except at 20 %

where CTMIX is superior to CMIX.

One may observe a dramatic decrease of the CNR for

20 % measurements. The same coherence argument as for

the point-reflector phantom may be used to explain such a

fact. Compared to the point-reflector-phantom, the decrease

appears at a noticeably higher number of measurement due

to the fact that the anechoic inclusion is less sparse than the

point-reflector phantom.

D. Reconstruction of the in vivo carotids

Figures 9b and 9d display the B-mode images of the in

vivo carotids obtained with CB (1000 iterations), with 20 %

measurements. Figures 9a and 9c display reference images,

reconstructed with DAS without data compression. One may

notice that textural areas such as carotid plaques and muscle

fibers, as well as anechoic areas, are well reconstructed with

TABLE V: CNR values in dB for the three undersampling

strategies considered and for different numbers of measure-

ments.

Method
Nb. of measurements

50 % 25 % 20 %

Uniform selection 8.81 6.03 0.57
CMIX 9.15 8.06 6.92

CTMIX 9.16 8.10 7.30

TABLE VI: Computation times [ms] of the compressed beam-

forming for the three compression strategies (25 % measure-

ments) and for the non-compressed case.

Comp. strategy
Images

cyst. carotid

Uniform selection 87 144
CMIX 130 180

CTMIX 212 260
No compression 119 164

CB. However, speckle areas, especially in the far-field, are

not well retrieved by the proposed approach, resulting in a

darkening of the deepest part of Figures 9b and 9d. This may

be explained by the same fact as for SR, i.e. that the wavelet-

based models do not preserve well the speckle information,

which is thus suppressed during the image reconstruction pro-

cess. It can also be noticed that the number of measurements

is higher than in the case of the point-reflector phantom. This

is directly linked to differences of the image under scrutiny in

terms of sparsity.

Figure 10 displays the PSNR values for different numbers

of measurements, ranging between 14 % and 50 %. One may

observe the same behaviour as for the point-reflector phan-

tom. CB achieves a high quality reconstruction even for low

numbers of measurements, allowing a drastic reduction in the

required number of measurements, for each insonification.

E. Computation times for compressed beamforming

The computation times for the compressed beamforming (50

iterations of PDFB, 25 % measurements) are summarized in

Table VI. The proposed methods, as for the sparse regulariza-

tion for image enhancement method described in Section III-B,

are three orders of magnitude faster than existing compressed

beamforming methods [10]. Regarding the timing of the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

-10 10

Lateral position [mm]

10

15

20

25

30

35

40

D
e

p
th

 [
m

m
]

-40 dB

-30 dB

-20 dB

-10 dB

0 dB

(a)

-10 10

Lateral position [mm]

10

15

20

25

30

35

40

D
e
p

th
 [

m
m

]

-40 dB

-30 dB

-20 dB

-10 dB

0 dB

(b)

-10 10

Lateral position [mm]

10

15

20

25

30

35

40

D
e
p

th
 [

m
m

]

-40 dB

-30 dB

-20 dB

-10 dB

0 dB

(c)

-50 -30 -10 10 30 50

Lateral position [mm]

10

20

30

40

50

60

70

80

D
e

p
th

 [
m

m
]

-40 dB

-30 dB

-20 dB

-10 dB

0 dB

(d)

Fig. 7: B-mode images of the point-reflector phantom for 1 PW insonification ((a) and (b)) and 1 DW insonification ((c)

and (d)) reconstructed with DAS ((a) and (c)) and with compressed beamforming coupled with CMIX strategy with 4 %

measurements ((b) and (d)).
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Fig. 8: PSNR against the number of measurements for the

point-reflector phantom insonified with 1 PW for CTMIX,

CMIX and the uniform selection of transducer elements.

different strategies, the fastest one is the uniform selection.

This makes sense since no additional matrix multiplication is

achieved. Regarding CMIX and CTMIX, the multiplication

with the random matrix leads to a significant increase of

the computation times, which are higher than in the non-

compressed case, as shown on Table VI. In addition, the

compressed beamforming method coupled with CMIX and

CTMIX is no longer matrix-free since the random matrices

have to be stored in memory. Thus, the CMIX and CTMIX

strategies may be of interest if they come with a simplifica-

tion of the hardware, at the cost of a more computationally

demanding reconstruction. These points will be discussed in

Section VII-B.

VII. DISCUSSION

A. Towards real-time sparse regularization for enhanced im-

age reconstruction

In this work, we have leveraged the problem of memory

footprint, which is one of the most challenging aspects in US

image reconstruction by SR, as stated in the previous works

mentioned in Section I. We have shown that, by exploiting

the high parallelization potential of the measurement model, its

adjoint and by using fast wavelet transforms [48], the proposed

method may achieve image reconstruction two to three orders

of magnitude faster than state-of-the-art SR approaches, with

minimal memory requirements. This paves the way to the

extension of SR to 3D- imaging, which has not been possible

with state-of-the-art methods due to the problem of matrix

coefficients storage.

However, the computation times presented in the study are

not compatible with real-time imaging yet, mainly due to

the computational complexity of the proposed model. The

computations time reported in the proposed work are based

on a non optimized-code. Thus, one way to accelerate the

proposed method consists in optimizing the implementation of

the forward model and the adjoint, especially by minimizing

the data transfer between the CPU and the GPU. In addition,

with the explosion of the computational power of GPUs in the

last years, it can be expected that the computation times may

be one order of magnitude lower with the next generation of

GPUs. Another way towards real-time applications is to lower

the number of iterations necessary to reach a given image

quality. This can be performed by a better tuning of the hyper-

parameters. One recent trend is to consider the use of deep-

neural networks in order to tune the hyper-parameters based

on a training set. This technique has given very promising

results on 1D-signals [49].

The advantage of having a real-time SR is twofold. Firstly,

it provides an image enhancement technique, especially for the

detection of anechoic area. Secondly, it allows for a reduction

of the number of insonifications necessary to reach a given

image quality, which is crucial in US imaging application

where power supply and power dissipation are problematic,

e.g. in portable systems.

B. Towards compressed sensing in ultrasound imaging

In the proposed work, we suggest innovative sampling

schemes for US imaging and thus go one step further to-

wards CS in US image reconstruction. Indeed, CMIX and

CTMIX strategies outperform existing compression strategies,

mainly based on selection of transducer elements, in terms

of image quality, as demonstrated in Section VI. However,

we face one major obstacle which is the high coherence

of the measurement operator. CMIX and CTMIX strategies

manage to maintain the coherence constant when the number

of measurements is decreased, but the coherence remains high

relative to the corresponding Welch bound, because of the
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Fig. 9: B-mode images of the in vivo carotids for 1 PW insonification reconstructed with DAS ((a) and (c)) and with the

compressed beamforming ((b) and (d)) coupled with the CMIX strategy and 20 % measurements.
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Fig. 10: PSNR against the number of measurements for the in

vivo carotid insonified with 1 PW and sampled for CTMIX,

CMIX and the uniform selection of transducer elements.

coherence intrinsic to the measurement model. Indeed, the

high mutual coherence of the measurement model comes from

the fact that each projection onto a 1D-conic, implied by the

time-of-flight calculations, involves only a few points in the

desired-image space. The natural question that one may ask is

whether it is possible to change the nature of the projections in

order to involve more points. In fact, this is a relatively difficult

task since projections are a consequence of the expression for

the round-trip time-of-flight of US waves in a homogeneous

medium. This observation has a deep impact on the design of

CS acquisition schemes. Indeed, it means that the attempts to

decrease the coherence of the measurement model by playing

with random pulses sent in transmit is hopeless, because this

does not change the expression for the time-of-flight, and thus

the fact that echo-samples stem from projections onto 1D-

conics.

One solution to this issue may reside in dealing with the

coherent operator, by exploring a recent topic on CS, de-

noted “constrained adaptive sensing”, which derives sampling

theorems and variants of Theorem 3.1 from [35] where the

measurement matrix is more constrained than in standard

CS [50].

Another alternative could be to entirely rethink the mea-

surement process, starting from the requirements of Theorem

3.1 from [35]. Let us consider that we are in a case where the

matrix H is random, which is compatible with the requirements

of Theorem 3.1 from [35]. In terms of acoustic propagation,

a random measurement model implies that each sample of

the element raw-data receives contributions from points spread

over the entire image space. In other words, it means that the

duality between time and depth, which is at the heart of US

imaging, is not valid anymore since echoes from points at

different positions reach the transducer elements at the same

time. Thus, a random measurement model H is unfeasible, in

pulse-echo imaging in a homogeneous medium, due to the

fact that US waves respect the Helmholtz equation. One way

to address such an issue resides in placing a scattering or

heterogeneous medium in front of the US probe. This principle

has been recently developed in optics and gives promising

results [51]. However, such a new design raises many questions

regarding the choice and the modelling of the heterogeneous

medium. It can be easily understood that such a medium may

not generate a purely random matrix but will be somewhere in-

between a purely random case and the highly coherent case of

the homogeneous medium. This topic is currently under study

and will be the object of further reports or communications.

C. Limitations of sparsity-driven image reconstruction meth-

ods in ultrafast ultrasound imaging

1) The sparsity prior: The first limitation inherent to it-

erative methods lies in the regularization term. Indeed, the

prior knowledge on the signal under scrutiny, especially when

it comes to imaging living bodies, cannot cover all the cases

that one may encounter. Taking that into account, two solutions

may be considered.

The first one consists in using analytical models, such as

wavelet-based models, which perform well on a wide range

of images. This approach is the one we used in this study as

well as in our previous work [14]. However, even if wavelet-

based models achieve good performance, they tend to decrease

the speckle density compared to DAS.

The other alternative consists in using dictionaries, learned

on the data by means of dictionary learning algorithms. This

has been recently applied to US image reconstruction [21].

At first sight, such a technique appears to be particularly well

suited to US imaging. Indeed, US probes are, most of the

time, dedicated to one specific application and work at a given

frequency. This allows to restrict the size of the training set

and facilitates the learning procedure. However, such types
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of prior suffer from two major drawbacks. The first one is

the risk of overfitting. Indeed, it is a hard task to build a

training set of US images whose quality depends on an infinite

variety of parameters such as the positioning of the probe, the

patient anatomy, etc. In addition, having a sparse prior in a

dictionary prevents using fast transforms, which makes its use

more difficult in a real-time environment.

2) Sensitivity to the hyper-parameters and data depen-

dency: The efficiency of iterative methods, compared to

analytical approaches, depends on the data that one may

want to reconstruct because of the sparsity prior and the

hyper-parameters intrinsic to the optimization algorithm. In

this work, as well as in previous studies [10], [14], [33],

it is firstly shown that SR methods perform well on sparse

sources, which make them attractive for harmonic imaging

of microbubbles. This can be easily explained by the fact

that point sources are very sparse. Secondly, SR methods are

efficient for reconstructing images made of structured fibers

and anechoic areas such as large vessels, heart cavities, etc.

Indeed, such methods manage to remove the noise present in

anechoic areas which tends to reinforce the relative intensity

of the structured parts. However, these methods struggle when

it comes to imaging hyperechoic area. They put too much

emphasis on the hyperechoic part to the detriment of the

background as described in our previous work [14].

Regarding CB, we observe that, when mixing element

raw-data arising from a hyperechoic region embedded in

a less echogeneous background, the high intensities of the

hyperechoic region tend to interfere with the lower intensity

regions, which makes the resolution of the inverse problem

very difficult. We also notice that CB is even more sensitive

to the sparsity prior and the hyper-parameters than the SR

approach used for enhanced image reconstruction, when a

mixing is performed. This can be explained by the fact that the

inverse problem involving the mixing is more difficult to solve

than the one posed by SR for enhanced image reconstruction.

One solution to the problem of the hyper-parameters may be

to investigate deep-learning approaches, which have been suc-

cessfully used to solve sparse-coding problems [52], [49]. The

idea consists in mapping one iteration of a convex optimization

to one layer of a deep neural network (DNN). The hyper-

parameters as well as the non-linearities are learned during the

training process of the DNN. The resulting DNN has shown

promising results in terms of number of iterations required

for convergence and reconstruction quality and is currently

under study for the proposed problem. Another solution may

consist in investigating in depth the noise induced by the

proposed model. While the noise implied by the choice of the

proposed model seems to be difficult to quantify, the noised

induced by the discretization of the proposed model, i.e. by the

interpolation of the continuous integral onto the discrete grid

may be studied in depth, in order to identify a lower bound

for ǫ.

VIII. CONCLUSION

The proposed work presents novel parametric, fast and

matrix-free formulations of the measurement model and its

adjoint in the context of ultrafast ultrasound imaging. These

formulations are included in a sparse regularization framework

which is used to achieve high-quality imaging three orders

of magnitude faster than existing methods. By exploiting a

sparsity prior of ultrasound images in a model made of a

concatenation of wavelets, it outperforms both the delay-and-

sum algorithm and the best existing methods, as demonstrated

on simulation and in vivo experiments. In addition, new under-

sampling strategies, more suited to compressed sensing than

previous ones, are suggested and high quality reconstruction

with a low number of measurements are demonstrated. By

coupling fast measurement operators suitable for GPU im-

plementation with efficient regularization methods, this work

paves the way for enhanced ultrafast ultrasound imaging in

both 2D and 3D. It also explores, questions and suggests

new concepts for the application of CS to ultrasound image

reconstruction, based on its fundamental principles.
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APPENDIX A: DERIVATION OF THE PARAMETRIC

EQUATIONS FOR A STEERED PLANE WAVE AND A

DIVERGING WAVE

Let us remind the forward problem defined in Equation (8):

h (xt, t) =

∫

r∈Γ(xt,t)

od (r, xt) γ (r)

| ∇rg | dσ (r) , (28)

in which g (r, xt, t) = t−tTx (r)−tRx (r, xt), and Γ (xt, t) =
{r ∈ Ω | g (r, xt, t) = 0}.

A. Steered plane waves

Let us consider a SPW with angle θ. As shown by Mon-

taldo et al. [41], the propagation delay in transmit can be

written as:

tTx (x, z) =
x− x⋆

t

c
sin θ +

z

c
cos θ, (29)

where x⋆
t is the position of the transducer element which emits

first.
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According to Equation (29), the following equivalence

holds:

r = [x, z]
T ∈ Γ (xt, t)

⇔
√

(x− xt)
2
+ z2 + (x− x⋆

t ) sin θ + z cos θ = ct

⇔ (ct− (x− x⋆
t ) sin θ − z cos θ)

2 − (x− xt)
2 − z2 = 0

⇔ Az2 +Bz + C = 0

⇔ z =
−B ±

√
∆

2A
. (30)

where ∆ = B2 − 4AC and A, B and C are defined by:






A = − sin2 θ,
B = 2 (x− x⋆

t ) cos θ sin θ − 2ct cos θ,

C = (ct− (x− x⋆
t ) sin θ)

2 − (x− xt)
2
.

(31)

In the specific case where A = 0, i.e. in the case where

θ = 0, the parametric equation can be directly expressed as:

z (x, xt, t) =
1

2ct

(

(ct)2 − (x− xt)
2
)

. (32)

B. Diverging waves

Let us consider a DW with a virtual point source located

at [xn, zn]
T

. As demonstrated by Papadacci et al. [42], the

propagation delay in transmit can be written as:

tTx (x, z) =

√

(x− xn)
2
+ (z − zn)

2 − d0, (33)

where d0 = min
xt

√

(xn − xt)
2
+ z2n.

According to Equation (33), the following equivalence

holds:

r = [x, z]
T ∈ Γ (xt, t)

⇔ 4
(

(x− xn)
2
+ (z − zn)

2
)(

(x− xt)
2
+ z2

)

=
(

(ct+ d0)
2 − (x− xn)

2 − (z − zn)
2 − (x− xt)

2 − z2
)2

⇔ (A+ z)
2
= B

⇔ z = −A±
√
B, (34)

where

A =
−zn
2

(

1 +
(xt − x)

2 − (xn − x)
2

(d0 + ct)
2 − z2n

)

, (35)

and

B =
(d0 + ct)

2

4
(

z2n − (d0 + ct)
2
)2

(

(xt − xn)
2
+ z2n − (d0 + ct)

2
)

(

(xt + xn)
2
+ z2n − (d0 + ct)

2 − 4x (xt + xn − x)
)

. (36)

APPENDIX B: DETAILED MATRIX-FREE FORMULATIONS OF

THE MEASUREMENT MODEL AND ITS ADJOINT

A. Measurement model

Let us remind Equation (9):

h (xt, t) =

∫

x∈R

od (x, z (x, xt, t) , xt)

| ∇(x,z(x,xt,t))g |

γ (x, z (x, xt, t)) | Jz (x) | dx. (37)

If we consider the image grid defined in Section II-A and

the interpolating kernel ϕ : R → R, then, according to [53],

γ (x, z (x, xt, t)) can be expressed as:

γ (x, z (x, xt, t)) =

Nz
∑

q=1

ϕ (zq − z (x, xt, t)) γ (x, z
q)

+ νϕ (z (x, xt, t) , z) , (38)

where νϕ (z (x, xt, t) , z) ∈ R accounts for the interpolation

error. The discretization of Equation (9) leads to the following

formulation:

h (xt, t) =

Nx
∑

n=1

od (x
n, z (xn, xt, t) , xt) | Jz (xn) |

| ∇(xn,z(xn,xt,t))g |
Nz
∑

q=1

ϕ (zq − z (xn, xt, t)) γ (x
n, zq)

+ νϕ (z (xn, xt, t) , z
q) . (39)

To end up with the complete formulation of the measure-

ment model, we deduce from Equation (7) that m (xt, t) =
(h (xt) ∗t vpe) (t), where ∗t denotes the 1D-discrete convolu-

tion, which can be easily implemented “on-the-fly”.

Thus, the element-raw data are related to the TRF samples

by the following operator:

H (γ, xt, t) = ν′ϕ (xt, t) +

Nt
∑

l=1

vpe
(

t− tl
)

Nx
∑

n=1

od
(

xn, z
(

xn, xt, t
l
)

, xt

)

| Jz (xn) |
| ∇(xn,z(xn,xt,tl))g |

Nz
∑

q=1

ϕ
(

zq − z
(

xn, xt, t
l
))

γ (xn, zq) , (40)

which can be computed “on-the-fly” and in parallel for each

point of the element-raw-data grid and in which ν′ϕ (xt, t) is

the overall error defined by:

ν′ϕ (xt, t) =

Nt
∑

l=1

vpe
(

t− tl
)

Nx,Nz
∑

n=1,q=1

od(xn,z(xn,xt,t
l),xt)|Jz(x

n)|

|∇(xn,z(xn,xt,t
l))g|

νϕ
(

z
(

xn, xt, t
l
)

, zq
)

.

(41)

Thus, by evaluating Equation (40) for each point (xj
t , t

l) of

the element-raw-data grid, the following relationship holds:

m
(

xj
t , t

l
)

= H
(

γ, xj
t , t

l
)

+ ν′ϕ

(

xj
t , t

l
)

, (42)

which defines Equation (10) by taking into account the other

sources of noise (model and measure).
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B. Adjoint operator of the measurement model

The adjoint operator of the measurement model is defined

in Equation (11) as:

γ̂ (r) =

∫

xt∈Ξ

od (r, xt)

(m (xt) ∗t u) (tTx (r) + tRx (r, xt)) dxt. (43)

If we set t (r, xt) = tTx (r) + tRx (r, xt), we consider the

element-raw data grid defined in Section II-A and the inter-

polating kernel ϕ : R → R, then, similarly to Equation (38),

m (xt, t (r, xt)) can be expressed as:

m (xt, t (r, xt)) =

Nt
∑

l=1

ϕ
(

t (r, xt)− tl
)

m
(

xt, t
l
)

+ ξϕ (t (r, xt) , t) , (44)

where ξϕ (t (r, xt) , t) ∈ R accounts for the interpolation error.

The discretization of Equation (11) leads to the following

formulation:

H⋆ (m, r) = ξ′ϕ (r) +

Nt
∑

l=1

u
(

tl
)

Nel
∑

j=1

od

(

r, xj
t

)

Nt
∑

s=1

ϕ
(

t
(

r, xj
t

)

− tl − ts
)

m
(

xj
t , t

s
)

, (45)

which can be computed “on-the-fly” and in parallel for

each point of the image grid and in which ξ′ϕ (r) =
Nt,Nel,Nt
∑

l=1,j=1,s=1

u
(

tl
)

od

(

r, xj
t

)

ξϕ

(

t
(

r, xj
t

)

− tl, ts
)

.

Thus, by evaluating Equation (45) for each point (xn, zq)
of the image grid, the following relationship holds:

γ (xn, zq) = H⋆ (m, xn, zq) + ξ′ϕ (xn, zq) , (46)

which defines Equation (12) by taking into account the other

sources of noise (model and measure).

APPENDIX C: ADJOINT OPERATOR OF THE CONTINUOUS

MEASUREMENT MODEL

The continuous measurement model, defined in Equa-

tion (2), can be written as:

m (xt, t) = T {γ} (xt, t) , (47)

where L2 (Ω) designates the space of square integrable func-

tions with values in Ω and T : L2 (Ω) → L2 (Ξ× R) is a

functional described by:

T {γ} (xt, t) =

∫

r∈Ω

γ (r) od (r, xt)

vpe (t− tTx (r)− tRx (r, xt)) dr. (48)

In order to define the adjoint of the operator T , let us

introduce a function n ∈ L2 (Ξ× R). The inner product

between T {γ} and n can be written as:

< T {γ} , n >=

∫∫

xt∈Ξ,t∈R

T {γ} (xt, t)n (xt, t) dxtdt, (49)

which can be expressed as:

< T {γ} , n >=

∫∫

r∈Ω,xt∈Ξ

γ (r) od (r, xt)

∫

t∈R

n (xt, t) vpe (t− tTx (r)− tRx (r, xt)) dxtdtdr. (50)

Let us now focus on the integral over the variable t which can

be formulated as:
∫

t∈R

n (xt, t) vpe (t− tTx (r)− tRx (r, xt)) dxtdt

=

∫

t∈R

n (xt, t)u (tTx (r) + tRx (r, xt)− t) dxtdt

= (n (xt) ∗t u) (tTx (r) + tRx (r, xt)) , (51)

where u (t) = vpe (−t) is the matched filter of the pulse-echo

waveform.

This leads to the following expression for the inner product:

< T {γ} , n >=

∫

r∈Ω

γ (r)

∫

xt∈Ξ

od (r, xt)

(n (xt) ∗t u) (tTx (r) + tRx (r, xt)) dxtdr. (52)

Let us define the operator T ⋆ from Equation (52) as:

T ⋆ {n} (r) =
∫

xt∈Ξ

od (r, xt)

(n (xt) ∗t u) (tTx (r) + tRx (r, xt)) dxt. (53)

Introducing T ⋆ in Equation (52) leads us to the following

equality:

< T {γ} , n >=< γ, T ⋆ {n} >, (54)

which defines the adjoint operator of T .

APPENDIX D: PRIMAL-DUAL-FORWARD-BACKWARD

ALGORITHM

The general problem we solve, which can be seen as an

instance of Problem (12) of [34], is the following one:

min
x∈CN

f1 (x) + f2 (Φx− y) , (55)

given the assumption that f1 : CN → R and f2 : CM → R

are lower semicontinuous convex functions.

The key mathematical tool used in PDFB is the proximity

operator of a convex function defined as:

proxf (x) = arg min
z∈CM

f (z) +
1

2
‖z − x‖22. (56)

In the proposed ℓ1-minimization problem f1(x) = ‖Ψ†x‖1
and f2(x) = iB(x), where iB is the indicator function of the

convex set B defined as B = {x ∈ C
M |‖x‖2 ≤ ǫ}.
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The general structure of the algorithm is detailed in Al-

gorithm 1. It involves two non-linear operations, the soft-

thresholding denoted as soft (x;λ) and defined for each ele-

ment xi of the vector x as sign (xi)max (|xi| − λ, 0), and the

projection on the ℓ2-ball of radius ǫ denoted as projB (x) =
xmin (ǫ/‖x‖2, 1). The parameters σ1 = 1, σ2 = 1/L, where

L is the spectral norm of the matrix Φ, and τ = 0.5 are step

sizes, and γ > 0 is a thresholding constant that controls the

convergence speed.

Algorithm 1 PDFB algorithm

Require: t = 0, choose x0, r01 , v0
1 , r02 , v0

2 , γ, σ1, σ2 and τ .

repeat

x(t+1) = x(t) − τ
(

σ1Ψv
(t)
1 + σ2Φ

Tv
(t)
2

)

; ⊲ Primal

variable update

r
(t+1)
1 = v

(t)
1 + (2ΨTx(t+1) − r

(t)
1 );

v
(t+1)
1 = r

(t+1)
1 − soft

(

r
(t+1)
1 ; γ

)

; ⊲ First dual

variable update

r
(t+1)
2 = v

(t)
2 + (2Φx(t+1) − r

(t)
2 );

v
(t+1)
2 = r

(t+1)
2 − y − projB

(

r
(t+1)
2 − y

)

; ⊲ Second

dual variable update

until A stopping criterion is met
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