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ULTRAFILTERS AND INDEPENDENT SETSÍ1)
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KENNETH KUNEN(2)

ABSTRACT.      Independent families of sets and of functions are used to

prove some theorems about ultrafilters.   All of our results are well known to be

provable from some form of the generalized continuum hypothesis, but had

remained open without such an assumption.   Independent sets are used to show

that the Rudin-Keisler ordering on ultrafilters is nonlinear.   Independent

functions are used to prove the existence of good ultrafilters.

1.   General notation.   If A and B are sets,  B     is the set of functions from

A into B,  j(A) is the set of subsets of A, and S J.A) is the set of finite

subsets of A.

We identify cardinals with initial von Neumann ordinals.   We use  zf and  77

to range over ordinals, and  k to range over infinite cardinals.    \A\  is the

cardinality of A.   If  \A\ = k, 2k = \jÍA)\.   k    is the first cardinal bigger than k.

tf + l  is the first ordinal bigger than  <f.   o> =  Kn is the first infinite ordinal and

the first infinite cardinal and the set of nonnegative integers.

A filter over an infinite set  A is a nonempty subset J",  of 7il),  such that

J   is closed under finite intersections and supersets.   J (A) is the improper filter

over A; other filters are called proper filters.   An ultrafilter is a maximal proper

filter.   An ultrafilter,  il,  over A,  is uniform   iff \A\ = \l\  for all  A £ ll.

If S Ç 9il), (((î))/ is the filter generated by Q,  i.e.

(«?)), = Hi?: C? Ç J Ç ?(/) & J  is a filter!.

The generalized Frêchet filter, ?$,,  is  {X Ç A: |A ~ X| < |/|!.   Thus, an ultra-

filter   U over  A is uniform iff JA¡ C   ll.   The subscripts   A will be dropped from

the notations  ((Cl)^ and JÄ{ when  A is understood.

2.   Nonlinearity of the Rudin-Keisler ordering.   If A is any infinite set,  ßl

denotes the set of ultrafilters over  A.    If /: A —» /,  /„,  or ßf is the function
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from ßl into ß] defined by

/*CU) = (j8/)CU) = {y Ç J: f~l(Y) eU!.

Thus, if we identify U with a  2-valued measure on  7,  /„.(U) is the induced

measure on  /  in the usual measure-theoretic sense.   Note that if /: / —» /  and

g: ] —> K,  then

ßig0f) = ißg)o(ßf):ßl^ßK.

We remark on some relationships between ultrafilters and topology, although

these remarks are not needed for this paper.   We can consider ßl to be a

topological space by identifying it with the Stone space of the Boolean algebra

jil),  or,  equivalently, with the Cech compactification of the space  7 with the

discrete topology,   ß  is then a covariant function from the category of sets and

maps to the category of compact topological spaces and continuous maps.

The ordering  ^   on ultrafilters was defined independently by M. E. Rudin

and H. J. Keisler as follows:   If 11 e ßl and  Ö £ ß], il <   Ö iff there is a

function /: /—* I such that   U = /„.U.   It is easy to check that -K   is transitive.

So, if we define   ll ^ U  iff both   11^(5 and  U ^ II,  then ^  is an equivalence

relation.   That ~  is a reasonable notion of equivalence is indicated by

2 .1. Theorem.   Let M £ ßl,  ö £ ßj.

(a) ll ^ ü  iff there are X e 11,   Y £ Ö,   and f: I -> /  such that Ö = /+ll  aTza"

/ restricted to X is   1-1   072/0  Y.

(b) If U % Ö and \l\ = |/|,  there is an f: I —» /  smcTt /¿a/ / z's   1-1   and

onto,  0 = ̂ 11,  WtUi./"1)^.

This theorem is proved by an easy modification of methods in M. E. Rudin

[7], to which we refer the reader for more details on ^ and other orderings of

ultrafilters.

It is reasonable to confine one's study to uniform ultrafilters. Indeed, if

ll £ ßl is not uniform let / C 7 be an element of ll of least cardinality. Then

ll is equivalent under ^ to the uniform ultrafilter ll O j(j) £ ßj.

Let ß  I he the set of uniform ultrafilters over  7.   ß I is a closed subspace

of ßl and may be identified with the Stone space of the Boolean algebra  ÍP(7)/3"ÍR.

The main result of this section is that j<   restricted to ß  I is not linear, i.e.

2.2. Theorem.   If I is infinite, there are ll, Ö £ ß  I such that ll ;£ Ö and

Ö $. II.

Before proving this theorem, we interject some technical remarks.   If   |/| = k

and  2    = k  , Theorem 2.2 is established by a trivial transfinite induction (see

below).   In fact, it is well known that in this case there is a family of  22
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noncomparable minimal elements in ß il).   However, the assumption here that

2K = k    cannot be omitted, since, for example, one cannot prove, without the

continuum hypothesis, that any minimal elements exist for countable  A (there are

none in the model obtained by adjoining   X,  random reals to a model of set

theory plus the continuum hypothesis).

When  / is countable,  ß  I is the same as  ßl - I (the space of nonprincipal

ultrafilters over  I).   For any  A,  ultrafilters minimal in ßl - I ate known as

selective, or Ramsey ultrafilters.   Such ultrafilters are very rare.   Not only need

they not exist for countable A, but, if  \l\ = k>  H   , they exist iff  k is a measurable

cardinal; in this case, the selective ultrafilters are exactly those equivalent to

normal ultrafilters on  k,  and the statement that there are nonequivalent selective

ultrafilters is both consistent with (see   [6, §2]) and independent from  (see   [5,

§6]) the axioms of set theory.

Now, to prove Theorem 2.2, we must construct   11, (J in ß  I such that, for

every function f: I —► A,  Ö / f/U and ll / /*ö,  so we must have, for every such /,

(*) 3Xe'll[(/~/-1(X))eö] & 3Y eöt(/~ fHr)) el!].

Say   |A| = K.   The construction will be carried out by transfinite induction over the

ordinals  r¡ < 2  .   Thus, we shall construct an increasing sequence of filters

3L,  *§v   (q < 2K) and take U, Ö to be ultrafilters extending   Uf^  1 < 2K\,

U c3v'- 1 < 2K\, respectively.   Fix an enumeration /    it] < 2K) of all the functions

from  A into  A.   At the  77th  stage in the construction, we shall insure that  ( )

holds for the function /   .   More precisely, we do our construction so that the

following hold:

(i)   For each   77 < 2K, ?     and §     are filters over  A.

(ii)   For if < 77 < 2K, j\ Ç Ï     and §, Ç §

(iii) y0 = g0 = y».

(iv)   If  77 is a limit ordinal,  ?    = U ,3^ : rf < 77S and g    = Uíg^ f < r¡\.

(v) 3xe!F77+1[(A-/-Hx))e§T?+1]& 3Y£§vJ(,-f;HY))£?v+1l

Conditions (i)—(iv) present no problem, but (v) may become impossible at

some stage  77.   For example, if  77  is a limit ordinal, the construction before

stage  77 determines what J"     and g     must be,  and it might happen that they are

already ultrafilters and that J     = /*(§).   In the special case that  2K = k + ,

we could always arrange for J"     and §     to be generated by no more than  k sets,

and a simple diagonal argument would show that the construction could be carried

out at each stage.   In the general case, we enlist the aid of the concept of

independent sets.

2.3. Definition.  A family Se 9il) is independent iff, for each n and  m,

whenever Xj, ■ • • , Xn, Yy, • • ■ , Ym  ate distinct elements of S,
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x.n.-.rxx   n(/~ y)n ... n(/~ Y )¿0.
l ri l m

The following theorem was proved first by Fichtenholz and Kantorovitch

[3, esp. p. 80]   for  |/|  equal   K0 or 2     , and then, for all / and by a much

easier proof, by Hausdorff  [4].   In the next section we shall prove a more general

result, due to Engelking and Kar/owicz [2J.

2.4. Theorem (Fichtenholz-Kantorovitch, Hausdorff).  For any infinite  I,   if

\l\ = K, then there is an independent family h C fil) such that   |o| = 2   .

As a generalization of the notion of independence,

2.5. Definition.  If S C_ j(l) and J  is a filter over /, ü is independent

(mod J ) iff, whenever X .,■•■, X  ,  Y,, • • • , Y     ate distinct elements of 0,

(/~ x,)u... U (7- X )u y, U ..-U Y   ¿J.
1 TZ 1 777

Thus,  ö  is independent iff o is independent    (mod \l\).     Note that if o is

independent  (mod   J") and o / 0,  then j   is a proper filter and not an ultrafilter.

Also, if *>  is independent  (mod j) and  il C o,  then o ~ (l is independent

(mod ((J U Cl))).     Furthermore, the ö of Theorem 2 .4 can be taken to be indepen-

dent (mod jJ\).   To see this, let g: I —► 7 be such that  \g~  (¡z!)| = k fot each

i £ I.   Then if S satisfies Theorem 2.4, let o   = íg-1(X) : X £ í>\.   &    has

cardinality  2K and is independent (mod J"5\).

In order to prove Theorem 2.2, we keep a large family of sets, 0   ,  indepen-

dent (mod J    ) and  (mod §_).   Thus, in addition to (i)—(v),  we arrange for the

following:

(vi)   For each 7/ < 2K, o     is independent (mod 3"   ) and independent

(mod wL

(vii)   For ^<7/<2K, S? 2&v-

(viii)   |S„ I = 2K for each  77 < 2K.

(ix)  If 77 is a limit ordinal, S    =   fl jo, : <f < rj\.

(x)   Each S    ~ S is finite.

Note that (viii) will be assured by (ix) and (x), provided that we have

|on| = 2  ;   but this is possible by Theorem 2.4.   The inductive definition is

carried out at successor stages by applying Lemma 2.6 twice.

2.6. Lemma.   Let H, K.  be filters over I.    Let J   be infinite and independent

(mod H) and (mod K).   Let /:/—»/.    Then there are filters K'  ¡) H, K' ¡> K,

and a family J' C 3"   such that 'S'   is independent (mod H' ) and (mod  K' ),

J ~ J'   zs /¿«¿/e, and, for some  B £ K' ,  (/ ~ / ~ l(B)) £ K' .

Proof.  Fix A e J.

Case I. J ~ {A I is independent (mod ((K U {i~ /_1(A)!))).     Take J' =

3"-|A¡, K' =((Ku í/-/-1^)!)), H' =((Ku|AD), and B = A.
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Case II. Not Case I.   Then there are distinct Xj, • • • , X^, Fj, •••, y^  in

J ~ \A\ and   K £ K  such that

(/~ X.)u ... u(/~x ) uy. U ••• U Y    ^KnO^f   L(A)).
1 77 1 777   —

Hence,

x.n...nx  n (j~ y.)n ... n(/~ y )nxc/~1(A),
1 n L 77? —  J

soif we take K' =((Ku ÍX^ . . • , X^, A - Vj ,•••,/- Yj)), then /-/-1(A-A) =

/-HA) eK'. Thus, we can take K' = ((K U |/~ A})), 3"' =3*^M, Xj, . -.. , X^,

i~ y., •••, /~ Ym\, and B = / ~ A.

Lemma 2.6 concludes the proof of Theorem 2.2.   By a similar argument, one

can show

2.7. Theorem.   If \l\ = k >_ XQ,   there is a family of   2K elements of ß^l

which are pairwise incomparable under ^ .

As another application of independent sets, we now prove

2.8. Theorem.(3) If  |/| = k >   XQ,   there is a U £ ßj such that ll  is not

generated by any subset of itself of cardinality less than 2  .

Proof.   Let S have cardinality  2K and be independent (mod jS\).   Let ë  be

the set of sets of the form  A ~ I I {A    : n e co\, where the  A     ate distinct
77 77

elements of S.   Let ll be any ultrafilter such that 3"iR   U ë U S C ll.

Remarks.  No ll e ß  I can be generated by less than  K    elements of U.   In

the case   |/| =  Xn,  it is consistent with the axioms of set theory that  2       >   K}

and that there is a  II e ß  I generated by   X.   elements of   11.   Thus   11  can in

fact be selective (such a U exists, for example, in the model obtained by adding

X 7  mutually Sacks-generic reals to a model of set theory plus the continuum

hypothesis).   It is also easy to check that in the standard Cohen model violating

GCH  at a regular k, no 11 e ß k can be generated by less than  2K elements

of U.

3.   The existence of good ultrafilters.  If p: S (/) —> fil),  p is  multiplicative

iff whenever s, t e Sjll),  pis \j t) = pis) n pit);  p is monotone iff whenever

s C  t e S ¿I),  pis) 2 pit).   If p, q: S Jl) -»?(/),  p < q iff, for all 5 e Sjl),

pis) Ç qis).

3.1. Definition (Keisler). U in ßl is good iff whenever   p: S il) —» ll is

(3)   Added in proof.   It has come to our attention that Theorem 2.8 was first proved by

B. Pospisil (Publ. Fac. Sei. Univ. Masaryk, 1939, no. 270) by a topological argument.   For

more on this type of topological question, see the paper of I. Juhász in Comment. Math.

Univ. Carolinae 8 (1967), 231-247 (MR 35 #7300).   Also, the same combinatorial proof

presented here was discovered earlier by Juhász and Hajnal (unpublished).
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monotone, there is a multiplicative  a: S  (/) —> 11  such that a < 77.

Also, Keisler proved the following theorem under the assumption that

2K = k+ (see [l] for details).

3.2. Theorem.  If  \l\ = k >   K„,  there is a good, countably incomplete

ultrafilter over I.

We now present a proof which does not assume   2    = k .   Our proof uses the

notion of an independent family of functions.

3.3. Definition.  If 0 C_ 7    and J"  is a filter over  7,  û is independent (mod  J")

iff, whenever  7,, ■ • • , /    are distinct members of o and  z',, • • • , z    £ I,

/-!;:/! (7) = z-1&...&/„(/)=znJ^3:.

ö is independent iff o  is independent  (mod  !/|).

Note that if o is independent and 0 C / C 7, then {/(/): / e §! is an

independent family of sets.   Also, if o is independent and infinite,  0  is indepen-

dent (mod jJ\).

3.4. Theorem (Engelking-Kar^owicz [2]).  // |l| = k >_ HQ, there is an

independent S C_ /   such that  |S| = 2K.

Proof.   Let   ((s .,   r.): i £ l) enumerate  \(s, r): s £ S Jl) & r £ I9(s)\.   Let

S = UA- A C  ¡\, where  fA(i) = r{A Cx s.).

Let A      (77 < 2K) enumerate  ?(/).   Let  p     (77 < 2K) enumerate all monotone

functions from S,,(/) into S(l) so that each monotone p: S ,(/) —► j (/) is listed
OJ L OJ

2K times.   To prove Theorem 3.2, we construct 3"     (77 < 2K) and S     (77 < 2K)

to satisfy the following:

(i)   For each  77 < 2K, J"     is a filter over  7,  S    C 7    and S     is independent

(mod J~v).

(ii)   For £ < 77 < 2K, Í, C Î     and S, D §   •

(iii)   Each   IS^I =2K,

(iv)   If 77 is a limit ordinal,  ï    = U 13%: tf < 77!  and S    = DíSí: cf < 77!.

(v)   Each S    ~ S is finite.
T) 77+I

(vi)   S -   is generated by sets  B     (tz < w) such that IJJB   : tz < oj| = 0.U ^ / 77 72

(vii)   For 77 < 2K, either A     or 7 — A„   is in 3"
' 7? 7) 17+1

(viii)   For 77 < 2K,  if p   : S([l) —* A   ,  then there is a multiplicative

1: SojW -> ^77+1   such that  1 < Pr,-

By (vii), U = (J \SV: 77 < 2K\ will be an ultrafilter.   If p: SJ[l) -. U  is

monotone then, since  cf(2K) > k, p: SJ[l) —» 3" ,  for some zf.   Applying (viii) to

some  77 > zf such that p     = p shows that there is multiplicative a: S  (l) —»

J       j C 11  such that q <^p.   Thus, ll  will be good.   Condition (vi) insures that

ll  will be countably incomplete.   To make (vi) hold, take S    U !/ ! to be
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independent and of power  2K ■     Take  Bn = \i £ A: n < fit) < co\  and J Q =

((ÍB  :n <«)})).
n

Conditions (i)-(iv) will take care of themselves.   To get (v), (vii) and (via),

we apply, at each stage  77,   Lemmas 3.5 and 3.6 successively.

3.5. Lemma.  If S  is independent   (mod 3") and A C A,   there are &   C S

and 3"'  D 3"  sucb that S'   z's independent (mod 3"' ),  S ~ S'   z's /¿«ííc íZ72z/ either

A   or I ~ A   z's Z72 j'.

Proof.

Czzse I. S is independent (mod ((S U {A]))).   Take S' =§,?'= ((3" u {A})).

Czzse II. Not Case I.   Let  f ,,■■•, f    be distinct members of o  and1 1 '77

i., • • • , i    e A such that

/ ̂  {/: /,(/)- i, * ••• ft /„O) - ¿J « iff. A)).

Let S' =§-!/j, •••,/„},

?' . ((5 u «,■./,</) -¿j*.» &/„(/>« i„lD>-

Note that  A ~ A e S7' .

3.6. Lemma. If o z's independent (mod J) zünzA p: S (A) —► J z's monotone,

then there are ö Ç o, j' D J, zzW multiplicative q: S (l) —► j such that o

is independent (mod J   ), ö ~ o'   z's finite, and q < p.

Proof.  Fix g £ 0.   Let S' = S ~ {gj.   For each ¡eS (A), let

Í0        if s gt,

p(r)    if s Ç i.

Let  r¿  (z 6 A) enumerate  Sjf).   Let q(s) = \J \qt,(s) n g_1(íz'!): i £ l\ and

T = ((3^ range?)).

This concludes the proof of Theorem 3.2.   The interest of good ultrafilters

in model theory is that they make ultrapowers saturated.   If A  and  B  are two

infinite structures of power <_ k and   U  is a good, countably incomplete ultra-

filter over K, then, as Keisler showed (see  [l]), the ultrapowers AK/u and

BK/U have power  2K and are  k -saturated.   Thus, if 2K = k    and A   and  B  are

elementarily equivalent, then  AK/ll  and  BK/ll  are isomorphic.

Shelah [8] has shown, without any assumption about 2K, that there is an

ultrafilter over 2 which makes ultrapowers of elementarily equivalent models

of power 7C isomorphic. It is unknown, however, whether any ultrafilter over k

has this property.
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