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Abstract: Ultrafine particles are particles that are less than 0.1 micrometres (µm) in 

diameter. Due to their very small size they can penetrate deep into the lungs, and potentially 

cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and 

Children’s Health (UPTECH) study is the first Australian epidemiological study to assess 

the health effects of ultrafine particles on children’s health in general and peripheral airways 

in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and 

outdoor air pollution monitoring was conducted within each of the twenty five participating 

school campuses to measure particulate matter, including in the ultrafine size range, and 

gases. Respiratory health effects were evaluated by conducting the following tests on 

participating children at each school: spirometry, forced oscillation technique (FOT) and 

multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of 
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exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess 

exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to 

measure systemic inflammation). A pilot study was conducted prior to commencing the main 

study to assess the feasibility and reliably of measurement of some of the clinical tests that 

have been proposed for the main study. Air pollutant exposure measurements were not 

included in the pilot study. 

Keywords: ultrafine particles; children; traffic; respiratory; air pollution; monitoring 

 

1. Introduction 

Ultrafine particles (UFP) are particles that are less than 0.1 micrometres (µm) in diameter. Compared 

to larger particles, UFP have a larger relative surface area. This may be associated with greater toxicity, 

compared to larger particles, because their smaller diameter means they are more likely to deposit in the 

lung parenchyma and their greater surface area means they are potentially more reactive [1]. 

Emissions generated by fossil fuel combustion by motor vehicles are a major source of UFP [2]. The 

World Health Organization (WHO) has concluded, based on a review of toxicological evidence, that it 

is likely that UFP do have adverse effects on human health [3]. However, the existing body of 

epidemiological evidence is insufficient to determine an exposure-response relationship. Consequently, 

there are currently no health-based guidelines recommending threshold concentrations of UFP that 

should not be exceeded [1] Some previous studies have not allowed separate estimation of the specific 

health effects of UFP, apart from the effect of larger particle fractions, such as those measured as PM2.5 

and PM10 [2]. One study that looked at the effects of UFP on cyclists found a non-significant association 

with increased exhaled nitric oxide and decreased lung function [4], another study found no association 

with UFP and hospital admission for asthma but  a significant association with larger particles and other 

pollutants [5], while a third study in 1997 found that decrease in peak expiratory flow among children 

was associated with PM10 rather than UFP [6], other studies have found health effects mainly in people 

with asthma [7,8].  
The motivation for the Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) 

study is to provide epidemiological evidence about the effects of traffic-related UFP on human 

respiratory health, in general, and children’s respiratory health, in particular. The main hypothesis was 

that, among children aged 8 to 11 years, variation in long-term exposure to UFP is associated with 

variation in certain health states and that this association is independent of the effects of other factors 

including other air pollutants, housing conditions and indoor exposures, and socio-economic factors.  

The health states hypothesised to be related to spatial variation in UFP concentration included 

respiratory symptoms (wheeze and cough), spirometric and peripheral airway function, airway 

inflammation and systemic inflammation. This paper describes the methods used in the UPTECH study 

and presents the findings of a pilot study that was performed to evaluate some aspects of the study 

methodology.  
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2. Design and Methods  

2.1. Overview of the Cross-Sectional Study Design 

We have conducted a cross-sectional study to examine the association between spatial variation in 

exposure to UFP and spatial variation in the occurrence of respiratory symptoms, illnesses and impaired 

function. By choosing schools as the exposure site, we are able to capture children’s daytime exposure 

to UFP, which includes a large proportion of their overall exposure. Although this exposure is assigned 

to children at the level of their school, outcomes and covariates, including pollutant exposures at home 

and during travel to and from school, were measured and assigned individually [9].  

The main study is a cross-sectional study that was conducted in 25 primary schools in the Brisbane 

Metropolitan Area of Queensland, Australia, between October 2010 and August 2012 The long term 

average maximum temperatures in Brisbane are 30 °C in summer and 22 °C in winter. A pilot study was 

conducted in two schools in March 2009 (early autumn) to evaluate some of the study measurement 

tools. The long term average maximum temperature for Brisbane in March is 29 °C. 

2.2. Ethics Approvals 

The study was approved by the Queensland University of Technology Human Research Ethic 

Committee (Ethics approval number 1000000703). Approvals were also obtained from the Queensland 

Department of Education and Training and Employment (DETE) and the University of Sydney Human 

Research Ethics Committee. 

2.3. Selection of Schools 

Government-run primary schools were selected from the Brisbane Metropolitan Area using the 

following selection criteria: 

(1) The school had naturally ventilated classrooms used by eight to eleven year old students. 

(2) There were no major road constructions, infrastructure projects, or building works planned in the 

vicinity of the school during the study period. 

(3) There were no major local air pollution sources, other than vehicular traffic, close to the school. 

Schools that fulfilled the selection criteria were invited to participate. 

2.4. Selection of Classes and Children 

We have chosen children as a population because children are generally more susceptible to air 

pollution and their attendance at school for six to seven hours a day during weekdays allows us to assess 

the impact of their pollution exposure at school.   

A number of classrooms that included students in years three, four and five were selected at each 

participating school. The number of classrooms included from each school depended on the number of 

students within the eligible age group (8 to 11 years) in each classroom. All eligible children in the 

selected classes were invited to participate.  
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2.5. Recruitment of Participants 

Between 3 and 9 weeks before the scheduled date for testing participants, we introduced the study to 

the students through a 10 min presentation with an opportunity for questions. We then gave each student 

a take home information pack. The packs included a written information sheet for parents and one in 

simpler language for the students, two copies of the consent form, and a questionnaire. In some schools, 

we re-introduced students in the participating classrooms to the project on the first day of field testing. 

Only students whose parent or guardian completed, signed and returned the consent form were tested. 

2.6. Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) Questionnaire 

The questionnaire was developed based on questions from the International Study of Asthma and 

Allergies in Childhood (ISAAC) questionnaire  (ISAAC Steering Committee and ISAAC Phase Three 

Study Group, 2000) [10] the Belmont Schoolchildren Study [11] and the Childhood Asthma Prevention 

Study questionnaire (CAPS) [12]. The questionnaire collected information about respiratory symptoms 

and illnesses, general health status and parental history of respiratory disease, as well as potential 

confounders and effect modifiers relevant to the analysis. These included: 

• Housing conditions; such as the type of home and garage, the presence of pets, and whether or 

not there is carpeting; 

• Home environment; such as occurrence of flooding or water damage, presence of mould, mildew 

or a musty odour; 

• Socio-economic status through both parent’s highest level of education; 

• Other sources of exposure to air pollution, including fuels used for cooking and heating at home 

and exposure to traffic during commuting on weekdays and on weekends; 

• Tobacco smoke exposure and; 

• Ethnicity.  

Home addresses and information about travel times and routes between home and school were also 

collected to assess exposure to UFPs outside the schools. The questionnaire was pilot tested to validate 

new components, especially regarding UFP exposure, as well as logical flow, feasibility and 

appropriateness of wording [13]. 

2.7. Clinical Measurements 

Clinical testing was conducted over a one week period at each school during one of the two weeks 

when air quality measurements were conducted. All participants underwent a series of tests to assess 

airway function (including peripheral airway function), airway inflammation, allergic status, exposure 

to second hand tobacco smoke and systemic inflammation. Blood was collected for subsequent DNA 

extraction and genetic analysis. Participants were able to opt out of blood tests (including the genetic 

tests) and allergy skin prick tests while still participating in the other tests. Standing height was measured 

using a stadiometer and weight was measured using bathroom scales. The total time taken to complete 

all the health tests was approximately two and a half hours per child. All equipment was calibrated daily. 
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2.7.1. Spirometry 

Spirometric lung function was measured, before and after the administration of a bronchodilator, 

using a Spirocard device (QRS Diagnostic, LLC, Plymouth, MN, USA) linked to a portable computer 

running SpiroScore+ V2.6 software (Bird Healthcare, Melbourne, Australia) in accordance with 

ATS/ERS recommendations [14]. The tests were conducted by highly trained technicians; the collected 

data was checked for quality after that. Short-acting bronchodilators were withheld for six hours and 

long-acting bronchodilators for 12 h prior to the testing session. The procedure was repeated three or 

more times, until the difference between the best and the second best values for FEV1 was less than 100 

mL. Immediately after the baseline spirometry was completed, we administered salbutamol  

200 µg using an MDI device (Ventolin® 100 µg) via a tube spacer. Post-bronchodilator measurements 

were made 10 min later using the same procedure. The post-bronchodilator spirometry was the last test 

each child performed on the test day to avoid any effects of salbutamol on the other breathing tests. 

2.7.2. Fraction of Exhaled Nitric Oxide (FeNO) 

Exhaled nitric oxide was measured as a marker of airway inflammation. Samples of exhaled breath 

were collected into sealed inert bags at a flow rate between 10 and 14 litres per minute using a rotameter 

built at the Woolcock Institute of Medical Research (WIMR). Several breaths were usually required to 

obtain an adequate volume that could be analysed offline. The exhaled gas was analysed within six hours 

of collection using a chemiluminescence analyser (Thermo Environmental Instruments, Lear Siegler, 

Australia). Measurement of FeNO was the first test conducted as it is possible for other breathing tests, 

such as spirometry and MBNW, to have an effect on natural FeNO levels. 

2.7.3. Forced Oscillation Technique (FOT) 

FOT provides a tidal breathing-based measurement of airway mechanics. Respiratory system 

impedance was measured at 6 Hz as this allows assessment of peripheral airways mechanics. 

Measurements were performed using an in-house FOT device, as described in detail previously [15], but 

modified to reduce total equipment dead space to comply with recent paediatric recommendations [16]. 

Impedance repeatability checks and volume checks were performed at the start and end of each testing 

session. At each visit, following a practice test, a series of technically acceptable one minute FOT 

measurements were performed, with the child sitting upright, wearing a nose clip, and with cheeks and 

floor of mouth supported (by the child under instruction). Children watched a DVD during the test to 

encourage regular and comfortable breathing. Recordings were deemed acceptable by the technician if 

tidal volume and breathing frequency appeared stable, with no obvious leaks or glottic closures identified 

by visual inspection of the volume trace. Breath-by-breath data filtering was used to identify and reject 

entire breaths in which respiratory artefact occurred [17]. Rrs and Xrs was recorded for each session as 

the mean of all acceptable tests. The results were expressed as raw values due to the lack of equipment-

specific FOT normative data in this age group. 
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2.7.4. Multiple Breath Nitrogen Washout (MBNW) 

MBNW is a tidal breathing tests which measures peripheral airway function by assessing the gas 

mixing efficiency within the lungs [18]. The peripheral airways are the predominant site of gas mixing 

due to their large surface area. Children performed the test connected to a mouthpiece containing a 

bacterial filter, and wore a nose clip. Children watched a DVD during testing for distraction purposes, 

to encourage a regular breathing pattern. During the wash-out portion of the test, children were switched 

to breathing 100% oxygen until the end-tidal nitrogen concentration (approximately 78%) had been 

washed out to below 1/40th of the starting end-tidal concentration (approximately 2%). The test was 

performed using a custom built MBNW device built (WIMR, Sydney). Flow was measured using a Hans 

Rudolph pneumotachograph (3700 series, flow range 0–160 L/min, Hans Rudolph, Vacumed, Ventura, 

CA, USA). Nitrogen concentrations were measured using a Medgraphics nitrogen analyser. The 

accuracy of the MBNW system had been validated against a range of known lung model volumes, 

consistent with the approach taken by other research groups at the time of the pilot  

study [19]. A minimum of four technically acceptable washouts were attempted with each child. The 

number of washouts per child was decided based on the pilot study (results presented below). Between 

washout runs an interval of double the washout time was used to allow end-tidal nitrogen concentration 

to return to baseline concentration (approximately 78%). 

2.7.5. Allergy Skin Prick Tests 

We measured atopic status by skin prick test using the following environmental airborne allergens: 

house dust mites (Dermatophagoides pteronyssinus and Dermatophagoides farinae), cockroach; cat; 

two moulds (Alternaria and Aspergillus); rye grass and a grass mix (Hollister-Stier, Spokane, WA, 

USA).  Glycerol and histamine phosphate 10 mg/mL were used as negative and positive controls, 

respectively. Wheal sizes were measured 15 min after the tests were performed [20]. The average wheal 

size was calculated as the mean of the longest transverse diameter and its perpendicular. Wheals that 

were ≥3 mm and were also >the negative control were considered positive. 

2.7.6. Blood Tests 

Blood was collected by trained phlebotomists after using an EMLA® dermal anaesthetic patch. Highly 

sensitive C-reactive protein (hsCRP) (Tina-quant C-reactive protein Gen.3, Roche Diagnostics, 

Indianapolis, IN, USA) and cotinine [21] were measured in serum as indicators of systemic inflammation 

and recent exposure to environmental tobacco smoke, respectively. DNA extracted from whole blood 

for later genomic analysis. 

2.8. Air Quality and Particle Exposure Measurements 

Air quality measurements were performed continuously for two consecutive weeks at each school. 

UFP particle number concentration (PNC) was measured at three outdoor sites within the grounds of 

each school. These sites were selected in order to describe the exposure profile with respect to traffic 

conditions and prevailing wind direction. Two outdoor sites were located at the two ends of the school 
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grounds downwind of the prevailing wind direction and a third outdoor site was located in a central 

location on the axis. 

In addition to PNC, other air quality parameters were measured at one of the centrally located outdoor 

sites. These included particle mass in various fractions (PM1, PM2.5, PM4 and PM10), particle surface 

area, particle number size distribution, elemental and organic carbon (EC and OC) in PM2.5, elemental 

composition of PM2.5 and PM1, volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons 

(PAHs); carbonyls, gases (oxides of nitrogen, carbon monoxide, carbon dioxide and sulfur dioxide), 

pollen, fungi, ions and meteorological parameters (temperature, humidity, wind speed, and direction). A 

Compact Time-of-Flight Aerosol Mass Spectrometer (C-ToF-AMS, Aerodyne, MA, USA) was 

deployed to examine spatial and temporal variability of organic aerosols in the outdoor air, and positive 

matrix factorization (PMF) was used to apportion the sources of the organic aerosols across the Brisbane 

Metropolitan Area (for the first time in the Southern Hemisphere). 

PNC, carbon dioxide, polybrominated diphenyl ethers in the dust, chemicals (VOCs and carbonyls), 

and fungi, endotoxin concentrations and temperature were measured in the two selected naturally 

ventilated classrooms, at the same time as the outdoor monitoring.  

We used structured surveys to record information on classroom characteristics (e.g., number of 

occupants, size and type of flooring), daily activities, potential sources of indoor particles (and their 

operation schedule) as well as classroom cleaning schedules. Traffic density was recorded for the busiest 

road adjacent to the school. Details on the indoor and outdoor air quality monitoring, methodologies, 

instrument and data quality control checks and outcomes have been published [22–26].  

At each school three to six of the participating children undertook personal UFP exposure monitoring 

for 24 h with the consent of their teacher and parent or guardian. The methodology and outcomes of this 

study have been recently published [26]. 

PNC were continuously measured at three long-term urban reference sites. These sites were: 

Queensland University of Technology (Gardens Point Campus) (1 January 2009–31 December 2009 and 

20 September 2010–continuing), and two QLD Department of Environment and Heritage Protection 

(DEHP) air quality monitoring stations in Rocklea (1 January 2009–31 December 2009) and 

Woolloongabba (1 January 2009–31 August 2010). Using data from the reference sites and 25 schools, 

a long term time series model has been developed to examine the relationship between PNC 

concentrations and meteorology at both site-specific and airshed scales [27]. 

2.9. Data Management 

Microsoft Access databases were used to collate and store the air quality, questionnaire and clinical 

test data. As a quality control check, written questionnaire data was double entered by separate data entry 

staff. Data entries that did not match were compared against the original hard copies and corrected. Up 

to five attempts were made to contact parents by phone in order to complete missing data in 

questionnaires.  

All the spirometry data was checked for repeatability and acceptance against the American Thoracic 

Society (ATS) criteria using in-house quality control software. All MBNW and FOT data were checked 

for quality within the Woolcock Institute of Medical Research. 
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2.10. Data Analysis 

2.10.1. Analysis Plan 

A function will be fitted to describe the distribution of particle number concentration (the main 

exposure of interest) at each school, either as a single log-normal density, a mixture of log-normals or a 

histogram. A Bayesian hierarchical linear model will then be fitted to assess the relation between this 

exposure distribution function and each of the main clinical outcomes to be tested: asthma diagnosis, 

respiratory symptoms, spirometric lung function, and exhaled nitric oxide. Functions representing the 

distribution of measured concentrations of other pollutants at the school site and home environmental 

factors that were assessed by questionnaire will be included as potentially confounding covariates. 

The Bayesian hierarchical model is a Generalised Linear Mixed Model with a two-level hierarchy: 

classrooms within schools, schools within the study area. The use of exchangeable priors at each level 

of the hierarchy allows for partial pooling of the data [28]. This partial pooling offers a compromise 

between complete pooling (treating class-room level variables as fixed effects in the model) and treating 

each class as an independent cohort within the study. Whether the effects of explanatory variables and 

confounders are linear will be investigated by making use of semi-parametric regression methods that 

allow for flexible non-linear effects without specifying the non-linear form a priori [29]. 

Model building will be based on a conceptual model that incorporates previously studied relationships 

between air quality and health, with the potential confounder variables being the age, sex, atopic status, 

asthma diagnosis, etc. at the individual level, as well as characteristics of the home that are known to 

explain variation in the clinical outcomes. A linear partial effect for each of the explanatory variables 

will be fitted in order to assess whether each explanatory variable has a positive, negative or neutral 

effect on the health outcome variable of interest. Bayesian model choice will be by Deviance Information 

Criterion, a goodness of fit parameter that accounts for the number of parameters that are included in the 

model. As most of the confounders (e.g., sex, atopic status, home characteristics and health history) are 

binary variables, the effect sizes will be directly comparable for determining which confounders are most 

important modifiers of the exposure-response relationship. 

2.10.2. Sample Size and Study Power 

The sample size and power calculations were based on measuring between-subject differences in 

FEV1 and in the prevalence of asthma. The calculations were performed in PASS 2008 software (NCSS, 

UT, USA). The between-subject standard deviation in children, which was estimated from the recently 

conducted Australian Child Health and Air Pollution Study (ACHAPS), was assumed to be 225 mL [30]. 

The mean baseline FEV1 was assumed to be 2000 mL. The intra-cluster (that is,  

intra-school) correlation coefficient, estimated from the same study, was 0.03. The baseline prevalence 

of asthma was assumed to be 15% [31]. We estimated that a sample size of 343 would yield 80% power 

to detect a significant effect at the 5% level for: a difference in FEV1 attributable to a 1 standard deviation 

change in pollutant exposure of 109 mL (or 5.4% of baseline); a difference in FEV1 attributable to 2 

standard deviation change in pollutant exposure of 54 mL (or 2.7% of baseline); and  

a difference in FEV1 attributable to a change in pollutant exposure from the 5th to the 95th percentile of 

33 mL (1.7% of baseline). This sample size would also give 80% power to detect an odds ratio for the 
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risk of asthma associated with a 1 standard deviation change in pollutant exposure equal to 1.6 or greater. 

As the subjects were clustered within schools, it was necessary to adjust this sample size for the effect 

of clustering. Assuming that 30 subjects would be recruited per school, then the design effect for 

clustering would be 1.87. This yielded a final sample size of 641 subjects recruited from 21 schools (clusters). 

To allow for potential loss to follow-up, we decided to recruit 25 schools. Based on an expected response 

rate of 30%, we approached 99 students aged 8 to 11 from each school to join the study. 

2.11. Pilot Study 

In March (autumn) 2009, a pilot study was conducted prior to the main UPTECH study to test the 

feasibility and the reproducibility of the clinical measurements that had not previously been implemented 

in field studies. Based on the pilot study we were able to determine which outcome measures to include 

and how many repeated measurements should be made for each test. The pilot study did not include air 

quality measurements. 

Forty eight children, aged between 8–11 years, were selected from two primary schools in the 

Brisbane area. This number was based on the estimated total time taken to complete the testing protocol 

for each child (1 h), the number of children who could be tested simultaneously and the time available 

in a normal school day (8:00 A.M. to 3:00 P.M.). Questionnaires that were completed by parents as part 

of the consent process provided information on previous and current respiratory health of the children.  

Children consenting to participate were tested during school hours.  

The same testing protocol was repeated two weeks later with the tests performed at the same time of 

day as each participant’s first visit, in the same school setting.  

All the clinical tests, except measurement of FeNO, were conducted using the methods described 

above. No blood specimens were collected in the pilot study. In the pilot study, FeNO was measured 

using the Hypair (Medisoft®, Sorinnes, Belgium) device in parts per billion (ppb). This device measures 

FeNO using an electrochemical cell NO analyser within the device. The test was performed, in duplicate, 

at three expiratory flow rates (50, 100, and 150 mL/s). Incentive software was used to encourage children 

to maintain the desired flow rate for the exhalation period of 3 s after the flushing of equipment-related 

dead space. Children performed trial runs at each flow rate until the technique was deemed adequate by 

the operator. For each child, the NO output (exhaled NO multiplied by flow rate, y-axis) was plotted 

against flow (x-axis) for each of the six NO measurements. A first order linear regression across the data 

points was performed. Alveolar NO (Calv, ppb), an index of inflammation in the peripheral airways 

[32], was calculated as the slope of this regression line and bronchial flux (JNO, pL/s), was calculated 

as its y-axis intercept.  

The reliability of all of the clinical tests was assessed by calculating the intraclass correlation 

coefficient (ICC) using data from the two testing sessions. ICC is expressed on a scale of 0 to 1, with  

1 representing perfect reliability.  
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3. Results of Pilot Study and Discussion 

3.1. Pilot Study Results  

The demographic and clinical characteristics of the 48 children recruited for the pilot study,  

46 (96%) of whom completed the second testing session, are shown in Table 1. Eleven of the 48 (23%) 

children had a history of doctor-diagnosed asthma, as reported in the parent-completed questionnaire 

and 18 of 42 children (43%) were atopic, based on the results of skin prick testing. The prevalence of 

atopy in the pilot study population is similar to the reported prevalence in other Australian  

populations [33] and the prevalence of asthma in this study population is also similar to the reported 

prevalence of ever diagnosed asthma in children aged 0 to 15 years, which ranged between 13% and 

25% across different states in Australia. [34]. At the time of testing all of the children were able to 

successfully complete duplicate FeNO measurements at each of the three flow rates. On further 

examination of the resulting flow and pressure profiles, 254 of 264 (96.2%) individual FeNO 

measurements were deemed to be satisfactory. Ten values were rejected due to a fall in pressure to zero 

during the collection period. Six of these occurred at 50 mL/s, one at 100 mL/s, and three at  

150 mL/s. Six data points were available for calculation of Calv and JNO in 43 of 48 (89.6%) at the first 

visit and 44 of 46 (95.7%) at the second visit, with five available for 4 of 48 (8.3%) and 2 of  

46 (4.3%) respectively. The remaining children from the first visit had four data points with at least one 

data point for each flow rate. The average of two acceptable results from each week was taken as the 

value for calculation of between-session repeatability. If only one acceptable value for the visit was 

available then no average value was used for that visit. The ICCs for Calv and JNO were 0.37 and 0.87, 

respectively. Although the same measurements have been conducted in previous studies using school 

children [35], these data show that alveolar NO (Calv) was not measured reliably enough for application 

in field (or clinical) studies using this technique.  

Table 1. Demographic and clinical characteristics of children recruited for the Ultrafine 

Particles from Traffic Emissions and Children’s Health (UPTECH) pilot study (N = 48). 

Characteristic Mean (SD) or Number (%) 

Age (years) 9.27 (0.89) 
Sex (Male) 21 (44%) 
Height (cm) 137.42 (6.47) 

Height (percentile) 50.02 (24.27) 
Height (z-score) 0.00 (0.70) 

Weight (kg) 33.56 (6.73) 
Weight (percentile) 53.63 (25.48) 

Weight (z-score) 0.13 (0.81) 
Atopic (N, %) 18/42 (43%) 

Doctor diagnosed asthma (N, %) 11 (23%) 

Acceptable FOT measurements from both visits were obtained in 43 of the 48 children. Three were 

rejected on analysis (one due to tachypnoea on the first visit and two due to the presence of frequent 

artefacts or variable leaks on the second visit). There was no significant difference in Rrs6 or Xrs6 values 
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between participants with and without asthma. The ICCs for Rrs6 and Xrs6 are shown in Table 2. Both 

Rrs6 and Xrs6 were highly reproducible in these participants. 

Table 2. Reliability of respiratory tests conducted in the UPTECH pilot cohort. 

Respiratory Test Intraclass Correlation Coefficient (95% Confidence Interval) 

FeNO (n = 46) 
JNO (intercept) 0.87 (0.78–0.93) 

Calv (slope) 0.37 (0.10–0.59) 

FOT (n = 43) 
Rrs 0.81 (0.68–0.89) 
Xrs 0.81 (0.67–0.89) 

MBNW (n = 45) 
LCI 0.64 (0.43–0.78) 

Spirometry * (pre n = 46) (post n = 43) 
FEV1 pre 0.93 (0.88–0.96) 
FEV1 post 0.90 (0.83–0.95) 
FVC pre 0.92 (0.85–0.95) 
FVC post 0.94 (0.90–0.97) 

* Pre- = pre-bronchodilator, post = post-bronchodilator. 

All children completed MBNW testing. Two of the 48 children on the first visit did not produce 

acceptable results due to poor technique (e.g., tachypnoea that did not respond to distraction during 

testing). Acceptable paired results were obtained in 45 of the 46 (97.8%) children who attended both 

sessions. The ICC for LCI was 0.64 for the whole cohort, indicating adequate reliability. Spirometric 

measurements were also highly reliable. Only 43 out of 46 children completed the post bronchodilator test. 

ICCs for pre- and post-bronchodilator FEV1 and FVC were between 0.92 and 0.94. 

3.2. Discussion 

The UPTECH study is the first large multidisciplinary epidemiological study to investigate 

respiratory health effects associated with children’s exposure to traffic-related UFP emissions. 

The pilot study demonstrated the feasibility and, except for alveolar NO, the reliability of the proposed 

clinical measurements. As a result of the pilot study it was decided not to include the alveolar NO 

measurements in the main study and revert to measuring total expired NO (FeNO) using the rotameter 

method, which is simpler and has been shown to be reliable in several previous studies [11,36,37].  

One of the strengths of this study design is that it enables us to link exposures at schools with health 

endpoints and covariates measured on individual students attending that school. We have already 

demonstrated that there is a wide range of UFP number concentration and traffic densities among the 

schools selected for this study [24]. This will improve the power of the study to detect health effects 

attributable to this exposure. The broad range and long duration of continuous air pollution 

measurements (2 weeks), as well as the multiple indoor and outdoor measurement locations within each 

school, allowed more accurate estimation of children’s exposure within the school environment.  

A further strength of the study is the use of FOT and MBNW to assess the peripheral airways, which is 

the area of the lung most likely to be affected by UFP. There has only been one study looking at the effects 
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on UFP on mid-flow spirometry (FEF25-75). That study found an association between UFP exposure and 

the level of FEF25-75 [38]. The peripheral airways measurements that are being conducted in the UPTECH 

study are novel and will complement information on respiratory symptoms and diagnoses, as well as well-

established spirometric lung function measures and measures of airway inflammation.  

FOT has been previously measured in a field setting [39]. However this is the first time, to our 

knowledge, that MBNW measurements have been conducted in a field setting. The pilot study has shown 

that the spirometric measurements were more repeatable; however the FOT and MBNW are a more 

sensitive measure for peripheral airway abnormalities. These data will provide us with valuable 

information regarding the effects of air pollution on peripheral airways. 

The study has been adequately powered to detect meaningful health effects. A broad range of potential 

confounders have been measured. The other strength of this study was personal particle number exposure 

monitoring. Although personal exposure monitoring was limited to small number of participating 

children, due to a limited number of available instruments and time constraints, it allowed the assessment 

of children’s personal UFP exposure at school, in the home, while commuting and in other non-school 

environments.  

 In the main UPTECH study we collected data on air pollution and on clinical endpoints all year 

round, except during school holidays. Hence both seasonal and regional variation in climate might 

contribute to observed variation in clinical outcomes [40–42]. For this reason, we have also collected 

relevant meteorological data that will allow us to test the effects of seasonality and temperature changes 

on clinical outcomes. 

The study does have a number of important limitations that will need to be considered in interpreting 

the findings. The cross sectional design of the study, means that incident events cannot be quantified and 

it may be difficult to separate spatial (school-level) and temporal (date of measurement) sources of 

variation. We believe this initial cross-study may lead to future cohort studies to address this issue. 

Furthermore, for the main analyses indoor exposure status was considered to be the same for all 

participants in the same classroom and outdoor exposure status was considered to be same for all 

participants at the same school. The main variables for exposure-response analysis were not assessed at 

an individual level. This is most relevant to our study objective, which is to assess the impact of school-

based environmental exposures on respiratory health outcomes.  

4. Conclusions  

We have shown that it is feasible to conduct comprehensive peripheral airway testing on children in 

the school setting. These tests are invaluable for assessing the potential respiratory health impact of UFP 

exposure in children.  To the best of our knowledge this is the first study to assess the effects of traffic-

derived UFPs on peripheral airways. The extensive exposure and health data collected for the UPTECH 

study, as well as the multiple sites where the study was conducted, will help give us a clearer picture on 

the effects of UFP on human health. Besides showing the feasibility of the tests being conducted and 

highlighting the results from the pilot study, this paper describes the details of the main UPTECH study 

and can be referenced in subsequent results manuscripts.  
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